51
|
Tan L, Harper L, McNulty MA, Carlson CS, Yammani RR. High-fat diet induces endoplasmic reticulum stress to promote chondrocyte apoptosis in mouse knee joints. FASEB J 2020; 34:5818-5826. [PMID: 32124494 DOI: 10.1096/fj.201902746r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/31/2022]
Abstract
Mice fed a high-fat diet (HFD) become obese and develop osteoarthritis (OA)-like lesions, including chondrocyte apoptosis, in the knee joints. However, the mechanism by which HFD/obesity induces chondrocyte apoptosis is not clearly understood. In the present study, male mice were fed a low-fat diet (LFD, 10% kcal), HFD (45% kcal), or a HFD administered with 0.5 g/kg bodyweight of 4-phenyl butyric acid (PBA, a small chaperone known to ease endoplasmic reticulum [ER] stress), via the drinking water. At the end of the 18-week study, stifle (knee) joints from all animals were collected, fixed, paraffin embedded, and sectioned. Immunostaining of joints from the HFD group showed increased expression of ER stress and apoptotic markers and increased expression of nuclear protein 1 and tribbles related protein-3 compared to the LFD group. Mice on HFD also showed higher percentage of chondrocyte death, lower chondrocyte numbers per cartilage area, and thickening of subchondral bone. Administration of PBA alleviated all of the HFD-induced symptoms. Our study demonstrated that HFD induces ER stress to promote chondrocyte death and subchondral bone thickening, which could be relieved by alleviating ER stress via PBA administration, suggesting that ER stress could play an important role in obesity-linked OA and could be targeted for OA therapeutics.
Collapse
Affiliation(s)
- Li Tan
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Lindsey Harper
- Veterinary Clinical Sciences Department, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Margaret A McNulty
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cathy S Carlson
- Veterinary Clinical Sciences Department, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Raghunatha R Yammani
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
52
|
Li A, Li X, Chen X, Zeng C, Wang Z, Li Z, Chen J. NUPR1 Silencing Induces Autophagy-Mediated Apoptosis in Multiple Myeloma Cells Through the PI3K/AKT/mTOR Pathway. DNA Cell Biol 2020; 39:368-378. [PMID: 31971825 DOI: 10.1089/dna.2019.5196] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Anmao Li
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Xingxin Li
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Xuanxin Chen
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Chensi Zeng
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Zuo Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Zhen Li
- Department of Hematology, The First Affiliated Hospital of the Army Medical University, Chongqing, China
| | - Jianbin Chen
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| |
Collapse
|
53
|
Tan XH, Zhang KK, Xu JT, Qu D, Chen LJ, Li JH, Wang Q, Wang HJ, Xie XL. Luteolin alleviates methamphetamine-induced neurotoxicity by suppressing PI3K/Akt pathway-modulated apoptosis and autophagy in rats. Food Chem Toxicol 2020; 137:111179. [PMID: 32035215 DOI: 10.1016/j.fct.2020.111179] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/19/2020] [Accepted: 02/01/2020] [Indexed: 01/21/2023]
Abstract
Methamphetamine (METH) is a highly addictive stimulant that results in serious and persistent neurotoxic effects. Studies have indicated that luteolin, a flavonoid, may confer neuroprotection against neurotoxicity. Nevertheless, the effects of luteolin on METH-induced neurotoxicity have not been sufficiently verified. In the present study, Sprague Dawley rats were pretreated with luteolin (100 mg/kg) or sodium dodecyl sulfate water, followed by administration of METH (15 mg/kg) or saline. Rat striata were then collected for RNA-sequencing and subsequent analyses. A total of 347 differentially expressed genes (DEGs) were identified in the METH group with 20 pathways, including the phosphoinositol 3 kinase (PI3K)/protein kinase B (Akt), found to be enriched by the KEGG analysis. Seventy-five of the 347 DEGs were modulated in luteolin-pretreated rats, which were enriched into 12 pathways, containing the PI3K/Akt. Results further showed that luteolin pretreatment significantly repressed the METH-induced increases of PI3K, Akt, p-Akt, p53, Bax, caspase 3, normalized the ratio of p-Akt/Akt, and autophagy-related proteins (Beclin1, Atg5 and LC3-II) expression. Taken together, these findings indicate that luteolin attenuates METH-induced apoptosis and autophagy by suppressing the PI3K/Akt pathway. In this case, it exerts protection against METH-induced neurotoxicity. This provides a platform for development of potential therapies for METH treatment.
Collapse
Affiliation(s)
- Xiao-Hui Tan
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Kai-Kai Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jing-Tao Xu
- Department of Forensic Clinical Medicine, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Dong Qu
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Li-Jian Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Hao Li
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China.
| | - Hui-Jun Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China.
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515, Guangzhou, China.
| |
Collapse
|
54
|
Ding J, Lian Y, Meng Y, He Y, Fan H, Li C, Qiu P. The effect of α-synuclein and Tau in methamphetamine induced neurotoxicity in vivo and in vitro. Toxicol Lett 2020; 319:213-224. [DOI: 10.1016/j.toxlet.2019.11.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
|
55
|
Xu H, Jiang C, Zhao H, Liu L. 6-Formyl-5-isopropyl-3-hydroxymethyl- 7-methyl-1H-indene mitigates methamphetamine-induced photoreceptor cell toxicity through inhibiting oxidative stress. Hum Exp Toxicol 2020; 39:712-720. [PMID: 31928234 DOI: 10.1177/0960327119896617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As an extremely addictive psychostimulant drug and an illicit dopaminergic neurotoxin, methamphetamine (METH) conducts to enhance satisfaction, feelings of alertness through influencing monoamine neurotransmitter systems. Long-lasting exposure to METH causes psychosis and increases the risk of neurodegeneration. 6-Formyl-5-isopropyl-3-hydroxymethyl-7-methyl-1H-indene (FIHMI) is a novel compound with potent antioxidant properties. This study was to investigate whether FIHMI could mitigate METH-induced photoreceptor cell toxicity. METH-caused cell toxicity was established in 661W cells and protective effects of FIHMI at different concentrations (1-10 µM) was examined. FIHMI significantly attenuated the METH-caused cell damage in 661W cells, evidenced by increasing cell viability and mitochondrial membrane potential, decreasing cytochrome c release and DNA fragmentation, inhibiting activities of caspase 3/9, and changing expression of apoptosis-related protein. Furthermore, FIHMI treatment decreased mRNA expression of Beclin-1 and LC3B protein expression in METH-induced 661W cells suggesting autophagy is reduced. FIHMI decreased the oxidative stress through increasing protein expression of nuclear factor (erythroid-derived 2)-like 2. These data demonstrated FIHMI could inhibit oxidative stress, which may also play an essential role in the regulation of METH-triggered apoptotic response, providing the scientific rational to develop FIHMI as the therapeutic agent to alleviate METH-induced photoreceptor cell toxicity.
Collapse
Affiliation(s)
- H Xu
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
| | - C Jiang
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
| | - H Zhao
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - L Liu
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
56
|
Zhu L, Li Q, Li Q, Qi D, Gao C, Yang H. MicroRNA‐2861 and microRNA‐5115 regulates myocardial ischemia–reperfusion injury through the GPR30/mTOR signaling pathway by binding to GPR30. J Cell Physiol 2020; 235:7791-7802. [PMID: 31930508 DOI: 10.1002/jcp.29427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Lijie Zhu
- Department of Cardiology Henan Provincial People's Hospital (Zhengzhou University People's Hospital) Zhengzhou P.R. China
- Department of Cardiology Fuwai Central China Cardiovascular Hospital Zhengzhou P.R. China
| | - Qingman Li
- Department of Cardiology Henan Provincial People's Hospital (Zhengzhou University People's Hospital) Zhengzhou P.R. China
- Department of Cardiology Fuwai Central China Cardiovascular Hospital Zhengzhou P.R. China
| | - Qingmin Li
- Department of Cardiology Henan Provincial People's Hospital (Zhengzhou University People's Hospital) Zhengzhou P.R. China
- Department of Cardiology Fuwai Central China Cardiovascular Hospital Zhengzhou P.R. China
| | - Datun Qi
- Department of Cardiology Henan Provincial People's Hospital (Zhengzhou University People's Hospital) Zhengzhou P.R. China
- Department of Cardiology Fuwai Central China Cardiovascular Hospital Zhengzhou P.R. China
| | - Chuanyu Gao
- Department of Cardiology Henan Provincial People's Hospital (Zhengzhou University People's Hospital) Zhengzhou P.R. China
- Department of Cardiology Fuwai Central China Cardiovascular Hospital Zhengzhou P.R. China
| | - Honghui Yang
- Department of Cardiology Henan Provincial People's Hospital (Zhengzhou University People's Hospital) Zhengzhou P.R. China
- Department of Cardiology Fuwai Central China Cardiovascular Hospital Zhengzhou P.R. China
| |
Collapse
|
57
|
Huo W, Li H, Zhang Y, Li H. Epigenetic silencing of microRNA-874-3p implicates in erectile dysfunction in diabetic rats by activating the Nupr1/Chop-mediated pathway. FASEB J 2019; 34:1695-1709. [PMID: 31914690 DOI: 10.1096/fj.201902086r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022]
Abstract
Diabetes is a global medical problem that causes many deaths every year. Complications caused by diabetes are serious and affect patients' quality of life. Diabetes mellitus erectile dysfunction (DMED) affects more than half of male diabetes patients. In this study, we determined the role of microRNA-874-3p (miR-874-3p) and nuclear protein-1 (Nupr1) in streptozocin-induced DMED rats. Control rats received equal amount of vehicle. These rats were also injected with lentiviral vector or agomir to silence or overexpress miR-874-3p or Nupr1. Apomorphine (100 μg/kg, s.c.) was used to induce erection and time of erection was recorded. Intracavernosal and mean arterial pressure ratio (ICP/MAP) were also recorded. O2- level and concentration of thiobarbituric acid reactive substances (TBARs) were detected using lucigenin-derived chemiluminescence method and Colorimetry. Rat cavernosum tissues were collected for subsequent experiments. Cavernosum smooth muscle cells (CSMCs) were also used for in vitro experiments. Nupr1 was found highly expressed (by RT-qPCR and Western blot analysis) in cavernosum tissues from DMED rats. Nupr1 silencing improved the ICP/MAP ratio and erection time. Nupr1 silencing also reduced CSMC apoptosis (by TUNEL assay) as well as decreased O2- level and TBAR concentration. Nupr1 was targeted and inhibited by miR-874-3p (by luciferase activity and RNA immunoprecipitation assays), which was downregulated in DMED. miR-874-3p downregulation was due to increased methylation at the promoter region (methylation-specific PCR). miR-874-3p overexpression improved erection time and reduced apoptosis. In summary, miR-874-3p was downregulated which led to increased apoptosis and erectile dysfunction in DMED rats, through inhibition of Nupr1-mediated pathway. This study may also provide a new therapeutic direction for the treatment of DMED.
Collapse
Affiliation(s)
- Wei Huo
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Hongyan Li
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Yun Zhang
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Hai Li
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
58
|
Foroughi K, Jahanbani S, Khaksari M, Shayannia A. Obestatin attenuated methamphetamine-induced PC12 cells neurotoxicity via inhibiting autophagy and apoptosis. Hum Exp Toxicol 2019; 39:301-310. [PMID: 31726888 DOI: 10.1177/0960327119886036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Methamphetamine (METH) is an illicit dopaminergic neurotoxin and is an extremely addictive psychostimulant drug that influences monoamine neurotransmitter system of the brain and is responsible for enhancing energy and satisfaction and feelings of alertness. Long-lasting exposure to METH causes psychosis and increases the risk of Parkinson's disease. Studies have revealed that obestatin (OB) is a novel endogenous ligand, which may have neuroprotective effects. Hence, we hypothesized that OB might appropriately limit METH-induced neurotoxicity via the control of apoptotis and autophagy. In the current study, PC12 cells were exposed to both METH (0.5, 1, 2, 3, 4, and 6 mmol/L) and pretreatment OB (1, 10, 100, and 200 nmol/L) in vitro for 24 h to determine appropriate dose, and then downstream pathways were measured to investigate apoptosis and autophagy. The results have shown that OB reduced the apoptotic response post-METH exposure in PC12 cells by developing cell viability and diminishing apoptotic rates. Furthermore, the study has exhibited OB decreased gene expression of Beclin-1 by real-time polymerase chain reaction and LC3-II by Western blotting in METH-induced PC12 cells, which demonstrated that autophagy is reduced. The study is proposed that OB is useful in reducing oxidative stress, which may also play an essential role in the regulation of METH-triggered apoptotic response. So these data indicate that OB could potentially alleviate METH-induced neurotoxicity via the reduction of apoptotic and autophagy responses.
Collapse
Affiliation(s)
- K Foroughi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - S Jahanbani
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - M Khaksari
- Addiction Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - A Shayannia
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
59
|
Guo ML, Buch S. Neuroinflammation & pre-mature aging in the context of chronic HIV infection and drug abuse: Role of dysregulated autophagy. Brain Res 2019; 1724:146446. [PMID: 31521638 DOI: 10.1016/j.brainres.2019.146446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/29/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022]
Abstract
In the era of combined antiretroviral therapy (cART), HIV-1 infection has transformed from adeath sentenceto a manageable, chronic disease. Although the lifeexpectancy of HIV+ individuals is comparable to that of the uninfectedsubjects paradoxically, there is increased prevalence ofage-associatedcomorbidities such asatherosclerosis, diabetes, osteoporosis & neurological deficits in the context of HIV infection. Drug abuse is a commoncomorbidityofHIV infection andis often associated withincreased neurological complications. Chronic neuroinflammation (abnormal microglial and astrocyte activation) and neuronal synaptodendritic injury are the features of CNS pathology observed inHIV (+) individualsthat are takingcART & that abuse drugs. Neuroinflammation is thedrivingforceunderlying prematureaging associated with HIV (+) infection, cART and drugs of abuse. Autophagy is a highly conserved process critical for maintaining cellular homeostasis. Dysregulated autophagyhas been shown to be linked with abnormal immune responses & aging. Recent emerging evidence implicatesthe role ofHIV/HIV proteins, cART, & abused drugsin disrupting theautophagy process in brain cells such as microglia, astrocytes, and neurons. It can thus be envisioned that co-exposure of CNS cells to HIV proteins, cART and/or abused drugs couldhavesynergistic effects on theautophagy process, thereby leading to exaggerated microglial/astrocyte activation, ultimately, promotingthe aging process. Restoration of autophagic functioncould thusprovide an alternative therapeuticstrategy formitigating neuroinflammation & ameliorating the premature aging process. The current review aims to unravel the role of dysregulated autophagy in the context of single or co-exposure of microglia, astrocytes, and neurons to HIV/HIV proteins, drugs of abuse &/or cART and will also discuss the pathways involved in dysregulated autophagy-mediated neuroinflammation.
Collapse
Affiliation(s)
- Ming-Lei Guo
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
60
|
Foroughi K, Khaksari M, Rahmati M, Bitaraf FS, Shayannia A. Apelin-13 Protects PC12 Cells Against Methamphetamine-Induced Oxidative Stress, Autophagy and Apoptosis. Neurochem Res 2019; 44:2103-2112. [PMID: 31385138 DOI: 10.1007/s11064-019-02847-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 02/01/2023]
Abstract
Methamphetamine (METH) is a potent psychomotor stimulant that has a high potential for abuse in humans. In addition, it is neurotoxic, especially in dopaminergic neurons. Long-lasting exposure to METH causes psychosis and increases the risk of Parkinson's disease. Apelin-13 is a novel endogenous ligand which studies have shown that may have a neuroprotective effect. Therefore, we hypothesized that Apelin-13 might adequately prevent METH-induced neurotoxicity via the inhibition of apoptotic, autophagy, and ROS responses. In this study, PC12 cells were exposed to both METH (0.5, 1, 2, 3, 4, 6 mmol/L) and Apelin-13 (0.5, 1.0, 2.0, 4.0, 8.0 μmol/L) in vitro for 24 h to measure determined dose, and then downstream pathways were measured to investigate apoptosis, autophagy, and ROS responses. The results have indicated that Apelin-13 decreased the apoptotic response post-METH exposure in PC12 cells by increasing cell viability, reducing apoptotic rates. In addition, the study has revealed Apelin-13 decreased gene expression of Beclin-1 by Real-Time PCR and LC3-II by western blotting in METH-induced PC12 cells, which demonstrated autophagy is reduced. In addition, this study has shown that Apelin-13 reduces intracellular ROS of METH-induced PC12 cells. These results support Apelin-13 to be investigated as a potential drug for treatment of neurodegenerative diseases. It is suggested that Apelin-13 is beneficial in reducing oxidative stress, which may also play an important role in the regulation of METH-triggered apoptotic response. Hence, these data indicate that Apelin-13 could potentially alleviate METH-induced neurotoxicity via the reduction of oxidative damages, apoptotic, and autophagy cell death.
Collapse
Affiliation(s)
- Kobra Foroughi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mehdi Khaksari
- Addiction Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Rahmati
- Cancer Prevention Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Fateme Sadat Bitaraf
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Asghar Shayannia
- Bahar Center for Education, Research and Treatment, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
61
|
Sun L, Lian Y, Ding J, Meng Y, Li C, Chen L, Qiu P. The role of chaperone-mediated autophagy in neurotoxicity induced by alpha-synuclein after methamphetamine exposure. Brain Behav 2019; 9:e01352. [PMID: 31286692 PMCID: PMC6710200 DOI: 10.1002/brb3.1352] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/28/2019] [Accepted: 06/02/2019] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Chaperone-mediated autophagy (CMA) is an autophagy-lysosome pathway (ALP) that is different from the other two lysosomal pathways, namely, macroautophagy and microautophagy, and can selectively degrade cytosolic proteins in lysosomes without vesicle formation. CMA activity declines in neurodegenerative diseases such as Parkinson's disease, and similar neurotoxicity can occur after methamphetamine (METH) treatment. The relationship between CMA and METH-induced neurotoxicity is not clear. METHODS We detected changes in the chaperone protein Hsc70 and the lysosomal surface receptor Lamp-2a after METH treatment and then regulated these two proteins by small interfering RNA and DNA plasmid transfection to investigate how CMA influences METH-induced neurotoxicity. RESULTS We found that CMA activity is decreased after METH exposure in neurons and downregulated Lamp-2a can aggravate the neurotoxicity induced by α-Syn after METH exposure and that Hsc70 overexpression can relieve the abnormal levels of alpha-synuclein and its aggregate forms and the increase in cell apoptosis induced by METH. CONCLUSIONS The results provide in vivo evidence for CMA plays a pivotal role in METH-induced neurotoxicity, and upregulation of Hsc70 expression significantly protects neuronal cells against METH-induced toxicity. This research may pave the way for potential therapeutic approaches targeting CMA for METH abuse and neurodegenerative disorders.
Collapse
Affiliation(s)
- Leping Sun
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Yongling Lian
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jiuyang Ding
- School of Forensic Medicine, Southern Medical University, Guangzhou, China.,Department of Anatomy, Zunyi Medical College, Zunyi, China
| | - Yunle Meng
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Chen Li
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Ling Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Pingming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
62
|
R. Andrade P, Mehta M, Lu J, M. B. Teles R, Montoya D, O. Scumpia P, Nunes Sarno E, Ochoa MT, Ma F, Pellegrini M, Modlin RL. The cell fate regulator NUPR1 is induced by Mycobacterium leprae via type I interferon in human leprosy. PLoS Negl Trop Dis 2019; 13:e0007589. [PMID: 31344041 PMCID: PMC6684084 DOI: 10.1371/journal.pntd.0007589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 08/06/2019] [Accepted: 06/30/2019] [Indexed: 11/18/2022] Open
Abstract
The initial interaction between a microbial pathogen and the host immune response influences the outcome of the battle between the host and the foreign invader. Leprosy, caused by the obligate intracellular pathogen Mycobacterium leprae, provides a model to study relevant human immune responses. Previous studies have adopted a targeted approach to investigate host response to M. leprae infection, focusing on the induction of specific molecules and pathways. By measuring the host transcriptome triggered by M. leprae infection of human macrophages, we were able to detect a host gene signature 24-48 hours after infection characterized by specific innate immune pathways involving the cell fate mechanisms autophagy and apoptosis. The top upstream regulator in the M. leprae-induced gene signature was NUPR1, which is found in the M. leprae-induced cell fate pathways. The induction of NUPR1 by M. leprae was dependent on the production of the type I interferon (IFN), IFN-β. Furthermore, NUPR1 mRNA and protein were upregulated in the skin lesions from patients with the multibacillary form of leprosy. Together, these data indicate that M. leprae induces a cell fate program which includes NUPR1 as part of the host response in the progressive form of leprosy.
Collapse
Affiliation(s)
- Priscila R. Andrade
- Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Manali Mehta
- Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Jing Lu
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Rosane M. B. Teles
- Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Dennis Montoya
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Phillip O. Scumpia
- Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | | | - Maria Teresa Ochoa
- Department of Dermatology, University of Southern California School of Medicine, Los Angeles, California, United States of America
| | - Feiyang Ma
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Robert L. Modlin
- Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
63
|
Huang E, Huang H, Guan T, Liu C, Qu D, Xu Y, Yang J, Yan L, Xiong Y, Liang T, Wang Q, Chen L. Involvement of C/EBPβ-related signaling pathway in methamphetamine-induced neuronal autophagy and apoptosis. Toxicol Lett 2019; 312:11-21. [PMID: 31059759 DOI: 10.1016/j.toxlet.2019.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 12/24/2022]
Abstract
Methamphetamine (METH) is a widely abused illicit psychoactive drug. Our previous study has shown that CCAAT-enhancer binding protein β (C/EBPβ) is an important regulator in METH-induced neuronal autophagy and apoptosis. However, the detailed molecular mechanisms underlying this process remain poorly understood. Previous studies have demonstrated that DNA damage-inducible transcript 4 (DDIT4), Trib3 (tribbles pseudo kinase 3), alpha-synuclein (α-syn) are involved in METH-induced dopaminergic neurotoxicity. We hypothesized that C/EBPβ is involved in METH-induced DDIT4-mediated neuronal autophagy and Trib3-mediated neuronal apoptosis. We tested our hypothesis by examining the effects of silencing C/EBPβ, DDIT4, Trib3 or α-syn with small interfering ribonucleic acid (siRNA) on METH-induced autophagy and apoptosis in the human neuroblastoma SH-SY5Y cells. We also measured the levels of phosphorylated tuberous sclerosis complex 2 (TSC2) protein and Parkin protein level in SH-SY5Y cells. Furthermore, we demonstrated the effect of silencing C/EBPβ on METH-caused neurotoxicity in the striatum of rats by injecting LV-shC/EBPβ lentivirus using a stereotaxic positioning system. The results showed that METH exposure increased C/EBPβ, DDIT4 protein expression. Elevated DDIT4 expression raised up p-TSC2/TSC2 protein expression ratio, inhibited mTOR signaling pathway, activating cell autophagy. We also found that METH exposure increased the expression of Trib3, α-syn, decreased the Parkin protein expression. Lowering levels of Parkin raised up α-syn expression, which initiated mitochondrial apoptosis by down-regulating anti-apoptotic Bcl-2, followed by up-regulation of pro-apoptotic Bax, resulting in translocation of cytochrome c (cyto c), an apoptogenic factor, from the mitochondria to cytoplasm and activation of caspase-dependent pathways. These findings were supported by data showing METH-induced autophagy and apoptosis was significantly inhibited by silencing C/EBPβ, DDIT4, Trib3 or α-syn, or by Parkin over-expression. Based on the present data, a novel of mechanism on METH-induced cell toxicity is proposed, METH exposure increased C/EBPβ protein expression, triggered DDIT4/TSC2/mTOR signaling pathway, and evoked Trib3/Parkin/α-syn-related mitochondrial apoptotic signaling pathway. Collectively, these results suggest that C/EBPβ plays an important role in METH-triggered autophagy and apoptosis and it may be a potential target for therapeutics in METH-caused neurotoxicity.
Collapse
Affiliation(s)
- Enping Huang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Hongyan Huang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Tianshan Guan
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Chao Liu
- Guangzhou Forensic Science Institute, Guangzhou 510030, People's Republic of China
| | - Dong Qu
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Yue Xu
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jiao Yang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Lei Yan
- School of Basic Medicine Science, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Yahui Xiong
- Nanfang Hospital, Southern Medical University, The First Clinical Medicine School, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Ting Liang
- Nanfang Hospital, Southern Medical University, The First Clinical Medicine School, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Qi Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Ling Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China.
| |
Collapse
|
64
|
Valian N, Heravi M, Ahmadiani A, Dargahi L. Effect of methamphetamine on rat primary midbrain cells; mitochondrial biogenesis as a compensatory response. Neuroscience 2019; 406:278-289. [DOI: 10.1016/j.neuroscience.2019.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/25/2019] [Accepted: 03/07/2019] [Indexed: 01/07/2023]
|
65
|
Induction of endoplasmic reticulum stress might be responsible for defective autophagy in cadmium-induced prostate carcinogenesis. Toxicol Appl Pharmacol 2019; 373:62-68. [PMID: 31002860 DOI: 10.1016/j.taap.2019.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/10/2019] [Accepted: 04/14/2019] [Indexed: 02/06/2023]
Abstract
Earlier, we reported that chronic cadmium (Cd)-exposure to prostate epithelial (RWPE-1) cells causes defective autophagy, which leads to the transformation of a malignant phenotype in both in vitro and in vivo models. However, the upstream events responsible for defective autophagy are yet to be delineated. The present study suggests that chronic Cd exposure induces endoplasmic reticulum (ER) stress that triggers the phosphorylation of stress transducers [protein kinase R-like ER Kinase- (PERK), eukaryotic translation initiation factor 2-alpha- (eIF2-α) and Activating Transcription Factor 4 -(ATF-4)], resulting in defective autophagy that protects Cd-exposed RWPE-1 cells. On the other hand, inhibition of the ATF4 stress inducer by siRNA blocked the Cd-induced defective autophagy in transforming cells. While dissecting the upstream activators of ER stress, we found that increased expression of reactive oxygen species (ROS) is responsible for ER stress in Cd-exposed RWPE-1 cells. Overexpression of antioxidants (SOD1/SOD2) mitigates Cd-induced ROS that results in inhibition of ER stress and autophagy in prostate epithelial cells. These results suggest that the induction of ROS and subsequent ER stress are responsible for defective autophagy in Cd-induced transformation in prostate epithelial cells.
Collapse
|
66
|
Nupr1 regulates palmitate-induced apoptosis in human articular chondrocytes. Biosci Rep 2019; 39:BSR20181473. [PMID: 30674641 PMCID: PMC6379229 DOI: 10.1042/bsr20181473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 12/18/2022] Open
Abstract
Obesity, a major risk factor for the development of osteoarthritis (OA), is associated with increased circulating levels of free fatty acids (FFA). However, the role of these FFAs in OA pathophysiology is not clearly understood. In the present study, we found that palmitate treatment of human primary articular chondrocytes increased the expression of ER stress markers [activating transcription factor 4 (ATF4), C/EBP homologous protein (CHOP)] and apoptosis markers [cytochrome c and cleaved caspase-3 (CC3)]. Palmitate treatment also increased the expression of Nuclear protein 1 (Nupr1) and tribbles related protein 3 (TRB3), which are known negative regulators of cell survival pathways. Knockdown of Nupr1 or CHOP expression inhibited palmitate mediated increased expression of TRB3 and CC3, indicating that Nupr1 and CHOP cooperate to regulate cell survival and apoptotic pathways in human chondrocytes. Nupr1 knockdown had no effect on CHOP expression whereas CHOP knockdown abolished the palmitate-mediated Nupr1 expression, indicating that CHOP is functional upstream to Nupr1 in this pathway. Moreover, overexpression of Nupr1 markedly increased the basal expression of pro-apoptotic molecules, including cytochrome c and CC3. Taken together, our study demonstrates that Nupr1 plays a crucial role in palmitate-induced apoptosis in human chondrocytes and Nupr1 as a potential novel drug target for the treatment of OA.
Collapse
|
67
|
Jia S, Xu X, Zhou S, Chen Y, Ding G, Cao L. Fisetin induces autophagy in pancreatic cancer cells via endoplasmic reticulum stress- and mitochondrial stress-dependent pathways. Cell Death Dis 2019; 10:142. [PMID: 30760707 PMCID: PMC6374379 DOI: 10.1038/s41419-019-1366-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/21/2018] [Accepted: 01/11/2019] [Indexed: 12/19/2022]
Abstract
Pancreatic cancer is one of the most aggressive tumors and patients have poor survival rates. Fisetin, a natural flavonoid, was recently reported to have antitumor effects in various cancer models. Autophagy is a conserved catabolic process that maintains cellular homoeostasis in response to stress, and together with apoptosis, determines cell fate. Herein, we examined the effect of fisetin on pancreatic cancer. We reveal that fisetin inhibits PANC-1 cell proliferation using a real-time cell analysis system. Moreover, the in vivo antitumor effect of fisetin was verified in pancreatic cancer using a luciferase-expressing murine xenograft pancreatic cancer model. We found that the AMPK/mTOR signaling pathway was enhanced after fisetin treatment; however, autophagy was not diminished by adding the AMPK inhibitor compound C. Thus, we hypothesized that an another autophagy regulating pathway existed. RNA-seq analysis revealed that the unfolded protein response pathway, which is activated by ER stress, was enriched. We also found that the stress-induced transcription factor p8 was increased in fisetin-treated PANC-1 cells, and that fisetin-induced autophagy was blocked by silencing p8. We revealed that p8-dependent autophagy was AMPK-independent, and that p8 regulated ATF6, ATF4, and PERK in response to ER stress via p53/PKC-α-mediated signaling. Furthermore, mitophagy was associated with Parkin and PINK1 in response to mitochondrial stress. Interestingly, ATF4 and ATF6 were increased in cells treated with fisetin and compound C. Moreover, inhibiting the AMPK/mTOR pathway with compound C may upregulate p8-dependent autophagy. Thus, there may be crosstalk between the AMPK/mTOR and p8-dependent pathways.
Collapse
Affiliation(s)
- Shengnan Jia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310000, Hangzhou, Zhejiang, China
| | - Xiaodong Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310000, Hangzhou, Zhejiang, China
| | - Senhao Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310000, Hangzhou, Zhejiang, China
| | - Yan Chen
- Department of General Surgery, Huzhou Hospital, Zhejiang University School of Medicine, 313003, Huzhou, Zhejiang, China
| | - Guoping Ding
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310000, Hangzhou, Zhejiang, China.
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310000, Hangzhou, Zhejiang, China.
- Innovation Center for Minimally Invasive Technique and Device, Zhejiang University, 310000, Hangzhou, Zhejiang, China.
| |
Collapse
|
68
|
Tsai SY, Bendriem RM, Lee CTD. The cellular basis of fetal endoplasmic reticulum stress and oxidative stress in drug-induced neurodevelopmental deficits. Neurobiol Stress 2019; 10:100145. [PMID: 30937351 PMCID: PMC6430408 DOI: 10.1016/j.ynstr.2018.100145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 12/02/2018] [Accepted: 12/26/2018] [Indexed: 11/30/2022] Open
Abstract
Prenatal substance exposure is a growing public health concern worldwide. Although the opioid crisis remains one of the most prevalent addiction problems in our society, abuse of cocaine, methamphetamines, and other illicit drugs, particularly amongst pregnant women, are nonetheless significant and widespread. Evidence demonstrates prenatal drug exposure can affect fetal brain development and thus can have long-lasting impact on neurobehavioral and cognitive performance later in life. In this review, we highlight research examining the most prevalent drugs of abuse and their effects on brain development with a focus on endoplasmic reticulum stress and oxidative stress signaling pathways. A thorough exploration of drug-induced cellular stress mechanisms during prenatal brain development may provide insight into therapeutic interventions to combat effects of prenatal drug exposure.
Collapse
Affiliation(s)
- S-Y.A. Tsai
- Integrative Neuroscience Branch, Division of Neuroscience and Behavior, National Institute on Drug Abuse, The National Institute of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - Raphael M. Bendriem
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Chun-Ting D. Lee
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, USA
| |
Collapse
|
69
|
Non-Structural Protein 2B of Human Rhinovirus 16 Activates Both PERK and ATF6 Rather Than IRE1 to Trigger ER Stress. Viruses 2019; 11:v11020133. [PMID: 30717233 PMCID: PMC6409610 DOI: 10.3390/v11020133] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
To understand the underlying mechanisms of endoplasmic reticulum (ER) stress caused by human rhinovirus (HRV) 16 and non-structural transmembrane protein 2B, the expressions of ER chaperone glucose-regulated protein 78 (GRP78) and three signal transduction pathways, including protein kinase RNA-like ER kinase (PERK), activating transcription factor 6 (ATF6) and inositol-requiring enzyme 1 (IRE1), were evaluated after HRV16 infection and 2B gene transfection. Our results showed that both HRV16 infection and 2B gene transfection increased the expression of ER chaperone GRP78, and induced phosphorylation of PERK and cleavage of ATF6 in a time-dependent manner. Our data also revealed that the HRV16 2B protein was localized to the ER membrane. However, both HRV16 infection and HRV16 2B gene transfection did not induce ER stress through the IRE1 pathway. Moreover, our results showed that apoptosis occurred in H1-HeLa cells infected with HRV16 or transfected with 2B gene accompanied with increased expression of CHOP and cleaved caspase-3. Taken together, non-structural protein 2B of HRV16 induced an ER stress response through the PERK and ATF6 pathways rather than the IRE1 pathway.
Collapse
|
70
|
Narzt MS, Nagelreiter IM, Oskolkova O, Bochkov VN, Latreille J, Fedorova M, Ni Z, Sialana FJ, Lubec G, Filzwieser M, Laggner M, Bilban M, Mildner M, Tschachler E, Grillari J, Gruber F. A novel role for NUPR1 in the keratinocyte stress response to UV oxidized phospholipids. Redox Biol 2018; 20:467-482. [PMID: 30466060 PMCID: PMC6243031 DOI: 10.1016/j.redox.2018.11.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/30/2018] [Accepted: 11/08/2018] [Indexed: 02/08/2023] Open
Abstract
Ultraviolet light is the dominant environmental oxidative skin stressor and a major skin aging factor. We studied which oxidized phospholipid (OxPL) mediators would be generated in primary human keratinocytes (KC) upon exposure to ultraviolet A light (UVA) and investigated the contribution of OxPL to UVA responses. Mass spectrometric analysis immediately or 24 h post UV stress revealed significant changes in abundance of 173 and 84 lipid species, respectively. We identified known and novel lipid species including known bioactive and also potentially reactive carbonyl containing species. We found indication for selective metabolism and degradation of selected reactive lipids. Exposure to both UVA and to in vitro UVA - oxidized phospholipids activated, on transcriptome and proteome level, NRF2/antioxidant response signaling, lipid metabolizing enzyme expression and unfolded protein response (UPR) signaling. We identified NUPR1 as an upstream regulator of UVA/OxPL transcriptional stress responses and found this protein to be expressed in the epidermis. Silencing of NUPR1 resulted in augmented expression of antioxidant and lipid detoxification genes and disturbed the cell cycle, making it a potential key factor in skin reactive oxygen species (ROS) responses intimately involved in aging and pathology.
Collapse
Affiliation(s)
- Marie-Sophie Narzt
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Austria
| | - Ionela-Mariana Nagelreiter
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Austria
| | - Olga Oskolkova
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Valery N Bochkov
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Julie Latreille
- Department of Biology & Women's Beauty, Chanel, Pantin, France
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry, Universität Leipzig, Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | - Zhixu Ni
- Institute of Bioanalytical Chemistry, Faculty of Chemistry, Universität Leipzig, Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | - Fernando J Sialana
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Gert Lubec
- Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Manuel Filzwieser
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Austria
| | - Maria Laggner
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine & Core Facility Genomics, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johannes Grillari
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Austria; Department of Biotechnology, BOKU, University of Natural Resources and Life Sciences Vienna, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Austria.
| |
Collapse
|
71
|
Krill oil protects PC12 cells against methamphetamine-induced neurotoxicity by inhibiting apoptotic response and oxidative stress. Nutr Res 2018; 58:84-94. [DOI: 10.1016/j.nutres.2018.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 01/05/2023]
|
72
|
Zhu LN, Qiao HH, Chen L, Sun LP, Hui JL, Lian YL, Xie WB, Ding JY, Meng YL, Zhu BF, Qiu PM. SUMOylation of Alpha-Synuclein Influences on Alpha-Synuclein Aggregation Induced by Methamphetamine. Front Cell Neurosci 2018; 12:262. [PMID: 30197588 PMCID: PMC6117395 DOI: 10.3389/fncel.2018.00262] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
Abstract
Methamphetamine (METH) is an illegal and widely abused psychoactive stimulant. METH abusers are at high risk of neurodegenerative disorders, including Parkinson’s disease (PD). Previous studies have demonstrated that METH causes alpha-synuclein (α-syn) aggregation in the both laboratory animal and human. In this study, exposure to high METH doses increased the expression of α-syn and the small ubiquitin-related modifier 1 (SUMO-1). Therefore, we hypothesized that SUMOylation of α-syn is involved in high-dose METH-induced α-syn aggregation. We measured the levels of α-syn SUMOylation and these enzymes involved in the SUMOylation cycle in SH-SY5Y human neuroblastoma cells (SH-SY5Y cells), in cultures of C57 BL/6 primary mouse neurons and in brain tissues of mice exposure to METH. We also demonstrated the effect of α-syn SUMOylation on α-syn aggregation after METH exposure by overexpressing the key enzyme of the SUMOylation cycle or silencing SUMO-1 expression in vitro. Then, we make introduced mutations in the major SUMOylation acceptor sites of α-syn by transfecting a lentivirus containing the sequence of WT α-syn or K96/102R α-syn into SH-SY5Y cells and injecting an adenovirus containing the sequence of WT α-syn or K96/102R α-syn into the mouse striatum. Levels of the ubiquitin-proteasome system (UPS)-related makers ubiquitin (Ub) and UbE1, as well as the autophagy-lysosome pathway (ALP)-related markers LC3, P62 and lysosomal associated membrane protein 2A (LAMP2A), were also measured in SH-SY5Y cells transfected with lentivirus and mice injected with adenovirus. The results showed that METH exposure decreases the SUMOylation level of α-syn, although the expression of α-syn and SUMO-1 are increased. One possible cause is the reduction of UBC9 level. The increase in α-syn SUMOylation by UBC9 overexpression relieves METH-induced α-syn overexpression and aggregation, whereas the decrease in α-syn SUMOylation by SUMO-1 silencing exacerbates the same pathology. Furthermore, mutations in the major SUMOylation acceptor sites of α-syn also aggravate α-syn overexpression and aggregation by impairing degradation through the UPS and the ALP in vitro and in vivo. These results suggest that SUMOylation of α-syn plays a fundamental part in α-syn overexpression and aggregation induced by METH and could be a suitable target for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lin-Nan Zhu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Hong-Hua Qiao
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Ling Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Le-Ping Sun
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Liang Hui
- First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Yong-Ling Lian
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Wei-Bing Xie
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jiu-Yang Ding
- School of Forensic Medicine, Southern Medical University, Guangzhou, China.,Department of Anatomy, Zunyi Medical College, Zunyi, China
| | - Yun-le Meng
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Bo-Feng Zhu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Ping-Ming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
73
|
Xiao N, Zhang F, Zhu B, Liu C, Lin Z, Wang H, Xie WB. CDK5-mediated tau accumulation triggers methamphetamine-induced neuronal apoptosis via endoplasmic reticulum-associated degradation pathway. Toxicol Lett 2018; 292:97-107. [DOI: 10.1016/j.toxlet.2018.04.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/22/2018] [Accepted: 04/24/2018] [Indexed: 12/28/2022]
|
74
|
Xu X, Huang E, Luo B, Cai D, Zhao X, Luo Q, Jin Y, Chen L, Wang Q, Liu C, Lin Z, Xie WB, Wang H. Methamphetamine exposure triggers apoptosis and autophagy in neuronal cells by activating the C/EBPβ-related signaling pathway. FASEB J 2018; 32:fj201701460RRR. [PMID: 29939784 DOI: 10.1096/fj.201701460rrr] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Methamphetamine (Meth) is a widely abused psychoactive drug that primarily damages the nervous system, notably causing dopaminergic neuronal apoptosis. CCAAT-enhancer binding protein (C/EBPβ) is a transcription factor and an important regulator of cell apoptosis and autophagy. Insulin-like growth factor binding protein (IGFBP5) is a proapoptotic factor that mediates Meth-induced neuronal apoptosis, and Trib3 (tribbles pseudokinase 3) is an endoplasmic reticulum (ER) stress-inducible gene involved in autophagic cell death through the mammalian target of rapamycin (mTOR) signaling pathway. To test the hypothesis that C/EBPβ is involved in Meth-induced IGFBP5-mediated neuronal apoptosis and Trib3-mediated neuronal autophagy, we measured the protein expression of C/EBPβ after Meth exposure and evaluated the effects of silencing C/EBPβ, IGFBP5, or Trib3 on Meth-induced apoptosis and autophagy in neuronal cells and in the rat striatum after intrastriatal Meth injection. We found that, at relatively high doses, Meth exposure increased C/EBPβ protein expression, which was accompanied by increased neuronal apoptosis and autophagy; triggered the IGFBP5-mediated, p53-up-regulated modulator of apoptosis (PUMA)-related mitochondrial apoptotic signaling pathway; and stimulated the Trib3-mediated ER stress signaling pathway through the Akt-mTOR signaling axis. We also found that autophagy is an early response to Meth-induced stress upstream of apoptosis and plays a detrimental role in Meth-induced neuronal cell death. These results suggest that Meth exposure induces C/EBPβ expression, which plays an essential role in the neuronal apoptosis and autophagy induced by relatively high doses of Meth; however, relatively low concentrations of Meth did not change the expression of C/EBPβ in vitro. Further studies are needed to elucidate the role of C/EBPβ in low-dose Meth-induced neurotoxicity.-Xu, X., Huang, E., Luo, B., Cai, D., Zhao, X., Luo, Q., Jin, Y., Chen, L., Wang, Q., Liu, C., Lin, Z., Xie, W.-B., Wang, H. Methamphetamine exposure triggers apoptosis and autophagy in neuronal cells by activating the C/EBPβ-related signaling pathway.
Collapse
Affiliation(s)
- Xiang Xu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Enping Huang
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Baoying Luo
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Dunpeng Cai
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xu Zhao
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Qin Luo
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Yili Jin
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Ling Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Qi Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Chao Liu
- Guangzhou Forensic Science Institute, Guangzhou, China; and
| | - Zhoumeng Lin
- Department of Anatomy and Physiology, Institute of Computational Comparative Medicine, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Wei-Bing Xie
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Huijun Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
75
|
Yang X, Wang Y, Li Q, Zhong Y, Chen L, Du Y, He J, Liao L, Xiong K, Yi CX, Yan J. The Main Molecular Mechanisms Underlying Methamphetamine- Induced Neurotoxicity and Implications for Pharmacological Treatment. Front Mol Neurosci 2018; 11:186. [PMID: 29915529 PMCID: PMC5994595 DOI: 10.3389/fnmol.2018.00186] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/14/2018] [Indexed: 01/07/2023] Open
Abstract
Methamphetamine (METH) is a popular new-type psychostimulant drug with complicated neurotoxicity. In spite of mounting evidence on METH-induced damage of neural cell, the accurate mechanism of toxic effect of the drug on central nervous system (CNS) has not yet been completely deciphered. Besides, effective treatment strategies toward METH neurotoxicity remain scarce and more efficacious drugs are to be developed. In this review, we summarize cellular and molecular bases that might contribute to METH-elicited neurotoxicity, which mainly include oxidative stress, excitotoxicity, and neuroinflammation. We also discuss some drugs that protect neural cells suffering from METH-induced neurotoxic consequences. We hope more in-depth investigations of exact details that how METH produces toxicity in CNS could be carried out in future and the development of new drugs as natural compounds and immunotherapies, including clinic trials, are expected.
Collapse
Affiliation(s)
- Xue Yang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yong Wang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qiyan Li
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yaxian Zhong
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Liangpei Chen
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yajun Du
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jing He
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lvshuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Chun-xia Yi
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
76
|
Yang X, Chen S, Shao Z, Li Y, Wu H, Li X, Mao L, Zhou Z, Bai L, Mei X, Liu C. Apolipoprotein E Deficiency Exacerbates Spinal Cord Injury in Mice: Inflammatory Response and Oxidative Stress Mediated by NF-κB Signaling Pathway. Front Cell Neurosci 2018; 12:142. [PMID: 29875635 PMCID: PMC5974465 DOI: 10.3389/fncel.2018.00142] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/09/2018] [Indexed: 12/30/2022] Open
Abstract
Spinal cord injury (SCI) is a severe neurological trauma that involves complex pathological processes. Inflammatory response and oxidative stress are prevalent during the second injury and can influence the functional recovery of SCI. Specially, Apolipoprotein E (APOE) induces neuronal repair and nerve regeneration, and the deficiency of Apoe impairs spinal cord-blood-barrier and reduces functional recovery after SCI. However, the mechanism by which Apoe mediates signaling pathways of inflammatory response and oxidative stress in SCI remains largely elusive. This study was designed to investigate the signaling pathways that regulate Apoe deficiency-dependent inflammatory response and oxidative stress in the acute stage of SCI. In the present study, Apoe-/- mice retarded functional recovery and had a larger lesion size when compared to wild-type mice after SCI. Moreover, deficiency of Apoe induced an exaggerated inflammatory response by increasing expression of interleukin-6 (IL-6) and interleukin-1β (IL-1β), and increased oxidative stress by reducing expression of Nrf2 and HO-1. Furthermore, lack of Apoe promoted neuronal apoptosis and decreased neuronal numbers in the anterior horn of the spinal cord after SCI. Mechanistically, we found that the absence of Apoe increased inflammation and oxidative stress through activation of NF-κB after SCI. In contrast, an inhibitor of nuclear factor-κB (NF-κB; Pyrrolidine dithiocarbamate) alleviates these changes. Collectively, these results indicate that a critical role for activation of NF-κB in regulating Apoe-deficiency dependent inflammation and oxidative stress is detrimental to recovery after SCI.
Collapse
Affiliation(s)
- Xuan Yang
- School of Nursing, Jinzhou Medical University, Jinzhou, China
| | - Shurui Chen
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhenya Shao
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yuanlong Li
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - He Wu
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xian Li
- Department of Orthopedics, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Liang Mao
- Department of Oncology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zipeng Zhou
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Liangjie Bai
- Department of Orthopedics, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xifan Mei
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Chang Liu
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
77
|
Du SH, Qiao DF, Chen CX, Chen S, Liu C, Lin Z, Wang H, Xie WB. Toll-Like Receptor 4 Mediates Methamphetamine-Induced Neuroinflammation through Caspase-11 Signaling Pathway in Astrocytes. Front Mol Neurosci 2017; 10:409. [PMID: 29311802 PMCID: PMC5733023 DOI: 10.3389/fnmol.2017.00409] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/27/2017] [Indexed: 02/02/2023] Open
Abstract
Methamphetamine (METH) is an amphetamine-typed stimulant drug that is increasingly being abused worldwide. Previous studies have shown that METH toxicity is systemic, especially targeting dopaminergic neurons in the central nervous system (CNS). However, the role of neuroinflammation in METH neurotoxicity remains unclear. We hypothesized that Toll-like receptor 4 (TLR4) and Caspase-11 are involved in METH-induced astrocyte-related neuroinflammation. We tested our hypothesis by examining the changes of TLR4 and Caspase-11 protein expression in primary cultured C57BL/6 mouse astrocytes and in the midbrain and striatum of mice exposed to METH with western blot and double immunofluorescence labeling. We also determined the effects of blocking Caspase-11 expression with wedelolactone (a specific inhibitor of Caspase-11) or siRNA on METH-induced neuroinflammation in astrocytes. Furthermore, we determined the effects of blocking TLR4 expression with TAK-242 (a specific inhibitor of TLR4) or siRNA on METH-induced neuroinflammation in astrocytes. METH exposure increased Caspase-11 and TLR4 expression both in vitro and in vivo, with the effects in vitro being dose-dependent. Inhibition of Caspase-11 expression with either wedelolactone or siRNAs reduced the expression of inflammasome NLRP3 and pro-inflammatory cytokines. In addition, blocking TLR4 expression inhibited METH-induced activation of NF-κB and Caspase-11 in vitro and in vivo, suggesting that TLR4-Caspase-11 pathway is involved in METH-induced neuroinflammation. These results indicate that Caspase-11 and TLR4 play an important role in METH-induced neuroinflammation and may be potential gene targets for therapeutics in METH-caused neurotoxicity.
Collapse
Affiliation(s)
- Si-Hao Du
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Dong-Fang Qiao
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Chuan-Xiang Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Si Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Chao Liu
- Guangzhou Forensic Science Institute, Guangzhou, China
| | - Zhoumeng Lin
- Department of Anatomy and Physiology, Institute of Computational Comparative Medicine (ICCM), College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Huijun Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Wei-Bing Xie
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|