51
|
Yang YN, Zhang MQ, Yu FL, Han B, Bao MY, Yan-He, Li X, Zhang Y. Peroxisom proliferator-activated receptor-γ coactivator-1α in neurodegenerative disorders: A promising therapeutic target. Biochem Pharmacol 2023; 215:115717. [PMID: 37516277 DOI: 10.1016/j.bcp.2023.115717] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Neurodegenerative disorders (NDDs) are characterized by progressive loss of selectively vulnerable neuronal populations and myelin sheath, leading to behavioral and cognitive dysfunction that adversely affect the quality of life. Identifying novel therapies that attenuate the progression of NDDs would be of significance. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a widely expressed transcriptional regulator, modulates the expression of genes engaged in mitochondrial biosynthesis, metabolic regulation, and oxidative stress (OS). Emerging evidences point to the strong connection between PGC-1α and NDDs, suggesting its positive impaction on the progression of NDDs. Therefore, it is urgent to gain a deeper and broader understanding between PGC-1α and NDDs. To this end, this review presents a comprehensive overview of PGC-1α, including its basic characteristics, the post-translational modulations, as well as the interacting transcription factors. Secondly, the pathogenesis of PGC-1α in various NDDs, such as Alzheimer's (AD), Parkinson's (PD), and Huntington's disease (HD) is briefly discussed. Additionally, this study summarizes the underlying mechanisms that PGC-1α is neuroprotective in NDDs via regulating neuroinflammation, OS, and mitochondrial dysfunction. Finally, we briefly outline the shortcomings of current NDDs drug therapy, and summarize the functions and potential applications of currently available PGC-1α modulators (activator or inhibitors). Generally, this review updates our insight of the important role of PGC-1α on the development of NDDs, and provides a promising therapeutic target/ drug for the treatment of NDDs.
Collapse
Affiliation(s)
- Ya-Na Yang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Mao-Qing Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Feng-Lin Yu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Bing Han
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Ming-Yue Bao
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yan-He
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xing Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuan Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
52
|
Jiang A, Handley RR, Lehnert K, Snell RG. From Pathogenesis to Therapeutics: A Review of 150 Years of Huntington's Disease Research. Int J Mol Sci 2023; 24:13021. [PMID: 37629202 PMCID: PMC10455900 DOI: 10.3390/ijms241613021] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Huntington's disease (HD) is a debilitating neurodegenerative genetic disorder caused by an expanded polyglutamine-coding (CAG) trinucleotide repeat in the huntingtin (HTT) gene. HD behaves as a highly penetrant dominant disorder likely acting through a toxic gain of function by the mutant huntingtin protein. Widespread cellular degeneration of the medium spiny neurons of the caudate nucleus and putamen are responsible for the onset of symptomology that encompasses motor, cognitive, and behavioural abnormalities. Over the past 150 years of HD research since George Huntington published his description, a plethora of pathogenic mechanisms have been proposed with key themes including excitotoxicity, dopaminergic imbalance, mitochondrial dysfunction, metabolic defects, disruption of proteostasis, transcriptional dysregulation, and neuroinflammation. Despite the identification and characterisation of the causative gene and mutation and significant advances in our understanding of the cellular pathology in recent years, a disease-modifying intervention has not yet been clinically approved. This review includes an overview of Huntington's disease, from its genetic aetiology to clinical presentation and its pathogenic manifestation. An updated view of molecular mechanisms and the latest therapeutic developments will also be discussed.
Collapse
Affiliation(s)
- Andrew Jiang
- Applied Translational Genetics Group, Centre for Brain Research, School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand; (R.R.H.); (K.L.); (R.G.S.)
| | | | | | | |
Collapse
|
53
|
O’Day DH. Alzheimer's Disease beyond Calcium Dysregulation: The Complex Interplay between Calmodulin, Calmodulin-Binding Proteins and Amyloid Beta from Disease Onset through Progression. Curr Issues Mol Biol 2023; 45:6246-6261. [PMID: 37623212 PMCID: PMC10453589 DOI: 10.3390/cimb45080393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
A multifactorial syndrome, Alzheimer's disease is the main cause of dementia, but there is no existing therapy to prevent it or stop its progression. One of the earliest events of Alzheimer's disease is the disruption of calcium homeostasis but that is just a prelude to the disease's devastating impact. Calcium does not work alone but must interact with downstream cellular components of which the small regulatory protein calmodulin is central, if not primary. This review supports the idea that, due to calcium dyshomeostasis, calmodulin is a dominant regulatory protein that functions in all stages of Alzheimer's disease, and these regulatory events are impacted by amyloid beta. Amyloid beta not only binds to and regulates calmodulin but also multiple calmodulin-binding proteins involved in Alzheimer's. Together, they act on the regulation of calcium dyshomeostasis, neuroinflammation, amyloidogenesis, memory formation, neuronal plasticity and more. The complex interactions between calmodulin, its binding proteins and amyloid beta may explain why many therapies have failed or are doomed to failure unless they are considered.
Collapse
Affiliation(s)
- Danton H. O’Day
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada;
- Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
54
|
Fernández-Moncada I, Eraso-Pichot A, Tor TD, Fortunato-Marsol B, Marsicano G. An enquiry to the role of CB1 receptors in neurodegeneration. Neurobiol Dis 2023:106235. [PMID: 37481040 DOI: 10.1016/j.nbd.2023.106235] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 07/24/2023] Open
Abstract
Neurodegenerative disorders are debilitating conditions that impair patient quality of life and that represent heavy social-economic burdens to society. Whereas the root of some of these brain illnesses lies in autosomal inheritance, the origin of most of these neuropathologies is scantly understood. Similarly, the cellular and molecular substrates explaining the progressive loss of brain functions remains to be fully described too. Indeed, the study of brain neurodegeneration has resulted in a complex picture, composed of a myriad of altered processes that include broken brain bioenergetics, widespread neuroinflammation and aberrant activity of signaling pathways. In this context, several lines of research have shown that the endocannabinoid system (ECS) and its main signaling hub, the type-1 cannabinoid (CB1) receptor are altered in diverse neurodegenerative disorders. However, some of these data are conflictive or poorly described. In this review, we summarize the findings about the alterations in ECS and CB1 receptors signaling in three representative brain illnesses, the Alzheimer's, Parkinson's and Huntington's diseases, and we discuss the relevance of these studies in understanding neurodegeneration development and progression, with a special focus on astrocyte function. Noteworthy, the analysis of ECS defects in neurodegeneration warrant much more studies, as our conceptual understanding of ECS function has evolved quickly in the last years, which now include glia cells and the subcellular-specific CB1 receptors signaling as critical players of brain functions.
Collapse
Affiliation(s)
| | - Abel Eraso-Pichot
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Tommaso Dalla Tor
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France; Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95124, Italy
| | | | - Giovanni Marsicano
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France.
| |
Collapse
|
55
|
Lum PT, Sekar M, Seow LJ, Shaikh MF, Arulsamy A, Retinasamy T, Gan SH, Gnanaraj C, Esa NM, Ramachawolran G, Subramaniyan V, Chinni SV, Wu YS. Neuroprotective potency of mangiferin against 3-nitropropionic acid induced Huntington's disease-like symptoms in rats: possible antioxidant and anti-inflammatory mechanisms. Front Pharmacol 2023; 14:1189957. [PMID: 37521470 PMCID: PMC10372348 DOI: 10.3389/fphar.2023.1189957] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Huntington's disease (HD), a neurodegenerative disease, normally starts in the prime of adult life, followed by a gradual occurrence of psychiatric disturbances, cognitive and motor dysfunction. The daily performances and life quality of HD patients have been severely interfered by these clinical signs and symptoms until the last stage of neuronal cell death. To the best of our knowledge, no treatment is available to completely mitigate the progression of HD. Mangiferin, a naturally occurring potent glucoxilxanthone, is mainly isolated from the Mangifera indica plant. Considerable studies have confirmed the medicinal benefits of mangiferin against memory and cognitive impairment in neurodegenerative experimental models such as Alzheimer's and Parkinson's diseases. Therefore, this study aims to evaluate the neuroprotective effect of mangiferin against 3-nitropropionic acid (3-NP) induced HD in rat models. Adult Wistar rats (n = 32) were randomly allocated equally into four groups of eight rats each: normal control (Group I), disease control (Group II) and two treatment groups (Group III and Group IV). Treatment with mangiferin (10 and 20 mg/kg, p. o.) was given for 14 days, whereas 3-NP (15 mg/kg, i. p.) was given for 7 days to induce HD-like symptoms in rats. Rats were assessed for cognitive functions and motor coordination using open field test (OFT), novel object recognition (NOR) test, neurological assessment, rotarod and grip strength tests. Biochemical parameters such as oxidative stress markers and pro-inflammatory markers in brain hippocampus, striatum and cortex regions were evaluated. Histopathological study on brain tissue was also conducted using hematoxylin and eosin (H&E) staining. 3-NP triggered anxiety, decreased recognition memory, reduced locomotor activity, lower neurological scoring, declined rotarod performance and grip strength were alleviated by mangiferin treatment. Further, a significant depletion in brain malondialdehyde (MDA) level, an increase in reduced glutathione (GSH) level, succinate dehydrogenase (SDH), superoxide dismutase (SOD) and catalase (CAT) activities, and a decrease in tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) levels were observed in mangiferin treated groups. Mangiferin also mitigated 3-NP induced histopathological alteration in the brain hippocampus, striatum and cortex sections. It could be inferred that mangiferin protects the brain against oxidative damage and neuroinflammation, notably via antioxidant and anti-inflammatory activities. Mangiferin, which has a good safety profile, may be an alternate treatment option for treating HD and other neurodegenerative disorders. The results of the current research of mangiferin will open up new avenues for the development of safe and effective therapeutic agents in diminishing HD.
Collapse
Affiliation(s)
- Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Lay Jing Seow
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Mohd Farooq Shaikh
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, NSW, Australia
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Thaarvena Retinasamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Charles Gnanaraj
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, Malaysia
| | - Norhaizan Mohd Esa
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Suresh V. Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom, Selangor, Malaysia
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Yuan Seng Wu
- School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
56
|
Akanchise T, Angelova A. Ginkgo Biloba and Long COVID: In Vivo and In Vitro Models for the Evaluation of Nanotherapeutic Efficacy. Pharmaceutics 2023; 15:pharmaceutics15051562. [PMID: 37242804 DOI: 10.3390/pharmaceutics15051562] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Coronavirus infections are neuroinvasive and can provoke injury to the central nervous system (CNS) and long-term illness consequences. They may be associated with inflammatory processes due to cellular oxidative stress and an imbalanced antioxidant system. The ability of phytochemicals with antioxidant and anti-inflammatory activities, such as Ginkgo biloba, to alleviate neurological complications and brain tissue damage has attracted strong ongoing interest in the neurotherapeutic management of long COVID. Ginkgo biloba leaf extract (EGb) contains several bioactive ingredients, e.g., bilobalide, quercetin, ginkgolides A-C, kaempferol, isorhamnetin, and luteolin. They have various pharmacological and medicinal effects, including memory and cognitive improvement. Ginkgo biloba, through its anti-apoptotic, antioxidant, and anti-inflammatory activities, impacts cognitive function and other illness conditions like those in long COVID. While preclinical research on the antioxidant therapies for neuroprotection has shown promising results, clinical translation remains slow due to several challenges (e.g., low drug bioavailability, limited half-life, instability, restricted delivery to target tissues, and poor antioxidant capacity). This review emphasizes the advantages of nanotherapies using nanoparticle drug delivery approaches to overcome these challenges. Various experimental techniques shed light on the molecular mechanisms underlying the oxidative stress response in the nervous system and help comprehend the pathophysiology of the neurological sequelae of SARS-CoV-2 infection. To develop novel therapeutic agents and drug delivery systems, several methods for mimicking oxidative stress conditions have been used (e.g., lipid peroxidation products, mitochondrial respiratory chain inhibitors, and models of ischemic brain damage). We hypothesize the beneficial effects of EGb in the neurotherapeutic management of long-term COVID-19 symptoms, evaluated using either in vitro cellular or in vivo animal models of oxidative stress.
Collapse
Affiliation(s)
- Thelma Akanchise
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
57
|
Lange J, Gillham O, Flower M, Ging H, Eaton S, Kapadia S, Neueder A, Duchen MR, Ferretti P, Tabrizi SJ. PolyQ length-dependent metabolic alterations and DNA damage drive human astrocyte dysfunction in Huntington’s disease. Prog Neurobiol 2023; 225:102448. [PMID: 37023937 DOI: 10.1016/j.pneurobio.2023.102448] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/03/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023]
Abstract
Huntington's Disease (HD) is a neurodegenerative disease caused by a polyglutamine (polyQ) expansion in the Huntingtin gene. Astrocyte dysfunction is known to contribute to HD pathology, however our understanding of the molecular pathways involved is limited. Transcriptomic analysis of patient-derived PSC (pluripotent stem cells) astrocyte lines revealed that astrocytes with similar polyQ lengths shared a large number of differentially expressed genes (DEGs). Notably, weighted correlation network analysis (WGCNA) modules from iPSC derived astrocytes showed significant overlap with WGCNA modules from two post-mortem HD cohorts. Further experiments revealed two key elements of astrocyte dysfunction. Firstly, expression of genes linked to astrocyte reactivity, as well as metabolic changes were polyQ length-dependent. Hypermetabolism was observed in shorter polyQ length astrocytes compared to controls, whereas metabolic activity and release of metabolites were significantly reduced in astrocytes with increasing polyQ lengths. Secondly, all HD astrocytes showed increased DNA damage, DNA damage response and upregulation of mismatch repair genes and proteins. Together our study shows for the first time polyQ-dependent phenotypes and functional changes in HD astrocytes providing evidence that increased DNA damage and DNA damage response could contribute to HD astrocyte dysfunction.
Collapse
|
58
|
Hassab LY, Abbas SS, Mohammed RA, Abdallah DM. Dimethyl fumarate abrogates striatal endoplasmic reticulum stress in experimentally induced late-stage Huntington’s disease: Focus on the IRE1α/JNK and PERK/CHOP trajectories. Front Pharmacol 2023; 14:1133863. [PMID: 37056990 PMCID: PMC10088517 DOI: 10.3389/fphar.2023.1133863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Introduction: Dimethyl fumarate (DMF) is FDA-approved for use in patients with relapsing multiple sclerosis, and it processes neuroprotection in several experimental settings; however, its impact on combating Huntington’s disease (HD) remains elusive. This study aimed to explore the role of DMF post-treatment on HD mediated endoplasmic reticulum (ER) stress response in a selective striatal degeneration HD model.Methods: Rats, exposed to 3-nitropropionic acid, were either left untreated or post-treated with DMF for 14 days.Results and Discussion: DMF reduced locomotion deficits in both the open field and beam walk paradigms, boosted the striatal dopamine (DA) content, improved its architecture at the microscopic level, and hindered astrogliosis. Mechanistically, DMF limited the activation of two of the ER stress arms in the striatum by reducing p-IRE1α, p-JNK, and p-PERK protein expressions besides the CHOP/GADD153 content. Downstream from both ER stress arms’ suppression, DMF inhibited the intrinsic apoptotic pathway, as shown by the decrease in Bax and active caspase-3 while raising Bcl-2. DMF also decreased oxidative stress markers indicated by a decline in both reactive oxygen species and malondialdehyde while boosting glutathione. Meanwhile, it enhanced p-AKT to activate /phosphorylate mTOR and stimulate the CREB/BDNF/TrkB trajectory, which, in a positive feedforward loop, activates AKT again. DMF also downregulated the expression of miRNA-634, which negatively regulates AKT, to foster survival kinase activation.Conclusion: This study features a focal novel point on the DMF therapeutic ability to reduce HD motor manifestations via its ability to enhance DA and suppress the IRE1α/JNK and PERK/CHOP/GADD153 hubs to inhibit the mitochondrial apoptotic pathway through activating the AKT/mTOR and BDNF/TrkB/AKT/CREB signaling pathways and abating miRNA-634 and oxidative stress.
Collapse
Affiliation(s)
- Lina Y. Hassab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Samah S. Abbas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Reham A. Mohammed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dalaal M. Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- *Correspondence: Dalaal M. Abdallah,
| |
Collapse
|
59
|
Morena E, Romano C, Marconi M, Diamant S, Buscarinu MC, Bellucci G, Romano S, Scarabino D, Salvetti M, Ristori G. Peripheral Biomarkers in Manifest and Premanifest Huntington's Disease. Int J Mol Sci 2023; 24:ijms24076051. [PMID: 37047023 PMCID: PMC10094222 DOI: 10.3390/ijms24076051] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Huntington's disease (HD) is characterized by clinical motor impairment (e.g., involuntary movements, poor coordination, parkinsonism), cognitive deficits, and psychiatric symptoms. An inhered expansion of the CAG triplet in the huntingtin gene causing a pathogenic gain-of-function of the mutant huntingtin (mHTT) protein has been identified. In this review, we focus on known biomarkers (e.g., mHTT, neurofilament light chains) and on new biofluid biomarkers that can be quantified in plasma or peripheral blood mononuclear cells from mHTT carriers. Circulating biomarkers may fill current unmet needs in HD management: better stratification of patients amenable to etiologic treatment; the initiation of preventive treatment in premanifest HD; and the identification of peripheral pathogenic central nervous system cascades.
Collapse
Affiliation(s)
- Emanuele Morena
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Carmela Romano
- Department of Human Neurosciences, Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Martina Marconi
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Selene Diamant
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Maria Chiara Buscarinu
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Gianmarco Bellucci
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Silvia Romano
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Daniela Scarabino
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
| | - Marco Salvetti
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077 Pozzilli, Italy
| | - Giovanni Ristori
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
60
|
Gendy AM, Soubh A, Elnagar MR, Hamza E, Ahmed KA, Aglan A, El-Haddad AE, Farag MA, El-Sadek HM. New insights into the role of berberine against 3-nitropropionic acid-induced striatal neurotoxicity: Possible role of BDNF-TrkB-PI3K/Akt and NF-κB signaling. Food Chem Toxicol 2023; 175:113721. [PMID: 36907500 DOI: 10.1016/j.fct.2023.113721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Berberine (Berb) is a major alkaloid with potential protective effects against multiple neurological disorders. Nevertheless, its positive effect against 3-nitropropionic acid (3NP) induced Huntington's disease (HD) modulation has not been fully elucidated. Accordingly, this study aimed to assess the possible action mechanisms of Berb against such neurotoxicity using an in vivo rats model pretreated with Berb (100 mg/kg, p.o.) alongisde 3NP (10 mg/kg, i.p.) at the latter 2 weeks to induce HD symptoms. Berb revealed its capacity to partially protect the striatum as mediated via the activation of BDNF-TrkB-PI3K/Akt signaling and amelioration of neuroinflammation status by blocking NF-κB p65 with a concomitant reduction in its downstream cytokines TNF-α and IL-1β. Moreover, its antioxidant potential was evidenced from induction of Nrf2 and GSH levels concurrent with a reduction in MDA level. Furthermore, Berb anti-apoptotic effect was manifested through the induction of pro-survival protein (Bcl-2) and down-regulation of the apoptosis biomarker (caspase-3). Finally, Berb intake ascertained its striatum protective action by improving the motor and histopathological abnormalities with concomitant dopamine restoration. In conclusion, Berb appears to modulate 3NP-induced neurotoxicity by moderating BDNF-TrkB-PI3K/Akt signaling besides its anti-inflammatory, antioxidant, as well as anti-apoptotic effect.
Collapse
Affiliation(s)
- Abdallah M Gendy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October 6 University, Giza, 12585, Egypt.
| | - Ayman Soubh
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, Giza, 12566, Egypt
| | - Mohamed R Elnagar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11823, Egypt; Department of Pharmacology, College of Pharmacy, The Islamic University, Najaf, 54001, Iraq
| | - Eman Hamza
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt; Medical Biochemistry and Molecular Biology Department, Horus University, Damietta, 11765, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed Aglan
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11823, Egypt
| | - Alaadin E El-Haddad
- Pharmacognosy Department, Faculty of Pharmacy, October 6 University, Giza, 12585, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St, Cairo, 11562, Egypt
| | - Hagar M El-Sadek
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October 6 University, Giza, 12585, Egypt
| |
Collapse
|
61
|
D’Egidio F, Castelli V, Cimini A, d’Angelo M. Cell Rearrangement and Oxidant/Antioxidant Imbalance in Huntington's Disease. Antioxidants (Basel) 2023; 12:571. [PMID: 36978821 PMCID: PMC10045781 DOI: 10.3390/antiox12030571] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Huntington's Disease (HD) is a hereditary neurodegenerative disorder caused by the expansion of a CAG triplet repeat in the HTT gene, resulting in the production of an aberrant huntingtin (Htt) protein. The mutant protein accumulation is responsible for neuronal dysfunction and cell death. This is due to the involvement of oxidative damage, excitotoxicity, inflammation, and mitochondrial impairment. Neurons naturally adapt to bioenergetic alteration and oxidative stress in physiological conditions. However, this dynamic system is compromised when a neurodegenerative disorder occurs, resulting in changes in metabolism, alteration in calcium signaling, and impaired substrates transport. Thus, the aim of this review is to provide an overview of the cell's answer to the stress induced by HD, focusing on the role of oxidative stress and its balance with the antioxidant system.
Collapse
Affiliation(s)
| | | | | | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
62
|
What the Gut Tells the Brain-Is There a Link between Microbiota and Huntington's Disease? Int J Mol Sci 2023; 24:ijms24054477. [PMID: 36901907 PMCID: PMC10003333 DOI: 10.3390/ijms24054477] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
The human intestinal microbiota is a diverse and dynamic microenvironment that forms a complex, bi-directional relationship with the host. The microbiome takes part in the digestion of food and the generation of crucial nutrients such as short chain fatty acids (SCFA), but is also impacts the host's metabolism, immune system, and even brain functions. Due to its indispensable role, microbiota has been implicated in both the maintenance of health and the pathogenesis of many diseases. Dysbiosis in the gut microbiota has already been implicated in many neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD). However, not much is known about the microbiome composition and its interactions in Huntington's disease (HD). This dominantly heritable, incurable neurodegenerative disease is caused by the expansion of CAG trinucleotide repeats in the huntingtin gene (HTT). As a result, toxic RNA and mutant protein (mHTT), rich in polyglutamine (polyQ), accumulate particularly in the brain, leading to its impaired functions. Interestingly, recent studies indicated that mHTT is also widely expressed in the intestines and could possibly interact with the microbiota, affecting the progression of HD. Several studies have aimed so far to screen the microbiota composition in mouse models of HD and find out whether observed microbiome dysbiosis could affect the functions of the HD brain. This review summarizes ongoing research in the HD field and highlights the essential role of the intestine-brain axis in HD pathogenesis and progression. The review also puts a strong emphasis on indicating microbiome composition as a future target in the urgently needed therapy for this still incurable disease.
Collapse
|
63
|
Is Hormone Replacement Therapy a Risk Factor or a Therapeutic Option for Alzheimer's Disease? Int J Mol Sci 2023; 24:ijms24043205. [PMID: 36834617 PMCID: PMC9964432 DOI: 10.3390/ijms24043205] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that accounts for more than half of all dementia cases in the elderly. Interestingly, the clinical manifestations of AD disproportionately affect women, comprising two thirds of all AD cases. Although the underlying mechanisms for these sex differences are not fully elucidated, evidence suggests a link between menopause and a higher risk of developing AD, highlighting the critical role of decreased estrogen levels in AD pathogenesis. The focus of this review is to evaluate clinical and observational studies in women, which have investigated the impact of estrogens on cognition or attempted to answer the prevailing question regarding the use of hormone replacement therapy (HRT) as a preventive or therapeutic option for AD. The articles were retrieved through a systematic review of the databases: OVID, SCOPUS, and PubMed (keywords "memory", "dementia," "cognition," "Alzheimer's disease", "estrogen", "estradiol", "hormone therapy" and "hormone replacement therapy" and by searching reference sections from identified studies and review articles). This review presents the relevant literature available on the topic and discusses the mechanisms, effects, and hypotheses that contribute to the conflicting findings of HRT in the prevention and treatment of age-related cognitive deficits and AD. The literature suggests that estrogens have a clear role in modulating dementia risk, with reliable evidence showing that HRT can have both a beneficial and a deleterious effect. Importantly, recommendation for the use of HRT should consider the age of initiation and baseline characteristics, such as genotype and cardiovascular health, as well as the dosage, formulation, and duration of treatment until the risk factors that modulate the effects of HRT can be more thoroughly investigated or progress in the development of alternative treatments can be made.
Collapse
|
64
|
Mahdi WA, AlGhamdi SA, Alghamdi AM, Imam SS, Alshehri S, Almaniea MA, Hajjar BM, Al-Abbasi FA, Sayyed N, Kazmi I. Neuroprotectant Effects of Hibiscetin in 3-Nitropropionic Acid-Induced Huntington's Disease via Subsiding Oxidative Stress and Modulating Monoamine Neurotransmitters in Rats Brain. Molecules 2023; 28:1402. [PMID: 36771072 PMCID: PMC9921215 DOI: 10.3390/molecules28031402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Previously reported data suggest that hibiscetin, isolated from roselle, contains delphinidin-3-sambubioside and cyanidin-3-sambubioside including anthocyanidins and has a broad range of physiological effects. In this study, we aim to analyze the effect of hibiscetin neuroprotective ability in rats against 3-nitropropionic acid (3-NPA)-induced Huntington's disease (HD). METHODS To investigate possible toxicities in animals, oral acute toxicity studies of hibiscetin were undertaken, and results revealed the safety of hibiscetin in animals with a maximum tolerated dose. Wistar rats were divided into four groups (n = 6); (group-1) treated with normal saline, (group-2) hibiscetin (10 mg/kg) only, (group-3) 3-NPA only, and (group-4) 3-NPA +10 mg/kg hibiscetin. The efficacy of hibiscetin 10 mg/kg was studied with the administration of 3-NPA doses for the induction of experimentally induced HD symptoms in rats. The mean body weight (MBW) was recorded at end of the study on day 22 to evaluate any change in mean body weight. Several biochemical parameters were assessed to support oxidative stress (GSH, SOD, CAT, LPO, GR, and GPx), alteration in neurotransmitters (DOPAC, HVA, 5-HIAA, norepinephrine, serotonin, GABA, and dopamine), alterations in BDNF and cleaved caspase (caspase 3) activity. Additionally, inflammatory markers, i.e., tumor necrosis factor alpha (TNF-α), interleukins beta (IL-1β), and myeloperoxidase (MPO) were evaluated. RESULTS The hibiscetin-treated group exhibits a substantial restoration of MBW than the 3-NPA control group. Furthermore, 3-NPA caused a substantial alteration in biochemical, neurotransmitter monoamines, and neuroinflammatory parameters which were restored successfully by hibiscetin. CONCLUSION The current study linked the possible role of hibiscetin by offering neuroprotection in experimental animal models.
Collapse
Affiliation(s)
- Wael A. Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shareefa A. AlGhamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amira M. Alghamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad A. Almaniea
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Baraa Mohammed Hajjar
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nadeem Sayyed
- School of Pharmacy, Glocal University, Saharanpur 247121, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
65
|
Lam P, Newland J, Faull RLM, Kwakowsky A. Cation-Chloride Cotransporters KCC2 and NKCC1 as Therapeutic Targets in Neurological and Neuropsychiatric Disorders. Molecules 2023; 28:1344. [PMID: 36771011 PMCID: PMC9920462 DOI: 10.3390/molecules28031344] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Neurological diseases including Alzheimer's, Huntington's disease, Parkinson's disease, Down syndrome and epilepsy, and neuropsychiatric disorders such as schizophrenia, are conditions that affect not only individuals but societies on a global scale. Current therapies offer a means for small symptomatic relief, but recently there has been increasing demand for therapeutic alternatives. The γ-aminobutyric acid (GABA)ergic signaling system has been investigated for developing new therapies as it has been noted that any dysfunction or changes to this system can contribute to disease progression. Expression of the K-Cl-2 (KCC2) and N-K-C1-1 (NKCC1) cation-chloride cotransporters (CCCs) has recently been linked to the disruption of GABAergic activity by affecting the polarity of GABAA receptor signaling. KCC2 and NKCC1 play a part in multiple neurological and neuropsychiatric disorders, making them a target of interest for potential therapies. This review explores current research suggesting the pathophysiological role and therapeutic importance of KCC2 and NKCC1 in neuropsychiatric and neurological disorders.
Collapse
Affiliation(s)
- Patricia Lam
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Julia Newland
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Richard L. M. Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, H91 W5P7 Galway, Ireland
| |
Collapse
|
66
|
Denis HL, Alpaugh M, Alvarez CP, Fenyi A, Barker RA, Chouinard S, Arrowsmith CH, Melki R, Labib R, Harding RJ, Cicchetti F. Detection of antibodies against the huntingtin protein in human plasma. Cell Mol Life Sci 2023; 80:45. [PMID: 36651994 PMCID: PMC9849309 DOI: 10.1007/s00018-023-04687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023]
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder resulting from a CAG expansion in the huntingtin (HTT) gene, which leads to the production and accumulation of mutant huntingtin (mHTT). While primarily considered a disorder of the central nervous system, multiple changes have been described to occur throughout the body, including activation of the immune system. In other neurodegenerative disorders, activation of the immune system has been shown to include the production of antibodies against disease-associated pathological proteins. However, the existence of mHTT-targeted antibodies has never been reported. In this study, we assessed the presence and titer of antibodies recognizing HTT/mHTT in patients with HD (n = 66) and age- and gender-matched healthy controls (n = 66) using a combination of Western blotting and ELISA. Together, these analyses revealed that antibodies capable of recognizing HTT/mHTT were detectable in the plasma samples of all participants, including healthy controls. When antibody levels were monitored at different disease stages, it was observed that antibodies against full-length mHTT were highest in patients with severe disease while antibodies against HTTExon1 were elevated in patients with mild disease. Combined, these results suggest that antibodies detecting different forms of mHTT peak at different disease stages.
Collapse
Affiliation(s)
- Hélèna L Denis
- Centre de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC, G1V 4G2, Canada
- Département de Psychiatrie and Neurosciences, Université Laval, Québec, QC, Canada
| | - Melanie Alpaugh
- Centre de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC, G1V 4G2, Canada
- Département de Psychiatrie and Neurosciences, Université Laval, Québec, QC, Canada
| | - Claudia P Alvarez
- Structural Genomics Consortium, University of Toronto, MaRS Building Suite 700, 101 College Street, Toronto, ON, M5G1L7, Canada
| | - Alexis Fenyi
- Laboratory of Neurodegenerative Diseases, Institut François Jacob, MIRCen, CEA, CNRS, Fontenay-Aux-Roses, France
| | - Roger A Barker
- John van Geest Center for Brain Repair, University of Cambridge, Cambridge, UK
| | - Sylvain Chouinard
- Centre Hospitalier Universitaire de Montréal-Hôtel Dieu, Movement Disorders Unit, CHUM, Montréal, QC, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, MaRS Building Suite 700, 101 College Street, Toronto, ON, M5G1L7, Canada
- Department of Medical Biophysics, University of Toronto and Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Ronald Melki
- Laboratory of Neurodegenerative Diseases, Institut François Jacob, MIRCen, CEA, CNRS, Fontenay-Aux-Roses, France
| | - Richard Labib
- Department of Mathematical and Industrial Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Rachel J Harding
- Structural Genomics Consortium, University of Toronto, MaRS Building Suite 700, 101 College Street, Toronto, ON, M5G1L7, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC, G1V 4G2, Canada.
- Département de Psychiatrie and Neurosciences, Université Laval, Québec, QC, Canada.
| |
Collapse
|
67
|
Migliolo L, de A. Boleti A, de O. Cardoso P, Frihling BF, e Silva P, de Moraes LRN. Adipose tissue, systematic inflammation, and neurodegenerative diseases. Neural Regen Res 2023; 18:38-46. [PMID: 35799506 PMCID: PMC9241402 DOI: 10.4103/1673-5374.343891] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
68
|
Yang Z, Gong M, Yang C, Chen C, Zhang K. Applications of Induced Pluripotent Stem Cell-Derived Glia in Brain Disease Research and Treatment. Handb Exp Pharmacol 2023; 281:103-140. [PMID: 37735301 DOI: 10.1007/164_2023_697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Glia are integral components of neural networks and are crucial in both physiological functions and pathological processes of the brain. Many brain diseases involve glial abnormalities, including inflammatory changes, mitochondrial damage, calcium signaling disturbance, hemichannel opening, and loss of glutamate transporters. Induced pluripotent stem cell (iPSC)-derived glia provide opportunities to study the contributions of glia in human brain diseases. These cells have been used for human disease modeling as well as generating new therapies. This chapter introduces glial involvement in brain diseases, then summarizes different methods of generating iPSC-derived glia disease models of these cells. Finally, strategies for treating disease using iPSC-derived glia are discussed. The goal of this chapter is to provide an overview and shed light on the applications of iPSC-derived glia in brain disease research and treatment.
Collapse
Affiliation(s)
- Zhiqi Yang
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Mingyue Gong
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Chuanyan Yang
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Chunhai Chen
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China.
| |
Collapse
|
69
|
Cvetanovic M, Gray M. Contribution of Glial Cells to Polyglutamine Diseases: Observations from Patients and Mouse Models. Neurotherapeutics 2023; 20:48-66. [PMID: 37020152 PMCID: PMC10119372 DOI: 10.1007/s13311-023-01357-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 04/07/2023] Open
Abstract
Neurodegenerative diseases are broadly characterized neuropathologically by the degeneration of vulnerable neuronal cell types in a specific brain region. The degeneration of specific cell types has informed on the various phenotypes/clinical presentations in someone suffering from these diseases. Prominent neurodegeneration of specific neurons is seen in polyglutamine expansion diseases including Huntington's disease (HD) and spinocerebellar ataxias (SCA). The clinical manifestations observed in these diseases could be as varied as the abnormalities in motor function observed in those who have Huntington's disease (HD) as demonstrated by a chorea with substantial degeneration of striatal medium spiny neurons (MSNs) or those with various forms of spinocerebellar ataxia (SCA) with an ataxic motor presentation primarily due to degeneration of cerebellar Purkinje cells. Due to the very significant nature of the degeneration of MSNs in HD and Purkinje cells in SCAs, much of the research has centered around understanding the cell autonomous mechanisms dysregulated in these neuronal cell types. However, an increasing number of studies have revealed that dysfunction in non-neuronal glial cell types contributes to the pathogenesis of these diseases. Here we explore these non-neuronal glial cell types with a focus on how each may contribute to the pathogenesis of HD and SCA and the tools used to evaluate glial cells in the context of these diseases. Understanding the regulation of supportive and harmful phenotypes of glia in disease could lead to development of novel glia-focused neurotherapeutics.
Collapse
Affiliation(s)
- Marija Cvetanovic
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, USA
| | - Michelle Gray
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
70
|
Jia Q, Li S, Li XJ, Yin P. Neuroinflammation in Huntington's disease: From animal models to clinical therapeutics. Front Immunol 2022; 13:1088124. [PMID: 36618375 PMCID: PMC9815700 DOI: 10.3389/fimmu.2022.1088124] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disease characterized by preferential loss of neurons in the striatum in patients, which leads to motor and cognitive impairments and death that often occurs 10-15 years after the onset of symptoms. The expansion of a glutamine repeat (>36 glutamines) in the N-terminal region of huntingtin (HTT) has been defined as the cause of HD, but the mechanism underlying neuronal death remains unclear. Multiple mechanisms, including inflammation, may jointly contribute to HD pathogenesis. Altered inflammation response is evident even before the onset of classical symptoms of HD. In this review, we summarize the current evidence on immune and inflammatory changes, from HD animal models to clinical phenomenon of patients with HD. The understanding of the impact of inflammation on HD would help develop novel strategies to treat HD.
Collapse
Affiliation(s)
| | | | | | - Peng Yin
- *Correspondence: Xiao-Jiang Li, ; Peng Yin,
| |
Collapse
|
71
|
Short-Term In Vitro ROS Detection and Oxidative Stress Regulators in Epiretinal Membranes and Vitreous from Idiopathic Vitreoretinal Diseases. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7497816. [PMID: 36567907 PMCID: PMC9788888 DOI: 10.1155/2022/7497816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 12/23/2022]
Abstract
Background A plethora of inflammatory, angiogenic, and tissue remodeling factors has been reported in idiopathic epiretinal membranes (ERMs). Herein we focused on the expression of a few mediators (oxidative, inflammatory, and angiogenic/vascular factors) by means of short-term vitreal cell cultures and biomolecular analysis. Methods Thirty-nine (39) ERMs and vitreal samples were collected at the time of vitreoretinal surgery and biomolecular analyses were performed in clear vitreous, vitreal cell pellets, and ERMs. ROS products and iNOS were investigated in adherent vitreal cells and/or ERMs, and iNOS, VEGF, Ang-2, IFNγ, IL18, and IL22 were quantified in vitreous (ELISA/Ella, IF/WB); transcripts specific for iNOS, p65NFkB, KEAP1, NRF2, and NOX1/NOX4 were detected in ERMs (PCR). Biomolecular changes were analyzed and correlated with disease severity. Results The higher ROS production was observed in vitreal cells at stage 4, and iNOS was found in ERMs and increased in the vitreous as early as at stage 3. Both iNOS and NOX4 were upregulated at all stages, while p65NFkB was increased at stage 3. iNOS and NOX1 were positively and inversely related with p65NFkB. While NOX4 transcripts were always upregulated, NRF2 was upregulated at stage 3 and inverted at stage 4. No significant changes occurred in the release of angiogenic (VEGF, Ang-2) and proinflammatory (IL18, IL22 and IFNγ) mediators between all stages investigated. Conclusions ROS production was strictly associated with iNOS and NOX4 overexpression and increased depending on ERM stadiation. The higher iNOS expression occurred as early as stage 3, with respect to p65NFkB and NRF2. These last mediators might have potential prognostic values in ERMs as representative of an underneath retinal damage.
Collapse
|
72
|
Sneha NP, Dharshini SAP, Taguchi YH, Gromiha MM. Integrative Meta-Analysis of Huntington's Disease Transcriptome Landscape. Genes (Basel) 2022; 13:2385. [PMID: 36553652 PMCID: PMC9777612 DOI: 10.3390/genes13122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder with autosomal dominant inheritance caused by glutamine expansion in the Huntingtin gene (HTT). Striatal projection neurons (SPNs) in HD are more vulnerable to cell death. The executive striatal population is directly connected with the Brodmann Area (BA9), which is mainly involved in motor functions. Analyzing the disease samples from BA9 from the SRA database provides insights related to neuron degeneration, which helps to identify a promising therapeutic strategy. Most gene expression studies examine the changes in expression and associated biological functions. In this study, we elucidate the relationship between variants and their effect on gene/downstream transcript expression. We computed gene and transcript abundance and identified variants from RNA-seq data using various pipelines. We predicted the effect of genome-wide association studies (GWAS)/novel variants on regulatory functions. We found that many variants affect the histone acetylation pattern in HD, thereby perturbing the transcription factor networks. Interestingly, some variants affect miRNA binding as well as their downstream gene expression. Tissue-specific network analysis showed that mitochondrial, neuroinflammation, vasculature, and angiogenesis-related genes are disrupted in HD. From this integrative omics analysis, we propose that abnormal neuroinflammation acts as a two-edged sword that indirectly affects the vasculature and associated energy metabolism. Rehabilitation of blood-brain barrier functionality and energy metabolism may secure the neuron from cell death.
Collapse
Affiliation(s)
- Nela Pragathi Sneha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India
| | - S. Akila Parvathy Dharshini
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India
| | - Y.-H. Taguchi
- Department of Physics, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - M. Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India
| |
Collapse
|
73
|
Mushroom Natural Products in Neurodegenerative Disease Drug Discovery. Cells 2022; 11:cells11233938. [PMID: 36497196 PMCID: PMC9740391 DOI: 10.3390/cells11233938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
The variety of drugs available to treat neurodegenerative diseases is limited. Most of these drug's efficacy is restricted by individual genetics and disease stages and usually do not prevent neurodegeneration acting long after irreversible damage has already occurred. Thus, drugs targeting the molecular mechanisms underlying subsequent neurodegeneration have the potential to negate symptom manifestation and subsequent neurodegeneration. Neuroinflammation is a common feature of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis, and is associated with the activation of the NLRP3 inflammasome, which in turn leads to neurodegeneration. Inflammasome activation and oligomerisation is suggested to be a major driver of disease progression occurring in microglia. With several natural products and natural product derivatives currently in clinical trials, mushrooms have been highlighted as a rich and largely untapped source of biologically active compounds in both in vitro and in vivo neurodegenerative disease models, partially supported by successful clinical trial evaluations. Additionally, novel high-throughput methods for the screening of natural product compound libraries are being developed to help accelerate the neurodegenerative disease drug discovery process, targeting neuroinflammation. However, the breadth of research relating to mushroom natural product high-throughput screening is limited, providing an exciting opportunity for further detailed investigations.
Collapse
|
74
|
Wu J, Möhle L, Brüning T, Eiriz I, Rafehi M, Stefan K, Stefan SM, Pahnke J. A Novel Huntington's Disease Assessment Platform to Support Future Drug Discovery and Development. Int J Mol Sci 2022; 23:ijms232314763. [PMID: 36499090 PMCID: PMC9740291 DOI: 10.3390/ijms232314763] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Huntington's disease (HD) is a lethal neurodegenerative disorder without efficient therapeutic options. The inefficient translation from preclinical and clinical research into clinical use is mainly attributed to the lack of (i) understanding of disease initiation, progression, and involved molecular mechanisms; (ii) knowledge of the possible HD target space and general data awareness; (iii) detailed characterizations of available disease models; (iv) better suitable models; and (v) reliable and sensitive biomarkers. To generate robust HD-like symptoms in a mouse model, the neomycin resistance cassette was excised from zQ175 mice, generating a new line: zQ175Δneo. We entirely describe the dynamics of behavioral, neuropathological, and immunohistological changes from 15-57 weeks of age. Specifically, zQ175Δneo mice showed early astrogliosis from 15 weeks; growth retardation, body weight loss, and anxiety-like behaviors from 29 weeks; motor deficits and reduced muscular strength from 36 weeks; and finally slight microgliosis at 57 weeks of age. Additionally, we collected the entire bioactivity network of small-molecule HD modulators in a multitarget dataset (HD_MDS). Hereby, we uncovered 358 unique compounds addressing over 80 different pharmacological targets and pathways. Our data will support future drug discovery approaches and may serve as useful assessment platform for drug discovery and development against HD.
Collapse
Affiliation(s)
- Jingyun Wu
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; www.pahnkelab.eu
| | - Luisa Möhle
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; www.pahnkelab.eu
| | - Thomas Brüning
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; www.pahnkelab.eu
| | - Iván Eiriz
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; www.pahnkelab.eu
| | - Muhammad Rafehi
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Katja Stefan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; www.pahnkelab.eu
| | - Sven Marcel Stefan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; www.pahnkelab.eu
- Pahnke Lab (Drug Development and Chemical Biology), Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck and University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
- Correspondence: (J.P.); (S.M.S.); Tel.: +47-23-071-466 (J.P.)
| | - Jens Pahnke
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; www.pahnkelab.eu
- Pahnke Lab (Drug Development and Chemical Biology), Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck and University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 4, 1004 Rīga, Latvia
- Department of Neurobiology, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: (J.P.); (S.M.S.); Tel.: +47-23-071-466 (J.P.)
| |
Collapse
|
75
|
Irfan Z, Khanam S, Karmakar V, Firdous SM, El Khier BSIA, Khan I, Rehman MU, Khan A. Pathogenesis of Huntington's Disease: An Emphasis on Molecular Pathways and Prevention by Natural Remedies. Brain Sci 2022; 12:1389. [PMID: 36291322 PMCID: PMC9599635 DOI: 10.3390/brainsci12101389] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/25/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Huntington's disease is an inherited autosomal dominant trait neuro-degenerative disorder caused by changes (mutations) of a gene called huntingtin (htt) that is located on the short arm (p) of chromosome 4, CAG expansion mutation. It is characterized by unusual movements, cognitive and psychiatric disorders. OBJECTIVE This review was undertaken to apprehend biological pathways of Huntington's disease (HD) pathogenesis and its management by nature-derived products. Natural products can be lucrative for the management of HD as it shows protection against HD in pre-clinical trials. Advanced research is still required to assess the therapeutic effectiveness of the known organic products and their isolated compounds in HD experimental models. SUMMARY Degeneration of neurons in Huntington's disease is distinguished by progressive loss of motor coordination and muscle function. This is due to the expansion of CAG trinucleotide in the first exon of the htt gene responsible for neuronal death and neuronal network degeneration in the brain. It is believed that the factors such as molecular genetics, oxidative stress, excitotoxicity, mitochondrial dysfunction, neuroglia dysfunction, protein aggregation, and altered UPS leads to HD. The defensive effect of the natural product provides therapeutic efficacy against HD. Recent reports on natural drugs have enlightened the protective role against HD via antioxidant, anti-inflammatory, antiapoptotic, and neurofunctional regulation.
Collapse
Affiliation(s)
- Zainab Irfan
- Department of Pharmaceutical Technology, Brainware University, Kolkata 700125, West Bengal, India
| | - Sofia Khanam
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Howrah 711316, West Bengal, India
| | - Varnita Karmakar
- Department of Pharmacology, Eminent College of Pharmaceutical Technology, Barasat 700126, West Bengal, India
| | - Sayeed Mohammed Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Howrah 711316, West Bengal, India
| | | | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
76
|
Integrated Excitatory/Inhibitory Imbalance and Transcriptomic Analysis Reveals the Association between Dysregulated Synaptic Genes and Anesthetic-Induced Cognitive Dysfunction. Cells 2022; 11:cells11162497. [PMID: 36010580 PMCID: PMC9406780 DOI: 10.3390/cells11162497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Emerging evidence from human epidemiologic and animal studies has demonstrated that developmental anesthesia neurotoxicity could cause long-term cognitive deficits and behavioral problems. However, the underlying mechanisms remain largely unknown. We conducted an electrophysiological analysis of synapse activity and a transcriptomic assay of 24,881 mRNA expression on hippocampal tissues from postnatal day 60 (P60) mice receiving propofol exposure at postnatal day 7 (P7). We found that developmentally propofol-exposed P60 mouse hippocampal neurons displayed an E/I imbalance, compared with control mice as evidenced by the decreased excitation and increased inhibition. We found that propofol exposure at P7 led to the abnormal expression of 317 mRNAs in the hippocampus of P60 mice, including 23 synapse-related genes. Various bioinformatic analyses revealed that these abnormally expressed synaptic genes were associated with the function and development of synapse activity and plasticity, E/I balance, behavior, and cognitive impairment. Our findings suggest that the altered E/I balance may constitute a mechanism for propofol-induced long-term impaired learning and memory in mice. The transcriptomic and bioinformatic analysis of these dysregulated genes related to synaptic function paves the way for development of therapeutic strategies against anesthetic neurodegeneration through the restoration of E/I balance and the modification of synaptic gene expression.
Collapse
|
77
|
Therapeutic Strategies in Huntington’s Disease: From Genetic Defect to Gene Therapy. Biomedicines 2022; 10:biomedicines10081895. [PMID: 36009443 PMCID: PMC9405755 DOI: 10.3390/biomedicines10081895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022] Open
Abstract
Despite the identification of an expanded CAG repeat on exon 1 of the huntingtin gene located on chromosome 1 as the genetic defect causing Huntington’s disease almost 30 years ago, currently approved therapies provide only limited symptomatic relief and do not influence the age of onset or disease progression rate. Research has identified various intricate pathogenic cascades which lead to neuronal degeneration, but therapies interfering with these mechanisms have been marked by many failures and remain to be validated. Exciting new opportunities are opened by the emerging techniques which target the mutant protein DNA and RNA, allowing for “gene editing”. Although some issues relating to “off-target” effects or immune-mediated side effects need to be solved, these strategies, combined with stem cell therapies and more traditional approaches targeting specific pathogenic cascades, such as excitotoxicity and bioavailability of neurotrophic factors, could lead to significant improvement of the outcomes of treated Huntington’s disease patients.
Collapse
|
78
|
Wu X, Wan T, Gao X, Fu M, Duan Y, Shen X, Guo W. Microglia Pyroptosis: A Candidate Target for Neurological Diseases Treatment. Front Neurosci 2022; 16:922331. [PMID: 35937897 PMCID: PMC9354884 DOI: 10.3389/fnins.2022.922331] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
In addition to its profound implications in the fight against cancer, pyroptosis have important role in the regulation of neuronal injury. Microglia are not only central members of the immune regulation of the central nervous system (CNS), but are also involved in the development and homeostatic maintenance of the nervous system. Under various pathological overstimulation, microglia pyroptosis contributes to the massive release of intracellular inflammatory mediators leading to neuroinflammation and ultimately to neuronal damages. In addition, microglia pyroptosis lead to further neurological damage by decreasing the ability to cleanse harmful substances. The pathogenic roles of microglia in a variety of CNS diseases such as neurodegenerative diseases, stroke, multiple sclerosis and depression, and many other neurological disorders have been gradually unveiled. In the context of different neurological disorders, inhibition of microglia pyroptosis by targeting NOD-like receptor family pyrin domain containing (NLRP) 3, caspase-1 and gasdermins (GSDMs) by various chemical agents as well as natural products significantly improve the symptoms or outcome in animal models. This study will provide new ideas for immunomodulatory treatment of CNS diseases.
Collapse
Affiliation(s)
- Xian Wu
- The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Hunan Province Directly Affiliated TCM Hospital, Zhuzhou, China
| | - Teng Wan
- Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Xiaoyu Gao
- Hengyang Medical College, University of South China, Hengyang, China
| | - Mingyuan Fu
- Hengyang Medical College, University of South China, Hengyang, China
| | - Yunfeng Duan
- The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Hunan Province Directly Affiliated TCM Hospital, Zhuzhou, China
| | - Xiangru Shen
- Hengyang Medical College, University of South China, Hengyang, China
- *Correspondence: Xiangru Shen
| | - Weiming Guo
- Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Weiming Guo
| |
Collapse
|
79
|
Hossain MM, Toltin AC, Gamba LM, Molina MA. Deltamethrin-Evoked ER Stress Promotes Neuroinflammation in the Adult Mouse Hippocampus. Cells 2022; 11:1961. [PMID: 35741090 PMCID: PMC9222034 DOI: 10.3390/cells11121961] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022] Open
Abstract
Endoplasmic reticulum (ER) stress and neuroinflammation are involved in the pathogenesis of many neurodegenerative disorders. Previously, we reported that exposure to pyrethroid insecticide deltamethrin causes hippocampal ER stress apoptosis, a reduction in neurogenesis, and learning deficits in adult male mice. Recently, we found that deltamethrin exposure also increases the markers of neuroinflammation in BV2 cells. Here, we investigated the potential mechanistic link between ER stress and neuroinflammation following exposure to deltamethrin. We found that repeated oral exposure to deltamethrin (3 mg/kg) for 30 days caused microglial activation and increased gene expressions and protein levels of TNF-α, IL-1β, IL-6, gp91phox, 4HNE, and iNOS in the hippocampus. These changes were preceded by the induction of ER stress as the protein levels of CHOP, ATF-4, and GRP78 were significantly increased in the hippocampus. To determine whether induction of ER stress triggers the inflammatory response, we performed an additional experiment with mouse microglial cell (MMC) line. MMCs were treated with 0-5 µM deltamethrin for 24-48 h in the presence or absence of salubrinal, a pharmacological inhibitor of the ER stress factor eIF2α. We found that salubrinal (50 µM) prevented deltamethrin-induced ER stress, as indicated by decreased levels of CHOP and ATF-4, and attenuated the levels of GSH, 4-HNE, gp91phox, iNOS, ROS, TNF-α, IL-1β, and IL-6 in MMCs. Together, these results demonstrate that exposure to deltamethrin leads to ER stress-mediated neuroinflammation, which may subsequently contribute to neurodegeneration and cognitive impairment in mice.
Collapse
Affiliation(s)
- Muhammad M. Hossain
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, USA; (A.C.T.); (L.M.G.); (M.A.M.)
| | | | | | | |
Collapse
|
80
|
Molecular Pathophysiological Mechanisms in Huntington's Disease. Biomedicines 2022; 10:biomedicines10061432. [PMID: 35740453 PMCID: PMC9219859 DOI: 10.3390/biomedicines10061432] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
Huntington’s disease is an inherited neurodegenerative disease described 150 years ago by George Huntington. The genetic defect was identified in 1993 to be an expanded CAG repeat on exon 1 of the huntingtin gene located on chromosome 4. In the following almost 30 years, a considerable amount of research, using mainly animal models or in vitro experiments, has tried to unravel the complex molecular cascades through which the transcription of the mutant protein leads to neuronal loss, especially in the medium spiny neurons of the striatum, and identified excitotoxicity, transcriptional dysregulation, mitochondrial dysfunction, oxidative stress, impaired proteostasis, altered axonal trafficking and reduced availability of trophic factors to be crucial contributors. This review discusses the pathogenic cascades described in the literature through which mutant huntingtin leads to neuronal demise. However, due to the ubiquitous presence of huntingtin, astrocytes are also dysfunctional, and neuroinflammation may additionally contribute to Huntington’s disease pathology. The quest for therapies to delay the onset and reduce the rate of Huntington’s disease progression is ongoing, but is based on findings from basic research.
Collapse
|
81
|
Kim S, Kim DK, Jeong S, Lee J. The Common Cellular Events in the Neurodegenerative Diseases and the Associated Role of Endoplasmic Reticulum Stress. Int J Mol Sci 2022; 23:5894. [PMID: 35682574 PMCID: PMC9180188 DOI: 10.3390/ijms23115894] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 12/28/2022] Open
Abstract
Neurodegenerative diseases are inseparably linked with aging and increase as life expectancy extends. There are common dysfunctions in various cellular events shared among neurogenerative diseases, such as calcium dyshomeostasis, neuroinflammation, and age-associated decline in the autophagy-lysosome system. However, most of all, the prominent pathological feature of neurodegenerative diseases is the toxic buildup of misfolded protein aggregates and inclusion bodies accompanied by an impairment in proteostasis. Recent studies have suggested a close association between endoplasmic reticulum (ER) stress and neurodegenerative pathology in cellular and animal models as well as in human patients. The contribution of mutant or misfolded protein-triggered ER stress and its associated signaling events, such as unfolded protein response (UPR), to the pathophysiology of various neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's disease, amyotrophic lateral sclerosis, and prion disease, is described here. Impaired UPR action is commonly attributed to exacerbated ER stress, pathogenic protein aggregate accumulation, and deteriorating neurodegenerative pathologies. Thus, activating certain UPR components has been shown to alleviate ER stress and its associated neurodegeneration. However, uncontrolled activation of some UPR factors has also been demonstrated to worsen neurodegenerative phenotypes, suggesting that detailed molecular mechanisms around ER stress and its related neurodegenerations should be understood to develop effective therapeutics against aging-associated neurological syndromes. We also discuss current therapeutic endeavors, such as the development of small molecules that selectively target individual UPR components and address ER stress in general.
Collapse
Affiliation(s)
- Soojeong Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (S.K.); (D.K.K.); (S.J.)
| | - Doo Kyung Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (S.K.); (D.K.K.); (S.J.)
| | - Seho Jeong
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (S.K.); (D.K.K.); (S.J.)
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (S.K.); (D.K.K.); (S.J.)
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
82
|
Ferguson MW, Kennedy CJ, Palpagama TH, Waldvogel HJ, Faull RLM, Kwakowsky A. Current and Possible Future Therapeutic Options for Huntington's Disease. J Cent Nerv Syst Dis 2022; 14:11795735221092517. [PMID: 35615642 PMCID: PMC9125092 DOI: 10.1177/11795735221092517] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Huntington's disease (HD) is an autosomal neurodegenerative disease that is characterized by an excessive number of CAG trinucleotide repeats within the huntingtin gene (HTT). HD patients can present with a variety of symptoms including chorea, behavioural and psychiatric abnormalities and cognitive decline. Each patient has a unique combination of symptoms, and although these can be managed using a range of medications and non-drug treatments there is currently no cure for the disease. Current therapies prescribed for HD can be categorized by the symptom they treat. These categories include chorea medication, antipsychotic medication, antidepressants, mood stabilizing medication as well as non-drug therapies. Fortunately, there are also many new HD therapeutics currently undergoing clinical trials that target the disease at its origin; lowering the levels of mutant huntingtin protein (mHTT). Currently, much attention is being directed to antisense oligonucleotide (ASO) therapies, which bind to pre-RNA or mRNA and can alter protein expression via RNA degradation, blocking translation or splice modulation. Other potential therapies in clinical development include RNA interference (RNAi) therapies, RNA targeting small molecule therapies, stem cell therapies, antibody therapies, non-RNA targeting small molecule therapies and neuroinflammation targeted therapies. Potential therapies in pre-clinical development include Zinc-Finger Protein (ZFP) therapies, transcription activator-like effector nuclease (TALEN) therapies and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas) therapies. This comprehensive review aims to discuss the efficacy of current HD treatments and explore the clinical trial progress of emerging potential HD therapeutics.
Collapse
Affiliation(s)
- Mackenzie W. Ferguson
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Connor J. Kennedy
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Thulani H. Palpagama
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Henry J. Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L. M. Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
83
|
Phospholipid Profiles Are Selectively Altered in the Putamen and White Frontal Cortex of Huntington's Disease. Nutrients 2022; 14:nu14102086. [PMID: 35631226 PMCID: PMC9143248 DOI: 10.3390/nu14102086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Huntington’s disease (HD) is a genetic, neurodegenerative illness that onsets in late adulthood as a series of progressive and terminal cognitive, motor, and psychiatric deficits. The disease is caused by a polyQ mutation in the Huntingtin gene (HTT), producing a polyglutamine expansion in the Huntingtin protein (HTT). HTT interacts with phospholipids in vitro; however, its interactions are changed when the protein is mutated in HD. Emerging evidence suggests that the susceptibility of brain regions to pathological stimuli is influenced by lipid composition. This study aimed to identify where and how phospholipids are changed in human HD brain tissue. Phospholipids were extracted using a modified MTBE method from the post-mortem brain of 13 advanced-stage HD patients and 13 age- and sex-matched controls. Targeted precursor ion scanning mass spectrometry was used to detect phospholipid species. In the white cortex of HD patients, there was a significantly lower abundance of phosphatidylcholine (PC) and phosphatidylserine (PS), but no difference in phosphatidylethanolamine (PE). In HD putamen, ester-linked 22:6 was lower in all phospholipid classes promoting a decrease in the relative abundance of ester polyunsaturated fatty acids in PE. No differences in phospholipid composition were identified in the caudate, grey cortex or cerebellum. Ether-linked PE fatty acids appear protected in the HD brain, as no changes were identified. The nature of phospholipid alterations in the HD brain is dependent on the lipid (subclass, species, and bond type) and the location.
Collapse
|
84
|
Alpaugh M, Masnata M, de Rus Jacquet A, Lepinay E, Denis HL, Saint-Pierre M, Davies P, Planel E, Cicchetti F. Passive immunization against phosphorylated tau improves features of Huntington's disease pathology. Mol Ther 2022; 30:1500-1522. [PMID: 35051614 PMCID: PMC9077324 DOI: 10.1016/j.ymthe.2022.01.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/05/2021] [Accepted: 01/12/2022] [Indexed: 01/07/2023] Open
Abstract
Huntington's disease is classically described as a neurodegenerative disorder of monogenic aetiology. The disease is characterized by an abnormal polyglutamine expansion in the huntingtin gene, which drives the toxicity of the mutated form of the protein. However, accumulation of the microtubule-associated protein tau, which is involved in a number of neurological disorders, has also been observed in patients with Huntington's disease. In order to unravel the contribution of tau hyperphosphorylation to hallmark features of Huntington's disease, we administered weekly intraperitoneal injections of the anti-tau pS202 CP13 monoclonal antibody to zQ175 mice and characterized the resulting behavioral and biochemical changes. After 12 weeks of treatment, motor impairments, cognitive performance and general health were improved in zQ175 mice along with a significant reduction in hippocampal pS202 tau levels. Despite the lack of effect of CP13 on neuronal markers associated with Huntington's disease pathology, tau-targeting enzymes and gliosis, CP13 was shown to directly impact mutant huntingtin aggregation such that brain levels of amyloid fibrils and huntingtin oligomers were decreased, while larger huntingtin protein aggregates were increased. Investigation of CP13 treatment of Huntington's disease patient-derived induced pluripotent stem cells (iPSCs) revealed a reduction in pS202 levels in differentiated cortical neurons and a rescue of neurite length. Collectively, these findings suggest that attenuating tau pathology could mitigate behavioral and molecular hallmarks associated with Huntington's disease.
Collapse
Affiliation(s)
- Melanie Alpaugh
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada
| | - Maria Masnata
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada
| | - Aurelie de Rus Jacquet
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada
| | - Eva Lepinay
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada
| | - Hélèna L Denis
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada
| | - Martine Saint-Pierre
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada
| | - Peter Davies
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - Emmanuel Planel
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada.
| |
Collapse
|
85
|
Han J, Chitu V, Stanley ER, Wszolek ZK, Karrenbauer VD, Harris RA. Inhibition of colony stimulating factor-1 receptor (CSF-1R) as a potential therapeutic strategy for neurodegenerative diseases: opportunities and challenges. Cell Mol Life Sci 2022; 79:219. [PMID: 35366105 PMCID: PMC8976111 DOI: 10.1007/s00018-022-04225-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/06/2022] [Accepted: 02/26/2022] [Indexed: 12/12/2022]
Abstract
Microglia are specialized dynamic immune cells in the central nervous system (CNS) that plays a crucial role in brain homeostasis and in disease states. Persistent neuroinflammation is considered a hallmark of many neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and primary progressive multiple sclerosis (MS). Colony stimulating factor 1-receptor (CSF-1R) is predominantly expressed on microglia and its expression is significantly increased in neurodegenerative diseases. Cumulative findings have indicated that CSF-1R inhibitors can have beneficial effects in preclinical neurodegenerative disease models. Research using CSF-1R inhibitors has now been extended into non-human primates and humans. This review article summarizes the most recent advances using CSF-1R inhibitors in different neurodegenerative conditions including AD, PD, HD, ALS and MS. Potential challenges for translating these findings into clinical practice are presented.
Collapse
Affiliation(s)
- Jinming Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Virginija Danylaité Karrenbauer
- Department of Clinical Neuroscience, Center for Molecular Medicine L8:04, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden.
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.
| | - Robert A Harris
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden.
| |
Collapse
|
86
|
García-Juárez M, Camacho-Morales A. Defining the role of anti- and pro-inflammatory outcomes of Interleukin-6 in mental health. Neuroscience 2022; 492:32-46. [DOI: 10.1016/j.neuroscience.2022.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 01/03/2023]
|
87
|
Rezk S, Lashen S, El-Adl M, Elshopakey GE, Elghareeb MM, Hendam BM, Caceci T, Cenciarelli C, Marei HE. Effects of Rosemary Oil (Rosmarinus officinalis) supplementation on the fate of the transplanted human olfactory bulb neural stem cells against ibotenic acid-induced neurotoxicity (Alzheimer model) in rat. Metab Brain Dis 2022; 37:973-988. [PMID: 35075502 DOI: 10.1007/s11011-021-00890-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/05/2021] [Indexed: 12/16/2022]
Abstract
Rosemary oil (ROO) is known to have multiple pharmacological effects: it is an antioxidant, anti-inflammatory, and cytoprotective. In the present study, we examined the effects of ROO on Human olfactory bulb neuronal stem cells (hOBNSCs) after their transplantation into rats, with the ibotenic (IBO) acid-induced cognitive deficit model. After 7 weeks, cognitive functions were assessed using the Morris water maze (MWM). After two months blood and hippocampus samples were collected for biochemical, gene expression, and histomorphometric analyses. Learning ability and memory function were significantly enhanced (P < 0.05) after hOBNSCs transplantation and were nearly returned to normal in the treated group. The IBO acid injection was associated with a significant decline (P < 0.05) of total leukocyte count (TLC) and a significant increase (P < 0.05) in total and toxic neutrophils. As well, the level of IL-1β, TNF-α CRP in serum and levels of MDA and NO in hippocampus tissue were significantly elevated (P < 0.05), while antioxidant markers (CAT, GSH, and SOD) were reduced (P < 0.05) in treated tissue compared to controls. The administration of ROO before or with cell transplantation attenuated all these parameters. In particular, the level of NO nearly returned to normal when rosemary was administrated before cell transplantation. Gene expression analysis revealed the potential protective effect of ROO and hOBNSCs via down-expression of R-βAmyl and R- CAS 3 and R-GFAP genes. The improvement in the histological organization of the hippocampus was detected after the hOBNSCs transplantation especially in h/ROO/hOBNSCs group.
Collapse
Affiliation(s)
- Shaymaa Rezk
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Samah Lashen
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Adl
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| | - Mona M Elghareeb
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Basma M Hendam
- Department of Husbandry & Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Thomas Caceci
- Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine , Blacksburg, VA, USA
| | - Carlo Cenciarelli
- Departament of Biomedical Sciences, Institute of Translational Pharmacology-CNR, Rome, Italy
| | - Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
88
|
O'Day DH, Huber RJ. Calmodulin binding proteins and neuroinflammation in multiple neurodegenerative diseases. BMC Neurosci 2022; 23:10. [PMID: 35246032 PMCID: PMC8896083 DOI: 10.1186/s12868-022-00695-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 02/15/2022] [Indexed: 11/10/2022] Open
Abstract
Calcium dysregulation (“Calcium Hypothesis”) is an early and critical event in Alzheimer’s and other neurodegenerative diseases. Calcium binds to and regulates the small regulatory protein calmodulin that in turn binds to and regulates several hundred calmodulin binding proteins. Initial and continued research has shown that many calmodulin binding proteins mediate multiple events during the onset and progression of Alzheimer’s disease, thus establishing the “Calmodulin Hypothesis”. To gain insight into the general applicability of this hypothesis, the involvement of calmodulin in neuroinflammation in Alzheimer’s, amyotrophic lateral sclerosis, Huntington’s disease, Parkinson’s disease, frontotemporal dementia, and other dementias was explored. After a literature search for calmodulin binding, 11 different neuroinflammatory proteins (TREM2, CD33, PILRA, CR1, MS4A, CLU, ABCA7, EPHA1, ABCA1, CH3L1/YKL-40 and NLRP3) were scanned for calmodulin binding domains using the Calmodulin Target Database. This analysis revealed the presence of at least one binding domain within which visual scanning demonstrated the presence of valid binding motifs. Coupled with previous research that identified 13 other neuroinflammation linked proteins (BACE1, BIN1, CaMKII, PP2B, PMCA, NOS, NMDAR, AchR, Ado A2AR, Aβ, APOE, SNCA, TMEM175), this work shows that at least 24 critical proteins involved in neuroinflammation are putative or proven calmodulin binding proteins. Many of these proteins are linked to multiple neurodegenerative diseases indicating that calmodulin binding proteins lie at the heart of neuroinflammatory events associated with multiple neurodegenerative diseases. Since many calmodulin-based pharmaceuticals have been successfully used to treat Huntington’s and other neurodegenerative diseases, these findings argue for their immediate therapeutic implementation.
Collapse
Affiliation(s)
- Danton H O'Day
- Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.,Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Robert J Huber
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada.
| |
Collapse
|
89
|
Rajendran R, Ragavan RP, Al-Sehemi AG, Uddin MS, Aleya L, Mathew B. Current understandings and perspectives of petroleum hydrocarbons in Alzheimer's disease and Parkinson's disease: a global concern. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:10928-10949. [PMID: 35000177 DOI: 10.1007/s11356-021-17931-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Over the last few decades, the global prevalence of neurodevelopmental and neurodegenerative illnesses has risen rapidly. Although the aetiology remains unclear, evidence is mounting that exposure to persistent hydrocarbon pollutants is a substantial risk factor, predisposing a person to neurological diseases later in life. Epidemiological studies correlate environmental hydrocarbon exposure to brain disorders including neuropathies, cognitive, motor and sensory impairments; neurodevelopmental disorders like autism spectrum disorder (ASD); and neurodegenerative disorders like Alzheimer's disease (AD) and Parkinson's disease (PD). Particulate matter, benzene, toluene, ethylbenzene, xylenes, polycyclic aromatic hydrocarbons and endocrine-disrupting chemicals have all been linked to neurodevelopmental problems in all class of people. There is mounting evidence that supports the prevalence of petroleum hydrocarbon becoming neurotoxic and being involved in the pathogenesis of AD and PD. More study is needed to fully comprehend the scope of these problems in the context of unconventional oil and natural gas. This review summarises in vitro, animal and epidemiological research on the genesis of neurodegenerative disorders, highlighting evidence that supports inexorable role of hazardous hydrocarbon exposure in the pathophysiology of AD and PD. In this review, we offer a summary of the existing evidence gathered through a Medline literature search of systematic reviews and meta-analyses of the most important epidemiological studies published so far.
Collapse
Affiliation(s)
- Rajalakshmi Rajendran
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Roshni Pushpa Ragavan
- Research Center for Advanced Materials Science, King Khalid University, Abha, 61413, Saudi Arabia.
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science, King Khalid University, Abha, 61413, Saudi Arabia
- Department of Chemistry, King Khalid University, Abha, 61413, Saudi Arabia
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Lotfi Aleya
- Laboratoire Chrono-Environment, CNRS6249, Universite de Bourgogne Franche-Comte, Besancon, France
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, India.
| |
Collapse
|
90
|
Modeling and Targeting Neuroglial Interactions with Human Pluripotent Stem Cell Models. Int J Mol Sci 2022; 23:ijms23031684. [PMID: 35163606 PMCID: PMC8836094 DOI: 10.3390/ijms23031684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 02/05/2023] Open
Abstract
Generation of relevant and robust models for neurological disorders is of main importance for both target identification and drug discovery. The non-cell autonomous effects of glial cells on neurons have been described in a broad range of neurodegenerative and neurodevelopmental disorders, pointing to neuroglial interactions as novel alternative targets for therapeutics development. Interestingly, the recent breakthrough discovery of human induced pluripotent stem cells (hiPSCs) has opened a new road for studying neurological and neurodevelopmental disorders “in a dish”. Here, we provide an overview of the generation and modeling of both neuronal and glial cells from human iPSCs and a brief synthesis of recent work investigating neuroglial interactions using hiPSCs in a pathophysiological context.
Collapse
|
91
|
Wakida NM, Lau AL, Nguyen J, Cruz GMS, Fote GM, Steffan JS, Thompson LM, Berns MW. Diminished LC3-Associated Phagocytosis by Huntington's Disease Striatal Astrocytes. J Huntingtons Dis 2022; 11:25-33. [PMID: 35253772 PMCID: PMC9028675 DOI: 10.3233/jhd-210502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND In recent years the functions of astrocytes have shifted from conventional supportive roles to also include active roles in altering synapses and engulfment of cellular debris. Recent studies have implicated astrocytes in both protective and pathogenic roles impacting Huntington's disease (HD) progression. OBJECTIVE The goal of this study is to determine if phagocytosis of cellular debris is compromised in HD striatal astrocytes. METHODS Primary adult astrocytes were derived from two HD mouse models; the fast-progressing R6/2 and slower progressing Q175. With the use of laser nanosurgery, a single astrocyte was lysed within an astrocyte network. The phagocytic response of astrocytes was observed with phase contrast and by fluorescence microscopy for GFP-LC3 transiently transfected cells. RESULTS Astrocyte phagocytosis was significantly diminished in primary astrocytes, consistent with the progression of HD in R6/2 and Q175 mouse models. This was defined by the number of astrocytes responding via phagocytosis and by the average number of vesicles formed per cell. GFP-LC3 was found to increasingly localize to phagocytic vesicles over a 20-min imaging period, but not in HD mice, suggesting the involvement of LC3 in astrocyte phagocytosis. CONCLUSION We demonstrate a progressive decrease in LC3-associated phagocytosis in HD mouse striatal astrocytes.
Collapse
Affiliation(s)
- Nicole M. Wakida
- Biomedical Engineering, Beckman Laser Institute, University of California, Irvine, Irvine, CA, USA
| | - Alice L. Lau
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - Jessica Nguyen
- Biomedical Engineering, Beckman Laser Institute, University of California, Irvine, Irvine, CA, USA
| | - Gladys Mae S. Cruz
- Biomedical Engineering, Beckman Laser Institute, University of California, Irvine, Irvine, CA, USA
| | - Gianna M. Fote
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Joan S. Steffan
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - Leslie M. Thompson
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
- Department of Neurobiology and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - Michael W. Berns
- Biomedical Engineering, Beckman Laser Institute, University of California, Irvine, Irvine, CA, USA
- Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
92
|
The blood-brain barrier in aging and neurodegeneration. Mol Psychiatry 2022; 27:2659-2673. [PMID: 35361905 PMCID: PMC9156404 DOI: 10.1038/s41380-022-01511-z] [Citation(s) in RCA: 286] [Impact Index Per Article: 95.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/24/2022] [Accepted: 02/24/2022] [Indexed: 12/01/2022]
Abstract
The blood-brain barrier (BBB) is vital for maintaining brain homeostasis by enabling an exquisite control of exchange of compounds between the blood and the brain parenchyma. Moreover, the BBB prevents unwanted toxins and pathogens from entering the brain. This barrier, however, breaks down with age and further disruption is a hallmark of many age-related disorders. Several drugs have been explored, thus far, to protect or restore BBB function. With the recent connection between the BBB and gut microbiota, microbial-derived metabolites have been explored for their capabilities to protect and restore BBB physiology. This review, will focus on the vital components that make up the BBB, dissect levels of disruption of the barrier, and discuss current drugs and therapeutics that maintain barrier integrity and the recent discoveries of effects microbial-derived metabolites have on BBB physiology.
Collapse
|
93
|
Cui J, Zhao S, Li Y, Zhang D, Wang B, Xie J, Wang J. Regulated cell death: discovery, features and implications for neurodegenerative diseases. Cell Commun Signal 2021; 19:120. [PMID: 34922574 PMCID: PMC8684172 DOI: 10.1186/s12964-021-00799-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/30/2021] [Indexed: 12/18/2022] Open
Abstract
Regulated cell death (RCD) is a ubiquitous process in living organisms that is essential for tissue homeostasis or to restore biological balance under stress. Over the decades, various forms of RCD have been reported and are increasingly being found to involve in human pathologies and clinical outcomes. We focus on five high-profile forms of RCD, including apoptosis, pyroptosis, autophagy-dependent cell death, necroptosis and ferroptosis. Cumulative evidence supports that not only they have different features and various pathways, but also there are extensive cross-talks between modes of cell death. As the understanding of RCD pathway in evolution, development, physiology and disease continues to improve. Here we review an updated classification of RCD on the discovery and features of processes. The prominent focus will be placed on key mechanisms of RCD and its critical role in neurodegenerative disease. Video abstract.
Collapse
Affiliation(s)
- Juntao Cui
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| | - Suhan Zhao
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- School of Clinical Medicine, Qingdao University, Qingdao, 266071 China
| | - Yinghui Li
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| | - Danyang Zhang
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| | - Bingjing Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| | - Junxia Xie
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| | - Jun Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| |
Collapse
|
94
|
You H, Wu T, Du G, Huang Y, Zeng Y, Lin L, Chen D, Wu C, Li X, Burgunder JM, Pei Z. Evaluation of Blood Glial Fibrillary Acidic Protein as a Potential Marker in Huntington's Disease. Front Neurol 2021; 12:779890. [PMID: 34867769 PMCID: PMC8639701 DOI: 10.3389/fneur.2021.779890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022] Open
Abstract
Objective: Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder. Neurofilament light protein (NfL) is correlated with clinical severity of HD but relative data are the lack in the Chinese population. Reactive astrocytes are related to HD pathology, which predicts their potential to be a biomarker in HD progression. Our aim was to discuss the role of blood glial fibrillary acidic protein (GFAP) to evaluate clinical severity in patients with HD. Methods: Fifty-seven HD mutation carriers (15 premanifest HD, preHD, and 42 manifest HD) and 26 healthy controls were recruited. Demographic data and clinical severity assessed with the internationally Unified Huntington's Disease Rating Scale (UHDRS) were retrospectively analyzed. Plasma NfL and GFAP were quantified with an ultra-sensitive single-molecule (Simoa, Norcross, GA, USA) technology. We explored their consistency and their correlation with clinical severity. Results: Compared with healthy controls, plasma NfL (p < 0.0001) and GFAP (p < 0.001) were increased in Chinese HD mutation carriers, and they were linearly correlated with each other (r = 0.612, p < 0.001). They were also significantly correlated with disease burden, Total Motor Score (TMS) and Total Functional Capacity (TFC). The scores of Stroop word reading, symbol digit modalities tests, and short version of the Problem Behaviors Assessments (PBAs) for HD were correlated with plasma NfL but not GFAP. Compared with healthy controls, plasma NfL has been increased since stage 1 but plasma GFAP began to increase statistically in stage 2. Conclusions: Plasma GFAP was correlated with plasma NfL, disease burden, TMS, and TFC in HD mutation carriers. Plasma GFAP may have potential to be a sensitive biomarker for evaluating HD progression.
Collapse
Affiliation(s)
- Huajing You
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Tengteng Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gang Du
- China National Clinical Research Centre for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Centre for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yue Huang
- China National Clinical Research Centre for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Centre for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yixuan Zeng
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Health Center Shenzhen Second People's Hospital, Shenzhen, China
| | - Lishan Lin
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Dingbang Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Chao Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Xunhua Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Jean-marc Burgunder
- Swiss HD Centre, NeuroZentrumSiloah and Department of Neurology, University of Bern, Bern, Switzerland
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
- *Correspondence: Zhong Pei
| |
Collapse
|
95
|
Kim C, Yousefian-Jazi A, Choi SH, Chang I, Lee J, Ryu H. Non-Cell Autonomous and Epigenetic Mechanisms of Huntington's Disease. Int J Mol Sci 2021; 22:12499. [PMID: 34830381 PMCID: PMC8617801 DOI: 10.3390/ijms222212499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is a rare neurodegenerative disorder caused by an expansion of CAG trinucleotide repeat located in the exon 1 of Huntingtin (HTT) gene in human chromosome 4. The HTT protein is ubiquitously expressed in the brain. Specifically, mutant HTT (mHTT) protein-mediated toxicity leads to a dramatic degeneration of the striatum among many regions of the brain. HD symptoms exhibit a major involuntary movement followed by cognitive and psychiatric dysfunctions. In this review, we address the conventional role of wild type HTT (wtHTT) and how mHTT protein disrupts the function of medium spiny neurons (MSNs). We also discuss how mHTT modulates epigenetic modifications and transcriptional pathways in MSNs. In addition, we define how non-cell autonomous pathways lead to damage and death of MSNs under HD pathological conditions. Lastly, we overview therapeutic approaches for HD. Together, understanding of precise neuropathological mechanisms of HD may improve therapeutic approaches to treat the onset and progression of HD.
Collapse
Affiliation(s)
- Chaebin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Ali Yousefian-Jazi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Seung-Hye Choi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Inyoung Chang
- Department of Biology, Boston University, Boston, MA 02215, USA;
| | - Junghee Lee
- Boston University Alzheimer’s Disease Research Center, Boston University, Boston, MA 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
- VA Boston Healthcare System, Boston, MA 02130, USA
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| |
Collapse
|
96
|
Chitu V, Biundo F, Stanley ER. Colony stimulating factors in the nervous system. Semin Immunol 2021; 54:101511. [PMID: 34743926 DOI: 10.1016/j.smim.2021.101511] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/23/2021] [Indexed: 01/02/2023]
Abstract
Although traditionally seen as regulators of hematopoiesis, colony-stimulating factors (CSFs) have emerged as important players in the nervous system, both in health and disease. This review summarizes the cellular sources, patterns of expression and physiological roles of the macrophage (CSF-1, IL-34), granulocyte-macrophage (GM-CSF) and granulocyte (G-CSF) colony stimulating factors within the nervous system, with a particular focus on their actions on microglia. CSF-1 and IL-34, via the CSF-1R, are required for the development, proliferation and maintenance of essentially all CNS microglia in a temporal and regional specific manner. In contrast, in steady state, GM-CSF and G-CSF are mainly involved in regulation of microglial function. The alterations in expression of these growth factors and their receptors, that have been reported in several neurological diseases, are described and the outcomes of their therapeutic targeting in mouse models and humans are discussed.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
97
|
Lee JW, Chun W, Lee HJ, Kim SM, Min JH, Kim DY, Kim MO, Ryu HW, Lee SU. The Role of Microglia in the Development of Neurodegenerative Diseases. Biomedicines 2021; 9:biomedicines9101449. [PMID: 34680566 PMCID: PMC8533549 DOI: 10.3390/biomedicines9101449] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 01/15/2023] Open
Abstract
Microglia play an important role in the maintenance and neuroprotection of the central nervous system (CNS) by removing pathogens, damaged neurons, and plaques. Recent observations emphasize that the promotion and development of neurodegenerative diseases (NDs) are closely related to microglial activation. In this review, we summarize the contribution of microglial activation and its associated mechanisms in NDs, such as epilepsy, Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), based on recent observations. This review also briefly introduces experimental animal models of epilepsy, AD, PD, and HD. Thus, this review provides a better understanding of microglial functions in the development of NDs, suggesting that microglial targeting could be an effective therapeutic strategy for these diseases.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
- Correspondence: (J.-W.L.); (M.-O.K.); (H.W.R.); (S.U.L.); Tel.: +82-43-240-6135 (J.-W.L.)
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Korea; (W.C.); (H.J.L.)
| | - Hee Jae Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Korea; (W.C.); (H.J.L.)
| | - Seong-Man Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
| | - Jae-Hong Min
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
| | - Doo-Young Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
| | - Mun-Ock Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
- Correspondence: (J.-W.L.); (M.-O.K.); (H.W.R.); (S.U.L.); Tel.: +82-43-240-6135 (J.-W.L.)
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
- Correspondence: (J.-W.L.); (M.-O.K.); (H.W.R.); (S.U.L.); Tel.: +82-43-240-6135 (J.-W.L.)
| | - Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
- Correspondence: (J.-W.L.); (M.-O.K.); (H.W.R.); (S.U.L.); Tel.: +82-43-240-6135 (J.-W.L.)
| |
Collapse
|
98
|
An Overview of the Nrf2/ARE Pathway and Its Role in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22179592. [PMID: 34502501 PMCID: PMC8431732 DOI: 10.3390/ijms22179592] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 12/20/2022] Open
Abstract
Nrf2 is a basic region leucine-zipper transcription factor that plays a pivotal role in the coordinated gene expression of antioxidant and detoxifying enzymes, promoting cell survival in adverse environmental or defective metabolic conditions. After synthesis, Nrf2 is arrested in the cytoplasm by the Kelch-like ECH-associated protein 1 suppressor (Keap1) leading Nrf2 to ubiquitin-dependent degradation. One Nrf2 activation mechanism relies on disconnection from the Keap1 homodimer through the oxidation of cysteine at specific sites of Keap1. Free Nrf2 enters the nucleus, dimerizes with small musculoaponeurotic fibrosarcoma proteins (sMafs), and binds to the antioxidant response element (ARE) sequence of the target genes. Since oxidative stress, next to neuroinflammation and mitochondrial dysfunction, is one of the hallmarks of neurodegenerative pathologies, a molecular intervention into Nrf2/ARE signaling and the enhancement of the transcriptional activity of particular genes are targets for prevention or delaying the onset of age-related and inherited neurogenerative diseases. In this study, we review evidence for the Nrf2/ARE-driven pathway dysfunctions leading to various neurological pathologies, such as Alzheimer’s, Parkinson’s, and Huntington’s diseases, as well as amyotrophic lateral sclerosis, and the beneficial role of natural and synthetic molecules that are able to interact with Nrf2 to enhance its protective efficacy.
Collapse
|
99
|
Gerasimov E, Erofeev A, Borodinova A, Bolshakova A, Balaban P, Bezprozvanny I, Vlasova OL. Optogenetic Activation of Astrocytes-Effects on Neuronal Network Function. Int J Mol Sci 2021; 22:9613. [PMID: 34502519 PMCID: PMC8431749 DOI: 10.3390/ijms22179613] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023] Open
Abstract
Optogenetics approach is used widely in neurobiology as it allows control of cellular activity with high spatial and temporal resolution. In most studies, optogenetics is used to control neuronal activity. In the present study optogenetics was used to stimulate astrocytes with the aim to modulate neuronal activity. To achieve this goal, light stimulation was applied to astrocytes expressing a version of ChR2 (ionotropic opsin) or Opto-α1AR (metabotropic opsin). Optimal optogenetic stimulation parameters were determined using patch-clamp recordings of hippocampal pyramidal neurons' spontaneous activity in brain slices as a readout. It was determined that the greatest increase in the number of spontaneous synaptic currents was observed when astrocytes expressing ChR2(H134R) were activated by 5 s of continuous light. For the astrocytes expressing Opto-α1AR, the greatest response was observed in the pulse stimulation mode (T = 1 s, t = 100 ms). It was also observed that activation of the astrocytic Opto-a1AR but not ChR2 results in an increase of the fEPSP slope in hippocampal neurons. Based on these results, we concluded that Opto-a1AR expressed in hippocampal astrocytes provides an opportunity to modulate the long-term synaptic plasticity optogenetically, and may potentially be used to normalize the synaptic transmission and plasticity defects in a variety of neuropathological conditions, including models of Alzheimer's disease and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Evgenii Gerasimov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (A.E.); (A.B.); (I.B.)
| | - Alexander Erofeev
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (A.E.); (A.B.); (I.B.)
| | - Anastasia Borodinova
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Science, Butlerova St. 5A, 117485 Moscow, Russia; (A.B.); (P.B.)
| | - Anastasia Bolshakova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (A.E.); (A.B.); (I.B.)
| | - Pavel Balaban
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Science, Butlerova St. 5A, 117485 Moscow, Russia; (A.B.); (P.B.)
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (A.E.); (A.B.); (I.B.)
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Olga L. Vlasova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (A.E.); (A.B.); (I.B.)
| |
Collapse
|
100
|
Osuntokun OS, Abdulwahab UF, Akanji NO, Adedokun KI, Adekomi AD, Olayiwola G. Anticonvulsant and neuroprotective effects of carbamazepine-levetiracetam adjunctive treatment in convulsive status epilepticus rat model: Inhibition of cholinergic transmission. Neurosci Lett 2021; 762:136167. [PMID: 34389480 DOI: 10.1016/j.neulet.2021.136167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/29/2021] [Accepted: 08/06/2021] [Indexed: 11/30/2022]
Abstract
This study evaluated the anticonvulsant and neuroprotective effects of carbamazepine (CBZ), levetiracetam (LEV), and CBZ + LEV adjunctive treatment in convulsive status epilepticus (CSE) rat model. Twenty-five male Wistar rats were randomized into five groups (n = 5). Groups I and II received 0.2 ml of normal saline intraperitoneally (i.p), while groups III-V received CBZ (25 mg/kg i.p), LEV (50 mg/kg i.p) or combination of sub-therapeutic doses of CBZ (12.5 mg/kg i.p) and LEV (25 mg/kg i.p). Thirty minutes later, seizure was kindled with pilocarpine hydrochloride (350 mg/kg) in group II-V rats. Seizure indices, markers of excitotoxicity, and astroglioses were determined, while the hippocampal morphometry was also evaluated. The data was analysed using descriptive and inferential statistics, while the results were presented as mean ± SEM in graphs or tables, and the level of significance was taken at p < 0.05. The anticonvulsant treatments delayed the inception of seizure indices (p = 0.0006), while the percentage mortality decreased significantly (p = 0.0001) in all the treatment groups. The hippocampal concentrations of acetylcholine, malondialdehyde, and tissue necrotic factor-alpha decreased significantly (p = 0.0077) in all the treated group relative to the positive control. The reactive astrogliosis in the hippocampus (CA 1) increased significantly (p = 0.0001) compared with the control but abrogated in all the treatment groups relative to the positive control. The anticonvulsant and neuroprotective effects are in this order: LEV < CBZ + CBZ < CBZ. The drug efficacy is attributable to the inhibition of cholinergic transmission.
Collapse
Affiliation(s)
- Opeyemi Samson Osuntokun
- Department of Physiology, Faculty of Basic Medical Sciences, Federal University Oye Ekiti, Ekiti State, Nigeria.
| | - Umar Faruq Abdulwahab
- Department of Physiology, Faculty of Basic Medical Sciences, Osun State University Osogbo, Nigeria
| | - Nafisat Omolola Akanji
- Department of Physiology, Faculty of Basic Medical Sciences, Osun State University Osogbo, Nigeria
| | - Kabiru Isola Adedokun
- Department of Physiology, Faculty of Basic Medical Sciences, Osun State University Osogbo, Nigeria
| | | | - Gbola Olayiwola
- Department of Clinical Pharmacy and Pharmacy Administration, Faculty of Pharmacy Obafemi, Awolowo University, Ile-Ife, Osun State, Nigeria
| |
Collapse
|