51
|
Kim S, Lee M, Song Y, Lee SY, Choi I, Park IS, Kim J, Kim JS, Kim KM, Seo HR. Argininosuccinate synthase 1 suppresses tumor progression through activation of PERK/eIF2α/ATF4/CHOP axis in hepatocellular carcinoma. J Exp Clin Cancer Res 2021; 40:127. [PMID: 33838671 PMCID: PMC8035787 DOI: 10.1186/s13046-021-01912-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignant cancers worldwide, and liver cancer has increased in mortality due to liver cancer because it was detected at an advanced stages in patients with liver dysfunction, making HCC a lethal cancer. Accordingly, we aim to new targets for HCC drug discovery using HCC tumor spheroids. METHODS Our comparative proteomic analysis of HCC cells grown in culture as monolayers (2D) and spheroids (3D) revealed that argininosuccinate synthase 1 (ASS1) expression was higher in 3D cells than in 2D cells due to upregulated endoplasmic reticulum (ER) stress responses. We investigated the clinical value of ASS1 in Korean patients with HCC. The mechanism underlying ASS1-mediated tumor suppression was investigated in HCC spheroids. ASS1-mediated improvement of chemotherapy efficiency was observed using high content screening in an HCC xenograft mouse model. RESULTS Studies of tumor tissue from Korean HCC patients showed that, although ASS1 expression was low in most samples, high levels of ASS1 were associated with favorable overall survival of patients. Here, we found that bidirectional interactions between ASS1 ER stress responses in HCC-derived multicellular tumor spheroids can limit HCC progression. ASS1 overexpression effectively inhibited tumor growth and enhanced the efficacy of in vitro and in vivo anti-HCC combination chemotherapy via activation of the PERK/eIF2α/ATF4/CHOP axis, but was not dependent on the status of p53 and arginine metabolism. CONCLUSIONS These results demonstrate the critical functional roles for the arginine metabolism-independent tumor suppressor activity of ASS1 in HCC and suggest that upregulating ASS1 in these tumors is a potential strategy in HCC cells with low ASS1 expression.
Collapse
Affiliation(s)
- Sanghwa Kim
- Cancer Biology Research Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 463-400 Republic of Korea
| | - Minji Lee
- Cancer Biology Research Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 463-400 Republic of Korea
| | - Yeonhwa Song
- Cancer Biology Research Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 463-400 Republic of Korea
| | - Su-Yeon Lee
- Cancer Biology Research Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 463-400 Republic of Korea
| | - Inhee Choi
- Medicinal Chemistry, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13488 South Korea
| | - I-Seul Park
- Screening Discovery Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13488 South Korea
| | - Jiho Kim
- Screening Discovery Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13488 South Korea
| | - Jin-sun Kim
- Department of Gastroenterology, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 South Korea
| | - Kang mo Kim
- Department of Gastroenterology, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 South Korea
| | - Haeng Ran Seo
- Cancer Biology Research Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 463-400 Republic of Korea
| |
Collapse
|
52
|
Wang R, Cao L, Thorne RF, Zhang XD, Li J, Shao F, Zhang L, Wu M. LncRNA GIRGL drives CAPRIN1-mediated phase separation to suppress glutaminase-1 translation under glutamine deprivation. SCIENCE ADVANCES 2021; 7:7/13/eabe5708. [PMID: 33762340 PMCID: PMC7990344 DOI: 10.1126/sciadv.abe5708] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/04/2021] [Indexed: 05/03/2023]
Abstract
Glutamine constitutes an essential source of both carbon and nitrogen for numerous biosynthetic processes. The first and rate-limiting step of glutaminolysis involves the generation of glutamate from glutamine, catalyzed by glutaminase-1 (GLS1). Shortages of glutamine result in reductions in GLS1, but the underlying mechanisms are not fully known. Here, we characterize a long noncoding RNA, GIRGL (glutamine insufficiency regulator of glutaminase lncRNA), that is induced upon glutamine starvation. Manipulating GIRGL revealed a relationship between its expression and the translational suppression of GLS1. Cellular GIRGL levels are balanced by a combination of transactivation by c-JUN together with negative stability regulation via HuR/Ago2. Increased levels of GIRGL in the absence of glutamine drive formation of a complex between dimers of CAPRIN1 and GLS1 mRNA, serving to promote liquid-liquid phase separation of CAPRIN1 and inducing stress granule formation. Suppressing GLS1 mRNA translation enables cancer cells to survive under prolonged glutamine deprivation stress.
Collapse
Affiliation(s)
- Ruijie Wang
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China
| | - Leixi Cao
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China
| | - Rick Francis Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2258, Australia
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jinming Li
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China
| | - Fengmin Shao
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China.
| | - Lirong Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China.
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China.
- School of Clinical Medicine, Henan University, Zhengzhou 450003, China
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Centre for Excellence in Molecular Cell Science, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
53
|
Mouron S, Bueno MJ, Muñoz M, Quintela-Fandino M. Monitoring vascular normalization: new opportunities for mitochondrial inhibitors in breast cancer. Oncoscience 2021; 8:1-13. [PMID: 33869665 PMCID: PMC8018703 DOI: 10.18632/oncoscience.523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/08/2021] [Indexed: 11/25/2022] Open
Abstract
Preclinical evidence indicates the potential of targeting mitochondrial respiration as a therapeutic strategy. We previously demonstrated that mitochondrial inhibitors’ efficacy was restricted to a metabolic context in which mitochondrial respiration was the predominant energy source, a situation achievable by inducing vascular normalization/hypoxia correction with antiangiogenics. Using molecular imaging, we showed how the same antiangiogenic agent may display different normalizing properties in patients with the same tumor type. This is of key importance, since patients experiencing normalization seem to get more benefit from standard chemotherapy combinations, and also could be eligible for combination with antimitochondrial agents. This scenario emphasizes the need for monitoring vascular normalization in order to optimize the use of antiangiogenics. We have also proposed a method to evaluate anti-mitochondrial agents’ pharmacodynamics; despite promising accuracy in animal studies the clinical results were inconclusive, highlighting the need for research in this field. Regarding patients that respond to antiangiogenics increasing vessel abnormality, in this case an immunosuppressive tumor microenvironment is generated. Whether anti-mitochondrial agents can positively modulate the activity of T effector cell subpopulations remains an area of active research. Our research sheds light on the importance of refining the use of antiangiogenics, highlighting the relevance of tracing vascular normalization as a potential biomarker for antiangiogenics to assist patient-tailored medicine and exploring the role of mitochondrial inhibitors in the context of vascular normalization and correction of hypoxia.
Collapse
Affiliation(s)
- Silvana Mouron
- Breast Cancer Clinical Research Unit - Clinical Research Program, CNIO - Spanish National Cancer Research Center, Madrid, Spain
| | - Maria J Bueno
- Breast Cancer Clinical Research Unit - Clinical Research Program, CNIO - Spanish National Cancer Research Center, Madrid, Spain
| | - Manuel Muñoz
- Breast Cancer Clinical Research Unit - Clinical Research Program, CNIO - Spanish National Cancer Research Center, Madrid, Spain
| | - Miguel Quintela-Fandino
- Breast Cancer Clinical Research Unit - Clinical Research Program, CNIO - Spanish National Cancer Research Center, Madrid, Spain.,Medical Oncology, Hospital Universitario de Fuenlabrada, Fuenlabrada, Madrid, Spain.,Medical Oncology, Hospital Universitario Quiron, Pozuelo de Alarcon, Madrid, Spain.,Department of Medicine, Universidad Autonóma de Madrid, Madrid, Spain
| |
Collapse
|
54
|
El Sayed R, Haibe Y, Amhaz G, Bouferraa Y, Shamseddine A. Metabolic Factors Affecting Tumor Immunogenicity: What Is Happening at the Cellular Level? Int J Mol Sci 2021; 22:2142. [PMID: 33670011 PMCID: PMC7927105 DOI: 10.3390/ijms22042142] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Immunotherapy has changed the treatment paradigm in multiple solid and hematologic malignancies. However, response remains limited in a significant number of cases, with tumors developing innate or acquired resistance to checkpoint inhibition. Certain "hot" or "immune-sensitive" tumors become "cold" or "immune-resistant", with resultant tumor growth and disease progression. Multiple factors are at play both at the cellular and host levels. The tumor microenvironment (TME) contributes the most to immune-resistance, with nutrient deficiency, hypoxia, acidity and different secreted inflammatory markers, all contributing to modulation of immune-metabolism and reprogramming of immune cells towards pro- or anti-inflammatory phenotypes. Both the tumor and surrounding immune cells require high amounts of glucose, amino acids and fatty acids to fulfill their energy demands. Thus, both compete over one pool of nutrients that falls short on needs, obliging cells to resort to alternative adaptive metabolic mechanisms that take part in shaping their inflammatory phenotypes. Aerobic or anaerobic glycolysis, oxidative phosphorylation, tryptophan catabolism, glutaminolysis, fatty acid synthesis or fatty acid oxidation, etc. are all mechanisms that contribute to immune modulation. Different pathways are triggered leading to genetic and epigenetic modulation with consequent reprogramming of immune cells such as T-cells (effector, memory or regulatory), tumor-associated macrophages (TAMs) (M1 or M2), natural killers (NK) cells (active or senescent), and dendritic cells (DC) (effector or tolerogenic), etc. Even host factors such as inflammatory conditions, obesity, caloric deficit, gender, infections, microbiota and smoking status, may be as well contributory to immune modulation, anti-tumor immunity and response to immune checkpoint inhibition. Given the complex and delicate metabolic networks within the tumor microenvironment controlling immune response, targeting key metabolic modulators may represent a valid therapeutic option to be combined with checkpoint inhibitors in an attempt to regain immune function.
Collapse
Affiliation(s)
- Rola El Sayed
- Global Health Institute, American University of Beirut, Beirut 11-0236, Lebanon;
| | - Yolla Haibe
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 11-0236, Lebanon; (Y.H.); (G.A.); (Y.B.)
| | - Ghid Amhaz
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 11-0236, Lebanon; (Y.H.); (G.A.); (Y.B.)
| | - Youssef Bouferraa
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 11-0236, Lebanon; (Y.H.); (G.A.); (Y.B.)
| | - Ali Shamseddine
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 11-0236, Lebanon; (Y.H.); (G.A.); (Y.B.)
| |
Collapse
|
55
|
Targeting Cancer Metabolism and Current Anti-Cancer Drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1286:15-48. [PMID: 33725343 DOI: 10.1007/978-3-030-55035-6_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Several studies have exploited the metabolic hallmarks that distinguish between normal and cancer cells, aiming at identifying specific targets of anti-cancer drugs. It has become apparent that metabolic flexibility allows cancer cells to survive during high anabolic demand or the depletion of nutrients and oxygen. Cancers can reprogram their metabolism to the microenvironments by increasing aerobic glycolysis to maximize ATP production, increasing glutaminolysis and anabolic pathways to support bioenergetic and biosynthetic demand during rapid proliferation. The increased key regulatory enzymes that support the relevant pathways allow us to design small molecules which can specifically block activities of these enzymes, preventing growth and metastasis of tumors. In this review, we discuss metabolic adaptation in cancers and highlight the crucial metabolic enzymes involved, specifically those involved in aerobic glycolysis, glutaminolysis, de novo fatty acid synthesis, and bioenergetic pathways. Furthermore, we also review the success and the pitfalls of the current anti-cancer drugs which have been applied in pre-clinical and clinical studies.
Collapse
|
56
|
Alzeibak R, Mishchenko TA, Shilyagina NY, Balalaeva IV, Vedunova MV, Krysko DV. Targeting immunogenic cancer cell death by photodynamic therapy: past, present and future. J Immunother Cancer 2021; 9:e001926. [PMID: 33431631 PMCID: PMC7802670 DOI: 10.1136/jitc-2020-001926] [Citation(s) in RCA: 313] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 12/18/2022] Open
Abstract
The past decade has witnessed major breakthroughs in cancer immunotherapy. This development has been largely motivated by cancer cell evasion of immunological control and consequent tumor resistance to conventional therapies. Immunogenic cell death (ICD) is considered one of the most promising ways to achieve total tumor cell elimination. It activates the T-cell adaptive immune response and results in the formation of long-term immunological memory. ICD can be triggered by many anticancer treatment modalities, including photodynamic therapy (PDT). In this review, we first discuss the role of PDT based on several classes of photosensitizers, including porphyrins and non-porphyrins, and critically evaluate their potential role in ICD induction. We emphasize the emerging trend of ICD induction by PDT in combination with nanotechnology, which represents third-generation photosensitizers and involves targeted induction of ICD by PDT. However, PDT also has some limitations, including the reduced efficiency of ICD induction in the hypoxic tumor microenvironment. Therefore, we critically evaluate strategies for overcoming this limitation, which is essential for increasing PDT efficiency. In the final part, we suggest several areas for future research for personalized cancer immunotherapy, including strategies based on oxygen-boosted PDT and nanoparticles. In conclusion, the insights from the last several years increasingly support the idea that PDT is a powerful strategy for inducing ICD in experimental cancer therapy. However, most studies have focused on mouse models, but it is necessary to validate this strategy in clinical settings, which will be a challenging research area in the future.
Collapse
Affiliation(s)
- Razan Alzeibak
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Tatiana A Mishchenko
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Natalia Y Shilyagina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Irina V Balalaeva
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Maria V Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Dmitri V Krysko
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
- Cell Death Investigation and Therapy Laboratory (CDIT), Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
57
|
Elia I, Haigis MC. Metabolites and the tumour microenvironment: from cellular mechanisms to systemic metabolism. Nat Metab 2021; 3:21-32. [PMID: 33398194 PMCID: PMC8097259 DOI: 10.1038/s42255-020-00317-z] [Citation(s) in RCA: 351] [Impact Index Per Article: 87.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Metabolic transformation is a hallmark of cancer and a critical target for cancer therapy. Cancer metabolism and behaviour are regulated by cell-intrinsic factors as well as metabolite availability in the tumour microenvironment (TME). This metabolic niche within the TME is shaped by four tiers of regulation: (1) intrinsic tumour cell metabolism, (2) interactions between cancer cells and non-cancerous cells, (3) tumour location and heterogeneity and (4) whole-body metabolic homeostasis. Here, we define these modes of metabolic regulation and review how distinct cell types contribute to the metabolite composition of the TME. Finally, we connect these insights to understand how each of these tiers offers unique therapeutic potential to modulate the metabolic profile and function of all cells inhabiting the TME.
Collapse
Affiliation(s)
- Ilaria Elia
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Ludwig Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Ludwig Cancer Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
58
|
Guillaumond F, Vasseur S. Nutriments et cancer : alliés ou ennemis ? CAHIERS DE NUTRITION ET DE DIÉTÉTIQUE 2020; 55:276-294. [DOI: 10.1016/j.cnd.2020.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
59
|
Han X, Zhang WH, Wang WQ, Yu XJ, Liu L. Cancer-associated fibroblasts in therapeutic resistance of pancreatic cancer: Present situation, predicaments, and perspectives. Biochim Biophys Acta Rev Cancer 2020; 1874:188444. [PMID: 33031899 DOI: 10.1016/j.bbcan.2020.188444] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is highly lethal, and the most effective treatment is curative resection followed by chemotherapy. Unfortunately, chemoresistance is an extremely common occurrence, and novel treatment modalities, such as immunotherapy and molecular targeted therapy, have shown limited success in clinical practice. Pancreatic cancer is characterized by an abundant stromal compartment. Cancer-associated fibroblasts (CAFs) and the extracellular matrix they deposit account for a large portion of the pancreatic tumor stroma. CAFs interact directly and indirectly with pancreatic cancer cells and can compromise the effects of, and even promote tumorigenic responses to, various treatment approaches. To eliminate these adverse effects, CAFs depletion strategies were developed. Instead of the anticipated antitumor effects of CAFs depletion, more aggressive tumor phenotypes were occasionally observed. The failure of universal stromal depletion led to the investigation of CAFs heterogeneity that forms the foundation for stromal remodeling and normalization. This review analyzes the role of CAFs in therapeutic resistance of pancreatic cancer and discusses potential CAFs-targeting strategies basing on the diverse biological functions of CAFs, thus to improve the outcome of pancreatic cancer treatment.
Collapse
Affiliation(s)
- Xuan Han
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wu-Hu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
60
|
Mostazo MGC, Kurrle N, Casado M, Fuhrmann D, Alshamleh I, Häupl B, Martín-Sanz P, Brüne B, Serve H, Schwalbe H, Schnütgen F, Marin S, Cascante M. Metabolic Plasticity Is an Essential Requirement of Acquired Tyrosine Kinase Inhibitor Resistance in Chronic Myeloid Leukemia. Cancers (Basel) 2020; 12:cancers12113443. [PMID: 33228196 PMCID: PMC7699488 DOI: 10.3390/cancers12113443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Tyrosine kinase inhibitors (TKIs), such as imatinib, have become the standard initial treatment of choice for chronic myeloid leukemia (CML) patients. However, one obstacle to face is that a significant proportion of patients presents poor response to TKIs, or acquires resistance resulting in disease relapses. Mutations in BCR-ABL1 protein are a well described mechanism of resistance but other not well established mechanisms outside BCR-ABL1 mutations are emerging as important in the acquisition of resistance. Abnormal metabolism of CML cells that acquire resistance to imatinib has been pointed out as a putative downstream key event, but deep studies aimed to unveil metabolic adaptations associated with acquired resistance are still lacking. Here, we perform an exhaustive study on metabolic reprogramming associated with acquired imatinib resistance and we identify metabolic vulnerabilities of CML imatinib resistant cells that could pave the way for new therapies targeting TKI failure. Abstract Tyrosine kinase inhibitors (TKIs) are currently the standard chemotherapeutic agents for the treatment of chronic myeloid leukemia (CML). However, due to TKI resistance acquisition in CML patients, identification of new vulnerabilities is urgently required for a sustained response to therapy. In this study, we have investigated metabolic reprogramming induced by TKIs independent of BCR-ABL1 alterations. Proteomics and metabolomics profiling of imatinib-resistant CML cells (ImaR) was performed. KU812 ImaR cells enhanced pentose phosphate pathway, glycogen synthesis, serine-glycine-one-carbon metabolism, proline synthesis and mitochondrial respiration compared with their respective syngeneic parental counterparts. Moreover, the fact that only 36% of the main carbon sources were utilized for mitochondrial respiration pointed to glycerol-phosphate shuttle as mainly contributors to mitochondrial respiration. In conclusion, CML cells that acquire TKIs resistance present a severe metabolic reprogramming associated with an increase in metabolic plasticity needed to overcome TKI-induced cell death. Moreover, this study unveils that KU812 Parental and ImaR cells viability can be targeted with metabolic inhibitors paving the way to propose novel and promising therapeutic opportunities to overcome TKI resistance in CML.
Collapse
Affiliation(s)
- Miriam G. Contreras Mostazo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
- Institute of Biomedicine of University of Barcelona, 08028 Barcelona, Spain
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; (N.K.); (B.H.); (H.S.); (F.S.)
| | - Nina Kurrle
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; (N.K.); (B.H.); (H.S.); (F.S.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (H.S.)
- Frankfurt Cancer Institute (FCI), Goethe University, 60590 Frankfurt am Main, Germany;
| | - Marta Casado
- Biomedicine Institute of Valencia, IBV-CSIC, 46010 Valencia, Spain;
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain;
| | - Dominik Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany;
| | - Islam Alshamleh
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (H.S.)
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Björn Häupl
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; (N.K.); (B.H.); (H.S.); (F.S.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (H.S.)
- Frankfurt Cancer Institute (FCI), Goethe University, 60590 Frankfurt am Main, Germany;
| | - Paloma Martín-Sanz
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain;
- “Alberto Sols” Biomedical Research Institute, CSIC-UAM, 28029 Madrid, Spain
| | - Bernhard Brüne
- Frankfurt Cancer Institute (FCI), Goethe University, 60590 Frankfurt am Main, Germany;
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany;
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt am Main, Germany
| | - Hubert Serve
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; (N.K.); (B.H.); (H.S.); (F.S.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (H.S.)
- Frankfurt Cancer Institute (FCI), Goethe University, 60590 Frankfurt am Main, Germany;
| | - Harald Schwalbe
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (H.S.)
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Frank Schnütgen
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; (N.K.); (B.H.); (H.S.); (F.S.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (H.S.)
- Frankfurt Cancer Institute (FCI), Goethe University, 60590 Frankfurt am Main, Germany;
| | - Silvia Marin
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
- Institute of Biomedicine of University of Barcelona, 08028 Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain;
- Metabolomics Node at Spanish National Bioinformatics Institute (INB-ISCIII-ES- ELIXIR), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: (S.M.); (M.C.); Tel.: +34-934021217 (S.M.); +34-934021593 (M.C.)
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
- Institute of Biomedicine of University of Barcelona, 08028 Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain;
- Metabolomics Node at Spanish National Bioinformatics Institute (INB-ISCIII-ES- ELIXIR), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: (S.M.); (M.C.); Tel.: +34-934021217 (S.M.); +34-934021593 (M.C.)
| |
Collapse
|
61
|
Rossetti RAM, da Silva-Junior IA, Rodríguez GR, Alvarez KLF, Stone SC, Cipelli M, Silveira CRF, Beldi MC, Mota GR, Margarido PFR, Baracat EC, Uno M, Villa LL, Carvalho JP, Yokochi K, Rosa MBSF, Lorenzi NP, Lepique AP. Local and Systemic STAT3 and p65 NF-KappaB Expression as Progression Markers and Functional Targets for Patients With Cervical Cancer. Front Oncol 2020; 10:587132. [PMID: 33330068 PMCID: PMC7710991 DOI: 10.3389/fonc.2020.587132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/22/2020] [Indexed: 11/13/2022] Open
Abstract
Cervical cancer, which main etiologic factor is Human Papillomavirus (HPV) infection, continues to be a burden for public health systems in developing countries. Our laboratory has been working with the hypothesis that signals generated in the tumor microenvironment can modulate local and systemic immune responses. In this context, it would be reasonable to think that tumors create pro-tumoral bias in immune cells, even before they are recruited to the tumor microenvironment. To understand if and how signaling started in the tumor microenvironment can influence cells within the tumor and systemically, we investigated the expression of key proteins in signaling pathways important for cell proliferation, viability, immune responses and tolerance. Besides, we used detection of specific phosphorylated residues, which are indicative of activation for Akt, CREB, p65 NFκB, and STAT3. Our findings included the observation of a significant STAT3 expression increase and p65 NFκB decrease in circulating leukocytes in correlation with lesion grade. In light of those observations, we started investigating the result of the inhibition of STAT3 in a tumor experimental model. STAT3 inhibition impaired tumor growth, increased anti-tumor T cell responses and decreased the accumulation of myeloid cells in the spleen. The concomitant inhibition of NFκB partially reversed these effects. This study indicates that STAT3 and NFκB are involved in immunomodulatory tumor effects and STAT3 inhibition could be considered as therapy for patients with cervical cancer.
Collapse
Affiliation(s)
- Renata A. M. Rossetti
- Department of Immunology, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, São Paulo, Brazil
- Department of Radiology and Oncology, Faculdade de Medicina da Universidade de Sao Paulo, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | | | - Gretel R. Rodríguez
- Department of Immunology, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Karla L. F. Alvarez
- Department of Immunology, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Simone C. Stone
- Department of Immunology, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Marcella Cipelli
- Department of Immunology, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Caio R. F. Silveira
- Department of Immunology, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Mariana Carmezim Beldi
- Department of Immunology, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Giana R. Mota
- Department of Radiology and Oncology, Faculdade de Medicina da Universidade de Sao Paulo, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | | | | | - Miyuki Uno
- Biobanco da Rede Acadêmica de Pesquisa do Câncer da Universidade de Sao Paulo, São Paulo, Brazil
| | - Luisa L. Villa
- Department of Radiology and Oncology, Faculdade de Medicina da Universidade de Sao Paulo, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Jesus P. Carvalho
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Kaori Yokochi
- Department of Radiology and Oncology, Faculdade de Medicina da Universidade de Sao Paulo, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Maria Beatriz S. F. Rosa
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Noely P. Lorenzi
- Department of Radiology and Oncology, Faculdade de Medicina da Universidade de Sao Paulo, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Ana Paula Lepique
- Department of Immunology, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
62
|
Jiang Y, Tu X, Zhang X, Liao H, Han S, Jiang W, Zheng Y, Zhao P, Tong Z, Fu Q, Qi Q, Shen J, Zhong L, Pan Y, Fang W. Nutrition and metabolism status alteration in advanced hepatocellular carcinoma patients treated with anti-PD-1 immunotherapy. Support Care Cancer 2020; 28:5569-5579. [PMID: 32361828 DOI: 10.1007/s00520-020-05478-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/17/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE The aim of this study was to evaluate the nutrition and metabolism status alteration during immunotherapy in advanced hepatocellular carcinoma (HCC) patients. METHODS Patients with advanced HCC who participated in the clinical trials of single-agent anti-PD-1 immunotherapy or sorafenib were retrospectively included. We analyzed self-comparison of the nutritional and metabolic indices of patients in the anti-PD-1 and sorafenib treatment group. We conducted mutual-comparison of the mentioned indices between the disease progression group and disease control group among anti-PD-1 treatment patients. We further analyzed those indices with statistical differences by partial correlation and survival analysis. RESULTS Both self-comparison before and after treatment in the anti-PD-1 group and mutual-comparison of disease progression and the control group showed significant differences in multiple indices, but we did not observe significant differences in the sorafenib group. Strikingly, albumin (ALB)/prognostic nutritional index (PNI, calculated by serum albumin and lymphocyte count) decreased distinctly in the immunotherapy disease progression group patients. However, changes in ALB/PNI were not significant in disease progression patients from the sorafenib group or in the disease control patients with immunotherapy. Partial correlation analysis suggested that ALB and PNI were positively correlated with the efficacy of immunotherapy. Furthermore, survival analysis showed that the median progression-free survival and median overall survival of patients in the ALB/PNI decreased group were significantly shorter than those of patients from the ALB/PNI increased group. CONCLUSION Anti-PD-1 immunotherapy might alter the nutritional and metabolic status in advanced HCC patients. We also should pay attention to the nutritional and metabolic status of patients when drug resistance is detected.
Collapse
Affiliation(s)
- Yizhen Jiang
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Xiaoxuan Tu
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Xiangying Zhang
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Haihong Liao
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Shuwen Han
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Weiqin Jiang
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Yi Zheng
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Peng Zhao
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Zhou Tong
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Qihan Fu
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Quan Qi
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Junjun Shen
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Liping Zhong
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Yuefen Pan
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, 313000, Zhejiang, People's Republic of China.
| | - Weijia Fang
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
63
|
Leung JY, Chia K, Ong DST, Taneja R. Interweaving Tumor Heterogeneity into the Cancer Epigenetic/Metabolic Axis. Antioxid Redox Signal 2020; 33:946-965. [PMID: 31841357 DOI: 10.1089/ars.2019.7942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Significance: The epigenomic/metabolic landscape in cancer has been studied extensively in the past decade and forms the basis of various drug targets. Yet, cancer treatment remains a challenge, with clinical trials exhibiting limited efficacy and high relapse rates. Patients respond differently to therapy, which is fundamentally attributed to tumor heterogeneity, both across and within tumors. This review focuses on the interactions between the heterogeneous tumor microenvironment (TME) and the epigenomic/metabolic axis in cancer, as well as the emerging technologies under development to aid heterogeneity studies. Recent Advances: Interlinks between epigenetics and metabolism in cancer have been reported. Emerging studies have unveiled interactions between the TME and cancer cells that play a critical role in regulating epigenetics and reprogramming cancer metabolism, suggesting a three-way cross talk. Critical Issues: This cross talk accentuates the multiplex nature of cancer, and the importance of considering tumor heterogeneity in various epigenomic/metabolic cancer studies. Future Directions: With the advancement in single-cell profiling, it may be possible to identify cancer subclones and their unique vulnerabilities to develop a multimodal therapy. Drugs targeting the TME are currently being studied, and a better understanding of the TME in regulating cancer epigenetics and metabolism may hold the key to identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Jia Yu Leung
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kimberly Chia
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Derrick Sek Tong Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Molecular Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
64
|
Medina MÁ. Metabolic Reprogramming is a Hallmark of Metabolism Itself. Bioessays 2020; 42:e2000058. [PMID: 32939776 DOI: 10.1002/bies.202000058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/13/2020] [Indexed: 12/16/2022]
Abstract
The reprogramming of metabolism has been identified as one of the hallmarks of cancer. It is becoming more and more frequent to connect other diseases with metabolic reprogramming. This article aims to argue that metabolic reprogramming is not driven by disease but instead is the main hallmark of metabolism, based on its dynamic behavior that allows it to continuously adapt to changes in the internal and external conditions.
Collapse
Affiliation(s)
- Miguel Ángel Medina
- Andalucía Tech, Facultad de Ciencias, Departamento de Biología Molecular y Bioquímica, and IBIMA (Biomedical Research Institute of Málaga), Universidad de Málaga, Málaga, E-29071, Spain.,CIBER de Enfermedades Raras (CIBERER), Málaga, E-29071, Spain
| |
Collapse
|
65
|
Frattaruolo L, Brindisi M, Curcio R, Marra F, Dolce V, Cappello AR. Targeting the Mitochondrial Metabolic Network: A Promising Strategy in Cancer Treatment. Int J Mol Sci 2020; 21:ijms21176014. [PMID: 32825551 PMCID: PMC7503725 DOI: 10.3390/ijms21176014] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic reprogramming is a hallmark of cancer, which implements a profound metabolic rewiring in order to support a high proliferation rate and to ensure cell survival in its complex microenvironment. Although initial studies considered glycolysis as a crucial metabolic pathway in tumor metabolism reprogramming (i.e., the Warburg effect), recently, the critical role of mitochondria in oncogenesis, tumor progression, and neoplastic dissemination has emerged. In this report, we examined the main mitochondrial metabolic pathways that are altered in cancer, which play key roles in the different stages of tumor progression. Furthermore, we reviewed the function of important molecules inhibiting the main mitochondrial metabolic processes, which have been proven to be promising anticancer candidates in recent years. In particular, inhibitors of oxidative phosphorylation (OXPHOS), heme flux, the tricarboxylic acid cycle (TCA), glutaminolysis, mitochondrial dynamics, and biogenesis are discussed. The examined mitochondrial metabolic network inhibitors have produced interesting results in both preclinical and clinical studies, advancing cancer research and emphasizing that mitochondrial targeting may represent an effective anticancer strategy.
Collapse
|
66
|
Li F, Simon MC. Cancer Cells Don't Live Alone: Metabolic Communication within Tumor Microenvironments. Dev Cell 2020; 54:183-195. [PMID: 32640203 DOI: 10.1016/j.devcel.2020.06.018] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/10/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023]
Abstract
Solid tumors reside in harsh tumor microenvironments (TMEs) together with various stromal cell types. During tumor progression and metastasis, both tumor and stromal cells undergo rapid metabolic adaptations. Tumor cells metabolically coordinate or compete with their "neighbors" to maintain biosynthetic and bioenergetic demands while escaping immunosurveillance or therapeutic interventions. Here, we provide an update on metabolic communication between tumor cells and heterogeneous stromal components in primary and metastatic TMEs and discuss emerging strategies to target metabolic communications for improved cancer treatments.
Collapse
Affiliation(s)
- Fuming Li
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
67
|
Exploiting Cancer's Tactics to Make Cancer a Manageable Chronic Disease. Cancers (Basel) 2020; 12:cancers12061649. [PMID: 32580319 PMCID: PMC7352192 DOI: 10.3390/cancers12061649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022] Open
Abstract
The history of modern oncology started around eighty years ago with the introduction of cytotoxic agents such as nitrogen mustard into the clinic, followed by multi-agent chemotherapy protocols. Early success in radiation therapy in Hodgkin lymphoma gave birth to the introduction of radiation therapy into different cancer treatment protocols. Along with better understanding of cancer biology, we developed drugs targeting cancer-related cellular and genetic aberrancies. Discovery of the crucial role of vasculature in maintenance, survival, and growth of a tumor opened the way to the development of anti-angiogenic agents. A better understanding of T-cell regulatory pathways advanced immunotherapy. Awareness of stem-like cancer cells and their role in cancer metastasis and local recurrence led to the development of drugs targeting them. At the same time, sequential and rapidly accelerating advances in imaging and surgical technology have markedly increased our ability to safely remove ≥90% of tumor cells. While we have advanced our ability to kill cells from multiple directions, we have still failed to stop most types of cancer from recurring. Here we analyze the tactics employed in cancer evolution; namely, chromosomal instability (CIN), intra-tumoral heterogeneity (ITH), and cancer-specific metabolism. These tactics govern the resistance to current cancer therapeutics. It is time to focus on maximally delaying the time to recurrence, with drugs that target these fundamental tactics of cancer evolution. Understanding the control of CIN and the optimal state of ITH as the most important tactics in cancer evolution could facilitate the development of improved cancer therapeutic strategies designed to transform cancer into a manageable chronic disease.
Collapse
|
68
|
Nallanthighal S, Rada M, Heiserman JP, Cha J, Sage J, Zhou B, Yang W, Hu Y, Korgaonkar C, Hanos CT, Ashkavand Z, Norman K, Orsulic S, Cheon DJ. Inhibition of collagen XI alpha 1-induced fatty acid oxidation triggers apoptotic cell death in cisplatin-resistant ovarian cancer. Cell Death Dis 2020; 11:258. [PMID: 32312965 PMCID: PMC7171147 DOI: 10.1038/s41419-020-2442-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022]
Abstract
Collagen type XI alpha 1 (COL11A1) is a novel biomarker associated with cisplatin resistance in ovarian cancer. However, the mechanisms underlying how COL11A1 confers cisplatin resistance in ovarian cancer are poorly understood. We identified that fatty acid β-oxidation (FAO) is upregulated by COL11A1 in ovarian cancer cells and that COL11A1-driven cisplatin resistance can be abrogated by inhibition of FAO. Furthermore, our results demonstrate that COL11A1 also enhances the expression of proteins involved in fatty acid synthesis. Interestingly, COL11A1-induced upregulation of fatty acid synthesis and FAO is modulated by the same signaling molecules. We identified that binding of COL11A1 to its receptors, α1β1 integrin and discoidin domain receptor 2 (DDR2), activates Src-Akt-AMPK signaling to increase the expression of both fatty acid synthesis and oxidation enzymes, although DDR2 seems to be the predominant receptor. Inhibition of fatty acid synthesis downregulates FAO despite the presence of COL11A1, suggesting that fatty acid synthesis might be a driver of FAO in ovarian cancer cells. Taken together, our results suggest that COL11A1 upregulates fatty acid metabolism in ovarian cancer cells in a DDR2-Src-Akt-AMPK dependent manner. Therefore, we propose that blocking FAO might serve as a promising therapeutic target to treat ovarian cancer, particularly cisplatin-resistant recurrent ovarian cancers which typically express high levels of COL11A1.
Collapse
Affiliation(s)
- Sameera Nallanthighal
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, 12208, USA
| | - Miran Rada
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, 12208, USA
| | - James Patrick Heiserman
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, 12208, USA
| | - Jennifer Cha
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, 12208, USA
| | - Jessica Sage
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, 12208, USA
| | - Bo Zhou
- Cancer Biology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Wei Yang
- Cancer Biology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Ye Hu
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedar-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Chaitali Korgaonkar
- Department of Obstetrics and Gynecology, Albany Medical College, Albany, NY, 12208, USA
| | | | - Zahra Ashkavand
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, 12208, USA
| | - Kenneth Norman
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, 12208, USA
| | - Sandra Orsulic
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedar-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Dong-Joo Cheon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
69
|
Li G, Ni A, Tang Y, Li S, Meng L. RNA binding proteins involved in regulation of protein synthesis to initiate biogenesis of secondary tumor in hepatocellular carcinoma in mice. PeerJ 2020; 8:e8680. [PMID: 32219019 PMCID: PMC7087493 DOI: 10.7717/peerj.8680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/03/2020] [Indexed: 12/24/2022] Open
Abstract
Background The tumor microenvironment (TM) in close contact with cancer cells is highly related to tumor growth and cancer metastasis. This study is to explore the biogenesis mechanism of a secondary hepatocellular carcinoma (HCC) based on the function of RNA binding proteins (RBPs)-encoding genes in the physiological microenvironment (PM). Methods The healthy and HCC mice were used to isolate the PM, pre-tumor microenvironment (PTM), and TM. The samples were analyzed using the technology of RNA-seq and bioinformatics. The differentially expressed RBPs-encoding genes (DERs) and differentially expressed DERs-associated genes (DEDs) were screened to undergo GO and KEGG analysis. Results 18 DERs and DEDs were identified in the PTM vs. PM, 87 in the TM vs. PTM, and 87 in the TM vs. PM. Those DERs and DEDs participated in the regulation of gene expression at the levels of chromatin conformation, gene activation and silencing, splicing and degradation of mRNA, biogenesis of piRNA and miRNA, ribosome assemble, and translation of proteins. Conclusion The genes encoding RBPs and the relevant genes are involved in the transformation from PM to PTM, then constructing the TM by regulating protein synthesis. This regulation included whole process of biological genetic information transmission from chromatin conformation to gene activation and silencing to mRNA splicing to ribosome assemble to translation of proteins and degradation of mRNA. The abnormality of those functions in the organic microenvironments promoted the metastasis of HCC and initiated the biogenesis of a secondary HCC in a PM when the PM encountered the invasion of cancer cells.
Collapse
Affiliation(s)
- Genliang Li
- Department of Biochemistry and Molecular Biology, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Anni Ni
- Department of Biochemistry and Molecular Biology, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Yulian Tang
- Department of Biochemistry and Molecular Biology, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Shubo Li
- Department of Biochemistry and Molecular Biology, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Lingzhang Meng
- Department of Biochemistry and Molecular Biology, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| |
Collapse
|
70
|
Xiao S, Jin-Xiang Y, Long T, Xiu-Rong L, Hong G, Jie-Cheng Y, Fei Z. Kruppel-like factor 2 disturb non-small cell lung cancer energy metabolism by inhibited glutamine consumption. J Pharm Pharmacol 2020; 72:843-851. [PMID: 32196690 DOI: 10.1111/jphp.13252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/09/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Metabolic reprogramming is well accepted as a hallmark of cancer. This study aimed to explore the role of Kruppel-like factor 2 (KLF2) in aerobic glycolysis and glutamine consumption of energy metabolism in non-small cell lung cancer (NSCLC) cells. METHODS Two different NSCLC cells, A549 and NCI-H1299, were used to investigate the role of KLF2 in glycolysis and glutamine consumption by tracer technique and KLF2 transfection. KEY FINDINGS The results showed that overexpression KLF could inhibit the energy metabolism and proliferation of NSCLC cells, but had no significant effect on glycolysis reaction and only affected the glutamine consumption of NSCLC cells. In NSCLC cells exposed to glutamine deprivation, the effect of overexpression of KLF2 on cell proliferation and energy metabolism disappeared. It was found that KLF2 could inhibit the expression of glutaminase (GLS) by metabolite tracing technique and so on. However, when GLS inhibitors were given to overexpressing KLF2 NSCLC cells, the intervention effect of KLF2 disappeared. CONCLUSIONS Kruppel-like factor 2 could decrease the level of glutamine, participate in the consumption of glutamine by cancer cells, and then inhibit the energy metabolism of cancer cells.
Collapse
Affiliation(s)
- Song Xiao
- Radiotherapy Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Yan Jin-Xiang
- Neurosurgery Department, Ningyang No.1 People's Hospital, Ningyang, China
| | - Tian Long
- Radiotherapy Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Lu Xiu-Rong
- Radiotherapy Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Gao Hong
- Radiotherapy Department, Beijing hospital, Beijing, China
| | - Yan Jie-Cheng
- Radiotherapy Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Zhang Fei
- Radiotherapy Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| |
Collapse
|
71
|
Sadeghi M, Ordway B, Rafiei I, Borad P, Fang B, Koomen JL, Zhang C, Yoder S, Johnson J, Damaghi M. Integrative Analysis of Breast Cancer Cells Reveals an Epithelial-Mesenchymal Transition Role in Adaptation to Acidic Microenvironment. Front Oncol 2020; 10:304. [PMID: 32211331 PMCID: PMC7076123 DOI: 10.3389/fonc.2020.00304] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/20/2020] [Indexed: 01/06/2023] Open
Abstract
Early ducts of breast tumors are unequivocally acidic. High rates of glycolysis combined with poor perfusion lead to a congestion of acidic metabolites in the tumor microenvironment, and pre-malignant cells must adapt to this acidosis to thrive. Adaptation to acidosis selects cancer cells that can thrive in harsh conditions and are capable of outgrowing the normal or non-adapted neighbors. This selection is usually accompanied by phenotypic change. Epithelial mesenchymal transition (EMT) is one of the most important switches correlated to malignant tumor cell phenotype and has been shown to be induced by tumor acidosis. New evidence shows that the EMT switch is not a binary system and occurs on a spectrum of transition states. During confirmation of the EMT phenotype, our results demonstrated a partial EMT phenotype in our acid-adapted cell population. Using RNA sequencing and network analysis we found 10 dysregulated network motifs in acid-adapted breast cancer cells playing a role in EMT. Our further integrative analysis of RNA sequencing and SILAC proteomics resulted in recognition of S100B and S100A6 proteins at both the RNA and protein level. Higher expression of S100B and S100A6 was validated in vitro by Immunocytochemistry. We further validated our finding both in vitro and in patients' samples by IHC analysis of Tissue Microarray (TMA). Correlation analysis of S100A6 and LAMP2b as marker of acidosis in each patient from Moffitt TMA approved the acid related role of S100A6 in breast cancer patients. Also, DCIS patients with higher expression of S100A6 showed lower survival compared to lower expression. We propose essential roles of acid adaptation in cancer cells EMT process through S100 proteins such as S100A6 that can be used as therapeutic strategy targeting both acid-adapted and malignant phenotypes.
Collapse
Affiliation(s)
- Mehdi Sadeghi
- Department of Cell and Molecular Biology, Faculty of Science, Semnan University, Semnan, Iran
| | - Bryce Ordway
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Ilyia Rafiei
- Department of Cell and Molecular Biology, Faculty of Science, Semnan University, Semnan, Iran
| | - Punit Borad
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Bin Fang
- Proteomics Core, Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - John L Koomen
- Proteomics Core, Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Chaomei Zhang
- Molecular Biology Core, Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Sean Yoder
- Molecular Biology Core, Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Joseph Johnson
- Microscopy Core, Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Mehdi Damaghi
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, United States.,Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
72
|
Varisli L, Cen O, Vlahopoulos S. Dissecting pharmacological effects of chloroquine in cancer treatment: interference with inflammatory signaling pathways. Immunology 2020; 159:257-278. [PMID: 31782148 PMCID: PMC7011648 DOI: 10.1111/imm.13160] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Chloroquines are 4-aminoquinoline-based drugs mainly used to treat malaria. At pharmacological concentrations, they have significant effects on tissue homeostasis, targeting diverse signaling pathways in mammalian cells. A key target pathway is autophagy, which regulates macromolecule turnover in the cell. In addition to affecting cellular metabolism and bioenergetic flow equilibrium, autophagy plays a pivotal role at the interface between inflammation and cancer progression. Chloroquines consequently have critical effects in tissue metabolic activity and importantly, in key functions of the immune system. In this article, we will review the work addressing the role of chloroquines in the homeostasis of mammalian tissue, and the potential strengths and weaknesses concerning their use in cancer therapy.
Collapse
Affiliation(s)
- Lokman Varisli
- Union of Education and Science Workers (EGITIM SEN), Diyarbakir Branch, Diyarbakir, Turkey
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, Turkey
| | - Osman Cen
- Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Natural Sciences, Joliet Jr College, Joliet, IL, USA
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
73
|
Abstract
The study of cancer metabolism has evolved vastly beyond the remit of tumour proliferation and survival with the identification of the role of 'oncometabolites' in tumorigenesis. Simply defined, oncometabolites are conventional metabolites that, when aberrantly accumulated, have pro-oncogenic functions. Their discovery has led researchers to revisit the Warburg hypothesis, first postulated in the 1950s, of aberrant metabolism as an aetiological determinant of cancer. As such, the identification of oncometabolites and their utilization in diagnostics and prognostics, as novel therapeutic targets and as biomarkers of disease, are areas of considerable interest in oncology. To date, fumarate, succinate, L-2-hydroxyglutarate (L-2-HG) and D-2-hydroxyglutarate (D-2-HG) have been characterized as bona fide oncometabolites. Extensive metabolic reprogramming occurs during tumour initiation and progression in renal cell carcinoma (RCC) and three oncometabolites - fumarate, succinate and L-2-HG - have been implicated in this disease process. All of these oncometabolites inhibit a superfamily of enzymes known as α-ketoglutarate-dependent dioxygenases, leading to epigenetic dysregulation and induction of pseudohypoxic phenotypes, and also have specific pro-oncogenic capabilities. Oncometabolites could potentially be exploited for the development of novel targeted therapies and as biomarkers of disease.
Collapse
Affiliation(s)
- Cissy Yong
- Department of Surgery, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Grant D Stewart
- Department of Surgery, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
74
|
El Hassouni B, Granchi C, Vallés-Martí A, Supadmanaba IGP, Bononi G, Tuccinardi T, Funel N, Jimenez CR, Peters GJ, Giovannetti E, Minutolo F. The dichotomous role of the glycolytic metabolism pathway in cancer metastasis: Interplay with the complex tumor microenvironment and novel therapeutic strategies. Semin Cancer Biol 2020; 60:238-248. [PMID: 31445217 DOI: 10.1016/j.semcancer.2019.08.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023]
Abstract
Cancer metastasis to distant organs is initiated by tumor cells that disseminate from primary heterogeneous tumors. The subsequent growth and survival of tumor metastases depend on different metabolic changes, which constitute one of the enigmatic properties of tumor cells. Aerobic glycolysis, 'the Warburg effect', contributes to tumor energy supply, by oxidizing glucose in a faster manner compared to oxidative phosphorylation, leading to an increased lactate production by lactate dehydrogenase A (LDH-A), which in turn affects the immune response. Surrounding stromal cells contribute to feedback mechanisms further prompting the acquisition of pro-invasive metabolic features. Hence, therapeutic strategies targeting the glycolytic pathway are intensively investigated, with a special interest on their anti-metastatic properties. Various small molecules, such as LDH-A inhibitors, have shown pre-clinical activity against different cancer types, and blocking LDH-A could also help in designing future complimentary therapies. Modulation of specific targets in cells with an altered glycolytic metabolism should indeed result in a milder and distinct toxicity profile, compared to conventional cytotoxic therapy, while a combination treatment with vitamin C leading to increasing reactive oxygen species levels, should further inhibit cancer cell survival and invasion. In this review we describe the impact of metabolic reprogramming in cancer metastasis, the contribution of lactate in this aberrant process and its effect on oncogenic processes. Furthermore, we discuss experimental compounds that target glycolytic metabolism, such as LDH-A inhibitors, and their potential to improve current and experimental therapeutics against metastatic tumors.
Collapse
Affiliation(s)
- Btissame El Hassouni
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.
| | - Carlotta Granchi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6 and 33, 56126, Pisa, Italy
| | - Andrea Vallés-Martí
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - I Gede Putu Supadmanaba
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Giulia Bononi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6 and 33, 56126, Pisa, Italy
| | - Tiziano Tuccinardi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6 and 33, 56126, Pisa, Italy
| | - Niccola Funel
- Cancer Pharmacology Lab, AIRC Start Up Unit, Pisa, Italy
| | - Connie R Jimenez
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Godefridus J Peters
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start Up Unit, Pisa, Italy; Fondazione Pisana per la Scienza, Pisa, Italy.
| | - Filippo Minutolo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6 and 33, 56126, Pisa, Italy
| |
Collapse
|
75
|
Ostrand-Rosenberg S, Beury DW, Parker KH, Horn LA. Survival of the fittest: how myeloid-derived suppressor cells survive in the inhospitable tumor microenvironment. Cancer Immunol Immunother 2020; 69:215-221. [PMID: 31501954 PMCID: PMC7004852 DOI: 10.1007/s00262-019-02388-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 08/29/2019] [Indexed: 12/25/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are present in most cancer patients where they are significant contributors to the immune suppressive tumor microenvironment (TME). The TME is a hostile locale due to deficiencies in oxygen (hypoxia) and nutrients, and the presence of reactive oxygen species (ROS). The survival of tumor cells within the TME is partially governed by two mechanisms: (1) Activation of the transcription factor Nuclear Factor Erythroid-derived 2-like 2 (Nrf2) which turns on genes that attenuate oxidative stress; and (2) The presence of High Mobility Group Box Protein-1 (HMGB1), a damage-associated molecular pattern molecule (DAMP) that induces autophagy and protects against apoptosis. Because Nrf2 and HMGB1 promote tumor cell survival, we speculated that Nrf2 and HMGB1 may facilitate MDSC survival. We tested this hypothesis using Nrf2+/+ and Nrf2-/- BALB/c and C57BL/6 mice and pharmacological inhibitors of HMGB1. In vitro and in vivo studies demonstrated that Nrf2 increased the suppressive potency and quantity of tumor-infiltrating MDSC by up-regulating MDSC production of H2O2 and decreasing MDSC apoptosis. Decreased apoptosis was accompanied by a decrease in the production of MDSC, demonstrating that MDSC levels are homeostatically regulated. Pharmacological inhibition of autophagy increased MDSC apoptosis, indicating that autophagy increases MDSC half-life. Inhibition of HMGB1 also increased MDSC apoptosis and reduced MDSC autophagy. These results combined with our previous findings that HMGB1 drives the accumulation of MDSC demonstrate that HMGB1 maintains MDSC viability by inducing autophagy. Collectively, these findings identify Nrf2 and HMGB1 as important factors that enable MDSC to survive in the TME.
Collapse
Affiliation(s)
- Suzanne Ostrand-Rosenberg
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, MD, USA.
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.
- Huntsman Cancer Institute, University of Utah, 15 North Medical Drive East, Ste. #1100, Salt Lake City, UT, 84112, USA.
| | - Daniel W Beury
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, MD, USA
| | - Katherine H Parker
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, MD, USA
| | - Lucas A Horn
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, MD, USA
| |
Collapse
|
76
|
Clement E, Lazar I, Attané C, Carrié L, Dauvillier S, Ducoux-Petit M, Esteve D, Menneteau T, Moutahir M, Le Gonidec S, Dalle S, Valet P, Burlet-Schiltz O, Muller C, Nieto L. Adipocyte extracellular vesicles carry enzymes and fatty acids that stimulate mitochondrial metabolism and remodeling in tumor cells. EMBO J 2020; 39:e102525. [PMID: 31919869 DOI: 10.15252/embj.2019102525] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 11/20/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles are emerging key actors in adipocyte communication. Notably, small extracellular vesicles shed by adipocytes stimulate fatty acid oxidation and migration in melanoma cells and these effects are enhanced in obesity. However, the vesicular actors and cellular processes involved remain largely unknown. Here, we elucidate the mechanisms linking adipocyte extracellular vesicles to metabolic remodeling and cell migration. We show that adipocyte vesicles stimulate melanoma fatty acid oxidation by providing both enzymes and substrates. In obesity, the heightened effect of extracellular vesicles depends on increased transport of fatty acids, not fatty acid oxidation-related enzymes. These fatty acids, stored within lipid droplets in cancer cells, drive fatty acid oxidation upon being released by lipophagy. This increase in mitochondrial activity redistributes mitochondria to membrane protrusions of migrating cells, which is necessary to increase cell migration in the presence of adipocyte vesicles. Our results provide key insights into the role of extracellular vesicles in the metabolic cooperation that takes place between adipocytes and tumors with particular relevance to obesity.
Collapse
Affiliation(s)
- Emily Clement
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Ikrame Lazar
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Camille Attané
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Lorry Carrié
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Stéphanie Dauvillier
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Manuelle Ducoux-Petit
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - David Esteve
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Thomas Menneteau
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Mohamed Moutahir
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Sophie Le Gonidec
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UPS, Université de Toulouse, Toulouse, France
| | - Stéphane Dalle
- Department of Dermatology, Centre Hospitalier Lyon Sud, Pierre Bénite Cedex, France
| | - Philippe Valet
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UPS, Université de Toulouse, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Catherine Muller
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Laurence Nieto
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, Toulouse, France
| |
Collapse
|
77
|
McGuirk S, Audet-Delage Y, St-Pierre J. Metabolic Fitness and Plasticity in Cancer Progression. Trends Cancer 2020; 6:49-61. [PMID: 31952781 DOI: 10.1016/j.trecan.2019.11.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022]
Abstract
Cancer cells have enhanced metabolic needs due to their rapid proliferation. Moreover, throughout their progression from tumor precursors to metastases, cancer cells face challenging physiological conditions, including hypoxia, low nutrient availability, and exposure to therapeutic drugs. The ability of cancer cells to tailor their metabolic activities to support their energy demand and biosynthetic needs throughout disease progression is key for their survival. Here, we review the metabolic adaptations of cancer cells, from primary tumors to therapy resistant cancers, and the mechanisms underpinning their metabolic plasticity. We also discuss the metabolic coupling that can develop between tumors and the tumor microenvironment. Finally, we consider potential metabolic interventions that could be used in combination with standard therapeutic approaches to improve clinical outcome.
Collapse
Affiliation(s)
- Shawn McGuirk
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Yannick Audet-Delage
- Department of Biochemistry, Microbiology, and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Julie St-Pierre
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC H3G 1Y6, Canada; Department of Biochemistry, Microbiology, and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
78
|
Li Y, Song Y, Zhang W, Xu J, Hou J, Feng X, Zhu W. MOF nanoparticles with encapsulated dihydroartemisinin as a controlled drug delivery system for enhanced cancer therapy and mechanism analysis. J Mater Chem B 2020; 8:7382-7389. [DOI: 10.1039/d0tb01330g] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Schematic illustration of (a) the preparation of DHA@ZIF-8 NPs and (b) their application for cancer therapy.
Collapse
Affiliation(s)
- Yawei Li
- Jilin Medical University
- Jilin 132013
- P. R. China
| | - Yu Song
- Jilin Medical University
- Jilin 132013
- P. R. China
| | - Wei Zhang
- Jilin Medical University
- Jilin 132013
- P. R. China
| | - Junjie Xu
- Jilin Medical University
- Jilin 132013
- P. R. China
| | | | | | - Wenhe Zhu
- Jilin Medical University
- Jilin 132013
- P. R. China
| |
Collapse
|
79
|
Elingaard-Larsen LO, Rolver MG, Sørensen EE, Pedersen SF. How Reciprocal Interactions Between the Tumor Microenvironment and Ion Transport Proteins Drive Cancer Progression. Rev Physiol Biochem Pharmacol 2020; 182:1-38. [PMID: 32737753 DOI: 10.1007/112_2020_23] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Solid tumors comprise two major components: the cancer cells and the tumor stroma. The stroma is a mixture of cellular and acellular components including fibroblasts, mesenchymal and cancer stem cells, endothelial cells, immune cells, extracellular matrix, and tumor interstitial fluid. The insufficient tumor perfusion and the highly proliferative state and dysregulated metabolism of the cancer cells collectively create a physicochemical microenvironment characterized by altered nutrient concentrations and varying degrees of hypoxia and acidosis. Furthermore, both cancer and stromal cells secrete numerous growth factors, cytokines, and extracellular matrix proteins which further shape the tumor microenvironment (TME), favoring cancer progression.Transport proteins expressed by cancer and stromal cells localize at the interface between the cells and the TME and are in a reciprocal relationship with it, as both sensors and modulators of TME properties. It has been amply demonstrated how acid-base and nutrient transporters of cancer cells enable their growth, presumably by contributing both to the extracellular acidosis and the exchange of metabolic substrates and waste products between cells and TME. However, the TME also impacts other transport proteins important for cancer progression, such as multidrug resistance proteins. In this review, we summarize current knowledge of the cellular and acellular components of solid tumors and their interrelationship with key ion transport proteins. We focus in particular on acid-base transport proteins with known or proposed roles in cancer development, and we discuss their relevance for novel therapeutic strategies.
Collapse
Affiliation(s)
- Line O Elingaard-Larsen
- Translational Type 2 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Michala G Rolver
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Ester E Sørensen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Stine F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
80
|
Giovinazzo A, Balestrieri E, Petrone V, Argaw-Denboba A, Cipriani C, Miele MT, Grelli S, Sinibaldi-Vallebona P, Matteucci C. The Concomitant Expression of Human Endogenous Retroviruses and Embryonic Genes in Cancer Cells under Microenvironmental Changes is a Potential Target for Antiretroviral Drugs. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2019; 12:105-118. [PMID: 31691184 PMCID: PMC6937370 DOI: 10.1007/s12307-019-00231-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/20/2019] [Indexed: 01/26/2023]
Abstract
In our genomes there are thousands of copies of human endogenous retroviruses (HERVs) originated from the integration of exogenous retroviruses that infected germ line cells millions of years ago, and currently an altered expression of this elements has been associated to the onset, progression and acquisition of aggressiveness features of many cancers. The transcriptional reactivation of HERVs is mainly an effect of their responsiveness to some factors in cell microenvironment, such as nutrients, hormones and cytokines. We have already demonstrated that, under pressure of microenvironmental changes, HERV-K (HML-2) activation is required to maintain human melanoma cell plasticity and CD133+ cancer stem cells survival. In the present study, the transcriptional activity of HERV-K (HML-2), HERV-H, CD133 and the embryonic transcription factors OCT4, NANOG and SOX2 was evaluated during the in vitro treatment with antiretroviral drugs in cells from melanoma, liver and lung cancers exposed to microenvironmental changes. The exposure to stem cell medium induced a phenotype switching with the generation of sphere-like aggregates, characterized by the concomitant increase of HERV-K (HML-2) and HERV-H, CD133 and embryonic genes transcriptional activity. Although with heterogenic response among the different cell lines, the in vitro treatment with antiretroviral drugs affected HERVs transcriptional activity in parallel with the reduction of CD133 and embryonic genes expression, clonogenic activity and cell growth, accompanied by the induction of apoptosis. The responsiveness to antiretroviral drugs treatment of cancer cells with stemness features and expressing HERVs suggests the use of these drugs as innovative approach to treat aggressive tumours in combination with chemotherapeutic/radiotherapy regimens.
Collapse
Affiliation(s)
- Alessandro Giovinazzo
- Department of Experimental Medicine, "Tor Vergata" University of Rome, Via Montpellier, 1, 00133, Rome, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine, "Tor Vergata" University of Rome, Via Montpellier, 1, 00133, Rome, Italy
| | - Vita Petrone
- Department of Experimental Medicine, "Tor Vergata" University of Rome, Via Montpellier, 1, 00133, Rome, Italy
| | - Ayele Argaw-Denboba
- European Molecular Biology Laboratory (EMBL), Adriano Buzzati-Traverso Campus, Monterotondo, Rome, Italy
| | - Chiara Cipriani
- Department of Experimental Medicine, "Tor Vergata" University of Rome, Via Montpellier, 1, 00133, Rome, Italy
- Department of Urology, San Carlo di Nancy Hospital - GVM Care and Research, Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, "Tor Vergata" University of Rome, Via Montpellier, 1, 00133, Rome, Italy
| | - Sandro Grelli
- Department of Experimental Medicine, "Tor Vergata" University of Rome, Via Montpellier, 1, 00133, Rome, Italy
| | - Paola Sinibaldi-Vallebona
- Department of Experimental Medicine, "Tor Vergata" University of Rome, Via Montpellier, 1, 00133, Rome, Italy
- National Research Council, Institute of Translational Pharmacology, Rome, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine, "Tor Vergata" University of Rome, Via Montpellier, 1, 00133, Rome, Italy.
| |
Collapse
|
81
|
Depping R, von Fallois M, Landesman Y, Kosyna FK. The Nuclear Export Inhibitor Selinexor Inhibits Hypoxia Signaling Pathways And 3D Spheroid Growth Of Cancer Cells. Onco Targets Ther 2019; 12:8387-8399. [PMID: 31632086 PMCID: PMC6793465 DOI: 10.2147/ott.s213208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose The nucleocytoplasmic transport of macromolecules is critical for both cell physiology and pathophysiology. Exportin 1 (XPO1), the major nuclear export receptor, is involved in the cellular adaptation to reduced oxygen availability by controlling the nuclear activity of the hypoxia-inducible factors (HIFs). Recently, a specific inhibitor of XPO1, selinexor (KPT-330), has been identified that inhibits nuclear export of cargo proteins by binding to the XPO1 cargo-binding pocket. Patients and methods We used different cancer cell lines from human tissues and evaluated the physiological activity of selinexor on the hypoxia response pathway in two-dimensional (2D) monolayer cell cultures in quantitative real-time (qRT)-PCR experiments and luciferase reporter gene assays. A three-dimensional (3D) tumor spheroid culture model of MCF-7 breast cancer cells was established to analyze the effect of selinexor on 3D tumor spheroid structure, formation and viability. Results Selinexor treatment reduces HIF-transcriptional activity and expression of the HIF-1 target gene solute carrier family 2 member 1 (SLC2A1). Moreover, 3D tumor spheroid structure, formation and viability are inhibited in response to selinexor-induced nuclear export inhibition. Conclusion Here, we demonstrate the effect of specific XPO1-inhibition on the hypoxic response on the molecular level in 2D and 3D culture models of MCF-7 cells.
Collapse
Affiliation(s)
- Reinhard Depping
- Center for Structural and Cell Biology in Medicine, Institute of Physiology, Working Group Hypoxia, University of Lübeck, Lübeck D-23562, Germany
| | - Moritz von Fallois
- Center for Structural and Cell Biology in Medicine, Institute of Physiology, Working Group Hypoxia, University of Lübeck, Lübeck D-23562, Germany.,Clinic for Radiotherapy, University Hospital Schleswig-Holstein, Lübeck D-23562, Germany
| | | | - Friederike Katharina Kosyna
- Center for Structural and Cell Biology in Medicine, Institute of Physiology, Working Group Hypoxia, University of Lübeck, Lübeck D-23562, Germany
| |
Collapse
|
82
|
Ghorbanian M, Babashah S, Ataei F. The effects of ovarian cancer cell-derived exosomes on vascular endothelial growth factor expression in endothelial cells. EXCLI JOURNAL 2019; 18:899-907. [PMID: 31645849 PMCID: PMC6806135 DOI: 10.17179/excli2019-1800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022]
Abstract
Ovarian carcinoma is considered as a major clinical challenge worldwide. Exosomes, nano-sized intraluminal vesicles of multivesicular bodies, are secreted by most types of cells and play an important role in intercellular communication. Cancer cell-derived exosomes can develop cancer progression and metastasis by manipulating the local and distant biological environments. Angiogenesis is an important contributor to tumor progression. Vascular endothelial growth factor (VEGF) is the most potent pro-angiogenic protein and induces proliferation, sprouting, and vessel formation by endothelial cells. In this study, exosomes derived from ovarian epithelial cancer cells OVACAR-3 (exo-OVCAR-3) were successfully isolated and characterized by scanning electron microscopy in terms of size and morphology. Cellular internalization of exosomes labeled with PKH fluorescent dye was monitored by a fluorescence microscope. Our results elucidated that exosomes treatment (100 µg/ml) had a promoting effect on VEGF expression and secretion in endothelial cells. Furthermore, we demonstrated that exo-OVCAR-3 caused an increase in the proliferation and migration rate of endothelial cells. It seems that inducing VEGF by exo-OVCAR-3 can influence the vascular behavior of endothelial cells in vitro.
Collapse
Affiliation(s)
- Mohammad Ghorbanian
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farangis Ataei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
83
|
Ayuso JM, Virumbrales-Munoz M, McMinn PH, Rehman S, Gomez I, Karim MR, Trusttchel R, Wisinski KB, Beebe DJ, Skala MC. Tumor-on-a-chip: a microfluidic model to study cell response to environmental gradients. LAB ON A CHIP 2019; 19:3461-3471. [PMID: 31506657 PMCID: PMC6785375 DOI: 10.1039/c9lc00270g] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Limited blood supply and rapid tumor metabolism within solid tumors leads to nutrient starvation, waste product accumulation and the generation of pH gradients across the tumor mass. These environmental conditions modify multiple cellular functions, including metabolism, proliferation, and drug response. However, capturing the spatial metabolic and phenotypic heterogeneity of the tumor with classic in vitro models remains challenging. Thus, in this work a microfluidic tumor slice model was developed to study cell behavior under metabolic starvation gradients. The presented microdevice comprises a central chamber where tumor cells were cultured in a 3D collagen hydrogel. A lumen on the flank of the chamber was used to perfuse media, mimicking the vasculature. Under these circumstances, tumor cell metabolism led to the generation of viability, proliferation and pH gradients. The model decoupled the influence of oxygen from other nutrients, revealing that cell necrosis at the core of the model could be explained by nutrient starvation. The microdevice can be disassembled to retrieve the cells from the desired locations to study molecular adaptions due to nutrient starvation. When exposed to these pH gradients and low nutrient conditions, cancer cells showed multiple changes in their gene expression profile depending on their distance from the lumen. Those cells located further from the lumen upregulated several genes related to stress and survival response, whereas genes related to proliferation and DNA repair were downregulated. This model may help to identify new therapeutic opportunities to target the metabolic heterogeneity observed in solid tumors.
Collapse
Affiliation(s)
- Jose M. Ayuso
- Morgridge Institute for Research, 330 N Orchard street, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Maria Virumbrales-Munoz
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Patrick H. McMinn
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Shujah Rehman
- Morgridge Institute for Research, 330 N Orchard street, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Ismael Gomez
- Allergy research group, IdISSC. San Carlos Clinic Hospital, Madrid, Spain
- Materials department, Carlos III University. Leganes, Spain
| | - Mohammad R. Karim
- Morgridge Institute for Research, 330 N Orchard street, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Regan Trusttchel
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Kari B. Wisinski
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - David J. Beebe
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI,USA
| | - Melissa C. Skala
- Morgridge Institute for Research, 330 N Orchard street, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
84
|
Three-Dimensional Modeling of Avascular Tumor Growth in Both Static and Dynamic Culture Platforms. MICROMACHINES 2019; 10:mi10090580. [PMID: 31480431 PMCID: PMC6780963 DOI: 10.3390/mi10090580] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/16/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023]
Abstract
Microfluidic cell culture platforms are ideal candidates for modeling the native tumor microenvironment because they can precisely reconstruct in vivo cellular behavior. Moreover, mathematical modeling of tumor growth can pave the way toward description and prediction of growth pattern as well as improving cancer treatment. In this study, a modified mathematical model based on concentration distribution is applied to tumor growth in both conventional static culture and dynamic microfluidic cell culture systems. Apoptosis and necrosis mechanisms are considered as the main inhibitory factors in the model, while tumor growth rate and nutrient consumption rate are modified in both quiescent and proliferative zones. We show that such modification can better predict the experimental results of tumor growth reported in the literature. Using numerical simulations, the effects of the concentrations of the nutrients as well as the initial tumor radius on the tumor growth are investigated and discussed. Furthermore, tumor growth is simulated by taking into account the dynamic perfusion into the proposed model. Subsequently, tumor growth kinetics in a three-dimensional (3D) microfluidic device containing a U-shaped barrier is numerically studied. For this case, the effect of the flow rate of culture medium on tumor growth is investigated as well. Finally, to evaluate the impact of the trap geometry on the tumor growth, a comparison is made between the tumor growth kinetics in two frequently used traps in microfluidic cell culture systems, i.e., the U-shaped barrier and microwell structures. The proposed model can provide insight into better predicting the growth and development of avascular tumor in both static and dynamic cell culture platforms.
Collapse
|
85
|
Domingo-Vidal M, Whitaker-Menezes D, Martos-Rus C, Tassone P, Snyder CM, Tuluc M, Philp N, Curry J, Martinez-Outschoorn U. Cigarette Smoke Induces Metabolic Reprogramming of the Tumor Stroma in Head and Neck Squamous Cell Carcinoma. Mol Cancer Res 2019; 17:1893-1909. [PMID: 31239287 DOI: 10.1158/1541-7786.mcr-18-1191] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/17/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is comprised of metabolically linked distinct compartments. Cancer-associated fibroblasts (CAF) and nonproliferative carcinoma cells display a glycolytic metabolism, while proliferative carcinoma cells rely on mitochondrial oxidative metabolism fueled by the catabolites provided by the adjacent CAFs. Metabolic coupling between these reprogrammed compartments contributes to HNSCC aggressiveness. In this study, we examined the effects of cigarette smoke-exposed CAFs on metabolic coupling and tumor aggressiveness of HNSCC. Cigarette smoke (CS) extract was generated by dissolving cigarette smoke in growth media. Fibroblasts were cultured in CS or control media. HNSCC cells were cocultured in vitro and coinjected in vivo with CS or control fibroblasts. We found that CS induced oxidative stress, glycolytic flux and MCT4 expression, and senescence in fibroblasts. MCT4 upregulation was critical for fibroblast viability under CS conditions. The effects of CS on fibroblasts were abrogated by antioxidant treatment. Coculture of carcinoma cells with CS fibroblasts induced metabolic coupling with upregulation of the marker of glycolysis MCT4 in fibroblasts and markers of mitochondrial metabolism MCT1 and TOMM20 in carcinoma cells. CS fibroblasts increased CCL2 expression and macrophage migration. Coculture with CS fibroblasts also increased two features of carcinoma cell aggressiveness: resistance to cell death and enhanced cell migration. Coinjection of carcinoma cells with CS fibroblasts generated larger tumors with reduced apoptosis than control coinjections, and upregulation of MCT4 by CS exposure was a driver of these effects. We demonstrate that a tumor microenvironment exposed to CS is sufficient to modulate metabolism and cancer aggressiveness in HNSCC. IMPLICATIONS: CS shifts cancer stroma toward glycolysis and induces head and neck cancer aggressiveness with a mitochondrial profile linked by catabolite transporters and oxidative stress. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/17/9/1893/F1.large.jpg.
Collapse
Affiliation(s)
- Marina Domingo-Vidal
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Diana Whitaker-Menezes
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Cristina Martos-Rus
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Patrick Tassone
- Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Christopher M Snyder
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Madalina Tuluc
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nancy Philp
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Joseph Curry
- Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Ubaldo Martinez-Outschoorn
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
86
|
Tan AHY, Tu W, McCuaig R, Hardy K, Donovan T, Tsimbalyuk S, Forwood JK, Rao S. Lysine-Specific Histone Demethylase 1A Regulates Macrophage Polarization and Checkpoint Molecules in the Tumor Microenvironment of Triple-Negative Breast Cancer. Front Immunol 2019; 10:1351. [PMID: 31249575 PMCID: PMC6582666 DOI: 10.3389/fimmu.2019.01351] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
Macrophages play an important role in regulating the tumor microenvironment (TME). Here we show that classical (M1) macrophage polarization reduced expression of LSD1, nuclear REST corepressor 1 (CoREST), and the zinc finger protein SNAIL. The LSD1 inhibitor phenelzine targeted both the flavin adenine dinucleotide (FAD) and CoREST binding domains of LSD1, unlike the LSD1 inhibitor GSK2879552, which only targeted the FAD domain. Phenelzine treatment reduced nuclear demethylase activity and increased transcription and expression of M1-like signatures both in vitro and in a murine triple-negative breast cancer model. Overall, the LSD1 inhibitors phenelzine and GSK2879552 are useful tools for dissecting the contribution of LSD1 demethylase activity and the nuclear LSD1-CoREST complex to switching macrophage polarization programs. These findings suggest that inhibitors must have dual FAD and CoREST targeting abilities to successfully initiate or prime macrophages toward an anti-tumor M1-like phenotype in triple-negative breast cancer.
Collapse
Affiliation(s)
- Abel H Y Tan
- Epigenetics and Transcription Laboratory Melanie Swan Memorial Translational Centre, Sci-Tech, University of Canberra, Canberra, ACT, Australia
| | - WenJuan Tu
- Epigenetics and Transcription Laboratory Melanie Swan Memorial Translational Centre, Sci-Tech, University of Canberra, Canberra, ACT, Australia
| | - Robert McCuaig
- Epigenetics and Transcription Laboratory Melanie Swan Memorial Translational Centre, Sci-Tech, University of Canberra, Canberra, ACT, Australia
| | - Kristine Hardy
- Epigenetics and Transcription Laboratory Melanie Swan Memorial Translational Centre, Sci-Tech, University of Canberra, Canberra, ACT, Australia
| | - Thomasina Donovan
- Epigenetics and Transcription Laboratory Melanie Swan Memorial Translational Centre, Sci-Tech, University of Canberra, Canberra, ACT, Australia
| | - Sofiya Tsimbalyuk
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Sudha Rao
- Epigenetics and Transcription Laboratory Melanie Swan Memorial Translational Centre, Sci-Tech, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
87
|
Mierke CT. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:064602. [PMID: 30947151 DOI: 10.1088/1361-6633/ab1628] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The minimal structural unit of a solid tumor is a single cell or a cellular compartment such as the nucleus. A closer look inside the cells reveals that there are functional compartments or even structural domains determining the overall properties of a cell such as the mechanical phenotype. The mechanical interaction of these living cells leads to the complex organization such as compartments, tissues and organs of organisms including mammals. In contrast to passive non-living materials, living cells actively respond to the mechanical perturbations occurring in their microenvironment during diseases such as fibrosis and cancer. The transformation of single cancer cells in highly aggressive and hence malignant cancer cells during malignant cancer progression encompasses the basement membrane crossing, the invasion of connective tissue, the stroma microenvironments and transbarrier migration, which all require the immediate interaction of the aggressive and invasive cancer cells with the surrounding extracellular matrix environment including normal embedded neighboring cells. All these steps of the metastatic pathway seem to involve mechanical interactions between cancer cells and their microenvironment. The pathology of cancer due to a broad heterogeneity of cancer types is still not fully understood. Hence it is necessary to reveal the signaling pathways such as mechanotransduction pathways that seem to be commonly involved in the development and establishment of the metastatic and mechanical phenotype in several carcinoma cells. We still do not know whether there exist distinct metastatic genes regulating the progression of tumors. These metastatic genes may then be activated either during the progression of cancer by themselves on their migration path or in earlier stages of oncogenesis through activated oncogenes or inactivated tumor suppressor genes, both of which promote the metastatic phenotype. In more detail, the adhesion of cancer cells to their surrounding stroma induces the generation of intracellular contraction forces that deform their microenvironments by alignment of fibers. The amplitude of these forces can adapt to the mechanical properties of the microenvironment. Moreover, the adhesion strength of cancer cells seems to determine whether a cancer cell is able to migrate through connective tissue or across barriers such as the basement membrane or endothelial cell linings of blood or lymph vessels in order to metastasize. In turn, exposure of adherent cancer cells to physical forces, such as shear flow in vessels or compression forces around tumors, reinforces cell adhesion, regulates cell contractility and restructures the ordering of the local stroma matrix that leads subsequently to secretion of crosslinking proteins or matrix degrading enzymes. Hence invasive cancer cells alter the mechanical properties of their microenvironment. From a mechanobiological point-of-view, the recognized physical signals are transduced into biochemical signaling events that guide cellular responses such as cancer progression after the malignant transition of cancer cells from an epithelial and non-motile phenotype to a mesenchymal and motile (invasive) phenotype providing cellular motility. This transition can also be described as the physical attempt to relate this cancer cell transitional behavior to a T1 phase transition such as the jamming to unjamming transition. During the invasion of cancer cells, cell adaptation occurs to mechanical alterations of the local stroma, such as enhanced stroma upon fibrosis, and therefore we need to uncover underlying mechano-coupling and mechano-regulating functional processes that reinforce the invasion of cancer cells. Moreover, these mechanisms may also be responsible for the awakening of dormant residual cancer cells within the microenvironment. Physicists were initially tempted to consider the steps of the cancer metastasis cascade as single events caused by a single mechanical alteration of the overall properties of the cancer cell. However, this general and simple view has been challenged by the finding that several mechanical properties of cancer cells and their microenvironment influence each other and continuously contribute to tumor growth and cancer progression. In addition, basement membrane crossing, cell invasion and transbarrier migration during cancer progression is explained in physical terms by applying physical principles on living cells regardless of their complexity and individual differences of cancer types. As a novel approach, the impact of the individual microenvironment surrounding cancer cells is also included. Moreover, new theories and models are still needed to understand why certain cancers are malignant and aggressive, while others stay still benign. However, due to the broad variety of cancer types, there may be various pathways solely suitable for specific cancer types and distinct steps in the process of cancer progression. In this review, physical concepts and hypotheses of cancer initiation and progression including cancer cell basement membrane crossing, invasion and transbarrier migration are presented and discussed from a biophysical point-of-view. In addition, the crosstalk between cancer cells and a chronically altered microenvironment, such as fibrosis, is discussed including the basic physical concepts of fibrosis and the cellular responses to mechanical stress caused by the mechanically altered microenvironment. Here, is highlighted how biophysical approaches, both experimentally and theoretically, have an impact on classical hallmarks of cancer and fibrosis and how they contribute to the understanding of the regulation of cancer and its progression by sensing and responding to the physical environmental properties through mechanotransduction processes. Finally, this review discusses various physical models of cell migration such as blebbing, nuclear piston, protrusive force and unjamming transition migration modes and how they contribute to cancer progression. Moreover, these cellular migration modes are influenced by microenvironmental perturbances such as fibrosis that can induce mechanical alterations in cancer cells, which in turn may impact the environment. Hence, the classical hallmarks of cancer need to be refined by including biomechanical properties of cells, cell clusters and tissues and their microenvironment to understand mechano-regulatory processes within cancer cells and the entire organism.
Collapse
|
88
|
Lactate Dehydrogenases as Metabolic Links between Tumor and Stroma in the Tumor Microenvironment. Cancers (Basel) 2019; 11:cancers11060750. [PMID: 31146503 PMCID: PMC6627402 DOI: 10.3390/cancers11060750] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer is a metabolic disease in which abnormally proliferating cancer cells rewire metabolic pathways in the tumor microenvironment (TME). Molecular reprogramming in the TME helps cancer cells to fulfill elevated metabolic demands for bioenergetics and cellular biosynthesis. One of the ways through which cancer cell achieve this is by regulating the expression of metabolic enzymes. Lactate dehydrogenase (LDH) is the primary metabolic enzyme that converts pyruvate to lactate and vice versa. LDH also plays a significant role in regulating nutrient exchange between tumor and stroma. Thus, targeting human lactate dehydrogenase for treating advanced carcinomas may be of benefit. LDHA and LDHB, two isoenzymes of LDH, participate in tumor stroma metabolic interaction and exchange of metabolic fuel and thus could serve as potential anticancer drug targets. This article reviews recent research discussing the roles of lactate dehydrogenase in cancer metabolism. As molecular regulation of LDHA and LDHB in different cancer remains obscure, we also review signaling pathways regulating LDHA and LDHB expression. We highlight on the role of small molecule inhibitors in targeting LDH activity and we emphasize the development of safer and more effective LDH inhibitors. We trust that this review will also generate interest in designing combination therapies based on LDH inhibition, with LDHA being targeted in tumors and LDHB in stromal cells for better treatment outcome.
Collapse
|
89
|
Doglioni G, Parik S, Fendt SM. Interactions in the (Pre)metastatic Niche Support Metastasis Formation. Front Oncol 2019; 9:219. [PMID: 31069166 PMCID: PMC6491570 DOI: 10.3389/fonc.2019.00219] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/12/2019] [Indexed: 12/14/2022] Open
Abstract
Metastasis formation is the leading cause of death in cancer patients. Thus, understanding and targeting this process is an unmet need. Crucial steps during the establishment of metastases include the (pre)metastatic niche formation. This process relies on the interaction of the primary tumor with the environment of distant organs (premetastatic niche) and the interaction of cancer cells with their environment when arriving in a distant organ (metastatic niche). Here, we summarize the current knowledge on the interactions in the tumor environment that result in (pre)metastatic niche formation, specifically in the context of tumor secreted factors, extracellular matrix, immune as well as stromal cells, and nutrient availability. We further highlight strategies to disrupt these interactions as therapeutic interventions against metastases.
Collapse
Affiliation(s)
- Ginevra Doglioni
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute, Leuven, Belgium
| | - Sweta Parik
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute, Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute, Leuven, Belgium
| |
Collapse
|
90
|
Watch What You (Self-) Eat: Autophagic Mechanisms that Modulate Metabolism. Cell Metab 2019; 29:803-826. [PMID: 30943392 PMCID: PMC6450419 DOI: 10.1016/j.cmet.2019.03.003] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/07/2019] [Accepted: 03/04/2019] [Indexed: 02/07/2023]
Abstract
Autophagy is an evolutionarily conserved lysosome- or vacuole-dependent catabolic pathway in eukaryotes. Autophagy functions basally for cellular quality control and is induced to act as an alternative source of basic metabolites during nutrient deprivation. These functions of autophagy are intimately connected to the regulation of metabolism, and the metabolic status of the cell in turn controls the nature and extent of autophagic induction. Here, we highlight the co-regulation of autophagy and metabolism with a special focus on selective autophagy that, along with bulk autophagy, plays a central role in regulating and rewiring metabolic circuits. We outline the metabolic signals that activate these pathways, the mechanisms involved, and the downstream effects and implications while recognizing yet unanswered questions. We also discuss the role of autophagy in the development and maintenance of adipose tissue, an emerging player in systemic metabolic homeostasis, and describe what is currently known about the complex relationship between autophagy and cancer.
Collapse
|
91
|
Stoll G, Kremer M, Bloy N, Joseph A, Castedo M, Meurice G, Klein C, Galluzzi L, Michels J, Kroemer G. Metabolic enzymes expressed by cancer cells impact the immune infiltrate. Oncoimmunology 2019; 8:e1571389. [PMID: 31069148 DOI: 10.1080/2162402x.2019.1571389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/17/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022] Open
Abstract
The expression of two metabolic enzymes, i.e., aldehyde dehydrogenase 7 family, member A1 (ALDH7A1) and lipase C, hepatic type (LIPC) by malignant cells, has been measured by immunohistochemical methods in non-small cell lung carcinoma (NSCLC) biopsies, and has been attributed negative and positive prognostic value, respectively. Here, we demonstrate that the protein levels of ALDH7A1 and LIPC correlate with the levels of the corresponding mRNAs. Bioinformatic analyses of gene expression data from 4921 cancer patients revealed that the expression of LIPC positively correlates with abundant tumor infiltration by myeloid and lymphoid cells in NSCLC, breast carcinoma, colorectal cancer and melanoma samples. In contrast, high levels of ALDH7A1 were associated with a paucity of immune effectors within the tumor bed. These data reinforce the notion that the metabolism of cancer cells has a major impact on immune and inflammatory processes in the tumor microenvironment, pointing to hitherto unsuspected intersections between oncometabolism and immunometabolism.
Collapse
Affiliation(s)
- Gautier Stoll
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.,Centre de Recherche des Cordeliers, Equipe 11 labellisée Ligue Nationale contre le Cancer, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Margerie Kremer
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.,Centre de Recherche des Cordeliers, Equipe 11 labellisée Ligue Nationale contre le Cancer, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Normal Bloy
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.,Centre de Recherche des Cordeliers, Equipe 11 labellisée Ligue Nationale contre le Cancer, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Adrien Joseph
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.,Centre de Recherche des Cordeliers, Equipe 11 labellisée Ligue Nationale contre le Cancer, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Maria Castedo
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.,Centre de Recherche des Cordeliers, Equipe 11 labellisée Ligue Nationale contre le Cancer, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Guillaume Meurice
- Bioinformatics Core Facility, Gustave Roussy Cancer Campus, Villejuif, France
| | - Christophe Klein
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Centre d'Histologie, Imagerie cellulaire et Cytométrie (CHIC), Centre de Recherche des Cordeliers, Paris, France
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Judith Michels
- Department of Medical Oncology, Gustave Roussy Comprehensive Cancer Campus, Villejuif, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.,Centre de Recherche des Cordeliers, Equipe 11 labellisée Ligue Nationale contre le Cancer, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
92
|
Li H, Yan W, Suo X, Peng H, Yang X, Li Z, Zhang J, Liu D. Nucleus-targeted nano delivery system eradicates cancer stem cells by combined thermotherapy and hypoxia-activated chemotherapy. Biomaterials 2019; 200:1-14. [PMID: 30743049 DOI: 10.1016/j.biomaterials.2019.01.048] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/21/2019] [Accepted: 01/31/2019] [Indexed: 01/08/2023]
Abstract
Many efforts have focused on the cancer stem cell (CSC) targeting nano delivery system, however, the anticancer therapy efficacy is relative low due to the highly drug-resistance and drug efflux. Nucleus-targeted drug delivery is a promising strategy for reverse the drug resistance and drug efflux of CSCs, but in vivo nucleus-targeted drug delivery has been challenging. Herein, we designed a mesoporous silica nanoparticle (MSN)-based nucleus-targeted system, which could directly target the CSCs and further enter the nucleus by the surface modification of anti-CD133 and thermal-triggered exposure of TAT peptides under an alternating magnetic field (AMF). The nucleus-targeted drug release ultimately leads to an exhaustive apoptosis of the CSCs through combined thermotherapy and hypoxia-activated chemotherapy. In vivo, the nucleus-targeted nano delivery system efficiently inhibits the tumor growth without notable side effects during the course of treatment. Molecular mechanism study illustrates that the system effectively eliminates the CSCs by blocking the hypoxia signaling pathway. This designed nucleus-targeted nano delivery system is expected to provide new insights for developing efficient platforms for CSC-targeted cancer therapy.
Collapse
Affiliation(s)
- Hongjuan Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, People's Republic of China; College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, People's Republic of China
| | - Weixiao Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, People's Republic of China; College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, People's Republic of China
| | - Xiaomin Suo
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, People's Republic of China; College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, People's Republic of China
| | - Haotong Peng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, People's Republic of China; College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, People's Republic of China
| | - Xinjian Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, People's Republic of China; College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, People's Republic of China
| | - Zhenhua Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, People's Republic of China; College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, People's Republic of China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, People's Republic of China; College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, People's Republic of China.
| | - Dandan Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, People's Republic of China; College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, People's Republic of China.
| |
Collapse
|
93
|
Pandey SK, Yadav S, Goel Y, Singh SM. Cytotoxic action of acetate on tumor cells of thymic origin: Role of MCT-1, pH homeostasis and altered cell survival regulation. Biochimie 2019; 157:1-9. [DOI: 10.1016/j.biochi.2018.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/15/2018] [Indexed: 02/07/2023]
|
94
|
Tracking acetate through a journey of living world: Evolution as alternative cellular fuel with potential for application in cancer therapeutics. Life Sci 2018; 215:86-95. [DOI: 10.1016/j.lfs.2018.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 12/21/2022]
|
95
|
Tumour microenvironment and metabolic plasticity in cancer and cancer stem cells: Perspectives on metabolic and immune regulatory signatures in chemoresistant ovarian cancer stem cells. Semin Cancer Biol 2018; 53:265-281. [DOI: 10.1016/j.semcancer.2018.10.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
|
96
|
Lin YH, Wu MH, Yeh CT, Lin KH. Long Non-Coding RNAs as Mediators of Tumor Microenvironment and Liver Cancer Cell Communication. Int J Mol Sci 2018; 19:ijms19123742. [PMID: 30477236 PMCID: PMC6321423 DOI: 10.3390/ijms19123742] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment is an important concept that defines cancer development not only through tumor cells themselves but also the surrounding cellular and non-cellular components, including stromal cells, blood vessels, infiltrating inflammatory cells, cancer stem cells (CSC), cytokines, and growth factors, which act in concert to promote tumor cell survival and metastasis. Hepatocellular carcinoma (HCC) is one of the most common and aggressive human malignancies worldwide. Poor prognosis is largely attributable to the high rate of tumor metastasis, highlighting the importance of identifying patients at risk in advance and developing novel therapeutic targets to facilitate effective intervention. Long non-coding RNAs (lncRNA) are a class of non-protein coding transcripts longer than 200 nucleotides frequently dysregulated in various cancer types, which have multiple functions in widespread biological processes, including proliferation, apoptosis, metastasis, and metabolism. lncRNAs are involved in regulation of the tumor microenvironment and reciprocal signaling between cancer cells. Targeting of components of the tumor microenvironment or cancer cells has become a considerable focus of therapeutic research and establishing the effects of different lncRNAs on this network should aid in the development of effective treatment strategies. The current review provides a summary of the essential properties and functional roles of known lncRNAs associated with the tumor microenvironment in HCC.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cytokines/genetics
- Cytokines/metabolism
- Epigenesis, Genetic
- Gene Expression Regulation, Neoplastic
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- RNA, Long Noncoding/antagonists & inhibitors
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
Collapse
Affiliation(s)
- Yang-Hsiang Lin
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan.
| | - Meng-Han Wu
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan.
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan.
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
| |
Collapse
|
97
|
Najafi M, Goradel NH, Farhood B, Salehi E, Solhjoo S, Toolee H, Kharazinejad E, Mortezaee K. Tumor microenvironment: Interactions and therapy. J Cell Physiol 2018; 234:5700-5721. [PMID: 30378106 DOI: 10.1002/jcp.27425] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022]
Abstract
Tumor microenvironment (TME) is a host for a complex network of heterogeneous stromal cells with overlapping or opposing functions depending on the dominant signals within this milieu. Reciprocal paracrine interactions between cancer cells with cells within the tumor stroma often reshape the TME in favor of the promotion of tumor. These complex interactions require more sophisticated approaches for cancer therapy, and, therefore, advancing knowledge about dominant drivers of cancer within the TME is critical for designing therapeutic schemes. This review will provide knowledge about TME architecture, multiple signaling, and cross communications between cells within this milieu, and its targeting for immunotherapy of cancer.
Collapse
Affiliation(s)
- Masoud Najafi
- Department of Radiology and Nuclear Medicine, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Farhood
- Department of Radiology and Medical Physics, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Eniseh Salehi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somaye Solhjoo
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Heidar Toolee
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
98
|
Najafi M, Farhood B, Mortezaee K. Extracellular matrix (ECM) stiffness and degradation as cancer drivers. J Cell Biochem 2018; 120:2782-2790. [PMID: 30321449 DOI: 10.1002/jcb.27681] [Citation(s) in RCA: 442] [Impact Index Per Article: 63.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022]
Abstract
Alteration in the density and composition of extracellular matrix (ECM) occurs in tumors. The alterations toward both stiffness and degradation are contributed to tumor growth and progression. Cancer-associated fibroblasts (CAFs) are the main contributors to ECM stiffness and degradation. The cells interact with almost all cells within the tumor microenvironment (TME) that could enable them to modulate ECM components for tumorigenic purposes. Cross-talks between CAFs with cancer cells and macrophage type 2 (M2) cells are pivotal for ECM stiffness and degradation. CAFs induce hypoxia within the TME, which is one of the key inducers of both stiffness and degradation. Cancer cell modulatory roles in integrin receptors are key for adjusting ECM constituents to either fates. Cancer cell proliferation, migration, and invasion as well as angiogenesis are consequences of ECM stiffness and degradation. ECM stiffness in a transforming growth factor-β (TGF-β) related pathway could make a bridge in the basement membrane, and ECM degradation in a matrix metalloproteinase (MMP)-related pathway could make a path in the TME, both of which contribute to cancer cell invasion. ECM stiffness is also obstructive for drug penetration to the tumor site. Therefore, it would be a promising strategy to make a homeostasis in ECM for easy penetration of chemotherapeutic drugs and increasing the efficacy of antitumor approaches. MMP and TGF-β inhibitors, CAF and M2 reprogramming toward their normal counterparts, reduction of TME hypoxia and hampering integrin signaling are among the promising approaches for the modulation of ECM in favor of tumor regression.
Collapse
Affiliation(s)
- Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
99
|
Farhood B, Najafi M, Mortezaee K. Cancer‐associated fibroblasts: Secretions, interactions, and therapy. J Cell Biochem 2018; 120:2791-2800. [DOI: 10.1002/jcb.27703] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Bagher Farhood
- Departments of Medical Physics and Radiology Faculty of Paramedical Sciences, Kashan University of Medical Sciences Kashan Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department School of Paramedical Sciences, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Keywan Mortezaee
- Department of Anatomy School of Medicine, Kurdistan University of Medical Sciences Sanandaj Iran
| |
Collapse
|