51
|
Dhuriya YK, Sharma D. Neuronal Plasticity: Neuronal Organization is Associated with Neurological Disorders. J Mol Neurosci 2020; 70:1684-1701. [PMID: 32504405 DOI: 10.1007/s12031-020-01555-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022]
Abstract
Stimuli from stressful events, attention in the classroom, and many other experiences affect the functionality of the brain by changing the structure or reorganizing the connections between neurons and their communication. Modification of the synaptic transmission is a vital mechanism for generating neural activity via internal or external stimuli. Neuronal plasticity is an important driving force in neuroscience research, as it is the basic process underlying learning and memory and is involved in many other functions including brain development and homeostasis, sensorial training, and recovery from brain injury. Indeed, neuronal plasticity has been explored in numerous studies, but it is still not clear how neuronal plasticity affects the physiology and morphology of the brain. Thus, unraveling the molecular mechanisms of neuronal plasticity is essential for understanding the operation of brain functions. In this timeline review, we discuss the molecular mechanisms underlying different forms of synaptic plasticity and their association with neurodegenerative/neurological disorders as a consequence of alterations in neuronal plasticity.
Collapse
Affiliation(s)
- Yogesh Kumar Dhuriya
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR) Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, India
| | - Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India.
- CRF, Mass Spectrometry Laboratory, Kusuma School of Biological Sciences (KSBS), Indian Institute of Technology-Delhi (IIT-D), Delhi, 110016, India.
| |
Collapse
|
52
|
Brain Structural and Functional Alterations in Mice Prenatally Exposed to LPS Are Only Partially Rescued by Anti-Inflammatory Treatment. Brain Sci 2020; 10:brainsci10090620. [PMID: 32906830 PMCID: PMC7564777 DOI: 10.3390/brainsci10090620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/30/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Aberrant immune activity during neurodevelopment could participate in the generation of neurological dysfunctions characteristic of several neurodevelopmental disorders (NDDs). Numerous epidemiological studies have shown a link between maternal infections and NDDs risk; animal models of maternal immune activation (MIA) have confirmed this association. Activation of maternal immune system during pregnancy induces behavioral and functional alterations in offspring but the biological mechanisms at the basis of these effects are still poorly understood. In this study, we investigated the effects of prenatal lipopolysaccharide (LPS) exposure in peripheral and central inflammation, cortical cytoarchitecture and behavior of offspring (LPS-mice). LPS-mice reported a significant increase in interleukin-1β (IL-1β) serum level, glial fibrillary acidic protein (GFAP)- and ionized calcium-binding adapter molecule 1 (Iba1)-positive cells in the cortex. Furthermore, cytoarchitecture analysis in specific brain areas, showed aberrant alterations in minicolumns’ organization in LPS-mice adult brain. In addition, we demonstrated that LPS-mice presented behavioral alterations throughout life. In order to better understand biological mechanisms whereby LPS induced these alterations, dams were treated with meloxicam. We demonstrated for the first time that exposure to LPS throughout pregnancy induces structural permanent alterations in offspring brain. LPS-mice also present severe behavioral impairments. Preventive treatment with meloxicam reduced inflammation in offspring but did not rescue them from structural and behavioral alterations.
Collapse
|
53
|
Cytokine changes associated with the maternal immune activation (MIA) model of autism: A penalized regression approach. PLoS One 2020; 15:e0231609. [PMID: 32760152 PMCID: PMC7410235 DOI: 10.1371/journal.pone.0231609] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/22/2020] [Indexed: 01/01/2023] Open
Abstract
Maternal immune activation (MIA) during pregnancy induces a cytokine storm that alters neurodevelopment and behavior in the progeny. In humans, MIA increases the odds of developing neuropsychiatric disorders such as autism spectrum disorder (ASD). In mice, MIA can be induced by injecting the viral mimic polyinosinic:polycytidylic acid (poly(I:C)) to pregnant dams. Although the murine model of MIA has been extensively studied, it is not clear whether MIA results in cytokine changes in the progeny at early postnatal stages. Further, the murine model of MIA suffers from a lack of reproducibility and high inter-individual variability. Multivariable (MV) statistical analysis is widely used in human studies to control for confounders and covariates such as sex, age and exposure to environmental factors. We therefore reasoned that animal studies in general and studies on the MIA model in particular could benefit from MV analyses to account for complex phenotype interactions and high inter-individual variability. Here, we used MV statistical analysis to identify cytokines associated with MIA after adjustment for covariates. Besides confirming the association between previously described variables and MIA, we identified new cytokines that could play a role in behavioural alterations in the progeny during the early postnatal period.
Collapse
|
54
|
Blomström Å, Kosidou K, Kristiansson M, Masterman T. Infection during childhood and the risk of violent criminal behavior in adulthood. Brain Behav Immun 2020; 86:63-71. [PMID: 30807840 DOI: 10.1016/j.bbi.2019.02.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/24/2018] [Accepted: 02/22/2019] [Indexed: 11/30/2022] Open
Abstract
Infections during brain development appear to contribute to cognitive impairment and aggressive behavior, as well as to a number of developmental mental disorders closely associated with violent criminal behavior. Yet, no study has thus far ever investigated whether infections during brain development increases the risk of violent criminality later in life. In this population-based cohort study, about 2.2 million individuals born in Sweden between the years 1973 and 1995 were included in an effort to estimate the association between infections during childhood (registered ICD-10 diagnoses of infections incurred before the age of 14 years) and violent criminal behavior (registered convictions for a violent crime between the ages of 15 and 38 years, prior to December 31, 2011). After inclusion of several sociodemographic parameters, risks of violent criminal behavior conferred by childhood infections - expressed as hazard ratios (HRs) and 95% confidence intervals (CIs) - were calculated by means of Cox regression. Mediation analyses were performed to explore the effect of psychiatric disorders on the association between infections during childhood and violent criminality. Results revealed a modest, yet significant, association between an infection during childhood and violent criminality later in life (adjusted HR 1.14, 95% CI 1.12-1.16). Infections during the first year of life and infections in the central nervous system were associated with the highest risks of subsequent violent criminality (adjusted HR 1.20, 95% CI 1.18-1.23, and adjusted HR 1.17, 95% CI 1.08-1.26, respectively). The association was partly mediated by the presence of a psychiatric disorder. In summary, independent of a wide range of covariates, our results suggest that infections during brain development could be part of the genesis of violent criminal behavior.
Collapse
Affiliation(s)
- Åsa Blomström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Centre for Psychiatry Research, Stockholm, Sweden.
| | - Kyriaki Kosidou
- Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden; Centre for Epidemiology and Community Medicine, Stockholm County Council, Stockholm, Sweden
| | - Marianne Kristiansson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Centre for Psychiatry Research, Stockholm, Sweden
| | - Thomas Masterman
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Centre for Psychiatry Research, Stockholm, Sweden
| |
Collapse
|
55
|
Bauman MD, Van de Water J. Translational opportunities in the prenatal immune environment: Promises and limitations of the maternal immune activation model. Neurobiol Dis 2020; 141:104864. [PMID: 32278881 DOI: 10.1016/j.nbd.2020.104864] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/03/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022] Open
Abstract
The prenatal environment, and in particular, the maternal-fetal immune environment, has emerged as a targeted area of research for central nervous system (CNS) diseases with neurodevelopmental origins. Converging evidence from both clinical and preclinical research indicates that changes in the maternal gestational immune environment can alter fetal brain development and increase the risk for certain neurodevelopmental disorders. Here we focus on the translational potential of one prenatal animal model - the maternal immune activation (MIA) model. This model stems from the observation that a subset of pregnant women who are exposed to infection during pregnancy have an increased risk of giving birth to a child who will later be diagnosed with a neurodevelopmental disorder, such as autism spectrum disorder (ASD) or schizophrenia (SZ). The preclinical MIA model provides a system in which to explore causal relationships, identify underlying neurobiological mechanisms, and, ultimately, develop novel therapeutic interventions and preventative strategies. In this review, we will highlight converging evidence from clinical and preclinical research that links changes in the maternal-fetal immune environment with lasting changes in offspring brain and behavioral development. We will then explore the promises and limitations of the MIA model as a translational tool to develop novel therapeutic interventions. As the translational potential of the MIA model has been the focus of several excellent review articles, here we will focus on what is perhaps the least well developed area of MIA model research - novel preventative strategies and therapeutic interventions.
Collapse
Affiliation(s)
- Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, United States of America; California National Primate Research Center, University of California, Davis, United States of America; The MIND Institute, University of California, Davis, United States of America.
| | - Judy Van de Water
- The MIND Institute, University of California, Davis, United States of America; Rheumatology/Allergy and Clinical Immunology, University of California, Davis, United States of America
| |
Collapse
|
56
|
Sher AA, Gao A, Coombs KM. Autophagy Modulators Profoundly Alter the Astrocyte Cellular Proteome. Cells 2020; 9:cells9040805. [PMID: 32225060 PMCID: PMC7226796 DOI: 10.3390/cells9040805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a key cellular process that involves constituent degradation and recycling during cellular development and homeostasis. Autophagy also plays key roles in antimicrobial host defense and numerous pathogenic organisms have developed strategies to take advantage of and/or modulate cellular autophagy. Several pharmacologic compounds, such as BafilomycinA1, an autophagy inducer, and Rapamycin, an autophagy inhibitor, have been used to modulate autophagy, and their effects upon notable autophagy markers, such as LC3 protein lipidation and Sequestosome-1/p62 alterations are well defined. We sought to understand whether such autophagy modulators have a more global effect upon host cells and used a recently developed aptamer-based proteomic platform (SOMAscan®) to examine 1305 U-251 astrocytic cell proteins after the cells were treated with each compound. These analyses, and complementary cytokine array analyses of culture supernatants after drug treatment, revealed substantial perturbations in the U-251 astrocyte cellular proteome. Several proteins, including cathepsins, which have a role in autophagy, were differentially dysregulated by the two drugs as might be expected. Many proteins, not previously known to be involved in autophagy, were significantly dysregulated by the compounds, and several, including lactadherin and granulins, were up-regulated by both drugs. These data indicate that these two compounds, routinely used to help dissect cellular autophagy, have much more profound effects upon cellular proteins.
Collapse
Affiliation(s)
- Affan Ali Sher
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Ang Gao
- Manitoba Centre for Proteomics & Systems Biology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
| | - Kevin M. Coombs
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Manitoba Centre for Proteomics & Systems Biology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Correspondence: ; Tel.: +1-204-789-3976
| |
Collapse
|
57
|
Cowan CSM, Dinan TG, Cryan JF. Annual Research Review: Critical windows - the microbiota-gut-brain axis in neurocognitive development. J Child Psychol Psychiatry 2020; 61:353-371. [PMID: 31773737 DOI: 10.1111/jcpp.13156] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/26/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023]
Abstract
The gut microbiota is a vast, complex, and fascinating ecosystem of microorganisms that resides in the human gastrointestinal tract. As an integral part of the microbiota-gut-brain axis, it is now being recognized that the microbiota is a modulator of brain and behavior, across species. Intriguingly, periods of change in the microbiota coincide with the development of other body systems and particularly the brain. We hypothesize that these times of parallel development are biologically relevant, corresponding to 'sensitive periods' or 'critical windows' in the development of the microbiota-gut-brain axis. Specifically, signals from the microbiota during these periods are hypothesized to be crucial for establishing appropriate communication along the axis throughout the life span. In other words, the microbiota is hypothesized to act like an expected input to calibrate the development of the microbiota-gut-brain axis. The absence or disruption of the microbiota during specific developmental windows would therefore be expected to have a disproportionate effect on specific functions or potentially for regulation of the system as a whole. Evidence for microbial modulation of neurocognitive development and neurodevelopmental risk is discussed in light of this hypothesis, finishing with a focus on the challenges that lay ahead for the future study of the microbiota-gut-brain axis during development.
Collapse
Affiliation(s)
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
58
|
Birnbaum R, Weinberger DR. A Genetics Perspective on the Role of the (Neuro)Immune System in Schizophrenia. Schizophr Res 2020; 217:105-113. [PMID: 30850283 PMCID: PMC6728242 DOI: 10.1016/j.schres.2019.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 12/30/2022]
Abstract
The immune system has long been hypothesized to play a role in schizophrenia pathogenesis based on data from diverse disciplines. Recent reports of the identification of schizophrenia-associated genetic variants and their initial biological characterization have renewed investigation of the role of the immune system in schizophrenia. In the current review, the plausibility of a role of the immune system in schizophrenia pathogenesis is examined, by revisiting epidemiology, neuroimaging, pharmacology, and developmental biology from a genetics perspective, as well as by synthesizing diverse findings from the emerging and dynamic schizophrenia genomics field. Genetic correlations between schizophrenia and immunological disorders are inconsistent and often contradictory, as are neuroimaging studies of microglia markers. Small therapeutic trials of anti-inflammatory agents targeting immune function have been consistently negative. Some gene expression analyses of post-mortem brains of patients with schizophrenia have reported an upregulation of genes of immune function though others report downregulation, and overall transcriptome profiling to date does not support an upregulation of immune pathways associated with schizophrenia genetic risk. The currently reviewed genetic data do not converge to reveal consistent evidence of the neuroimmune system in schizophrenia pathogenesis, and indeed, a substantive role for the neuroimmune system in schizophrenia has yet to be established.
Collapse
Affiliation(s)
- Rebecca Birnbaum
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, United States of America
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States of America; Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD, United States of America; Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, United States of America; Johns Hopkins University School of Medicine, Institute of Genomics Medicine, Baltimore, MD, United States of America; Johns Hopkins University School of Medicine, Department of Neuroscience, Baltimore, MD, United States of America.
| |
Collapse
|
59
|
Bodnar TS, Raineki C, Wertelecki W, Yevtushok L, Plotka L, Granovska I, Zymak-Zakutnya N, Pashtepa A, Wells A, Honerkamp-Smith G, Coles CD, Kable JA, Chambers CD, Weinberg J. Immune network dysregulation associated with child neurodevelopmental delay: modulatory role of prenatal alcohol exposure. J Neuroinflammation 2020; 17:39. [PMID: 31992316 PMCID: PMC6988366 DOI: 10.1186/s12974-020-1717-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022] Open
Abstract
Background Evidence suggests that cytokine imbalances may be at the root of deficits that occur in numerous neurodevelopmental disorders, including schizophrenia and autism spectrum disorder. Notably, while clinical studies have demonstrated maternal cytokine imbalances with alcohol consumption during pregnancy—and data from animal models have identified immune disturbances in alcohol-exposed offspring—to date, immune alterations in alcohol-exposed children have not been explored. Thus, here we hypothesized that perturbations in the immune environment as a result of prenatal alcohol exposure will program the developing immune system, and result in immune dysfunction into childhood. Due to the important role of cytokines in brain development/function, we further hypothesized that child immune profiles might be associated with their neurodevelopmental status. Methods As part of a longitudinal study in Ukraine, children of mothers reporting low/no alcohol consumption or moderate-to-heavy alcohol consumption during pregnancy were enrolled in the study and received neurodevelopmental assessments. Group stratification was based on maternal alcohol consumption and child neurodevelopmental status resulting in the following groups: A/TD, alcohol-consuming mother, typically developing child; A/ND, alcohol-consuming mother, neurodevelopmental delay in the child; C/TD, control mother (low/no alcohol consumption), typically development child; and C/ND, control mother, neurodevelopmental delay in the child. Forty cytokines/chemokines were measured in plasma and data were analyzed using regression and constrained principle component analysis. Results Analyses revealed differential cytokine network activity associated with both prenatal alcohol exposure and neurodevelopmental status. Specifically, alcohol-exposed children showed activation of a cytokine network including eotaxin-3, eotaxin, and bFGF, irrespective of neurodevelopmental status. However, another cytokine network was differentially activated based on neurodevelopmental outcome: A/TD showed activation of MIP-1β, MDC, and MCP-4, and inhibition of CRP and PlGF, with opposing pattern of activation/inhibition detected in the A/ND group. By contrast, in the absence of alcohol-exposure, activation of a network including IL-2, TNF-β, IL-10, and IL-15 was associated with neurodevelopmental delay. Conclusions Taken together, this comprehensive assessment of immune markers allowed for the identification of unique immune milieus that are associated with alcohol exposure as well as both alcohol-related and alcohol-independent neurodevelopmental delay. These findings are a critical step towards establishing unique immune biomarkers for alcohol-related and alcohol-independent neurodevelopmental delay.
Collapse
Affiliation(s)
- Tamara S Bodnar
- Department of Cellular and Physiological Sciences, University of British Columbia, 3307 - 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Charlis Raineki
- Department of Cellular and Physiological Sciences, University of British Columbia, 3307 - 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | | | - Lyubov Yevtushok
- OMNI-Net for Children International Charitable Fund, Rivne Oblast Medical Diagnostic Center, Rivne, Ukraine
| | - Larisa Plotka
- OMNI-Net for Children International Charitable Fund, Rivne Oblast Medical Diagnostic Center, Rivne, Ukraine
| | - Irina Granovska
- OMNI-Net for Children International Charitable Fund, Rivne Oblast Medical Diagnostic Center, Rivne, Ukraine
| | - Natalya Zymak-Zakutnya
- OMNI-Net for Children International Charitable Fund, Khmelnytsky Perinatal Center, Khmelnytsky, Ukraine
| | - Alla Pashtepa
- OMNI-Net for Children International Charitable Fund, Khmelnytsky Perinatal Center, Khmelnytsky, Ukraine
| | - Alan Wells
- Department of Pediatrics, University of California San Diego, La Jolla, USA
| | | | - Claire D Coles
- Department of Psychiatry and Behavioral Sciences; Department of Pediatrics, Emory University School of Medicine, Atlanta, USA
| | - Julie A Kable
- Department of Psychiatry and Behavioral Sciences; Department of Pediatrics, Emory University School of Medicine, Atlanta, USA
| | - Christina D Chambers
- Department of Pediatrics, University of California San Diego, La Jolla, USA.,Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, University of British Columbia, 3307 - 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | | |
Collapse
|
60
|
Salmonella Breaks Tumor Immune Tolerance by Downregulating Tumor Programmed Death-Ligand 1 Expression. Cancers (Basel) 2019; 12:cancers12010057. [PMID: 31878272 PMCID: PMC7017279 DOI: 10.3390/cancers12010057] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy is becoming a popular treatment modality in combat against cancer, one of the world’s leading health problems. While tumor cells influence host immunity via expressing immune inhibitory signaling proteins, some bacteria possess immunomodulatory activities that counter the symptoms of tumors. The accumulation of Salmonella in tumor sites influences tumor protein expression, resulting in T cell infiltration. However, the molecular mechanism by which Salmonella activates T cells remains elusive. Many tumors have been reported to have high expressions of programmed death-ligand 1 (PD-L1), which is an important immune checkpoint molecule involved in tumor immune escape. In this study, Salmonella reduced the expression of PD-L1 in tumor cells. The expression levels of phospho-protein kinase B (P-AKT), phospho-mammalian targets of rapamycin (P-mTOR), and the phospho-p70 ribosomal s6 kinase (P-p70s6K) pathway were revealed to be involved in the Salmonella-mediated downregulation of PD-L1. In a tumor-T cell coculture system, Salmonella increased T cell number and reduced T cell apoptosis. Systemic administration of Salmonella reduced the expressions of PD-L-1 in tumor-bearing mice. In addition, tumor growth was significantly inhibited along with an enhanced T cell infiltration following Salmonella treatment. These findings suggest that Salmonella acts upon the immune checkpoint, primarily PD-L1, to incapacitate protumor effects and thereby inhibit tumor growth.
Collapse
|
61
|
Hopperton KE, O'Connor DL, Bando N, Conway AM, Ng DVY, Kiss A, Jackson J, Ly L, Unger SL. Nutrient Enrichment of Human Milk with Human and Bovine Milk-Based Fortifiers for Infants Born <1250 g: 18-Month Neurodevelopment Follow-Up of a Randomized Clinical Trial. Curr Dev Nutr 2019; 3:nzz129. [PMID: 32154499 PMCID: PMC7053578 DOI: 10.1093/cdn/nzz129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Bovine milk-based fortifiers (BMBF) have been standard of care for nutrient fortification of feeds for very low birth weight (VLBW) infants, however, there is increasing use of human milk-based fortifiers (HMBF) in neonatal care despite additional costs and limited supporting data. No randomized clinical trial has followed infants fed these fortifiers after initial hospitalization. OBJECTIVE To compare neurodevelopment in infants born weighing <1250 g fed maternal milk with supplemental donor milk and either a HMBF or BMBF. METHODS This is a follow-up of a completed pragmatic, triple-blind, parallel group randomized clinical trial conducted in Southern Ontario between August 2014 and March 2016 (NCT02137473) with feeding tolerance as the primary outcome. Infants weighing <1250 g at birth were block randomized by an online third-party service to receive either HMBF (n = 64) or BMBF (n = 63) added to maternal milk with supplemental donor milk during hospitalization. Neurodevelopment was assessed at 18-mo corrected age using the Bayley Scales of Infant and Toddler Development, Third Edition. Follow-up was completed in October 2017. RESULTS Of the 127 infants randomized, 109 returned for neurodevelopmental assessment. No statistically significant differences between fortifiers were identified for cognitive composite scores [adjusted mean scores 94.7 in the HMBF group and 95.9 in the BMBF group; fully adjusted mean difference, -1.1 (95% CI: -6.5 to 4.4)], language composite scores [adjusted scores 92.4 in the HMBF group and 93.1 in the BMBF; fully adjusted mean difference, -1.2 (-7.5 to 5.1)], or motor composite scores [adjusted scores 95.6 in the HMBF group and 97.7 in the BMBF; fully adjusted mean difference, -1.1 (-6.3 to 4.2)]. There was no difference in the proportion of participants that died or had neurodevelopmental impairment or disability between groups. CONCLUSIONS Providing HMBF compared with BMBF does not improve neurodevelopmental scores at 18-mo corrected age in infants born <1250 g otherwise fed a human milk diet. This trial was registered at clinicaltrials.gov as NCT02137473.
Collapse
Affiliation(s)
- Kathryn E Hopperton
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Canada
| | - Deborah L O'Connor
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Canada
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Nicole Bando
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Canada
| | - Aisling M Conway
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Canada
| | - Dawn V Y Ng
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Canada
| | - Alex Kiss
- Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, Canada
- Evaluative and Clinical Sciences, Sunnybrook Research Institute and the Institute of Health Policy, Toronto, Canada
| | | | - Linh Ly
- Division of Neonatology, The Hospital for Sick Children, Toronto, Canada
| | | | - Sharon L Unger
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
- Department of Paediatrics, Sinai Health System, Toronto, Canada
- Division of Neonatology, The Hospital for Sick Children, Toronto, Canada
- Department of Paediatrics, University of Toronto, Toronto, Canada
| |
Collapse
|
62
|
Kerr N, Dietrich DW, Bramlett HM, Raval AP. Sexually dimorphic microglia and ischemic stroke. CNS Neurosci Ther 2019; 25:1308-1317. [PMID: 31747126 PMCID: PMC6887716 DOI: 10.1111/cns.13267] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/26/2022] Open
Abstract
Ischemic stroke kills more women compared with men thus emphasizing a significant sexual dimorphism in ischemic pathophysiological outcomes. However, the mechanisms behind this sexual dimorphism are yet to be fully understood. It is well established that cerebral ischemia activates a variety of inflammatory cascades and that microglia are the primary immune cells of the brain. After ischemic injury, microglia are activated and play a crucial role in progression and resolution of the neuroinflammatory response. In recent years, research has focused on the role that microglia play in this sexual dimorphism that exists in the response to central nervous system (CNS) injury. Evidence suggests that the molecular mechanisms leading to microglial activation and polarization of phenotypes may be influenced by sex, therefore causing a difference in the pro/anti‐inflammatory responses after CNS injury. Here, we review advances highlighting that sex differences in microglia are an important factor in the inflammatory responses that are seen after ischemic injury. We discuss the main differences between microglia in the healthy and diseased developing, adult, and aging brain. We also focus on the dimorphism that exists between males and females in microglial‐induced inflammation and energy metabolism after CNS injury. Finally, we describe how all of the current research and literature regarding sex differences in microglia contribute to the differences in poststroke responses between males and females.
Collapse
Affiliation(s)
- Nadine Kerr
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Dalton W Dietrich
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA.,Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
63
|
Bruce M, Streifel KM, Boosalis CA, Heuer L, González EA, Li S, Harvey DJ, Lein PJ, Van de Water J. Acute peripheral immune activation alters cytokine expression and glial activation in the early postnatal rat brain. J Neuroinflammation 2019; 16:200. [PMID: 31672161 PMCID: PMC6822372 DOI: 10.1186/s12974-019-1569-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022] Open
Abstract
Background Neuroinflammation can modulate brain development; however, the influence of an acute peripheral immune challenge on neuroinflammatory responses in the early postnatal brain is not well characterized. To address this gap in knowledge, we evaluated the peripheral and central nervous system (CNS) immune responses to a mixed immune challenge in early postnatal rats of varying strains and sex. Methods On postnatal day 10 (P10), male and female Lewis and Brown Norway rats were injected intramuscularly with either a mix of bacterial and viral components in adjuvant, adjuvant-only, or saline. Immune responses were evaluated at 2 and 5 days post-challenge. Cytokine and chemokine levels were evaluated in serum and in multiple brain regions using a Luminex multiplex assay. Multi-factor ANOVAs were used to compare analyte levels across treatment groups within strain, sex, and day of sample collection. Numbers and activation status of astrocytes and microglia were also analyzed in the cortex and hippocampus by quantifying immunoreactivity for GFAP, IBA-1, and CD68 in fixed brain slices. Immunohistochemical data were analyzed using a mixed-model regression analysis. Results Acute peripheral immune challenge differentially altered cytokine and chemokine levels in the serum versus the brain. Within the brain, the cytokine and chemokine response varied between strains, sexes, and days post-challenge. Main findings included differences in T helper (Th) type cytokine responses in various brain regions, particularly the cortex, with respect to IL-4, IL-10, and IL-17 levels. Additionally, peripheral immune challenge altered GFAP and IBA-1 immunoreactivity in the brain in a strain- and sex-dependent manner. Conclusions These findings indicate that genetic background and sex influence the CNS response to an acute peripheral immune challenge during early postnatal development. Additionally, these data reinforce that the developmental time point during which the challenge occurs has a distinct effect on the activation of CNS-resident cells. Electronic supplementary material The online version of this article (10.1186/s12974-019-1569-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew Bruce
- MIND Institute, University of California, Davis School of Medicine, Sacramento, CA, 95817, USA.,Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, UC Davis School of Medicine, UC Davis MIND Institute, 6512 Genome and Biomedical Sciences Facility 451 Health Sciences Drive, Davis, CA, 95616-5270, USA
| | - Karin M Streifel
- MIND Institute, University of California, Davis School of Medicine, Sacramento, CA, 95817, USA.,Department of Molecular Bioscience, University of California, Davis School of Veterinary Medicine, Davis, CA, 95616, USA.,Department of Biology, Regis University, Denver, CO, 80221, USA
| | - Casey A Boosalis
- Department of Molecular Bioscience, University of California, Davis School of Veterinary Medicine, Davis, CA, 95616, USA
| | - Luke Heuer
- MIND Institute, University of California, Davis School of Medicine, Sacramento, CA, 95817, USA.,Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, UC Davis School of Medicine, UC Davis MIND Institute, 6512 Genome and Biomedical Sciences Facility 451 Health Sciences Drive, Davis, CA, 95616-5270, USA
| | - Eduardo A González
- Department of Molecular Bioscience, University of California, Davis School of Veterinary Medicine, Davis, CA, 95616, USA
| | - Shuyang Li
- Department of Public Health Sciences, University of California, Davis School of Medicine, Davis, CA, 95616, USA
| | - Danielle J Harvey
- Department of Public Health Sciences, University of California, Davis School of Medicine, Davis, CA, 95616, USA
| | - Pamela J Lein
- MIND Institute, University of California, Davis School of Medicine, Sacramento, CA, 95817, USA.,Department of Molecular Bioscience, University of California, Davis School of Veterinary Medicine, Davis, CA, 95616, USA
| | - Judy Van de Water
- MIND Institute, University of California, Davis School of Medicine, Sacramento, CA, 95817, USA. .,Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, UC Davis School of Medicine, UC Davis MIND Institute, 6512 Genome and Biomedical Sciences Facility 451 Health Sciences Drive, Davis, CA, 95616-5270, USA.
| |
Collapse
|
64
|
Cowell WJ, Bellinger DC, Wright RO, Wright RJ. Antenatal active maternal asthma and other atopic disorders is associated with ADHD behaviors among school-aged children. Brain Behav Immun 2019; 80:871-878. [PMID: 31158498 PMCID: PMC6660383 DOI: 10.1016/j.bbi.2019.05.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Identifying modifiable risk factors for neuropsychological correlates of attention deficit hyperactivity disorder (ADHD) in early childhood can inform prevention strategies. Prenatal inflammatory states, such as maternal asthma and other atopic disorders, have been increasingly linked to enhanced risk for neurobehavioral disorders in children, with some studies suggesting sex-specific effects. OBJECTIVES To assess the association between maternal active asthma and/or atopy in the antenatal period and child symptoms of ADHD during mid-childhood and, given the male-bias in ADHD prevalence, to examine modifying effects of child sex. STUDY DESIGN The study sample includes 250 maternal-child pairs enrolled in the Boston-based Asthma Coalition on Community, Environment and Social Stress (ACCESS) pregnancy cohort. We defined antenatal active atopy based on maternal report of current asthma, allergic rhinitis or atopic dermatitis during and/or in the year before pregnancy. When children were approximately 6 years old, mothers completed a battery of standardized child behavior rating scales designed for evaluating symptoms of ADHD. We used multivariable quantile regression to assess the relations between maternal antenatal atopy and symptoms of ADHD among children. RESULTS In adjusted models, maternal atopy was significantly associated with greater risk for ADHD behaviors, as indicated by scores on the Conners' Parent Rating Scale-Revised ADHD index (β = 3.32, 95% CI: 0.33, 6.32). In sex-stratified models this association was stronger among girls (5.96, 95% CI = 0.95, 10.96) compared to boys (-2.14, 95% CI = -5.75, 1.45, p-interaction = 0.01). Among girls, we observed a similar finding for the Behavior Assessment System for Children 2nd Edition Parent Rating Scale Attention Problems subscale (β = 7.77, 95% CI = 1.57, 13.97). Results from other outcome subscales were similar in magnitude and direction, however, associations did not reach statistical significance at the p = 0.05 level. CONCLUSIONS Maternal antenatal active atopy may be a risk factor for the development of ADHD-like symptoms, especially among girls.
Collapse
Affiliation(s)
- Whitney J. Cowell
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David C. Bellinger
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rosalind J. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
65
|
vonderEmbse AN, Hu Q, DeWitt JC. Dysfunctional microglia:neuron interactions with significant female bias in a developmental gene x environment rodent model of Alzheimer's disease. Int Immunopharmacol 2019; 71:241-250. [PMID: 30927734 DOI: 10.1016/j.intimp.2019.03.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/09/2019] [Accepted: 03/20/2019] [Indexed: 11/17/2022]
Abstract
Signaling between microglia and neurons is poorly characterized in the pathophysiology of Alzheimer's disease (AD), particularly with regards to gene and environmental (GxE) interactions early in life. This study investigated the maladaptation of microglia:neuron signaling and subsequent susceptibility to neurodegeneration using a developmental origin of adult disease (DOAD) model of AD, characterized previously. Here, we report that postnatal exposure to lead (Pb) in a transgenic (Tg) rodent model of AD resulted in significant female bias consequent to GxE interactions. Atypical, non-neuroprotective microglial phenotypes were observed months after cessation of Pb exposure, as well as evidence for neuronal compensation, that was not observed in WT mice. Specifically, microglia from Pb-exposed Tg (GxE) females exhibited atypical polarization profiles for activation earlier and more severely than males and WT mice, that persisted over time to become contextually maladaptive. By postnatal day (PND) 240, microglia from GxE females also sequestered less neurotoxic iron in the hippocampus. In the same GxE female population, measures of neuronal parameters, such as hippocampal TrkB expression, revealed evidence of disharmonious and compensatory interactions with microglia within the pathological progression. Likewise, GxE interactions resulted in female-biased, late-life changes to key synaptic proteins crucial to synapse dynamics and microglial signaling. These incongruent microglia:neuronal dynamics were observed in GxE males at later ages compared to females, and not observed in either gene- or environment-only populations. Altogether, our results support a gene x environment model of female-biased microglial susceptibility to later-life development of AD, and highlight markers for maladaptive microglia:neuron signaling and compensation.
Collapse
Affiliation(s)
- A N vonderEmbse
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, 600 Moye Blvd., Greenville, NC 27834, USA.
| | - Q Hu
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, 600 Moye Blvd., Greenville, NC 27834, USA.
| | - J C DeWitt
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, 600 Moye Blvd., Greenville, NC 27834, USA.
| |
Collapse
|
66
|
Liu Q, Chen MX, Sun L, Wallis CU, Zhou JS, Ao LJ, Li Q, Sham PC. Rational use of mesenchymal stem cells in the treatment of autism spectrum disorders. World J Stem Cells 2019; 11:55-72. [PMID: 30842805 PMCID: PMC6397804 DOI: 10.4252/wjsc.v11.i2.55] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/30/2018] [Accepted: 01/23/2019] [Indexed: 02/06/2023] Open
Abstract
Autism and autism spectrum disorders (ASD) refer to a range of conditions characterized by impaired social and communication skills and repetitive behaviors caused by different combinations of genetic and environmental influences. Although the pathophysiology underlying ASD is still unclear, recent evidence suggests that immune dysregulation and neuroinflammation play a role in the etiology of ASD. In particular, there is direct evidence supporting a role for maternal immune activation during prenatal life in neurodevelopmental conditions. Currently, the available options of behavioral therapies and pharmacological and supportive nutritional treatments in ASD are only symptomatic. Given the disturbing rise in the incidence of ASD, and the fact that there is no effective pharmacological therapy for ASD, there is an urgent need for new therapeutic options. Mesenchymal stem cells (MSCs) possess immunomodulatory properties that make them relevant to several diseases associated with inflammation and tissue damage. The paracrine regenerative mechanisms of MSCs are also suggested to be therapeutically beneficial for ASD. Thus the underlying pathology in ASD, including immune system dysregulation and inflammation, represent potential targets for MSC therapy. This review will focus on immune dysfunction in the pathogenesis of ASD and will further discuss the therapeutic potential for MSCs in mediating ASD-related immunological disorders.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Mo-Xian Chen
- School of Rehabilitation, Kunming Medical University, Kunming 650500, Yunnan Province, China
| | - Lin Sun
- Department of Psychology, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Chloe U Wallis
- Medical Sciences Division, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Jian-Song Zhou
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Li-Juan Ao
- School of Rehabilitation, Kunming Medical University, Kunming 650500, Yunnan Province, China
| | - Qi Li
- Department of Psychiatry, the University of Hong Kong, Hong Kong, China
| | - Pak C Sham
- Department of Psychiatry, the University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, Center for Genomic Sciences, the University of Hong Kong, Hong Kong, China
| |
Collapse
|
67
|
Bergdolt L, Dunaevsky A. Brain changes in a maternal immune activation model of neurodevelopmental brain disorders. Prog Neurobiol 2018; 175:1-19. [PMID: 30590095 DOI: 10.1016/j.pneurobio.2018.12.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022]
Abstract
The developing brain is sensitive to a variety of insults. Epidemiological studies have identified prenatal exposure to infection as a risk factor for a range of neurological disorders, including autism spectrum disorder and schizophrenia. Animal models corroborate this association and have been used to probe the contribution of gene-environment interactions to the etiology of neurodevelopmental disorders. Here we review the behavior and brain phenotypes that have been characterized in MIA offspring, including the studies that have looked at the interaction between maternal immune activation and genetic risk factors for autism spectrum disorder or schizophrenia. These phenotypes include behaviors relevant to autism, schizophrenia, and other neurological disorders, alterations in brain anatomy, and structural and functional neuronal impairments. The link between maternal infection and these phenotypic changes is not fully understood, but there is increasing evidence that maternal immune activation induces prolonged immune alterations in the offspring's brain which could underlie epigenetic alterations which in turn may mediate the behavior and brain changes. These concepts will be discussed followed by a summary of the pharmacological interventions that have been tested in the maternal immune activation model.
Collapse
Affiliation(s)
- Lara Bergdolt
- University of Nebraska Medical Center, Neurological Sciences, 985960 Nebraska Medical Center, 68105, Omaha, NE, United States
| | - Anna Dunaevsky
- University of Nebraska Medical Center, Neurological Sciences, 985960 Nebraska Medical Center, 68105, Omaha, NE, United States.
| |
Collapse
|
68
|
Haplotypes of TNF α/ β Genes Associated with Sex-Specific Paranoid Schizophrenic Risk in Tunisian Population. DISEASE MARKERS 2018; 2018:3502564. [PMID: 30627222 PMCID: PMC6304811 DOI: 10.1155/2018/3502564] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/24/2018] [Accepted: 11/04/2018] [Indexed: 01/30/2023]
Abstract
Several medical research findings have announced a strong association between the biology of cytokines and various brain activities. Since growing evidences suggest the crucial and complex role of the tumor necrosis factor in the CNS, we have hypothesized that functional genetic variants of the LTA and TNFA genes (LTA +252A/G (rs909253) and TNFA -857C/T (rs1799724) and TNFA -238G/A (rs361525)) may be involved in the predisposition to schizophrenia. This research is based on a case-control study. The RFLP-PCR genotyping was conducted on a Tunisian population composed of 208 patients and 208 controls. We found a strong significant overrepresentation of the minor alleles (G, T, and A, respectively) in all patients compared with controls (p = 0.003, OR = 1.55; p = 0.005, OR = 1.78; and p = 0.0001, OR = 1.74, respectively). This correlation was confirmed for male but not for female patients. Interestingly, the frequencies of the minor alleles were significantly more common among patients with paranoid schizophrenia when compared with controls (p = 0.003, OR = 1.75; p = 5 · 10-6, OR = 3.04; and p = 4 · 10-6, OR = 2.35, respectively). This potential association was confirmed by a logistic binary regression analysis only for the development of the paranoid form of schizophrenia (p = 0.001/OR = 2.6; p = 0.0002/OR = 3.2; and p = 0.0004/OR = 3.1, respectively) and remained not significant for the other subtypes. Moreover, our study showed an important association between GCA haplotype and the development of this pathological form (p = 10-4, OR = 3.71). In conclusion, our results proved a significant association between the three polymorphisms and paranoid schizophrenia, at least in the Tunisian population, suggesting a substantially increased risk for paranoid schizophrenia with dominant inheritance of these three minor alleles.
Collapse
|
69
|
Abstract
Background Pioglitazone is a promising compound for treatment of core autism spectrum disorder (ASD) symptoms as it targets multiple relevant pathways, including immune system alterations. Objective This pilot study aimed to elucidate the maximum tolerated dose, safety, preliminary evidence of efficacy, and appropriate outcome measures in autistic children ages 5–12 years old. Methods We conducted a 16-week prospective cohort, single blind, single arm, 2-week placebo run-in, dose-finding study of pioglitazone. Twenty-five participants completed treatment. A modified dose finding method was used to determine safety and dose response among three dose levels: 0.25 mg/kg, 0.5 mg/kg, and 0.75 mg/kg once daily. Results Maximum tolerated dose: there were no serious adverse events (SAEs) and as such the maximum tolerated dose within the range tested was 0.75 mg/Kg once daily. Safety: overall, pioglitazone was well tolerated. Two participants discontinued intervention due to perceived non-efficacy and one due to the inability to tolerate interim blood work. Three participants experienced mild neutropenia. Early evidence of efficacy: statistically significant improvement was observed in social withdrawal, repetitive behaviors, and externalizing behaviors as measured by the Aberrant Behavior Checklist (ABC), Child Yale-Brown Obsessive Compulsive Scale (CY-BOCS), and Repetitive Behavior Scale–Revised (RBS-R). Forty-six percent of those enrolled were deemed to be global responders. Conclusions and relevance Pioglitazone is well-tolerated and shows a potential signal in measures of social withdrawal, repetitive, and externalizing behaviors. Randomized controlled trials using the confirmed dose are warranted. Trial registration ClinicalTrials.gov, NCT01205282. Registration date: September 20, 2010. Electronic supplementary material The online version of this article (10.1186/s13229-018-0241-5) contains supplementary material, which is available to authorized users.
Collapse
|
70
|
Fossati G, Pozzi D, Canzi A, Mirabella F, Valentino S, Morini R, Ghirardini E, Filipello F, Moretti M, Gotti C, Annis DS, Mosher DF, Garlanda C, Bottazzi B, Taraboletti G, Mantovani A, Matteoli M, Menna E. Pentraxin 3 regulates synaptic function by inducing AMPA receptor clustering via ECM remodeling and β1-integrin. EMBO J 2018; 38:embj.201899529. [PMID: 30396995 PMCID: PMC6315291 DOI: 10.15252/embj.201899529] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 09/12/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022] Open
Abstract
Control of synapse number and function in the developing central nervous system is critical to the formation of neural circuits. Astrocytes play a key role in this process by releasing factors that promote the formation of excitatory synapses. Astrocyte‐secreted thrombospondins (TSPs) induce the formation of structural synapses, which however remain post‐synaptically silent, suggesting that completion of early synaptogenesis may require a two‐step mechanism. Here, we show that the humoral innate immune molecule Pentraxin 3 (PTX3) is expressed in the developing rodent brain. PTX3 plays a key role in promoting functionally‐active CNS synapses, by increasing the surface levels and synaptic clustering of AMPA glutamate receptors. This process involves tumor necrosis factor‐induced protein 6 (TSG6), remodeling of the perineuronal network, and a β1‐integrin/ERK pathway. Furthermore, PTX3 activity is regulated by TSP1, which directly interacts with the N‐terminal region of PTX3. These data unveil a fundamental role of PTX3 in promoting the first wave of synaptogenesis, and show that interplay of TSP1 and PTX3 sets the proper balance between synaptic growth and synapse function in the developing brain.
Collapse
Affiliation(s)
- Giuliana Fossati
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy
| | - Davide Pozzi
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy.,Department of Biomedical Sciences Humanitas University, Milan, Italy
| | - Alice Canzi
- Department of Biomedical Sciences Humanitas University, Milan, Italy
| | - Filippo Mirabella
- Department of Biomedical Sciences Humanitas University, Milan, Italy
| | - Sonia Valentino
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy
| | - Raffaella Morini
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy
| | - Elsa Ghirardini
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy.,Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, University of Milano, Milano, Italy
| | - Fabia Filipello
- Department of Biomedical Sciences Humanitas University, Milan, Italy
| | - Milena Moretti
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, University of Milano, Milano, Italy
| | | | - Douglas S Annis
- Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, WI, USA
| | - Deane F Mosher
- Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, WI, USA
| | - Cecilia Garlanda
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy.,Department of Biomedical Sciences Humanitas University, Milan, Italy
| | - Barbara Bottazzi
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy.,Department of Biomedical Sciences Humanitas University, Milan, Italy
| | - Giulia Taraboletti
- Tumor Angiogenesis Unit, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Alberto Mantovani
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy.,Department of Biomedical Sciences Humanitas University, Milan, Italy
| | - Michela Matteoli
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy .,Institute of Neuroscience - CNR, Milano, Italy
| | - Elisabetta Menna
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy .,Institute of Neuroscience - CNR, Milano, Italy
| |
Collapse
|
71
|
Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Al-Ayadhi LY, Alotaibi MR, Alhoshani AR, Al-Hosaini KA, Attia SM. Dysregulation of the expression of HLA-DR, costimulatory molecule, and chemokine receptors on immune cells in children with autism. Int Immunopharmacol 2018; 65:360-365. [PMID: 30380510 DOI: 10.1016/j.intimp.2018.10.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous disorder diagnosed based on the severity of abnormalities in social skills. Several studies have acknowledged the presence of abnormal immune functions among individuals diagnosed with ASD. HLA-DR (human leukocyte antigen-antigen D related) has been shown to play a significant role in several inflammatory and neurological disorders; however, the role of HLA-DR signaling in ASD has not yet been fully clarified. In this study, we investigated the role of HLA-DR signaling in children with ASD. Flow cytometric analysis, using peripheral blood mononuclear cells (PBMCs), revealed the numbers of CD4+, CD8+, CD28+, CXCR4+, and CCR7+ expressing HLA-DR cells in typically developing (TD) controls and children with ASD. We also determined the numbers of IFN-γ+, IL-21+, and Foxp3+ expressing HLA-DR cells in TD controls and in children with ASD using PBMCs. We observed mRNA and protein expression levels of HLA-DR by RT-PCR and western blotting analysis. Our results revealed that children with ASD had significantly increased numbers of HLA-DR+CD4+, HLA-DR+CD8+, CD28+HLA-DR+, HLA-DR+CXCR4+, HLA-DR+CCR7+ cells compared with TD controls. We found that children with ASD showed increased HLA-DR+IFN-γ+ and HLA-DR+IL-21+ and decreased HLA-DR+Foxp3+ expression levels compared with TD controls. Furthermore, children with ASD showed higher HLA-DR mRNA and protein expression levels compared with TD controls. These results indicated that HLA-DR could play an essential role in the immune abnormalities associated with ASD.
Collapse
Affiliation(s)
- Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Laila Y Al-Ayadhi
- Autism Research and Treatment Center, AL-Amodi Autism Research Chair, Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Moureq R Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali R Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khaled A Al-Hosaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
72
|
Wang J, Li J, Wang Q, Kong Y, Zhou F, Li Q, Li W, Sun Y, Wang Y, Guan Y, Wu M, Wen T. Dcf1 Deficiency Attenuates the Role of Activated Microglia During Neuroinflammation. Front Mol Neurosci 2018; 11:256. [PMID: 30104955 PMCID: PMC6077288 DOI: 10.3389/fnmol.2018.00256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 07/06/2018] [Indexed: 12/14/2022] Open
Abstract
Microglia serve as the principal immune cells and play crucial roles in the central nervous system, responding to neuroinflammation via migration and the execution of phagocytosis. Dendritic cell-derived factor 1 (Dcf1) is known to play an important role in neural stem cell differentiation, glioma apoptosis, dendritic spine formation, and Alzheimer’s disease (AD), nevertheless, the involvement of the Dcf1 gene in the brain immune response has not yet been reported. In the present paper, the RNA-sequencing and function enrichment analysis suggested that the majority of the down-regulated genes in Dcf1-/- (Dcf1-KO) mice are immune-related. In vivo experiments showed that Dcf1 deletion produced profound effects on microglial function, increased the expression of microglial activation markers, such as ionized calcium binding adaptor molecule 1 (Iba1), Cluster of Differentiation 68 (CD68) and translocator protein (TSPO), as well as certain proinflammatory cytokines (Cxcl1, Ccl7, and IL17D), but decreased the migratory and phagocytic abilities of microglial cells, and reduced the expression levels of some other proinflammatory cytokines (Cox-2, IL-1β, IL-6, TNF-α, and Csf1) in the mouse hippocampus. Furthermore, in vitro experiments revealed that in the absence of lipopolysaccharide (LPS), the majority of microglia were ramified and existed in a resting state, with only approximately 10% of cells exhibiting an amoeboid-like morphology, indicative of an activated state. LPS treatment dramatically increased the ratio of activated to resting cells, and Dcf1 downregulation further increased this ratio. These data indicated that Dcf1 deletion mediates neuroinflammation and induces dysfunction of activated microglia, preventing migration and the execution of phagocytosis. These findings support further investigation into the biological mechanisms underlying microglia-related neuroinflammatory diseases, and the role of Dcf1 in the immune response.
Collapse
Affiliation(s)
- Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jie Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yanyan Kong
- Positron Emission Computed Tomography Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangfang Zhou
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Weihao Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yangyang Sun
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yanli Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China
| | - Yihui Guan
- Positron Emission Computed Tomography Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Minghong Wu
- Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Tieqiao Wen
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
73
|
Shivakumar V, Debnath M, Venugopal D, Rajasekaran A, Kalmady SV, Subbanna M, Narayanaswamy JC, Amaresha AC, Venkatasubramanian G. Influence of correlation between HLA-G polymorphism and Interleukin-6 (IL6) gene expression on the risk of schizophrenia. Cytokine 2018; 107:59-64. [DOI: 10.1016/j.cyto.2017.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 10/14/2017] [Accepted: 11/27/2017] [Indexed: 12/25/2022]
|
74
|
Xiu MH, Man LJ, Wang D, Du X, Yin G, Zhang Y, Tan YL, Chen N, Chen S, Teixeira AL, Cassidy RM, Soares JC, Zhang XY. Tumor necrosis factor-alpha -1031T/C polymorphism is associated with cognitive deficits in chronic schizophrenia patients versus healthy controls. Am J Med Genet B Neuropsychiatr Genet 2018; 177:379-387. [PMID: 29633506 DOI: 10.1002/ajmg.b.32622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/03/2018] [Accepted: 02/16/2018] [Indexed: 11/07/2022]
Abstract
Recent compelling research has demonstrated a pathophysiologic role for proinflammatory cytokines of microglial origin in decreasing neurocognitive function. Psychiatric diseases are already known to have reduced cognitive function and are also associated with increased inflammation. To elaborate on these data, our study aims to investigate how a particular polymorphism of the tumor necrosis factor gene, TNF-α -1031T/C, affects neurocognitive performance in patients with schizophrenia. We recruited 905 patients with schizophrenia and 571 healthy control subjects. We employed the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) to test for neurocognitive function and the positive and negative syndrome scale to evaluate schizophrenia severity. The -1031T/C polymorphism was genotyped in both healthy controls and schizophrenic patients. Our results demonstrate that patients with the C allele (either T/C or C/C) possessed increased immediate memory index, visuospatial/constructional index, and RBANS total scores as compared to patients without it (p < .05). In healthy controls, there was no significant difference across genotypes (p > .05). Our findings demonstrate that the TNF-α -1031T/C polymorphism may not play a role in the susceptibility of schizophrenia itself, but may be involved in the cognitive deficits of schizophrenia. This suggests an important role for cytokine signaling in mediating the severity of cognitive dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Mei Hong Xiu
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Li-Juan Man
- Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Dong Wang
- Department of Psychiatry, Weihai Mental Health Center, Weihai, China
| | - Xiangdong Du
- Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Guangzhou Yin
- Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Yingyang Zhang
- Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Yun Long Tan
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Nan Chen
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Song Chen
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Antonio L Teixeira
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Ryan M Cassidy
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Xiang Yang Zhang
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
75
|
Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Alzahrani MZ, Alshammari MA, Alanazi WA, Alasmari AF, Attia SM. Resveratrol attenuates pro-inflammatory cytokines and activation of JAK1-STAT3 in BTBR T + Itpr3 tf/J autistic mice. Eur J Pharmacol 2018; 829:70-78. [PMID: 29654783 DOI: 10.1016/j.ejphar.2018.04.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 12/27/2022]
Abstract
Autism is a neurodevelopmental disorder characterized by qualitative impairment in communication, social interaction, and repetitive stereotypic behavior. Resveratrol plays a role in several disorders such as neuroimmune, autoimmune, and allergic disorders. BTBR T+ Itpr3tf/J (BTBR) mice, a model for autism, show several behavioral deficits that are physiological characteristics similar to those observed in patients with autism. Previous studies have shown that JAK-STAT signaling pathway is associated with many neurodevelopmental disorders. We investigated the possible role of resveratrol on IL-6+, TNF-α+, IFN-γ+, and STAT3+ in CD4+ T spleen cells in BTBR mice as compared to C57BL/6J mice. We also assessed the effect of resveratrol treatment on IL-6, TNF-α, IFN-γ, JAK1, and STAT3 mRNA expression levels in the brain tissue. We further assessed IL-6, IFN-γ, TNF-α, phosphorylated (p) JAK1, and pSTAT3 (Tyr705) protein expression levels in the brain tissue. Resveratrol (20 and 40 mg/kg)-treated mice had significantly decreased in IL-6+, TNF-α+, IFN-γ+, and STAT3+ in CD4+ spleen cells as compared with BTBR control mice. Resveratrol treatment also decreased IL-6, TNF-α, IFN-γ, JAK1, and STAT3 mRNA expression levels as compared with BTBR control mice in the brain tissue. Moreover, resveratrol treatment resulted in decreased protein expression levels of IL-6, IFN-γ, TNF-α, pJAK1, and pSTAT3 (Tyr705) as compared with BTBR control mice in the brain tissues. Taken together, these results indicate the efficacy of resveratrol in reducing cytokines and JAK-1/STAT3 signaling in BTBR mice, which is a novel and important finding and might be important for future therapies in neuroimmune dysfunction.
Collapse
Affiliation(s)
- Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Z Alzahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Musaad A Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wael A Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
76
|
Pozzi D, Menna E, Canzi A, Desiato G, Mantovani C, Matteoli M. The Communication Between the Immune and Nervous Systems: The Role of IL-1β in Synaptopathies. Front Mol Neurosci 2018; 11:111. [PMID: 29674955 PMCID: PMC5895746 DOI: 10.3389/fnmol.2018.00111] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/20/2018] [Indexed: 12/14/2022] Open
Abstract
In the last 15 years, groundbreaking genetic progress has underlined a convergence onto coherent synaptic pathways for most psychiatric and neurodevelopmental disorders, which are now collectively called “synaptopathies.” However, the modest size of inheritance detected so far indicates a multifactorial etiology for these disorders, underlining the key contribution of environmental effects to them. Inflammation is known to influence the risk and/or severity of a variety of synaptopathies. In particular, pro-inflammatory cytokines, produced and released in the brain by activated astrocytes and microglia, may play a pivotal role in these pathologies. Although the link between immune system activation and defects in cognitive processes is nowadays clearly established, the knowledge of the molecular mechanisms by which inflammatory mediators specifically hit synaptic components implicated in synaptopathies is still in its infancy. This review summarizes recent evidence showing that the pro-inflammatory cytokine interleukin-1β (IL-1β) specifically targets synaptopathy molecular substrate, leading to memory defects and pathological processes. In particular, we describe three specific pathways through which IL-1β affects (1) synaptic maintenance/dendritic complexity, (2) spine morphology, and (3) the excitatory/inhibitory balance. We coin the term immune synaptopathies to identify this class of diseases.
Collapse
Affiliation(s)
- Davide Pozzi
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Elisabetta Menna
- Humanitas Clinical and Research Center, Rozzano, Italy.,Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Alice Canzi
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | - Genni Desiato
- Humanitas Clinical and Research Center, Rozzano, Italy.,School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | | | - Michela Matteoli
- Humanitas Clinical and Research Center, Rozzano, Italy.,Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Milan, Italy
| |
Collapse
|
77
|
The Brain-Intestinal Mucosa-Appendix- Microbiome-Brain Loop. Diseases 2018; 6:diseases6020023. [PMID: 29614774 PMCID: PMC6023457 DOI: 10.3390/diseases6020023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/28/2018] [Accepted: 03/29/2018] [Indexed: 12/20/2022] Open
Abstract
The brain and the gut are connected from early fetal life. The mother's exposure to microbial molecules is thought to exert in utero developmental effects on the fetus. These effects could importantly underpin the groundwork for subsequent pathophysiological mechanisms for achieving immunological tolerance and metabolic equilibrium post birth, events that continue through to 3-4 years of age. Furthermore, it is understood that the microbiome promotes cues that instruct the neonate's mucosal tissues and skin in the language of molecular and cellular biology. Post birth mucosal lymphoid tissue formation and maturation (most probably including the vermiform appendix) is microbiota-encouraged co-establishing the intestinal microbiome with a developing immune system. Intestinal mucosal tissue maturation loops the brain-gut-brain and is postulated to influence mood dispositions via shifts in the intestinal microbiome phyla. A plausible appreciation is that dysregulated pro-inflammatory signals from intestinal resident macrophages could breach the loop by providing adverse mood signals via vagus nerve afferents to the brain. In this commentary, we further suggest that the intestinal resident macrophages act as an upstream traffic controller of translocated microbes and metabolites in order to maintain local neuro-endocrine-immunological equilibrium. When macrophages are overwhelmed through intestinal microbiome and intestinal epithelial cell dysbiosis, pro-inflammatory signals are sustained, which may then lead to mood disorders. The administration of probiotics as an adjunctive medicine co-administered with antidepressant medications in improving depressed mood may have biological and clinical standing.
Collapse
|
78
|
Alfimova MV, Golimbet VE, Korovaitseva GI, Lezheiko TV, Kondrat'ev NV, Gabaeva MV. [Effect of cytokine genes and season of birth on personality]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 117:82-87. [PMID: 29053126 DOI: 10.17116/jnevro20171179182-87] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AIM To evaluate the interaction effects of season of birth and immune system genes on the personality traits 'Novelty seeking' (NS) and 'Self-directedness' (SD). Based on results on an influence of the immune system on the brain processes, the authors hypothesized that the interaction of immune system genes and season of birth, which is relevant for immune phenotype, can contribute to the development of personality traits. MATERIAL AND METHODS NS and SD were measured in 336 healthy volunteers, aged from 16 to 67 years, using the Temperament and Character Inventory (TCI-125). IL1B C3954T, IL4 C-589T, IL13 C1112T and TNFA G-308A polymorphisms were genotyped. RESULTS An interaction effect of IL4 C-589T and season of birth on the personality traits was found (F2,322=6.03, pcorr=0.011, η2=0.04). Carriers of the minor allele T, who were born in winter, had lower NS and higher SD. There was a nominal main effect of genotype on SD (F=5.44, p=0.020) as well, with higher SD scores in carriers of the allele T compared to the CC genotype. CONCLUSION The results suggest that the etiology of personality and immune characteristics can share common genetic elements including IL-4.
Collapse
Affiliation(s)
| | | | | | | | | | - M V Gabaeva
- Mental Health Research Center, Moscow, Russia
| |
Collapse
|
79
|
Sobue A, Ito N, Nagai T, Shan W, Hada K, Nakajima A, Murakami Y, Mouri A, Yamamoto Y, Nabeshima T, Saito K, Yamada K. Astroglial major histocompatibility complex class I following immune activation leads to behavioral and neuropathological changes. Glia 2018; 66:1034-1052. [PMID: 29380419 DOI: 10.1002/glia.23299] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/27/2017] [Accepted: 01/10/2018] [Indexed: 12/19/2022]
Abstract
In the central nervous system, major histocompatibility complex class I (MHCI) molecules are mainly expressed in neurons, and neuronal MHCI have roles in synapse elimination and plasticity. However, the pathophysiological significance of astroglial MHCI remains unclear. We herein demonstrate that MHCI expression is up-regulated in astrocytes in the medial prefrontal cortex (mPFC) following systemic immune activation by an intraperitoneal injection of polyinosinic-polycytidylic acid (polyI:C) or hydrodynamic interferon (IFN)-γ gene delivery in male C57/BL6J mice. In cultured astrocytes, MHCI/H-2D largely co-localized with exosomes. To investigate the role of astroglial MHCI, H-2D, or sH-2D was expressed in the mPFC of male C57/BL6J mice using an adeno-associated virus vector under the control of a glial fibrillary acidic protein promoter. The expression of astroglial MHCI in the mPFC impaired sociability and recognition memory in mice. Regarding neuropathological changes, MHCI expression in astrocytes significantly activated microglial cells, decreased parvalbumin-positive cell numbers, and reduced dendritic spine density in the mPFC. A treatment with GW4869 that impairs exosome synthesis ameliorated these behavioral and neuropathological changes. These results suggest that the overexpression of MHCI in astrocytes affects microglial proliferation as well as neuronal numbers and spine densities, thereby leading to social and cognitive deficits in mice, possibly via exosomes created by astrocytes.
Collapse
Affiliation(s)
- Akira Sobue
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Japan
| | - Norimichi Ito
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Japan
| | - Wei Shan
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Japan
| | - Kazuhiro Hada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Japan
| | - Akira Nakajima
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Japan
| | - Yuki Murakami
- Doshisha University Graduate School of Brain Science, 1-3 Tatara Miyakodani, Kyotanabe, Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation and Development of Pharmaceuticals and Devices, Fujita Health University, Graduate School of Health Sciences, 1-98, Dengakugakubo, Kutsukake, Toyoake, Japan
| | - Yasuko Yamamoto
- Department of Disease Control Prevention, Fujita Health University, Graduate School of Health Sciences, 1-98, Dengakugakubo, Kutsukake, Toyoake, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory Fujita Health University, Graduate School of Health Sciences & Aino University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Japan
| | - Kuniaki Saito
- Department of Disease Control Prevention, Fujita Health University, Graduate School of Health Sciences, 1-98, Dengakugakubo, Kutsukake, Toyoake, Japan.,Advanced Diagnostic System Research Laboratory Fujita Health University, Graduate School of Health Sciences & Aino University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Japan
| |
Collapse
|
80
|
Ding Y, Ren J, Yu H, Yu W, Zhou Y. Porphyromonas gingivalis, a periodontitis causing bacterium, induces memory impairment and age-dependent neuroinflammation in mice. IMMUNITY & AGEING 2018; 15:6. [PMID: 29422938 PMCID: PMC5791180 DOI: 10.1186/s12979-017-0110-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/28/2017] [Indexed: 12/16/2022]
Abstract
Background A possible relationship between periodontitis and Alzheimer's disease (AD) has been reported. However, there is limited information on the association between the Porphyromonas gingivalis (P. gingivalis) periodontal infection and the pathological features of AD. The hypothesis that P. gingivalis periodontal infection may cause cognitive impairment via age-dependent neuroinflammation was tested. Results Thirty 4-week-old (young) female C57BL/6 J mice were randomly divided into two groups, the control group and the experimental group. Thirty 12-month-old (middle-aged) were grouped as above. The mouth of the mice in the experimental group was infected with P. gingivalis. Morris water maze(MWM) was performed to assess the learning and memory ability of mice after 6 weeks. Moreover, the expression levels of the pro-inflammatory cytokines TNF-α, IL-6, and IL-1β in the mice brain tissues were determined by Quantitative real-time polymerase chain reaction (qRT-PCR), Enzyme Linked Immunosorbent Assay(ELISA) and immunohistochemistry. Our results showed that the learning and memory abilities of the middle-aged P. gingivalis infected mice were impaired. Moreover, the expression levels of the pro-inflammatory cytokines TNF-α, IL-6, and IL-1β in the brain tissues of the middle-aged P. gingivalis infected mice were increased. Conclusions These results suggest that P. gingivalis periodontal infection may cause cognitive impairment via the release of the pro-inflammatory cytokines TNF-α, IL-6, and IL-1β in the brain tissues of middle-aged mice.
Collapse
Affiliation(s)
- Ye Ding
- 1Department of Implantology, School and Hospital of Stomatology, Jilin University, Qinghua Road 1500, Chaoyang District, Changchun, 130021 China
| | - Jingyi Ren
- 1Department of Implantology, School and Hospital of Stomatology, Jilin University, Qinghua Road 1500, Chaoyang District, Changchun, 130021 China
| | - Hongqiang Yu
- 1Department of Implantology, School and Hospital of Stomatology, Jilin University, Qinghua Road 1500, Chaoyang District, Changchun, 130021 China
| | - Weixian Yu
- Key laboratory of Mechanism of Tooth Development and Jaw Bone Remodeling and Regeneration in Jilin Province, Qinghua Road 1500, Chaoyang District, Changchun, 130021 China
| | - Yanmin Zhou
- 1Department of Implantology, School and Hospital of Stomatology, Jilin University, Qinghua Road 1500, Chaoyang District, Changchun, 130021 China
| |
Collapse
|
81
|
High expression of Endogenous Retroviruses from intrauterine life to adulthood in two mouse models of Autism Spectrum Disorders. Sci Rep 2018; 8:629. [PMID: 29330412 PMCID: PMC5766538 DOI: 10.1038/s41598-017-19035-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/12/2017] [Indexed: 12/19/2022] Open
Abstract
Retroelements, such as Human Endogenous Retroviruses (HERVs), have been implicated in many complex diseases, including neurological and neuropsychiatric disorders. Previously, we demonstrated a distinctive expression profile of specific HERV families in peripheral blood mononuclear cells from Autistic Spectrum Disorders (ASD) patients, suggesting their involvement in ASD. Here we used two distinct ASD mouse models: inbred BTBR T+tf/J mice and CD-1 outbred mice prenatally exposed to valproic acid. Whole embryos, blood and brain samples from the offspring were collected at different ages and the expression of several ERV families (ETnI, ETnII-α, ETnII-β, ETnII-γ, MusD and IAP), proinflammatory cytokines (IL-1β, IL-6 and TNF-α) and Toll-like receptors (TLR3 and TLR4) was assessed. In the two distinct mouse models analysed, the transcriptional activity of the ERV families was significant higher in comparison with corresponding controls, in whole embryos, blood and brain samples. Also the expression levels of the proinflammatory cytokines and TLRs were significantly higher than controls. Current results are in agreement with our previous findings in ASD children, supporting the hypothesis that ERVs may serve as biomarkers of atypical brain development. Moreover, the changes in ERVs and proinflammatory cytokines expression could be related with the autistic-like traits acquisition in the two mouse models.
Collapse
|
82
|
MACKINNON N, ZAMMIT S, LEWIS G, JONES PB, KHANDAKER GM. Association between childhood infection, serum inflammatory markers and intelligence: findings from a population-based prospective birth cohort study. Epidemiol Infect 2018; 146:256-264. [PMID: 29198208 PMCID: PMC5851035 DOI: 10.1017/s0950268817002710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 01/16/2023] Open
Abstract
A link between infection, inflammation, neurodevelopment and adult illnesses has been proposed. The objective of this study was to examine the association between infection burden during childhood - a critical period of development for the immune and nervous systems - and subsequent systemic inflammatory markers and general intelligence. In the Avon Longitudinal Study of Parents and Children, a prospective birth cohort in England, we examined the association of exposure to infections during childhood, assessed at seven follow-ups between age 1·5 and 7·5 years, with subsequent: (1) serum interleukin 6 and C-reactive protein (CRP) levels at age 9; (2) intelligence quotient (IQ) at age 8. We also examined the relationship between inflammatory markers and IQ. Very high infection burden (90+ percentile) was associated with higher CRP levels, but this relationship was explained by body mass index (adjusted odds ratio (OR) 1·19; 95% confidence interval (CI) 0·95-1·50), maternal occupation (adjusted OR 1·23; 95% CI 0·98-1·55) and atopic disorders (adjusted OR 1·24; 95% CI 0·98-1·55). Higher CRP levels were associated with lower IQ; adjusted β = -0·79 (95% CI -1·31 to -0·27); P = 0·003. There was no strong evidence for an association between infection and IQ. The findings indicate that childhood infections do not have an independent, lasting effect on circulating inflammatory marker levels subsequently in childhood; however, elevated inflammatory markers may be harmful for intellectual development/function.
Collapse
Affiliation(s)
- N. MACKINNON
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - S. ZAMMIT
- Centre for Mental Health, Addiction and Suicide Research, School of Social and Community Medicine, University of Bristol, Bristol, UK
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - G. LEWIS
- Division of Psychiatry, University College London, London, UK
| | - P. B. JONES
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - G. M. KHANDAKER
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
83
|
The Emerging Role of the Major Histocompatibility Complex Class I in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2017; 18:ijms18112298. [PMID: 29104236 PMCID: PMC5713268 DOI: 10.3390/ijms18112298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/16/2017] [Accepted: 10/26/2017] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting upper and lower motoneurons (MNs). The etiology of the disease is still unknown for most patients with sporadic ALS, while in 5–10% of the familial cases, several gene mutations have been linked to the disease. Mutations in the gene encoding Cu, Zn superoxide dismutase (SOD1), reproducing in animal models a pathological scenario similar to that found in ALS patients, have allowed for the identification of mechanisms relevant to the ALS pathogenesis. Among them, neuroinflammation mediated by glial cells and systemic immune activation play a key role in the progression of the disease, through mechanisms that can be either neuroprotective or neurodetrimental depending on the type of cells and the MN compartment involved. In this review, we will examine and discuss the involvement of major histocompatibility complex class I (MHCI) in ALS concerning its function in the adaptive immunity and its role in modulating the neural plasticity in the central and peripheral nervous system. The evidence indicates that the overexpression of MHCI into MNs protect them from astrocytes’ toxicity in the central nervous system (CNS) and promote the removal of degenerating motor axons accelerating collateral reinnervation of muscles.
Collapse
|
84
|
Loviglio MN, Arbogast T, Jønch AE, Collins SC, Popadin K, Bonnet CS, Giannuzzi G, Maillard AM, Jacquemont S, Yalcin B, Katsanis N, Golzio C, Reymond A. The Immune Signaling Adaptor LAT Contributes to the Neuroanatomical Phenotype of 16p11.2 BP2-BP3 CNVs. Am J Hum Genet 2017; 101:564-577. [PMID: 28965845 PMCID: PMC5630231 DOI: 10.1016/j.ajhg.2017.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/21/2017] [Indexed: 02/04/2023] Open
Abstract
Copy-number changes in 16p11.2 contribute significantly to neuropsychiatric traits. Besides the 600 kb BP4-BP5 CNV found in 0.5%-1% of individuals with autism spectrum disorders and schizophrenia and whose rearrangement causes reciprocal defects in head size and body weight, a second distal 220 kb BP2-BP3 CNV is likewise a potent driver of neuropsychiatric, anatomical, and metabolic pathologies. These two CNVs are engaged in complex reciprocal chromatin looping, intimating a functional relationship between genes in these regions that might be relevant to pathomechanism. We assessed the drivers of the distal 16p11.2 duplication by overexpressing each of the nine encompassed genes in zebrafish. Only overexpression of LAT induced a reduction of brain proliferating cells and concomitant microcephaly. Consistently, suppression of the zebrafish ortholog induced an increase of proliferation and macrocephaly. These phenotypes were not unique to zebrafish; Lat knockout mice show brain volumetric changes. Consistent with the hypothesis that LAT dosage is relevant to the CNV pathology, we observed similar effects upon overexpression of CD247 and ZAP70, encoding members of the LAT signalosome. We also evaluated whether LAT was interacting with KCTD13, MVP, and MAPK3, major driver and modifiers of the proximal 16p11.2 600 kb BP4-BP5 syndromes, respectively. Co-injected embryos exhibited an increased microcephaly, suggesting the presence of genetic interaction. Correspondingly, carriers of 1.7 Mb BP1-BP5 rearrangements that encompass both the BP2-BP3 and BP4-BP5 loci showed more severe phenotypes. Taken together, our results suggest that LAT, besides its well-recognized function in T cell development, is a major contributor of the 16p11.2 220 kb BP2-BP3 CNV-associated neurodevelopmental phenotypes.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/physiology
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Animals
- Autistic Disorder/genetics
- Autistic Disorder/immunology
- Autistic Disorder/pathology
- Brain/metabolism
- Brain/pathology
- Child
- Child, Preschool
- Chromosome Deletion
- Chromosome Disorders/genetics
- Chromosome Disorders/immunology
- Chromosome Disorders/pathology
- Chromosomes, Human, Pair 16/genetics
- Chromosomes, Human, Pair 16/immunology
- Cohort Studies
- DNA Copy Number Variations
- Embryo, Nonmammalian/metabolism
- Embryo, Nonmammalian/pathology
- Female
- Gene Expression Regulation, Developmental
- Humans
- Infant
- Intellectual Disability/genetics
- Intellectual Disability/immunology
- Intellectual Disability/pathology
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Membrane Proteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microcephaly/genetics
- Microcephaly/pathology
- Middle Aged
- Phenotype
- Phosphoproteins/physiology
- Signal Transduction
- Young Adult
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Maria Nicla Loviglio
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Thomas Arbogast
- Center for Human Disease Modeling, Duke University, Durham, NC 27701, USA
| | - Aia Elise Jønch
- Service of Medical Genetics, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Stephan C Collins
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics; Centre National de la Recherche Scientifique, UMR7104; Institut National de la Santé et de la Recherche Médicale, U964; Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - Konstantin Popadin
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; Immanuel Kant Baltic Federal University, 14 A. Nevskogo ul., Kaliningrad 236041, Russia
| | - Camille S Bonnet
- Center for Human Disease Modeling, Duke University, Durham, NC 27701, USA
| | - Giuliana Giannuzzi
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Anne M Maillard
- Service of Medical Genetics, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Sébastien Jacquemont
- Service of Medical Genetics, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Binnaz Yalcin
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics; Centre National de la Recherche Scientifique, UMR7104; Institut National de la Santé et de la Recherche Médicale, U964; Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, Durham, NC 27701, USA
| | - Christelle Golzio
- Center for Human Disease Modeling, Duke University, Durham, NC 27701, USA.
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
85
|
The Role of microRNA Expression in Cortical Development During Conversion to Psychosis. Neuropsychopharmacology 2017; 42:2188-2195. [PMID: 28186095 PMCID: PMC5603810 DOI: 10.1038/npp.2017.34] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/10/2017] [Accepted: 01/27/2017] [Indexed: 01/02/2023]
Abstract
In a recent report of the North American Prodrome Longitudinal Study (NAPLS), clinical high-risk individuals who converted to psychosis showed a steeper rate of cortical gray matter reduction compared with non-converters and healthy controls, and the rate of cortical thinning was correlated with levels of proinflammatory cytokines at baseline. These findings suggest a critical role for microglia, the resident macrophages in the brain, in perturbations of cortical maturation processes associated with onset of psychosis. Elucidating gene expression pathways promoting microglial action prior to disease onset would inform potential preventative intervention targets. Here we used a forward stepwise regression algorithm to build a classifier of baseline microRNA expression in peripheral leukocytes associated with annualized rate of cortical thinning in a subsample of the NAPLS cohort (N=74). Our cortical thinning classifier included nine microRNAs, p=3.63 × 10-08, R2=0.358, permutation-based p=0.039, the gene targets of which were enriched for intracellular signaling pathways that are important to coordinating inflammatory responses within immune cells (p<0.05, Benjamini-Hochberg corrected). The classifier was also related to proinflammatory cytokine levels in serum (p=0.038). Furthermore, miRNAs that predicted conversion status were found to do so in a manner partially mediated by rate of cortical thinning (point estimate=0.078 (95% CIs: 0.003, 0.168), p=0.03). Many of the miRNAs identified here have been previously implicated in brain development, synaptic plasticity, immune function and/or schizophrenia, showing some convergence across studies and methodologies. Altered intracellular signaling within the immune system may interact with cortical maturation in individuals at high risk for schizophrenia promoting disease onset.
Collapse
|
86
|
Li D, Tomljenovic L, Li Y, Shaw CA. RETRACTED: Subcutaneous injections of aluminum at vaccine adjuvant levels activate innate immune genes in mouse brain that are homologous with biomarkers of autism. J Inorg Biochem 2017; 177:39-54. [PMID: 28923356 DOI: 10.1016/j.jinorgbio.2017.08.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Dan Li
- Dept. of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lucija Tomljenovic
- Dept. of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yongling Li
- Dept. of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher A Shaw
- Dept. of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Program in Experimental Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
87
|
Bauman MD, Schumann CM. Advances in nonhuman primate models of autism: Integrating neuroscience and behavior. Exp Neurol 2017; 299:252-265. [PMID: 28774750 DOI: 10.1016/j.expneurol.2017.07.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/27/2017] [Accepted: 07/30/2017] [Indexed: 12/28/2022]
Abstract
Given the prevalence and societal impact of autism spectrum disorders (ASD), there is an urgent need to develop innovative preventative strategies and treatments to reduce the alarming number of cases and improve core symptoms for afflicted individuals. Translational efforts between clinical and preclinical research are needed to (i) identify and evaluate putative causes of ASD, (ii) determine the underlying neurobiological mechanisms, (iii) develop and test novel therapeutic approaches and (iv) ultimately translate basic research into safe and effective clinical practices. However, modeling a uniquely human brain disorder, such as ASD, will require sophisticated animal models that capitalize on unique advantages of diverse species including drosophila, zebra fish, mice, rats, and ultimately, species more closely related to humans, such as the nonhuman primate. Here we discuss the unique contributions of the rhesus monkey (Macaca mulatta) model to ongoing efforts to understand the neurobiology of the disorder, focusing on the convergence of brain and behavior outcome measures that parallel features of human ASD.
Collapse
Affiliation(s)
- M D Bauman
- The UC Davis MIND Institute, University of California, Davis, USA; Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA; California National Primate Research Center, University of California, Davis, USA.
| | - C M Schumann
- The UC Davis MIND Institute, University of California, Davis, USA; Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA
| |
Collapse
|
88
|
Turano A, Lawrence JH, Schwarz JM. Activation of neonatal microglia can be influenced by other neural cells. Neurosci Lett 2017; 657:32-37. [PMID: 28774571 DOI: 10.1016/j.neulet.2017.07.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
Abstract
During development, microglial progenitor cells migrate into the brain from the periphery, a process critical to the maturation of the developing brain. Although they perform functions similar to mature, adult microglia, immature microglia are distinct from mature microglia. Activation of immature microglia, via an early-life immune challenge, can lead to persistent changes in microglial function, resulting in long-term neuronal and cognitive dysfunction. Early-life immune activation is associated with multiple neurodevelopmental disorders, including autism, ADHD, schizophrenia, and cerebral palsy - disorders with known or suspected immune etiologies, and strong sex biases for males. Activation of immature microglia requires further examination to determine its potential role in these neurodevelopmental disorders. More work is also necessary to better understand the relationship between developing microglia and other developing neural cells during this critical period of development. Thus, we treated freshly isolated, sex-specific microglia from the rat hippocampus with lipopolysaccharide (LPS) on P4, in either the presence or absence of other neural cells. Mixed and microglial-specific cultures were analyzed for inflammatory gene expression to determine whether immature microglia exhibited a sex-specific response to immune activation, and if the presence of all other neural cells influenced that response. We found that the microglial response to an LPS-induced immune activation differed depending on the presence of other neural cells in the culture. We found very few sex differences in the cytokine response, except that the microglial expression of IL-6 following immune activation was more robust in male microglia that were in the presence of other neural cells than female microglia in the same condition.
Collapse
Affiliation(s)
- Alexandra Turano
- University of Delaware, Department of Psychological and Brain Sciences, 108 Wolf Hall, Newark, DE, 19716, USA.
| | - Jennifer H Lawrence
- University of Delaware, Department of Psychological and Brain Sciences, 108 Wolf Hall, Newark, DE, 19716, USA.
| | - Jaclyn M Schwarz
- University of Delaware, Department of Psychological and Brain Sciences, 108 Wolf Hall, Newark, DE, 19716, USA.
| |
Collapse
|
89
|
Mottahedin A, Ardalan M, Chumak T, Riebe I, Ek J, Mallard C. Effect of Neuroinflammation on Synaptic Organization and Function in the Developing Brain: Implications for Neurodevelopmental and Neurodegenerative Disorders. Front Cell Neurosci 2017; 11:190. [PMID: 28744200 PMCID: PMC5504097 DOI: 10.3389/fncel.2017.00190] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/20/2017] [Indexed: 12/27/2022] Open
Abstract
The brain is a plastic organ where both the intrinsic CNS milieu and extrinsic cues play important roles in shaping and wiring neural connections. The perinatal period constitutes a critical time in central nervous system development with extensive refinement of neural connections, which are highly sensitive to fetal and neonatal compromise, such as inflammatory challenges. Emerging evidence suggests that inflammatory cells in the brain such as microglia and astrocytes are pivotal in regulating synaptic structure and function. In this article, we will review the role of glia cells in synaptic physiology and pathophysiology, including microglia-mediated elimination of synapses. We propose that activation of the immune system dynamically affects synaptic organization and function in the developing brain. We will discuss the role of neuroinflammation in altered synaptic plasticity following perinatal inflammatory challenges and potential implications for neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Amin Mottahedin
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Maryam Ardalan
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Tetyana Chumak
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Ilse Riebe
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Joakim Ek
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Carina Mallard
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| |
Collapse
|
90
|
Milligan R, Cockcroft K. Working Memory Profiles in HIV-Exposed, Uninfected and HIV-Infected Children: A Comparison with Neurotypical Controls. Front Hum Neurosci 2017; 11:348. [PMID: 28729828 PMCID: PMC5498467 DOI: 10.3389/fnhum.2017.00348] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/19/2017] [Indexed: 11/13/2022] Open
Abstract
This study compared the working memory profiles of three groups of children, namely HIV-infected (HIV-I; n = 95), HIV-exposed, uninfected (HIV-EU; n = 86) and an HIV-unexposed, uninfected, (HIV-UU; n = 92) neurotypical control group. Working memory, an executive function, plays an important role in frontal lobe-controlled behaviors, such as motivation, planning, decision making, and social interaction, and is a strong predictor of academic success in school children. Memory impairments have been identified in HIV-I children, particularly in visuospatial processing. Verbal working memory has not been commonly investigated in this population, while it is unknown how the working memory profiles of HIV-EU children compare to their HIV-I and HIV-UU peers. Of interest was whether the working memory profiles of the HIV-EU children would be more similar to the HIV-I group or to the uninfected control group. The results revealed no significant differences in working memory performance between the HIV-I and HIV-EU groups. However, this does not mean that the etiology of the working memory deficits is the same in the two groups, as these groups showed important differences when compared to the control group. In comparison to the controls, the HIV-I group experienced difficulties with processing tasks irrespective of whether they drew on a verbal or visuospatial modality. This appears to stem from a generalized executive function deficit that also interferes with working memory. In the HIV-EU group, difficulties occurred with verbally based tasks, irrespective of whether they required storage or processing. For this group, the dual demands of complex processing and using a second language seem to result in demand exceeding capacity on verbal tasks. Both groups experienced the greatest difficulties with verbal processing tasks for these different reasons. Thus, disruption of different cognitive abilities could result in similar working memory profiles, as evidenced in this study. This has implications for the underlying developmental neurobiology of HIV-I and HIV-EU children, as well the choice of appropriate measures to assist affected children.
Collapse
Affiliation(s)
| | - Kate Cockcroft
- Department of Psychology, School of Human and Community Development, University of the WitwatersrandJohannesburg, South Africa
| |
Collapse
|
91
|
Endocannabinod Signal Dysregulation in Autism Spectrum Disorders: A Correlation Link between Inflammatory State and Neuro-Immune Alterations. Int J Mol Sci 2017; 18:ijms18071425. [PMID: 28671614 PMCID: PMC5535916 DOI: 10.3390/ijms18071425] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 12/16/2022] Open
Abstract
Several studies highlight a key involvement of endocannabinoid (EC) system in autism pathophysiology. The EC system is a complex network of lipid signaling pathways comprised of arachidonic acid-derived compounds (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), their G-protein-coupled receptors (cannabinoid receptors CB1 and CB2) and the associated enzymes. In addition to autism, the EC system is also involved in several other psychiatric disorders (i.e., anxiety, major depression, bipolar disorder and schizophrenia). This system is a key regulator of metabolic and cellular pathways involved in autism, such as food intake, energy metabolism and immune system control. Early studies in autism animal models have demonstrated alterations in the brain's EC system. Autism is also characterized by immune system dysregulation. This alteration includes differential monocyte and macrophage responses, and abnormal cytokine and T cell levels. EC system dysfunction in a monocyte and macrophagic cellular model of autism has been demonstrated by showing that the mRNA and protein for CB2 receptor and EC enzymes were significantly dysregulated, further indicating the involvement of the EC system in autism-associated immunological disruptions. Taken together, these new findings offer a novel perspective in autism research and indicate that the EC system could represent a novel target option for autism pharmacotherapy.
Collapse
|
92
|
Li Y, Shen R, Wen G, Ding R, Du A, Zhou J, Dong Z, Ren X, Yao H, Zhao R, Zhang G, Lu Y, Wu X. Effects of Ketamine on Levels of Inflammatory Cytokines IL-6, IL-1β, and TNF-α in the Hippocampus of Mice Following Acute or Chronic Administration. Front Pharmacol 2017; 8:139. [PMID: 28373844 PMCID: PMC5357631 DOI: 10.3389/fphar.2017.00139] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/06/2017] [Indexed: 12/20/2022] Open
Abstract
Ketamine is an injectable anesthetic and recreational drug of abuse commonly used worldwide. Many experimental studies have shown that ketamine can impair cognitive function and induce psychotic states. Neuroinflammation has been suggested to play an important role in neurodegeneration. Meanwhile, ketamine has been shown to modulate the levels of inflammatory cytokines. We hypothesized that the effects of ketamine on the central nervous system are associated with inflammatory cytokines. Therefore, we set out to establish acute and chronic ketamine administration models in C57BL/6 mice, to evaluate spatial recognition memory and emotional response, to analyze the changes in the levels of the inflammatory cytokines interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in the mouse hippocampus, employing behavioral tests, Western blot, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and immunohistochemistry. Our results showed that ketamine at the dose of 60 mg/kg induced spatial recognition memory deficit and reduced anxiety-like behaviors in mice after chronic administration. Moreover, we found that ketamine increased the hippocampal levels of IL-6 and IL-1β after single, multiple and long-term administration in a dose-dependent manner. However, the expression level of TNF-α differed in the mouse hippocampus under different conditions. Single administration of ketamine increased the level of TNF-α, whereas multiple and long-term administration decreased it significantly. We considered that TNF-α expression could be controlled by a bi-directional regulatory pathway, which was associated with the dose and duration of ketamine administration. Our results suggest that the alterations in the levels of inflammatory cytokines IL-6, IL-1β, and TNF-α may be involved in the neurotoxicity of ketamine.
Collapse
Affiliation(s)
- Yanning Li
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, ShenyangChina
| | - Ruipeng Shen
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, ShenyangChina
- Wujiang District Branch of Suzhou Public Security Bureau, SuzhouChina
| | - Gehua Wen
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, ShenyangChina
| | - Runtao Ding
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, ShenyangChina
| | - Ao Du
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, ShenyangChina
| | - Jichuan Zhou
- Key Laboratory of Health Ministry in Congenital Malformation, The Affiliated Shengjing Hospital of China Medical University, ShenyangChina
| | - Zhibin Dong
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, ShenyangChina
| | - Xinghua Ren
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, ShenyangChina
| | - Hui Yao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, ShenyangChina
| | - Rui Zhao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, ShenyangChina
| | - Guohua Zhang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, ShenyangChina
| | - Yan Lu
- Key Laboratory of Health Ministry in Congenital Malformation, The Affiliated Shengjing Hospital of China Medical University, ShenyangChina
| | - Xu Wu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, ShenyangChina
| |
Collapse
|
93
|
Edmiston E, Ashwood P, Van de Water J. Autoimmunity, Autoantibodies, and Autism Spectrum Disorder. Biol Psychiatry 2017; 81:383-390. [PMID: 28340985 PMCID: PMC5373490 DOI: 10.1016/j.biopsych.2016.08.031] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/27/2016] [Accepted: 08/24/2016] [Indexed: 12/15/2022]
Abstract
Auism spectrum disorder (ASD) now affects one in 68 births in the United States and is the fastest growing neurodevelopmental disability worldwide. Alarmingly, for the majority of cases, the causes of ASD are largely unknown, but it is becoming increasingly accepted that ASD is no longer defined simply as a behavioral disorder, but rather as a highly complex and heterogeneous biological disorder. Although research has focused on the identification of genetic abnormalities, emerging studies increasingly suggest that immune dysfunction is a viable risk factor contributing to the neurodevelopmental deficits observed in ASD. This review summarizes the investigations implicating autoimmunity and autoantibodies in ASD.
Collapse
Affiliation(s)
- Elizabeth Edmiston
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, Davis, California; The M.I.N.D. Institute, University of California, Davis, Davis, California
| | - Paul Ashwood
- The M.I.N.D. Institute, University of California, Davis, Davis, California; NIEHS Center for Children's Environmental Health, University of California, Davis, Davis, California; Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California
| | - Judy Van de Water
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, Davis, California; The M.I.N.D. Institute, University of California, Davis, Davis, California; NIEHS Center for Children's Environmental Health, University of California, Davis, Davis, California.
| |
Collapse
|
94
|
Careaga M, Murai T, Bauman MD. Maternal Immune Activation and Autism Spectrum Disorder: From Rodents to Nonhuman and Human Primates. Biol Psychiatry 2017; 81:391-401. [PMID: 28137374 PMCID: PMC5513502 DOI: 10.1016/j.biopsych.2016.10.020] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/20/2016] [Accepted: 10/20/2016] [Indexed: 12/18/2022]
Abstract
A subset of women who are exposed to infection during pregnancy have an increased risk of giving birth to a child who will later be diagnosed with a neurodevelopmental or neuropsychiatric disorder. Although epidemiology studies have primarily focused on the association between maternal infection and an increased risk of offspring schizophrenia, mounting evidence indicates that maternal infection may also increase the risk of autism spectrum disorder. A number of factors, including genetic susceptibility, the intensity and timing of the infection, and exposure to additional aversive postnatal events, may influence the extent to which maternal infection alters fetal brain development and which disease phenotype (autism spectrum disorder, schizophrenia, other neurodevelopmental disorders) is expressed. Preclinical animal models provide a test bed to systematically evaluate the effects of maternal infection on fetal brain development, determine the relevance to human central nervous system disorders, and to evaluate novel preventive and therapeutic strategies. Maternal immune activation models in mice, rats, and nonhuman primates suggest that the maternal immune response is the critical link between exposure to infection during pregnancy and subsequent changes in brain and behavioral development of offspring. However, differences in the type, severity, and timing of prenatal immune challenge paired with inconsistencies in behavioral phenotyping approaches have hindered the translation of preclinical results to human studies. Here we highlight the promises and limitations of the maternal immune activation model as a preclinical tool to study prenatal risk factors for autism spectrum disorder, and suggest specific changes to improve reproducibility and maximize translational potential.
Collapse
Affiliation(s)
- Milo Careaga
- UC Davis MIND Institute, University of California, Davis, California; Department of Psychiatry and Behavioral Sciences, University of California, Davis, California
| | - Takeshi Murai
- UC Davis MIND Institute, University of California, Davis, California; California National Primate Research Center, University of California, Davis, California; Biomarker Group, Drug Development Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Melissa D Bauman
- UC Davis MIND Institute, University of California, Davis, California; Department of Psychiatry and Behavioral Sciences, University of California, Davis, California; California National Primate Research Center, University of California, Davis, California.
| |
Collapse
|
95
|
Holder MK, Blaustein JD. Developmental time course and effects of immunostressors that alter hormone-responsive behavior on microglia in the peripubertal and adult female mouse brain. PLoS One 2017; 12:e0171381. [PMID: 28158270 PMCID: PMC5291383 DOI: 10.1371/journal.pone.0171381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/18/2017] [Indexed: 12/16/2022] Open
Abstract
In female mice, the experience of being shipped from the breeder facility or a single injection of the bacterial endotoxin, lipopolysaccharide (LPS), during pubertal development alters the behavioral response to estradiol in adulthood as demonstrated by perturbations of estradiol's effects on sexual behavior, cognitive function, as well as its anxiolytic and anti-depressive properties. Microglia, the primary type of immunocompetent cell within the brain, contribute to brain development and respond to stressors with marked and long-lasting morphological and functional changes. Here, we describe the morphology of microglia and their response to shipping and LPS in peripubertal and adult female mice. Peripubertal mice have more microglia with long, thick processes in the hippocampus, amygdala and hypothalamus as compared with adult mice in the absence of an immune challenge. An immune challenge also increases immunoreactivity (IR) of ionized calcium binding adaptor molecule 1 (Iba1), which is constitutively expressed in microglia. In the hippocampus, the age of animal was without effect on the increase in Iba1- IR following shipping from the breeder facility or LPS exposure. In the amygdala, we observed more Iba1-IR following shipping or LPS treatment in peripubertal mice, compared to adult mice. In the hypothalamus, there was a disassociation of the effects of shipping and LPS treatment as LPS treatment, but not shipping, induced an increase in Iba1-IR. Taken together these data indicate that microglial morphologies differ between pubertal and adult mice; moreover, the microglial response to complex stressors is greater in pubertal mice as compared to adult mice.
Collapse
Affiliation(s)
- Mary K. Holder
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
- Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts, United States of America
- * E-mail:
| | - Jeffrey D. Blaustein
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
- Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts, United States of America
| |
Collapse
|
96
|
Jin Y, Kong J. Transcutaneous Vagus Nerve Stimulation: A Promising Method for Treatment of Autism Spectrum Disorders. Front Neurosci 2017; 10:609. [PMID: 28163670 PMCID: PMC5247460 DOI: 10.3389/fnins.2016.00609] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/22/2016] [Indexed: 12/19/2022] Open
Abstract
Transcutaneous Vagus Nerve Stimulation (tVNS) on the auricular branch of the vagus nerve has been receiving attention due to its therapeutic potential for neuropsychiatric disorders. Although the mechanism of tVNS is not yet completely understood, studies have demonstrated the potential role of vagal afferent nerve stimulation in the regulation of mood and visceral state associated with social communication. In addition, a growing body of evidence shows that tVNS can activate the brain regions associated with Autism Spectrum Disorder (ASD), trigger neuroimmune modulation and produce treatment effects for comorbid disorders of ASD such as epilepsy and depression. We thus hypothesize that tVNS may be a promising treatment for ASD, not only for comorbid epilepsy and depression, but also for the core symptoms of ASD. The goal of this manuscript is to summarize the findings and rationales for applying tVNS to treat ASD and propose potential parameters for tVNS treatment of ASD.
Collapse
Affiliation(s)
- Yu Jin
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen UniversityGuangzhou, China
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, MA, USA
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, MA, USA
| |
Collapse
|
97
|
Kadasah S, Arfin M, Rizvi S, Al-Asmari M, Al-Asmari A. Tumor necrosis factor-α and -β genetic polymorphisms as a risk factor in Saudi patients with schizophrenia. Neuropsychiatr Dis Treat 2017; 13:1081-1088. [PMID: 28442912 PMCID: PMC5396949 DOI: 10.2147/ndt.s131144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Schizophrenia is one of the most common devastating psychiatric disorders that negatively affects the quality of life and psychosocial functions. Its etiology involves the interplay of complex polygenic influences and environmental risk factors. Inflammatory markers are well-known etiological factors for psychiatric disorders, including schizophrenia. OBJECTIVE The aim of this study was to investigate the association of proinflammatory cytokine genes, tumor necrosis factor (TNF)-α (-308G/A) and TNF-β (+252A/G) polymorphisms with schizophrenia susceptibility. SUBJECTS AND METHODS TNF-α and TNF-β genes were amplified using amplification refractory mutation system primers in 180 schizophrenia patients and 200 healthy matched controls recruited from the Psychiatry Clinic of Prince Sultan Military Medical City, Riyadh. The frequencies of alleles and genotypes of TNF-α (-308G/A) and TNF-β (+252A/G) polymorphisms in patients were compared with those in controls. RESULTS The frequencies of TNF-α (-308) allele A and genotype GA were significantly higher, while those of allele G and genotype GG were lower in schizophrenia patients as compared to controls, indicating that genotype GA and allele A of TNF-α (-308G/A) may increase susceptibility to schizophrenia, while genotype GG and allele G may reduce it. On the other hand, the distribution of alleles and genotypes of TNF-β (+252A/G) polymorphism does not differ significantly in patients from controls; however, the frequency of genotype GG of TNF-β (+252A/G) was significantly higher in male patients than in female patients. The distribution of TNF-α (-308G/A) and TNF-β (+252A/G) polymorphisms was almost similar in schizophrenia patients with negative or positive symptoms. CONCLUSION TNF-α (-308G/A) and TNF-β (+252G/A) polymorphisms may increase the susceptibility to schizophrenia in Saudi patients and could be a potential risk factor for its etiopathogenesis. However, further studies are warranted involving a larger sample size to strengthen our findings.
Collapse
Affiliation(s)
| | - Misbahul Arfin
- Division of Molecular Biology & Genetics, Scientific Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Sadaf Rizvi
- Division of Molecular Biology & Genetics, Scientific Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Mohammed Al-Asmari
- Division of Molecular Biology & Genetics, Scientific Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Abdulrahman Al-Asmari
- Division of Molecular Biology & Genetics, Scientific Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
98
|
Claypoole LD, Zimmerberg B, Williamson LL. Neonatal lipopolysaccharide treatment alters hippocampal neuroinflammation, microglia morphology and anxiety-like behavior in rats selectively bred for an infantile trait. Brain Behav Immun 2017; 59:135-146. [PMID: 27591170 DOI: 10.1016/j.bbi.2016.08.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/22/2016] [Accepted: 08/29/2016] [Indexed: 01/17/2023] Open
Abstract
Disruptions in homeostasis, such as the induction of inflammation, occurring during the neonatal period of development often produce changes in the brain, physiology, and behavior that persist through the life span. This study investigated the potential effects that an immune challenge delivered during neonatal development would have on anxiety behavior and stress reactivity later in life within a selectively-bred strain of rat. The rats have been bred for multiple generations to display either high or low anxiety-like phenotypic behavior. On postnatal day (P)3 and P5, male and female neonates were injected with saline or lipopolysaccharide (LPS). Brains were collected from a subset of neonates following injections. At P7, one male and one female per litter were tested for ultrasonic vocalizations (USVs). In adulthood, remaining litter mates were tested on the open field apparatus and the elevated zero maze (EZM) or on the EZM following 3days of acute stress. Overall, we saw differences between the High and Low lines in neonatal anxiety-like behavior (USVs), neonatal peripheral immune response, adult anxiety-like behavior on the EZM, and adult anxiety-like behavior after stress induction, such that the High line rats display significantly more anxiety-like behavior than the Low line. Furthermore, we observed an effect of neonatal LPS during the neonatal peripheral immune response (e.g., increased inflammatory cytokine expression) and adult anxiety-like behavior on the EZM. We also observed an effect of sex within the anxiety-like behavior of LPS-treated adults exposed to stress paradigm. The combined results shed light on the relationships between neural development, early-life inflammation and anxiety throughout the lifespan.
Collapse
Affiliation(s)
- Lauren D Claypoole
- Psychology Department, Williams College, Williamstown, MA 01267, United States
| | - Betty Zimmerberg
- Psychology Department, Williams College, Williamstown, MA 01267, United States
| | - Lauren L Williamson
- Psychology Department, Williams College, Williamstown, MA 01267, United States.
| |
Collapse
|
99
|
Peripheral Inflammatory Markers Contributing to Comorbidities in Autism. Behav Sci (Basel) 2016; 6:bs6040029. [PMID: 27983615 PMCID: PMC5197942 DOI: 10.3390/bs6040029] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 11/17/2022] Open
Abstract
This study evaluates the contribution of peripheral biomarkers to comorbidities and clinical findings in autism. Seventeen autistic children and age-matched typically developing (AMTD), between three to nine years old were evaluated. The diagnostic followed the Diagnostic and Statistical Manual of Mental Disorders 4th Edition (DMS-IV) and the Childhood Autism Rating Scale (CARS) was applied to classify the severity. Cytokine profile was evaluated in plasma using a sandwich type ELISA. Paraclinical events included electroencephalography (EEG) record. Statistical analysis was done to explore significant differences in cytokine profile between autism and AMTD groups and respect clinical and paraclinical parameters. Significant differences were found to IL-1β, IL-6, IL-17, IL-12p40, and IL-12p70 cytokines in individuals with autism compared with AMTD (p < 0.05). All autistic patients showed interictalepileptiform activity at EEG, however, only 37.5% suffered epilepsy. There was not a regional focalization of the abnormalities that were detectable with EEG in autistic patients with history of epilepsy. A higher IL-6 level was observed in patients without history of epilepsy with interictalepileptiform activity in the frontal brain region, p < 0.05. In conclusion, peripheral inflammatory markers might be useful as potential biomarkers to predict comorbidities in autism as well as reinforce and aid informed decision-making related to EEG findings in children with Autism spectrum disorders (ASD).
Collapse
|
100
|
Macht VA. Neuro-immune interactions across development: A look at glutamate in the prefrontal cortex. Neurosci Biobehav Rev 2016; 71:267-280. [PMID: 27593444 DOI: 10.1016/j.neubiorev.2016.08.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 07/26/2016] [Accepted: 08/31/2016] [Indexed: 02/07/2023]
Abstract
Although the primary role for the immune system is to respond to pathogens, more recently, the immune system has been demonstrated to have a critical role in signaling developmental events. Of particular interest for this review is how immunocompetent microglia and astrocytes interact with glutamatergic systems to influence the development of neural circuits in the prefrontal cortex (PFC). Microglia are the resident macrophages of the brain, and astrocytes mediate both glutamatergic uptake and coordinate with microglia to respond to the general excitatory state of the brain. Cross-talk between microglia, astrocytes, and glutamatergic neurons forms a quad-partite synapse, and this review argues that interactions within this synapse have critical implications for the maturation of PFC-dependent cognitive function. Similarly, understanding developmental shifts in immune signaling may help elucidate variations in sensitivities to developmental disruptions.
Collapse
Affiliation(s)
- Victoria A Macht
- University of South Carolina, 1512 Pendleton St., Department of Psychology, Columbia, SC 29208, United States.
| |
Collapse
|