51
|
Aggarwal R, Ferris B, Li H. Compartmentalized Linker Array: A Scalable and Transferrable Microarray Format for Multiplexed Immunoassays. Anal Chem 2023. [PMID: 37267452 DOI: 10.1021/acs.analchem.3c01442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Microarrays have been widely used for multiplexed bioassays. Fabrication of a conventional microarray typically requires a complex microarray spotter, using which nanoliter bioreagent (e.g., antibody and cells) droplets are delivered onto a glass slide. However, arraying a delicate bioreagent in nanoliter volumes could cause the loss of bioactivity and needs a complex microarray spotter. Further, mixing of different bioreagents in a multiplexed assay leads to cross-reactions, producing false positive signals that impair assay reproducibility and scalability. In this work, we propose a new microarray format, named "compartmentalized linker array (CLA)", that consists of pre-prepared storable microarrays of chemical linkers in microliter compartments. CLA can be used for binding and patterning bioreagents into microarrays by simply pipetting and incubating bioreagent solutions in compartments. Using commonly used aminosilane linker-based antibody microarray, we developed CLA and demonstrated its application for a multiplexed sandwich immunoassay measuring three cancer-related proteins. A "two-phase" blocking system was established for de-activating background regions on glass where no linker molecules are present. Storage conditions of the CLA chip were explored and demonstrated for long-term storage. In a multiplexed immunoassay, low pg/mL sensitivity was achieved for all the three proteins, comparable to those of conventional assays. Moreover, CLA can be potentially used for other applications beyond protein assays, making microarray technology transferrable and widely available for the biological and biomedical research community.
Collapse
Affiliation(s)
- Roshan Aggarwal
- School of Engineering, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Bryn Ferris
- School of Engineering, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Huiyan Li
- School of Engineering, University of Guelph, Guelph, Ontario N1G2W1, Canada
| |
Collapse
|
52
|
Chalertpet K, Sangkheereeput T, Somjit P, Bankeeree W, Yanatatsaneejit P. Effect of Smilax spp. and Phellinus linteus combination on cytotoxicity and cell proliferation of breast cancer cells. BMC Complement Med Ther 2023; 23:177. [PMID: 37264344 DOI: 10.1186/s12906-023-04003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/18/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Although the prevalence of breast cancer (BC) has been reduced in recent years, proficient therapeutic regimens should be further investigated with the aim of further reducing the mortality rate. To obtain more effective treatment, the present study aimed to observe the effects of PL synergistically combined with Smilax corbularia and S. glabra extracts (PSS) on BC cell lines, MCF7, T47D, MDA-MB-231, and MDA-MB-468. METHODS The half-maximal inhibition (IC50) concentrations of PSS and PL were determined in a dose- and time-dependent manner using MTT assay. The activity of PSS and PL on anti-BC proliferation was evaluated using BrdU assay, and colony formation assay. Moreover, cell cycle analysis and apoptosis induction as a result of PSS and PL exposure were investigated using propidium iodide (PI) staining and co-staining of annexin V DY634 and PI combined flow cytometric analysis, respectively. Finally, changes in the mRNA expression of genes involved in proliferative and apoptotic pathways (MKI67, HER2, EGFR, MDM2, TNFα, PI3KCA, KRAS, BAX, and CASP8) were explored using RT-qPCR following PSS and PL treatment. RESULTS The PSS and PL extracts exhibited significant potential in BC cytotoxicity which were in were in dose- and time-dependent response. This inhibition of cell growth was due to the suppression of cell proliferation, the cell cycle arrest, and the induction of apoptosis. Additionally, an investigation of the underlying molecular mechanism revealed that PSS and PL are involved in downregulation of the MKI67, HER2, EGFR, MDM2, TNFα, and PI3KCA expression. CONCLUSIONS This present study has suggested that PSS and PL possess anti-BC proliferative activity mediated via the downregulation of genes participating in the relevant pathways. PSS or PL may be combined with other agents to alleviate the adverse side effects resulted from conventional chemotherapeutic drugs.
Collapse
Affiliation(s)
- Kanwalat Chalertpet
- Department of Botany, Faculty of Science, Human Genetics Research Group, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanawitch Sangkheereeput
- Department of Botany, Faculty of Science, Human Genetics Research Group, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prakaithip Somjit
- Department of Botany, Faculty of Science, Human Genetics Research Group, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wichanee Bankeeree
- Department of Botany, Faculty of Science, Plant Biomass Utilization Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pattamawadee Yanatatsaneejit
- Department of Botany, Faculty of Science, Human Genetics Research Group, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
53
|
Bruni S, Mercogliano MF, Mauro FL, Cordo Russo RI, Schillaci R. Cancer immune exclusion: breaking the barricade for a successful immunotherapy. Front Oncol 2023; 13:1135456. [PMID: 37284199 PMCID: PMC10239871 DOI: 10.3389/fonc.2023.1135456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Immunotherapy has changed the course of cancer treatment. The initial steps were made through tumor-specific antibodies that guided the setup of an antitumor immune response. A new and successful generation of antibodies are designed to target immune checkpoint molecules aimed to reinvigorate the antitumor immune response. The cellular counterpart is the adoptive cell therapy, where specific immune cells are expanded or engineered to target cancer cells. In all cases, the key for achieving positive clinical resolutions rests upon the access of immune cells to the tumor. In this review, we focus on how the tumor microenvironment architecture, including stromal cells, immunosuppressive cells and extracellular matrix, protects tumor cells from an immune attack leading to immunotherapy resistance, and on the available strategies to tackle immune evasion.
Collapse
|
54
|
Akingbesote ND, Owusu D, Liu R, Cartmel B, Ferrucci LM, Zupa M, Lustberg MB, Sanft T, Blenman KRM, Irwin ML, Perry RJ. A review of the impact of energy balance on triple-negative breast cancer. J Natl Cancer Inst Monogr 2023; 2023:104-124. [PMID: 37139977 DOI: 10.1093/jncimonographs/lgad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 05/05/2023] Open
Abstract
Cancer cells cannot proliferate without sufficient energy to generate biomass for rapid cell division, as well as to fuel their functions at baseline. For this reason, many recent observational and interventional studies have focused on increasing energy expenditure and/or reducing energy intake during and after cancer treatment. The impact of variance in diet composition and in exercise on cancer outcomes has been detailed extensively elsewhere and is not the primary focus of this review. Instead, in this translational, narrative review we examine studies of how energy balance impacts anticancer immune activation and outcomes in triple-negative breast cancer (TNBC). We discuss preclinical, clinical observational, and the few clinical interventional studies on energy balance in TNBC. We advocate for the implementation of clinical studies to examine how optimizing energy balance-through changes in diet and/or exercise-may optimize the response to immunotherapy in people with TNBC. It is our conviction that by taking a holistic approach that includes energy balance as a key factor to be considered during and after treatment, cancer care may be optimized, and the detrimental effects of cancer treatment and recovery on overall health may be minimized.
Collapse
Affiliation(s)
- Ngozi D Akingbesote
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
| | - Dennis Owusu
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
- Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti Region, Ghana
| | - Ryan Liu
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
- Cedar Park High School, Cedar Park, TX, USA
| | - Brenda Cartmel
- Yale School of Public Health, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
| | - Leah M Ferrucci
- Yale School of Public Health, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
| | | | - Maryam B Lustberg
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
| | - Tara Sanft
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
| | - Kim R M Blenman
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
- Department of Computer Science, Yale University, New Haven, CT, USA
| | - Melinda L Irwin
- Yale School of Public Health, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
| | - Rachel J Perry
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
| |
Collapse
|
55
|
Chim LK, Williams IL, Bashor CJ, Mikos AG. Tumor-associated macrophages induce inflammation and drug resistance in a mechanically tunable engineered model of osteosarcoma. Biomaterials 2023; 296:122076. [PMID: 36931102 PMCID: PMC11132719 DOI: 10.1016/j.biomaterials.2023.122076] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
The tumor microenvironment is a complex and dynamic ecosystem composed of various physical cues and biochemical signals that facilitate cancer progression, and tumor-associated macrophages are especially of interest as a treatable target due to their diverse pro-tumorigenic functions. Engineered three-dimensional models of tumors more effectively mimic the tumor microenvironment than monolayer cultures and can serve as a platform for investigating specific aspects of tumor biology within a controlled setting. To study the combinatorial effects of tumor-associated macrophages and microenvironment mechanical properties on osteosarcoma, we co-cultured human osteosarcoma cells with macrophages within biomaterials-based bone tumor niches with tunable stiffness. In the first 24 h of direct interaction between the two cell types, macrophages induced an inflammatory environment consisting of high concentrations of tumor necrosis factor alpha (TNFα) and interleukin (IL)-6 within moderately stiff scaffolds. Expression of Yes-associated protein (YAP), but not its homolog, transcriptional activator with PDZ-binding motif (TAZ), in osteosarcoma cells was significantly higher than in macrophages, and co-culture of the two cells slightly upregulated YAP in both cells, although not to a significant degree. Resistance to doxorubicin treatment in osteosarcoma cells was correlated with inflammation in the microenvironment, and signal transducer and activator of transcription 3 (STAT3) inhibition diminished the inflammation-related differences in drug resistance but ultimately did not improve the efficacy of doxorubicin. This work highlights that the biochemical cues conferred by tumor-associated macrophages in osteosarcoma are highly variable, and signals derived from the immune system should be considered in the development and testing of novel drugs for cancer.
Collapse
Affiliation(s)
- Letitia K Chim
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Isabelle L Williams
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Caleb J Bashor
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.
| |
Collapse
|
56
|
Meškytė EM, Pezzè L, Bartolomei L, Forcato M, Bocci IA, Bertalot G, Barbareschi M, Oliveira-Ferrer L, Bisio A, Bicciato S, Baltriukienė D, Ciribilli Y. ETV7 reduces inflammatory responses in breast cancer cells by repressing the TNFR1/NF-κB axis. Cell Death Dis 2023; 14:263. [PMID: 37041130 PMCID: PMC10089821 DOI: 10.1038/s41419-023-05718-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 04/13/2023]
Abstract
The transcription factor ETV7 is an oncoprotein that is up-regulated in all breast cancer (BC) types. We have recently demonstrated that ETV7 promoted breast cancer progression by increasing cancer cell proliferation and stemness and was also involved in the development of chemo- and radio-resistance. However, the roles of ETV7 in breast cancer inflammation have yet to be studied. Gene ontology analysis previously performed on BC cells stably over-expressing ETV7 demonstrated that ETV7 was involved in the suppression of innate immune and inflammatory responses. To better decipher the involvement of ETV7 in these signaling pathways, in this study, we identified TNFRSF1A, encoding for the main receptor of TNF-α, TNFR1, as one of the genes down-regulated by ETV7. We demonstrated that ETV7 directly binds to the intron I of this gene, and we showed that the ETV7-mediated down-regulation of TNFRSF1A reduced the activation of NF-κB signaling. Furthermore, in this study, we unveiled a potential crosstalk between ETV7 and STAT3, another master regulator of inflammation. While it is known that STAT3 directly up-regulates the expression of TNFRSF1A, here we demonstrated that ETV7 reduces the ability of STAT3 to bind to the TNFRSF1A gene via a competitive mechanism, recruiting repressive chromatin remodelers, which results in the repression of its transcription. The inverse correlation between ETV7 and TNFRSF1A was confirmed also in different cohorts of BC patients. These results suggest that ETV7 can reduce the inflammatory responses in breast cancer through the down-regulation of TNFRSF1A.
Collapse
Affiliation(s)
- Erna Marija Meškytė
- Laboratory of Molecular Cancer Genetics, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Laura Pezzè
- Laboratory of Molecular Cancer Genetics, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Alia Therapeutics, s.r.l., Trento, Italy
| | - Laura Bartolomei
- Laboratory of Radiobiology, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Irene Adelaide Bocci
- Laboratory of Molecular Cancer Genetics, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Institut für Zellbiologie, Universitätsklinikum Essen, Essen, Germany
| | - Giovanni Bertalot
- Unità Operativa Multizonale di Anatomia Patologica, APSS, Trento, Italy
- Centre for Medical Sciences (CISMed), University of Trento, Trento, Italy
| | - Mattia Barbareschi
- Unità Operativa Multizonale di Anatomia Patologica, APSS, Trento, Italy
- Centre for Medical Sciences (CISMed), University of Trento, Trento, Italy
| | | | - Alessandra Bisio
- Laboratory of Radiobiology, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daiva Baltriukienė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Yari Ciribilli
- Laboratory of Molecular Cancer Genetics, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| |
Collapse
|
57
|
Stastna N, Brat K, Homola L, Os A, Brancikova D. Increasing incidence rate of breast cancer in cystic fibrosis - relationship between pathogenesis, oncogenesis and prediction of the treatment effect in the context of worse clinical outcome and prognosis of cystic fibrosis due to estrogens. Orphanet J Rare Dis 2023; 18:62. [PMID: 36941680 PMCID: PMC10029289 DOI: 10.1186/s13023-023-02671-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/11/2023] [Indexed: 03/23/2023] Open
Abstract
Cystic fibrosis (CF) is the most common genetic disease in the Caucasion population. Thanks to the CFTR modulators therapy, life expectancy will significantly improve. New therapeutic challenges can be expected, including diseases associated with ageing and higher incidence of cancer, as evidenced by recent epidemiological studies. The increasing incidence of tumors includes also breast cancer. The risk of breast cancer is higher in CF patients compared to the general population. Sex hormones, especially estrogens, also affect on the pathophysiology and immunology of the CF. Previous research, has demonstrated unequivocal survival rates for female CF patients compared to their male counterparts. Is demonstrated, that chemotherapy used for breast cancer affects the CFTR channel and CFTR modulator therapy has frequent side effects on breast tissue. In this review, we focus on the effects of female sex hormones on CF disease, pathophysiological relationships between CF and breast cancer, and the impact of antitumor treatment on both, malignant disease and CF. The potential for further investigation is also discussed.
Collapse
Affiliation(s)
- Nela Stastna
- Department of Respiratory Diseases, University Hospital Brno, Jihlavska 20, Brno, 62500, Czech Republic.
- Faculty of Medicine, Masaryk University Brno, Kamenice 5, Brno, 62500, Czech Republic.
| | - Kristian Brat
- Department of Respiratory Diseases, University Hospital Brno, Jihlavska 20, Brno, 62500, Czech Republic
- Faculty of Medicine, Masaryk University Brno, Kamenice 5, Brno, 62500, Czech Republic
| | - Lukas Homola
- Faculty of Medicine, Masaryk University Brno, Kamenice 5, Brno, 62500, Czech Republic
- Department of Children's Infectious Diseases, University Hospital Brno, Jihlavska 20, Brno, 62500, Czech Republic
| | - Audun Os
- Department of Pulmonary Medicine, Oslo University Hospital, Kirkeveien 166, Ullevål, Oslo, 0450, Norway
| | - Dagmar Brancikova
- Faculty of Medicine, Masaryk University Brno, Kamenice 5, Brno, 62500, Czech Republic
- Department of Hematology, Oncology and Internal Medicine, University Hospital Brno, Jihlavska 20, Brno, 62500, Czech Republic
| |
Collapse
|
58
|
Sánchez-León ML, Jiménez-Cortegana C, Silva Romeiro S, Garnacho C, de la Cruz-Merino L, García-Domínguez DJ, Hontecillas-Prieto L, Sánchez-Margalet V. Defining the Emergence of New Immunotherapy Approaches in Breast Cancer: Role of Myeloid-Derived Suppressor Cells. Int J Mol Sci 2023; 24:5208. [PMID: 36982282 PMCID: PMC10048951 DOI: 10.3390/ijms24065208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Breast cancer (BC) continues to be the most diagnosed tumor in women and a very heterogeneous disease both inter- and intratumoral, mainly given by the variety of molecular profiles with different biological and clinical characteristics. Despite the advancements in early detection and therapeutic strategies, the survival rate is low in patients who develop metastatic disease. Therefore, it is mandatory to explore new approaches to achieve better responses. In this regard, immunotherapy arose as a promising alternative to conventional treatments due to its ability to modulate the immune system, which may play a dual role in this disease since the relationship between the immune system and BC cells depends on several factors: the tumor histology and size, as well as the involvement of lymph nodes, immune cells, and molecules that are part of the tumor microenvironment. Particularly, myeloid-derived suppressor cell (MDSC) expansion is one of the major immunosuppressive mechanisms used by breast tumors since it has been associated with worse clinical stage, metastatic burden, and poor efficacy of immunotherapies. This review focuses on the new immunotherapies in BC in the last five years. Additionally, the role of MDSC as a therapeutic target in breast cancer will be described.
Collapse
Affiliation(s)
- María Luisa Sánchez-León
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Carlos Jiménez-Cortegana
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Silvia Silva Romeiro
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Carmen Garnacho
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Luis de la Cruz-Merino
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Daniel J. García-Domínguez
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Víctor Sánchez-Margalet
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| |
Collapse
|
59
|
Muacevic A, Adler JR, Yadav V, Shyam H, Kumar S, Mishra SK, Ramakant P. Long-Term Yogic Intervention Improves Symptomatic Scale and Quality of Life by Reducing Inflammatory Cytokines and Oxidative Stress in Breast Cancer Patients Undergoing Chemotherapy and/or Radiotherapy: A Randomized Control Study. Cureus 2023; 15:e33427. [PMID: 36751235 PMCID: PMC9899326 DOI: 10.7759/cureus.33427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Inflammation has been associated with tumor proliferation and metastasis in breast cancer. Yoga is an ancient therapy that helps in reducing inflammation and improves the patient's quality of life (QoL) and fatigue. In the current study, we investigated the effects of long-term yogic intervention at different time points on the level of inflammatory cytokines and oxidative stress, along with the symptomatic scale and QoL in stage II/III breast cancer patients. METHODS Ninety-six stage II/III breast cancer patients receiving chemotherapy and/or radiotherapy were enrolled and divided into two groups, non-yoga (Group I) and yoga (Group II). Participants in Group II practiced yoga five days per week for 48 weeks. The European Organisation for Research and Treatment of Cancer quality of life questionnaire (EORTC-QLQ30) was used to measure the QoL and symptomatic scale. Serum levels of pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-α), interferon-γ (IFN-γ) and granulocyte macrophage colony-stimulating factor (GM-CSF), and oxidative stress markers, superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and nitric oxide (NO) were measured at baseline, 16, 32, and 48 weeks in both groups. RESULTS Yoga significantly (p<0.05) reduced the level of IFN-γ, TNF-α, and MDA and improved QoL (p<0.001) and symptomatic scale (p<0.05) in Group II patients compared to Group I. NO was upregulated in Group I whereas in Group II, it was neither decreased nor increased. CONCLUSION These findings suggest that yoga may reduce levels of inflammatory cytokines and improve QoL and symptomatic scale in breast cancer patients receiving chemotherapy and/or radiotherapy. Yoga can be an important additional therapy during cancer treatments to cope with treatment side effects including fatigue, depression, and immunological profile, which directly affects the patient's quality of life.
Collapse
|
60
|
Basavarajappa GM, Rehman A, Shiroorkar PN, Sreeharsha N, Anwer MK, Aloufi B. Therapeutic effects of Crataegus monogyna inhibitors against breast cancer. Front Pharmacol 2023; 14:1187079. [PMID: 37180727 PMCID: PMC10174464 DOI: 10.3389/fphar.2023.1187079] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Breast cancer is a silent killer disorder among women and a serious economic burden in healthcare management. Every 19 s, a woman is diagnosed with breast cancer, and every 74 s, a woman worldwide passes away from the disease. Despite the increase in progressive research, advanced treatment approaches, and preventive measures, breast cancer rates continue to increase. This study provides a combination of data mining, network pharmacology, and docking analysis that surely could revolutionize cancer treatment by exploiting prestigious phytochemicals. Crataegus monogyna is a small, rounded deciduous tree with glossy, deeply lobed leaves and flat sprays of cream flowers, followed by dark red berries in autumn. Various studies demonstrated that C. monogyna is therapeutically effective against breast cancer. However, the particular molecular mechanism is still unknown. This study is credited for locating bioactive substances, metabolic pathways, and target genes for breast cancer treatment. According to the current investigation, which examined compound-target genes-pathway networks, it was found that the bioactive compounds of C. monogyna may operate as a viable solution against breast cancer by altering the target genes implicated in the disease pathogenesis. The expression level of target genes was analyzed using GSE36295 microarray data. Docking analysis and molecular dynamic simulation studies further strengthened the current findings by validating the effective activity of the bioactive compounds against putative target genes. In summary, we propose that six key compounds, luteolin, apigenin, quercetin, kaempferol, ursolic acid, and oleanolic acid, contributed to the development of breast cancer by affecting the MMP9 and PPARG proteins. Integration of network pharmacology and bioinformatics revealed C. monogyna's multitarget pharmacological mechanisms against breast cancer. This study provides convincing evidence that C. monogyna might partially alleviate breast cancer and ultimately lays a foundation for further experimental research on the anti-breast cancer activity of C. monogyna.
Collapse
Affiliation(s)
| | - Abdur Rehman
- College of Life Sciences, Northwest A&F University, Yangling, China
- *Correspondence: Nagaraja Sreeharsha, ; Abdur Rehman,
| | | | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Bangalore, India
- *Correspondence: Nagaraja Sreeharsha, ; Abdur Rehman,
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Alkharj, Saudi Arabia
| | - Bandar Aloufi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
61
|
Wang B, Liu W, Liu C, Du K, Guo Z, Zhang G, Huang Z, Lin S, Cen B, Tian Y, Yuan Y, Bu J. Cancer-Associated Fibroblasts Promote Radioresistance of Breast Cancer Cells via the HGF/c-Met Signaling Pathway. Int J Radiat Oncol Biol Phys 2022:S0360-3016(22)03679-3. [PMID: 36586496 DOI: 10.1016/j.ijrobp.2022.12.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/10/2022] [Accepted: 12/17/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE Cancer-associated fibroblasts (CAFs) are an integral part of the tumor microenvironment (TME), which is involved in therapy resistance. This study aimed to investigate the role of CAFs in radiosensitivity of breast cancer cells. METHODS AND MATERIALS The CAFs were isolated from the breast cancer tissues, and the conditioned medium was collected to culture breast cancer cells. Radiation-induced DNA damage was evaluated by immunofluorescence and western blotting. Cytokine array and enzyme-linked immunosorbent assay were performed to analyze the secretion of cytokines and growth factors. An in vitro clonogenic survival assay and in vivo xenograft mouse model were performed to determine the radiosensitivity of breast cancer cells. Finally, the expression of hepatocyte growth factor (HGF) and c-Met in the breast cancer tissues were detected by immunohistochemistry. RESULTS The CAFs were found to secrete HGF to activate the c-Met signaling pathway, which induced epithelial-to-mesenchymal transition, growth, and radioresistance of breast cancer cells. Furthermore, radiation was observed to enhance HGF secretion by CAFs and increase c-Met expression in breast cancer cells, which led to HGF/c-Met signaling pathway activation. Moreover, radiation-induced tumor necrosis factor α (TNFα) secretion by breast cancer cells promoted CAF proliferation and HGF secretion. Additionally, HGF and c-Met high expression were associated with worse recurrence-free survival in patients with breast cancer who had received radiation therapy. CONCLUSIONS The findings revealed that HGF and TNFα are critical for the crosstalk between breast cancer cells and CAFs in the TME and that the HGF/c-Met signaling pathway is a promising therapeutic target for radiosensitizing breast cancer.
Collapse
Affiliation(s)
- Baiyao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Wei Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Chunshan Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Kunpeng Du
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Zhaoze Guo
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Guoqian Zhang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Zhong Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Shuhui Lin
- Department of Oncology, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, Guangdong Province, China
| | - Bohong Cen
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yunhong Tian
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China; Department of Oncology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, China.
| | - Junguo Bu
- Department of Oncology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, China.
| |
Collapse
|
62
|
Designing a humanized immunotoxin based on DELTA-stichotoxin-Hmg2a toxin: an in silico study. J Mol Model 2022; 28:392. [DOI: 10.1007/s00894-022-05389-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
|
63
|
Halim F, Azhar Y, Suwarman S, Hernowo B. p53 Mutation as Plausible Predictor for Endocrine Resistance Therapy in Luminal Breast Cancer. F1000Res 2022; 11:330. [PMID: 36519010 PMCID: PMC9718986 DOI: 10.12688/f1000research.108628.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
Endocrine therapy resistance in Luminal Breast Cancer is a significant issue to be tackled, but currently, no specific biomarker could be used to anticipate this event. p53 mutation is widely known as one of Breast Cancer's most prominent genetic alterations. Its mutation could generate various effects in Estrogen Receptor and Progesterone Receptor molecular works, tangled in events leading to the aggravation of endocrine therapy resistance. Hence the possibility of p53 mutation utilization as an endocrine therapy resistance predictive biomarker is plausible. The purpose of this review is to explore the latest knowledge of p53 role in Estrogen Receptor and Progesterone Receptor molecular actions, thus aggravating the Endocrine Therapy resistance in Luminal Breast Cancer, from which we could define possibilities and limitations to utilize p53 as the predictive biomarker of endocrine therapy resistance in Luminal Breast Cancer.
Collapse
Affiliation(s)
- Freda Halim
- Department of Surgery, Pelita Harapan University, Tangerang, Indonesia,
| | - Yohana Azhar
- Department of Surgery - Oncology, Head and Neck Division, Hasan Sadikin General Hospital, Universitas Padjajaran, Bandung, Indonesia
| | - Suwarman Suwarman
- Department of Anesthesiology and Intensive Care, Hasan Sadikin General Hospital, Universitas Padjajaran, Bandung, Indonesia
| | - Bethy Hernowo
- Department of Anatomical Pathology, Universitas Padjajaran, Bandung, West Java, Indonesia
| |
Collapse
|
64
|
Balakrishnan V, Ganapathy S, Veerasamy V, Subramaniyan S, Mohamed Hussain SA, Duraisamy R. Modifying effects of nerolidol on cell surface glycoconjugates and suppressed inflammation during DMBA-induced oral carcinogenesis: An in vivo and in silico. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
65
|
Liu Y, Fang Y, Bao L, Wu F, Wang S, Hao S. Intercellular Communication Reveals Therapeutic Potential of Epithelial-Mesenchymal Transition in Triple-Negative Breast Cancer. Biomolecules 2022; 12:biom12101478. [PMID: 36291687 PMCID: PMC9599658 DOI: 10.3390/biom12101478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 12/07/2022] Open
Abstract
(1) Background: Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with high intra-tumoral heterogeneity. The epithelial-mesenchymal transition (EMT) is one of the inducers of cancer metastasis and migration. However, the description of the EMT process in TNBC using single-cell RNA sequencing (scRNA-seq) remains unclear. (2) Methods: In this study, we analyzed 8938 cellular gene expression profiles from five TNBC patients. We first scored each malignant cell based on functional pathways to determine its EMT characteristics. Then, a pseudo-time trajectory analysis was employed to characterize the cell trajectories. Furthermore, CellChat was used to identify the cellular communications. (3) Results: We identified 888 epithelium-like and 846 mesenchyme-like malignant cells, respectively. A further pseudo-time trajectory analysis indicated the transition trends from epithelium-like to mesenchyme-like in malignant cells. To characterize the potential regulators of the EMT process, we identified 10 dysregulated transcription factors (TFs) between epithelium-like and mesenchyme-like malignant cells, in which overexpressed forkhead box protein A1 (FOXA1) was recognized as a poor prognosis marker of TNBC. Furthermore, we dissected the cell-cell communications via ligand-receptor (L-R) interactions. We observed that tumor-associated macrophages (TAMs) may support the invasion of malignant epithelial cells, based on CXCL-CXCR2 signaling. The tumor necrosis factor (TNF) signaling pathway secreted by TAMs was identified as an outgoing communication pattern, mediating the communications between monocytes/TAMs and malignant epithelial cells. Alternatively, the TNF-related ligand-receptor (L-R) pairs showed promising clinical implications. Some immunotherapy and anti-neoplastic drugs could interact with the L-R pairs as a potential strategy for the treatment of TNBC. In summary, this study enhances the understanding of the EMT process in the TNBC microenvironment, and dissections of EMT-related cell communications also provided us with potential treatment targets.
Collapse
Affiliation(s)
- Yang Liu
- Pharmacy Intravenous Admixture Services, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Yu Fang
- Department of Phase I Clinical Trial Ward, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Lili Bao
- Pharmacy Intravenous Admixture Services, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Feng Wu
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Shilong Wang
- Pharmacy Intravenous Admixture Services, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
- Correspondence: (S.W.); (S.H.)
| | - Siyu Hao
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
- Correspondence: (S.W.); (S.H.)
| |
Collapse
|
66
|
Narasimhan H, Ferraro F, Bleilevens A, Weiskirchen R, Stickeler E, Maurer J. Tumor Necrosis Factor-α (TNFα) Stimulate Triple-Negative Breast Cancer Stem Cells to Promote Intratumoral Invasion and Neovasculogenesis in the Liver of a Xenograft Model. BIOLOGY 2022; 11:biology11101481. [PMID: 36290384 PMCID: PMC9598572 DOI: 10.3390/biology11101481] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022]
Abstract
TNBC represents the most aggressive breast cancer subtype. Although cancer stem cells (CSCs) are a minor fraction of all cancer cells, they are highly cancerous when compared to their non-stem counterparts, playing a major role in tumor recurrence and metastasis. Angiogenic stimuli and the tumor environment response are vital factors in cancer metastasis. However, the causes and effects of tumor angiogenesis are still poorly understood. In this study, we demonstrate TNFα effects on primary triple-negative breast cancer stem cells (BCSCs). TNFα stimulation increased the mesenchymality of BCSCs in an intermediate epithelial-to-mesenchymal transition (EMT) state, enhanced proliferation, self-renewal, and invasive capacity. TNFα-treatment elicited BCSC signaling on endothelial networks in vitro and increased the network forming capacity of the endothelial cells. Our findings further demonstrate that TNFα stimulation in BCSCs has the ability to instigate distinct cellular communication within the tumor microenvironment, inducing intra-tumoral stromal invasion. Further, TNFα-treatment in BCSCs induced a pre-metastatic niche through breast-liver organ crosstalk by inducing vascular cell adhesion molecule-1 (VCAM-1) enriched neovasculogenesis in the liver of tumor-bearing mice. Overall, TNFα is an important angiogenic target to be considered in breast cancer progression to attenuate any angiogenic response in the tumor environment that could lead to secondary organ metastasis.
Collapse
Affiliation(s)
- Harini Narasimhan
- Department of Obstetrics and Gynecology, University Hospital Aachen, D-52074 Aachen, Germany
| | - Francesca Ferraro
- Department of Obstetrics and Gynecology, University Hospital Aachen, D-52074 Aachen, Germany
| | - Andreas Bleilevens
- Department of Obstetrics and Gynecology, University Hospital Aachen, D-52074 Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC) RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Elmar Stickeler
- Department of Obstetrics and Gynecology, University Hospital Aachen, D-52074 Aachen, Germany
- Center for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf (ABCD), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Jochen Maurer
- Department of Obstetrics and Gynecology, University Hospital Aachen, D-52074 Aachen, Germany
- Center for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf (ABCD), Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
67
|
Bulska-Będkowska W, Czajka-Francuz P, Cisoń-Jurek S, Owczarek AJ, Francuz T, Chudek J. Predictive Role of Soluble IL-6R, TNF-R1/2, and Cell Adhesion Molecules Serum Levels in the Preoperative and Adjuvant Therapy in Women with Nonmetastatic Breast Cancer: A Preliminary Study. J Interferon Cytokine Res 2022; 42:557-567. [PMID: 36130158 DOI: 10.1089/jir.2022.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Soluble cell adhesion molecules (sCAMs) are involved in the development of neoplastic diseases. sCAMs can block lymphocytes and promote angiogenesis and migration of breast cancer (BC) cells. Interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) enhance metastatic potential via upregulation of CAMs. We assessed soluble interleukin-6 receptor subunit alpha (IL-6Ra), TNF-R1, TNF-R2, E-selectin, P-selectin, VCAM-1, ICAM-1, and EpCAM in 89 women with stage I-III BC and 28 healthy women. Blood samples were obtained at the beginning of neoadjuvant/induction (N = 49) or adjuvant treatment (N = 40), and after 2 months. Surgery revealed complete response in 29.4% of patients, partial response in 67%, and stable disease in 5.9%. Achieving a pathological response was 4 times greater for baseline levels of sIL-6Ra >5.63 ng/mL [odds ratio (OR) = 4.1, 95% confidence interval (CI): 0.8-20.4, P = 0.08] and more than 6 times for soluble tumor necrosis factor receptor 1 (sTNF-R1) ≥ 0.97 ng/mL (OR = 6.2, 95% CI: 1.2-32.3, P < 0.05). Compared with the control group, serum sP-selectin, soluble epithelial cell adhesion molecule (sEpCAM), and sTNF-R2 concentrations were significantly higher in patients who started adjuvant therapy (P < 0.05) and preoperative therapy (P < 0.01). Baseline serum sIL-6Ra concentrations were significantly higher in patients before surgery than in patients after tumor resection (P < 0.05), independent of the follow-up time. The baseline serum soluble receptors of IL-6 (sIL-6R) and TNF-α (sTNF-R1) concentrations have a predictive value for preoperative therapy in patients with BC.
Collapse
Affiliation(s)
- Weronika Bulska-Będkowska
- Department of Internal Diseases and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Paulina Czajka-Francuz
- Department of Internal Diseases and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Sylwia Cisoń-Jurek
- Department of Internal Diseases and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aleksander J Owczarek
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Tomasz Francuz
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Jerzy Chudek
- Department of Internal Diseases and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
68
|
Dhanya CR, Mary AS, Madhavan M. Aptamer-siRNA chimeras: Promising tools for targeting HER2 signaling in cancer. Chem Biol Drug Des 2022; 101:1162-1180. [PMID: 36099164 DOI: 10.1111/cbdd.14143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 08/28/2022] [Accepted: 09/11/2022] [Indexed: 11/30/2022]
Abstract
RNA interference is a transformative approach and has great potential in the development of novel and more efficient cancer therapeutics. Immense prospects exist in the silencing of HER2 and its downstream genes which are overexpressed in many cancers, through exogenously delivered siRNA. However, there is still a long way to exploit the full potential and versatility of siRNA therapeutics due to the challenges associated with the stability and delivery of siRNA targeted to specific sites. Aptamers offer several advantages as a vehicle for siRNA delivery, over other carriers such as antibodies. In this review, we discuss the progress made in the development and applications of aptamer-siRNA chimeras in HER2 targeting and gene silencing. A schematic workflow is also provided which will provide ample insight for all those researchers who are new to this field. Also, we think that a mechanistic understanding of the HER2 signaling pathway is crucial in designing extensive investigations aimed at the silencing of a wider array of genes. This review is expected to stimulate more research on aptamer-siRNA chimeras targeted against HER2 which might arm us with potential effective therapeutic interventions for the management of cancer.
Collapse
Affiliation(s)
- C R Dhanya
- Department of Biochemistry, Government College Kariavattom, Thiruvananthapuram, Kerala, India
| | - Aarcha Shanmugha Mary
- Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Maya Madhavan
- Department of Biochemistry, Government College for Women, Thiruvananthapuram, Kerala, India
| |
Collapse
|
69
|
Fontvieille E, His M, Biessy C, Navionis AS, Torres-Mejía G, Ángeles-Llerenas A, Alvarado-Cabrero I, Sánchez GI, Navarro E, Cortes YR, Porras C, Rodriguez AC, Garmendia ML, Soto JL, Moyano L, Porter PL, Lin MG, Guenthoer J, Romieu I, Rinaldi S. Inflammatory biomarkers and risk of breast cancer among young women in Latin America: a case-control study. BMC Cancer 2022; 22:877. [PMID: 35948877 PMCID: PMC9367082 DOI: 10.1186/s12885-022-09975-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/02/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Breast cancer incidence is increasing rapidly in Latin America, with a higher proportion of cases among young women than in developed countries. Studies have linked inflammation to breast cancer development, but data is limited in premenopausal women, especially in Latin America. METHODS We investigated the associations between serum biomarkers of chronic inflammation (interleukin (IL)-6, IL-8, IL-10, tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), leptin, adiponectin) and risk of premenopausal breast cancer among 453 cases and 453 matched, population-based controls from Chile, Colombia, Costa Rica, and Mexico. Odds ratios (OR) were estimated using conditional logistic regression models. Analyses were stratified by size and hormonal receptor status of the tumors. RESULTS IL-6 (ORper standard deviation (SD) = 1.33 (1.11-1.60)) and TNF-α (ORper SD = 1.32 (1.11-1.58)) were positively associated with breast cancer risk in fully adjusted models. Evidence of heterogeneity by estrogen receptor (ER) status was observed for IL-8 (P-homogeneity = 0.05), with a positive association in ER-negative tumors only. IL-8 (P-homogeneity = 0.06) and TNF-α (P-homogeneity = 0.003) were positively associated with risk in the largest tumors, while for leptin (P-homogeneity = 0.003) a positive association was observed for the smallest tumors only. CONCLUSIONS The results of this study support the implication of chronic inflammation in breast cancer risk in young women in Latin America. Largest studies of prospective design are needed to confirm these findings in premenopausal women.
Collapse
Affiliation(s)
- Emma Fontvieille
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Mathilde His
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Carine Biessy
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Anne-Sophie Navionis
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Gabriela Torres-Mejía
- Centre for Population Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | | | - Isabel Alvarado-Cabrero
- Servicio de Patología, Hospital de Oncología, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Gloria Inés Sánchez
- Group Infection and Cancer, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Edgar Navarro
- Grupo Proyecto UNI-Barranquilla, Universidad del Norte, Barranquilla, Colombia
| | | | - Carolina Porras
- Agencia Costarricense de Investigaciones Biomédicas (ACIB)-Fundación INCIENSA, San Jose, Costa Rica
| | - Ana Cecilia Rodriguez
- Agencia Costarricense de Investigaciones Biomédicas (ACIB)-Fundación INCIENSA, San Jose, Costa Rica
| | - Maria Luisa Garmendia
- Instituto de Nutrición y de Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | | | | | - Peggy L Porter
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Ming Gang Lin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Jamie Guenthoer
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Isabelle Romieu
- Centre for Population Health Research, National Institute of Public Health, Cuernavaca, Mexico
- Hubert Department of Global Health, Emory University, Atlanta, Georgia, USA
| | - Sabina Rinaldi
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France.
| |
Collapse
|
70
|
Mohi-Ud-Din R, Mir RH, Mir PA, Banday N, Shah AJ, Sawhney G, Bhat MM, Batiha GE, Pottoo FH, Pottoo FH. Dysfunction of ABC Transporters at the Surface of BBB: Potential Implications in Intractable Epilepsy and Applications of Nanotechnology Enabled Drug Delivery. Curr Drug Metab 2022; 23:735-756. [PMID: 35980054 DOI: 10.2174/1389200223666220817115003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/10/2022] [Accepted: 05/31/2022] [Indexed: 01/05/2023]
Abstract
Epilepsy is a chronic neurological disorder affecting 70 million people globally. One of the fascinating attributes of brain microvasculature is the (BBB), which controls a chain of distinct features that securely regulate the molecules, ions, and cells movement between the blood and the parenchyma. The barrier's integrity is of paramount importance and essential for maintaining brain homeostasis, as it offers both physical and chemical barriers to counter pathogens and xenobiotics. Dysfunction of various transporters in the (BBB), mainly ATP binding cassette (ABC), is considered to play a vital role in hampering the availability of antiepileptic drugs into the brain. ABC (ATP-binding cassette) transporters constitute a most diverse protein superfamily, which plays an essential part in various biological processes, including cell homeostasis, cell signaling, uptake of nutrients, and drug metabolism. Moreover, it plays a crucial role in neuroprotection by out-flowing various internal and external toxic substances from the interior of a cell, thus decreasing their buildup inside the cell. In humans, forty-eight ABC transporters have been acknowledged and categorized into subfamilies A to G based on their phylogenetic analysis. ABC subfamilies B, C, and G, impart a vital role at the BBB in guarding the brain against the entrance of various xenobiotic and their buildup. The illnesses of the central nervous system have received a lot of attention lately Owing to the existence of the BBB, the penetration effectiveness of most CNS medicines into the brain parenchyma is very limited (BBB). In the development of neurological therapies, BBB crossing for medication delivery to the CNS continues to be a major barrier. Nanomaterials with BBB cross ability have indeed been extensively developed for the treatment of CNS diseases due to their advantageous properties. This review will focus on multiple possible factors like inflammation, oxidative stress, uncontrolled recurrent seizures, and genetic polymorphisms that result in the deregulation of ABC transporters in epilepsy and nanotechnology-enabled delivery across BBB in epilepsy.
Collapse
Affiliation(s)
- Roohi Mohi-Ud-Din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu & Kashmir, 190011, India.,Department of Pharmaceutical Sciences, School of Applied Sciences & Technology, University of Kashmir, Hazratbal, Srinagar-190006, Jammu & Kashmir, India
| | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Chandigarh College of Pharmacy, Landran, Punjab-140301, India.,Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Prince Ahad Mir
- Department of Pharmaceutical Sciences, Khalsa College of Pharmacy, G.T. Road, Amritsar-143002, Punjab, India
| | - Nazia Banday
- Department of Pharmaceutical Sciences, School of Applied Sciences & Technology, University of Kashmir, Hazratbal, Srinagar-190006, Jammu & Kashmir, India
| | - Abdul Jalil Shah
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Gifty Sawhney
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu 180001, India
| | - Mudasir Maqbool Bhat
- Department of Pharmaceutical Sciences, Pharmacy Practice Division, University of Kashmir, Hazratbal, Srinagar-190006, Jammu & Kashmir, India
| | - Gaber E Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| |
Collapse
|
71
|
Baram T, Oren N, Erlichman N, Meshel T, Ben-Baruch A. Inflammation-Driven Regulation of PD-L1 and PD-L2, and Their Cross-Interactions with Protective Soluble TNFα Receptors in Human Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:3513. [PMID: 35884574 PMCID: PMC9323351 DOI: 10.3390/cancers14143513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 12/02/2022] Open
Abstract
Pro-inflammatory cytokines play key roles in elevating cancer progression in triple-negative breast cancer (TNBC). We demonstrate that specific combinations between TNFα, IL-1β and IFNγ up-regulated the proportion of human TNBC cells co-expressing the inhibitory immune checkpoints PD-L1 and PD-L2: TNFα + IL-1β in MDA-MB-231 cells and IFNγ + IL-1β in BT-549 cells; in the latter cells, the process depended entirely on STAT1 activation, with no involvement of p65 (CRISPR-Cas9 experiments). Highly significant associations between the pro-inflammatory cytokines and PD-L1/PD-L2 expression were revealed in the TCGA dataset of basal-like breast cancer patients. In parallel, we found that the pro-inflammatory cytokines regulated the expression of the soluble receptors of tumor necrosis factor α (TNFα), namely sTNFR1 and sTNFR2; moreover, we revealed that sTNFR1 and sTNFR2 serve as anti-metastatic and protective factors in TNBC, reducing the TNFα-induced production of inflammatory pro-metastatic chemokines (CXCL8, CXCL1, CCL5) by TNBC cells. Importantly, we found that in the context of inflammatory stimulation and also without exposure to pro-inflammatory cytokines, elevated levels of PD-L1 have down-regulated the production of anti-tumor sTNFR1 and sTNFR2. These findings suggest that in addition to its immune-suppressive activities, PD-L1 may promote disease course in TNBC by inhibiting the protective effects of sTNFR1 and sTNFR2.
Collapse
Affiliation(s)
| | | | | | | | - Adit Ben-Baruch
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (T.B.); (N.O.); (N.E.); (T.M.)
| |
Collapse
|
72
|
Ghosh T, Wang S, Kashyap D, Jadhav RG, Rit T, Jha HC, Cousins BG, Das AK. Self-assembled benzoselenadiazole-capped tripeptide hydrogels with inherent in vitro anti-cancer and anti-inflammatory activity. Chem Commun (Camb) 2022; 58:7534-7537. [PMID: 35703336 DOI: 10.1039/d2cc01160c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembled benzoselenadiazole (BSe)-capped tripeptide based nanofibrillar hydrogels have been developed with inherent anticancer and anti-inflammatory activity.
Collapse
Affiliation(s)
- Tapas Ghosh
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Shu Wang
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, UK
| | - Dharmendra Kashyap
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| | - Rohit G Jadhav
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Tanmay Rit
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| | - Brian G Cousins
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, UK
| | - Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| |
Collapse
|
73
|
Ben-Baruch A. Tumor Necrosis Factor α: Taking a Personalized Road in Cancer Therapy. Front Immunol 2022; 13:903679. [PMID: 35663982 PMCID: PMC9157545 DOI: 10.3389/fimmu.2022.903679] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Adit Ben-Baruch
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
74
|
Fabre ML, Canzoneri R, Gurruchaga A, Lee J, Tatineni P, Kil H, Lacunza E, Aldaz CM, Abba MC. MALINC1 an Immune-Related Long Non-Coding RNA Associated with Early-Stage Breast Cancer Progression. Cancers (Basel) 2022; 14:cancers14122819. [PMID: 35740485 PMCID: PMC9221538 DOI: 10.3390/cancers14122819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/19/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Here we characterize the phenotypic and molecular effects of MALINC1, a long non-coding RNA (lncRNA) that we found significantly upregulated in premalignant ductal carcinoma in-situ lesions. We provide evidence that MALINC1 behaves as an oncogenic and immune-related lncRNA involved with early-stage breast cancer progression, showing prognostic and predictive value to immunotherapy in invasive breast carcinomas. Abstract Long non-coding RNAs are increasingly being recognized as cancer biomarkers in various malignancies, acting as either tumor suppressors or oncogenes. The long non-coding MALINC1 intergenic RNA was identified as significantly upregulated in breast ductal carcinoma in situ. The aim of this study was to characterize MALINC1 expression, localization, and phenotypic and molecular effects in non-invasive and invasive breast cancer cells. We determined that MALINC1 is an estrogen–estrogen receptor-modulated lncRNA enriched in the cytoplasmic fraction of luminal A/B breast cancer cells that is associated with worse overall survival in patients with primary invasive breast carcinomas. Transcriptomic studies in normal and DCIS cells identified the main signaling pathways modulated by MALINC1, which mainly involve bioprocesses related to innate and adaptive immune responses, extracellular matrix remodeling, cell adhesion, and activation of AP-1 signaling pathway. We determined that MALINC1 induces premalignant phenotypic changes by increasing cell migration in normal breast cells. Moreover, high MALINC1 expression in invasive carcinomas was associated with a pro-tumorigenic immune environment and a favorable predicted response to immunotherapy both in luminal and basal-like subtypes compared with low-MALINC1-expression tumors. We conclude that MALINC1 behaves as an oncogenic and immune-related lncRNA involved with early-stage breast cancer progression.
Collapse
Affiliation(s)
- María Laura Fabre
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata 1900, Argentina; (M.L.F.); (R.C.); (A.G.); (E.L.)
| | - Romina Canzoneri
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata 1900, Argentina; (M.L.F.); (R.C.); (A.G.); (E.L.)
| | - Agustina Gurruchaga
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata 1900, Argentina; (M.L.F.); (R.C.); (A.G.); (E.L.)
| | - Jaeho Lee
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (J.L.); (P.T.); (H.K.)
| | - Pradeep Tatineni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (J.L.); (P.T.); (H.K.)
| | - Hyunsuk Kil
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (J.L.); (P.T.); (H.K.)
| | - Ezequiel Lacunza
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata 1900, Argentina; (M.L.F.); (R.C.); (A.G.); (E.L.)
| | - C. Marcelo Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (J.L.); (P.T.); (H.K.)
- Correspondence: (C.M.A.); (M.C.A.)
| | - Martín Carlos Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata 1900, Argentina; (M.L.F.); (R.C.); (A.G.); (E.L.)
- Correspondence: (C.M.A.); (M.C.A.)
| |
Collapse
|
75
|
Xiao J, McGill JR, Nasir A, Lekan A, Johnson B, Wilkins DJ, Pearson GW, Tanner K, Goodarzi H, Glasgow E, Schlegel R, Agarwal S. Identifying drivers of breast cancer metastasis in progressively invasive subpopulations of zebrafish-xenografted MDA-MB-231. MOLECULAR BIOMEDICINE 2022; 3:16. [PMID: 35614362 PMCID: PMC9133282 DOI: 10.1186/s43556-022-00080-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/09/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer metastasis is the primary cause of the high mortality rate among human cancers. Efforts to identify therapeutic agents targeting cancer metastasis frequently fail to demonstrate efficacy in clinical trials despite strong preclinical evidence. Until recently, most preclinical studies used mouse models to evaluate anti-metastatic agents. Mouse models are time-consuming and expensive. In addition, an important drawback is that mouse models inadequately model the early stages of metastasis which plausibly leads to the poor correlation with clinical outcomes. Here, we report an in vivo model based on xenografted zebrafish embryos where we select for progressively invasive subpopulations of MDA-MB-231 breast cancer cells. A subpopulation analogous to circulating tumor cells found in human cancers was selected by injection of MDA-MB-231 cells into the yolk sacs of 2 days post-fertilized zebrafish embryos and selecting cells that migrated to the tail. The selected subpopulation derived from MDA-MB-231 cells were increasingly invasive in zebrafish. Isolation of these subpopulations and propagation in vitro revealed morphological changes consistent with activation of an epithelial-mesenchymal transition program. Differential gene analysis and knockdown of genes identified gene-candidates (DDIT4, MT1X, CTSD, and SERPINE1) as potential targets for anti-metastasis therapeutics. Furthermore, RNA-splicing analysis reinforced the importance of BIRC5 splice variants in breast cancer metastasis. This is the first report using zebrafish to isolate and expand progressively invasive populations of human cancer cells. The model has potential applications in understanding the metastatic process, identification and/or development of therapeutics that specifically target metastatic cells and formulating personalized treatment strategies for individual cancer patients.
Collapse
Affiliation(s)
- Jerry Xiao
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC, USA.,Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Joseph R McGill
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Apsra Nasir
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Alexander Lekan
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC, USA
| | - Bailey Johnson
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Devan J Wilkins
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC, USA.,Eastern Virginia Medical School, Norfolk, VA, USA
| | - Gray W Pearson
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Eric Glasgow
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Richard Schlegel
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC, USA
| | - Seema Agarwal
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC, USA.
| |
Collapse
|
76
|
Characterization of transcriptome diversity and in vitro behavior of primary human high-risk breast cells. Sci Rep 2022; 12:6159. [PMID: 35459280 PMCID: PMC9033878 DOI: 10.1038/s41598-022-10246-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 04/01/2022] [Indexed: 11/09/2022] Open
Abstract
Biology and transcriptomes of non-cancerous human mammary epithelial cells at risk for breast cancer development were explored following primary isolation utilizing conditional reprogramming cell technology from mastectomy tissue ipsilateral to invasive breast cancer. Cultures demonstrated consistent categorizable behaviors. Relative viability and mammosphere formation differed between samples but were stable across three different mammary-specific media. E2F cell cycle target genes expression levels were positively correlated with viability and advancing age was inversely associated. Estrogen growth response was associated with Tissue necrosis factor signaling and Interferon alpha response gene enrichment. Neoadjuvant chemotherapy exposure significantly altered transcriptomes, shifting them towards expression of genes linked to mammary stem cell formation. Breast cancer prognostic signature sets include genes that in normal development are limited to specific stages of pregnancy or the menstrual cycle. Sample transcriptomes were queried for stage specific gene expression patterns. All cancer samples and a portion of high-risk samples showed overlapping stages reflective of abnormal gene expression patterns, while other high-risk samples exhibited more stage specific patterns. In conclusion, at-risk cells preserve behavioral and transcriptome diversity that could reflect different risk profiles. It is possible that prognostic platforms analogous to those used for breast cancer could be developed for high-risk mammary cells.
Collapse
|
77
|
Mader T, Chaillou T, Alves ES, Jude B, Cheng AJ, Kenne E, Mijwel S, Kurzejamska E, Vincent CT, Rundqvist H, Lanner JT. Exercise reduces intramuscular stress and counteracts muscle weakness in mice with breast cancer. J Cachexia Sarcopenia Muscle 2022; 13:1151-1163. [PMID: 35170227 PMCID: PMC8978016 DOI: 10.1002/jcsm.12944] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Patients with breast cancer exhibit muscle weakness, which is associated with increased mortality risk and reduced quality of life. Muscle weakness is experienced even in the absence of loss of muscle mass in breast cancer patients, indicating intrinsic muscle dysfunction. Physical activity is correlated with reduced cancer mortality and disease recurrence. However, the molecular processes underlying breast cancer-induced muscle weakness and the beneficial effect of exercise are largely unknown. METHODS Eight-week-old breast cancer (MMTV-PyMT, PyMT) and control (WT) mice had access to active or inactive in-cage voluntary running wheels for 4 weeks. Mice were also subjected to a treadmill test. Muscle force was measured ex vivo. Tumour markers were determined with immunohistochemistry. Mitochondrial biogenesis and function were assessed with transcriptional analyses of PGC-1α, the electron transport chain (ETC) and antioxidants superoxide dismutase (Sod) and catalase (Cat), combined with activity measurements of SOD, citrate synthase (CS) and β-hydroxyacyl-CoA-dehydrogenase (βHAD). Serum and intramuscular stress levels were evaluated by enzymatic assays, immunoblotting, and transcriptional analyses of, for example, tumour necrosis factor-α (TNF-α) and p38 mitogen-activated protein kinase (MAPK) signalling. RESULTS PyMT mice endured shorter time and distance during the treadmill test (~30%, P < 0.05) and ex vivo force measurements revealed ~25% weaker slow-twitch soleus muscle (P < 0.001). This was independent of cancer-induced alteration of muscle size or fibre type. Inflammatory stressors in serum and muscle, including TNF-α and p38 MAPK, were higher in PyMT than in WT mice (P < 0.05). Cancer-induced decreases in ETC (P < 0.05, P < 0.01) and antioxidant gene expression were observed (P < 0.05). The exercise intervention counteracted the cancer-induced muscle weakness and was accompanied by a less aggressive, differentiated tumour phenotype, determined by increased CK8 and reduced CK14 expression (P < 0.05). In PyMT mice, the exercise intervention led to higher CS activity (P = 0.23), enhanced β-HAD and SOD activities (P < 0.05), and reduced levels of intramuscular stressors together with a normalization of the expression signature of TNFα-targets and ETC genes (P < 0.05, P < 0.01). At the same time, the exercise-induced PGC-1α expression, and CS and β-HAD activity was blunted in muscle from the PyMT mice as compared with WT mice, indicative that breast cancer interfere with transcriptional programming of mitochondria and that the molecular adaptation to exercise differs between healthy mice and those afflicted by disease. CONCLUSIONS Four-week voluntary wheel running counteracted muscle weakness in PyMT mice which was accompanied by reduced intrinsic stress and improved mitochondrial and antioxidant profiles and activities that aligned with muscles of healthy mice.
Collapse
Affiliation(s)
- Theresa Mader
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Thomas Chaillou
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Karolinska Institutet, Biomedicum, Stockholm, Sweden.,School of Health Sciences, Örebro University, Örebro, Sweden
| | - Estela Santos Alves
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Baptiste Jude
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Arthur J Cheng
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Karolinska Institutet, Biomedicum, Stockholm, Sweden.,Muscle Health Research Centre, School of Kinesiology and Health Science, Faculty of Health Toronto, York University, Toronto, Ontario, Canada
| | - Ellinor Kenne
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Sara Mijwel
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Karolinska Institutet, Biomedicum, Stockholm, Sweden.,Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Ewa Kurzejamska
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Clara Theresa Vincent
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Helene Rundqvist
- Department of Laboratory Medicine, Clinical Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna T Lanner
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| |
Collapse
|
78
|
Buyuk B, Jin S, Ye K. Epithelial-to-Mesenchymal Transition Signaling Pathways Responsible for Breast Cancer Metastasis. Cell Mol Bioeng 2022; 15:1-13. [PMID: 35096183 PMCID: PMC8761190 DOI: 10.1007/s12195-021-00694-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
Breast carcinoma is highly metastatic and invasive. Tumor metastasis is a convoluted and multistep process involving tumor cell disseminating from their primary site and migrating to the secondary organ. Epithelial-mesenchymal transition (EMT) is one of the crucial steps that initiate cell progression, invasion, and metastasis. During EMT, epithelial cells alter their molecular features and acquire a mesenchymal phenotype. The regulation of EMT is centered by several signaling pathways, including primary mediators TGF-β, Notch, Wnt, TNF-α, Hedgehog, and RTKs. It is also affected by hypoxia and microRNAs (miRNAs). All these pathways are the convergence on the transcriptional factors such as Snail, Slug, Twist, and ZEB1/2. In addition, a line of evidence suggested that EMT and cancer stem like cells (CSCs) are associated. EMT associated cancer stem cells display mesenchymal phenotypes and resist to chemotherapy or targeted therapy. In this review, we highlighted recent discoveries in these signaling pathways and their regulation in breast cancer metastasis and invasion. While the clinical relevance of EMT and breast cancers remains controversial, we speculated a convergent signaling network pivotal to elucidating the transition of epithelial to mesenchymal phenotypes and onset of metastasis of breast cancer cells.
Collapse
Affiliation(s)
- Busra Buyuk
- Department of Biomedical Engineering, Watson College of Engineering and Applied Science, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), PO Box 6000, Binghamton, NY 13902 USA
| | - Sha Jin
- Department of Biomedical Engineering, Watson College of Engineering and Applied Science, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), PO Box 6000, Binghamton, NY 13902 USA
| | - Kaiming Ye
- Department of Biomedical Engineering, Watson College of Engineering and Applied Science, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), PO Box 6000, Binghamton, NY 13902 USA
| |
Collapse
|
79
|
Zhang T, Ma C, Zhang Z, Zhang H, Hu H. NF-κB signaling in inflammation and cancer. MedComm (Beijing) 2021; 2:618-653. [PMID: 34977871 PMCID: PMC8706767 DOI: 10.1002/mco2.104] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Since nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) was discovered in 1986, extraordinary efforts have been made to understand the function and regulating mechanism of NF-κB for 35 years, which lead to significant progress. Meanwhile, the molecular mechanisms regulating NF-κB activation have also been illuminated, the cascades of signaling events leading to NF-κB activity and key components of the NF-κB pathway are also identified. It has been suggested NF-κB plays an important role in human diseases, especially inflammation-related diseases. These studies make the NF-κB an attractive target for disease treatment. This review aims to summarize the knowledge of the family members of NF-κB, as well as the basic mechanisms of NF-κB signaling pathway activation. We will also review the effects of dysregulated NF-κB on inflammation, tumorigenesis, and tumor microenvironment. The progression of the translational study and drug development targeting NF-κB for inflammatory diseases and cancer treatment and the potential obstacles will be discussed. Further investigations on the precise functions of NF-κB in the physiological and pathological settings and underlying mechanisms are in the urgent need to develop drugs targeting NF-κB for inflammatory diseases and cancer treatment, with minimal side effects.
Collapse
Affiliation(s)
- Tao Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chao Ma
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science CenterHouston Methodist HospitalHoustonTexasUSA
| | - Huiyuan Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongbo Hu
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
80
|
Herrera-Vargas AK, García-Rodríguez E, Olea-Flores M, Mendoza-Catalán MA, Flores-Alfaro E, Navarro-Tito N. Pro-angiogenic activity and vasculogenic mimicry in the tumor microenvironment by leptin in cancer. Cytokine Growth Factor Rev 2021; 62:23-41. [PMID: 34736827 DOI: 10.1016/j.cytogfr.2021.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022]
Abstract
The acquired ability to induce the formation of a functional vasculature is a hallmark of cancer. Blood vessels in tumors are formed through various mechanisms, among the most important in cancer biology, angiogenesis, and vasculogenic mimicry have been described. Leptin is one of the main adipokines secreted by adipocytes in normal breast tissue and the tumor microenvironment. Here, we provide information on the relationship between leptin and the development of angiogenesis and vasculogenic mimicry in different types of cancer. Here, we report that leptin activates different pathways such as JAK-STAT3, MAPK/ERK, PKC, JNK, p38, and PI3K-Akt to induce the expression of various angiogenic factors and vasculogenic mimicry. In vivo models, leptin induces blood vessel formation through the PI3K-Akt-mTOR pathway. Interestingly, the relationship between leptin and vasculogenic mimicry was more significant in breast cancer. The information obtained suggests that leptin could be playing an essential role in tumor survival and metastasis through the induction of vascular mechanisms such as angiogenesis and vasculogenic mimicry; thus, leptin-induced pathways could be suggested as a promising therapeutic target.
Collapse
Affiliation(s)
- Ana K Herrera-Vargas
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico.
| | - Eduardo García-Rodríguez
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico.
| | - Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico.
| | - Miguel A Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, GRO, 39090, Mexico.
| | - Eugenia Flores-Alfaro
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, GRO 39087, Mexico.
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico.
| |
Collapse
|
81
|
Hosseini M, Habibi Z, Hosseini N, Abdoli S, Rezaei N. Preclinical studies of chimeric antigen receptor-modified natural killer cells in cancer immunotherapy: a review. Expert Opin Biol Ther 2021; 22:349-366. [PMID: 34541989 DOI: 10.1080/14712598.2021.1983539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION As one of the most efficacious methods of cancer immunotherapy, chimeric antigen receptor-modified immune cells have recently drawn enormous attention. After the great success achieved with CAR-T-cells in cancer treatment both in preclinical setting and in the clinic, other types of immune cells, including natural killer (NK)-cells and macrophages, have been evaluated for their anti-cancer effects along with their potential superiority against CAR-T-cells, especially in terms of safety. First introduced by Tran et al. almost 26 years ago, CAR-NK-cells are now being considered as efficient immunotherapeutic modalities in various types of cancers, not only in preclinical setting but also in numerous phase I and II clinical studies. AREAS COVERED In this review, we aim to provide a comprehensive survey of the preclinical studies on CAR-NK-cells' development, with an evolutional approach on CAR structures and their associated signaling moieties. Current NK-cell sources and modes of gene transfer are also reviewed. EXPERT OPINION CAR-NK-cells have appeared as safe and effective immunotherapeutic tools in preclinical settings; however, designing CAR structures with an eye on their specific biology, along with choosing the optimal cell source and gene transfer method require further investigation to support clinical studies.
Collapse
Affiliation(s)
- Mina Hosseini
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Habibi
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Hosseini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sina Abdoli
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
82
|
Jadav A, Truong K. Creation of a synthesis-friendly inflammation-inducible promoter suitable for cell therapy. Integr Biol (Camb) 2021; 13:230-236. [PMID: 34632498 DOI: 10.1093/intbio/zyab015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/08/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022]
Abstract
The development of 'smart' cell-based therapeutics requires cells that first recognize conditions consistent with disease (e.g. inflammation) and then subsequently release therapeutic proteins, thereby reducing potential toxicity from otherwise continuous expression. Promoters containing NF-κB response elements are often used as reporters of inflammation; however, endogenous promoters have crosstalk with other pathways, and current synthetic promoters have many exact sequence repeats of NF-κB response elements which make them both difficult to synthesize and inherently genetically unstable. Herein, a synthesis-friendly inflammation-inducible promoter (named SFNp) was created by the packing of 14 NF-κB response elements, which have no repeats >9 bp, followed by a minimal cytomegalovirus promoter. In stably expressing human embryonic kidney 293 cells, we assessed the ability of SFNp to inducibly transcribe genes for reporting expression, changing cell morphology, and performing cell fusion. These experiments represent simple milestones for potentially using SFNp in the development of cell-based therapeutics. As strongly repeated DNA can compromise the long-term stability of genetic circuits, new designs used in 'smart' cell therapy will become more reliant on synthesis-friendly components like SFNp.
Collapse
Affiliation(s)
- Anish Jadav
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Kevin Truong
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada.,Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Circle, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
83
|
Okoro EU. TNFα-Induced LDL Cholesterol Accumulation Involve Elevated LDLR Cell Surface Levels and SR-B1 Downregulation in Human Arterial Endothelial Cells. Int J Mol Sci 2021; 22:ijms22126236. [PMID: 34207810 PMCID: PMC8227244 DOI: 10.3390/ijms22126236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022] Open
Abstract
Excess lipid droplets are frequently observed in arterial endothelial cells at sites of advanced atherosclerotic plaques. Here, the role of tumor necrosis factor alpha (TNFα) in modulating the low-density lipoprotein (LDL) content in confluent primary human aortic endothelial cells (pHAECs) was investigated. TNFα promoted an up to 2 folds increase in cellular cholesterol, which was resistant to ACAT inhibition. The cholesterol increase was associated with increased 125I-LDL surface binding. Using the non-hydrolysable label, Dil, TNFα could induce a massive increase in Dil-LDL by over 200 folds. The elevated intracellular Dil-LDL was blocked with excess unlabeled LDL and PCSK9, but not oxidized LDL (oxLDL), or apolipoprotein (apoE) depletion. Moreover, the TNFα-induced increase of LDL-derived lipids was elevated through lysosome inhibition. Using specific LDLR antibody, the Dil-LDL accumulation was reduced by over 99%. The effects of TNFα included an LDLR cell surface increase of 138%, and very large increases in ICAM-1 total and surface proteins, respectively. In contrast, that of scavenger receptor B1 (SR-B1) was reduced. Additionally, LDLR antibody bound rapidly in TNFα-treated cells by about 30 folds, inducing a migrating shift in the LDLR protein. The effect of TNFα on Dil-LDL accumulation was inhibited by the antioxidant tetramethythiourea (TMTU) dose-dependently, but not by inhibitors against NF-κB, stress kinases, ASK1, JNK, p38, or apoptosis caspases. Grown on Transwell inserts, TNFα did not enhance apical to basolateral LDL cholesterol or Dil release. It is concluded that TNFα promotes LDLR functions through combined increase at the cell surface and SR-B1 downregulation.
Collapse
Affiliation(s)
- Emmanuel Ugochukwu Okoro
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
84
|
Abdellatif AAH, Alsharidah M, Al Rugaie O, Tawfeek HM, Tolba NS. Silver Nanoparticle-Coated Ethyl Cellulose Inhibits Tumor Necrosis Factor-α of Breast Cancer Cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2035-2046. [PMID: 34012256 PMCID: PMC8128348 DOI: 10.2147/dddt.s310760] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 12/15/2022]
Abstract
Introduction Cancer is one of the leading causes of death worldwide. In many cases, cancer is related to the elevated expression of a significant cytokine known as tumor necrosis factor-α (TNF-α). Breast cancer in particular is linked to increased proliferation of tumor cells, high incidence of malignancies, more metastases, and generally poor prognosis for the patient. The research sought to assess the effect of silver nanoparticles reduced with ethyl cellulose polymer (AgNPs-EC) on TNF-α expression in MCF-7 human breast cancer cells. Methods The AgNPs-EC were produced using the green synthesis reduction method, and their formation was proofed via UV–VIS spectroscopy. Furthermore, AgNPs-EC were characterized for their size, charge, morphology, Ag ion release, and stability. The MCF-7 cells were treated with AgNPs-EC. Then, the expression of TNF-α genes was determined through PCR in real time, and protein expression was studied using ELISA. Results The AgNPs-EC were spherical with an average size of 150±5.1 nm and a zeta-potential of −41.4±0.98 mV. AgNPs-EC had an inhibitory effect on cytokine mRNA and protein expression levels, which suggests that they could be used safely in the fight against cancer. AgNPs-EC cytotoxicity was also found to be non-toxic to MCF-7. Conclusion Our data determined AgNPs-EC as a novel inhibitor of TNF-α production. These results are promising for developing novel therapeutic approaches for the future treatment of cancer with safe materials.
Collapse
Affiliation(s)
- Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, AlQassim, 51911, Saudi Arabia
| | - Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Nahla Sameh Tolba
- Department of Pharmaceutics, Faculty of Pharmacy, Sadat City University, Sadat City, Egypt
| |
Collapse
|
85
|
Wigner P, Grębowski R, Bijak M, Saluk-Bijak J, Szemraj J. The Interplay between Oxidative Stress, Inflammation and Angiogenesis in Bladder Cancer Development. Int J Mol Sci 2021; 22:ijms22094483. [PMID: 33923108 PMCID: PMC8123426 DOI: 10.3390/ijms22094483] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
In 2018, 550,000 people were diagnosed with bladder cancer (BC), of which nearly 200,000 people died. Moreover, men are 4 times more likely than women to be diagnosed with BC. The risk factors include exposure to environmental and occupational chemicals, especially tobacco smoke, benzidine and genetic factors. Despite numerous studies, the molecular basis of BC development remains unclear. A growing body of evidence suggests that inflammation, oxidant-antioxidant imbalance and angiogenesis disorders may play a significant role in the development and progression of bladder cancer. The patients with bladder cancer were characterised by an increased level of reactive oxygen species (ROS), the products of lipid peroxidation, proinflammatory cytokines and proangiogenic factors as compared to controls. Furthermore, it was shown that polymorphisms localised in genes associated with these pathways may modulate the risk of BC. Interestingly, ROS overproduction may induce the production of proinflammatory cytokines, which finally activated angiogenesis. Moreover, the available literature shows that both inflammation and oxidative stress may lead to activation of angiogenesis and tumour progression in BC patients.
Collapse
Affiliation(s)
- Paulina Wigner
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
- Correspondence: ; Tel.: +48-42-635-44-85; Fax: +48-42-635-44-84
| | - Radosław Grębowski
- Department of Urology, Provincial Integrated Hospital in Plock, 09-400 Plock, Poland;
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland;
| |
Collapse
|
86
|
Lee HS, Lee IH, Kang K, Park SI, Moon SJ, Lee CH, Lee DY. A Network Pharmacology Study on the Molecular Mechanisms of FDY003 for Breast Cancer Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3919143. [PMID: 33628298 PMCID: PMC7881938 DOI: 10.1155/2021/3919143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Herbal medicines have drawn considerable attention with regard to their potential applications in breast cancer (BC) treatment, a frequently diagnosed malignant disease, considering their anticancer efficacy with relatively less adverse effects. However, their mechanisms of systemic action have not been understood comprehensively. Based on network pharmacology approaches, we attempted to unveil the mechanisms of FDY003, an herbal drug comprised of Lonicera japonica Thunberg, Artemisia capillaris Thunberg, and Cordyceps militaris, against BC at a systemic level. We found that FDY003 exhibited pharmacological effects on human BC cells. Subsequently, detailed data regarding the biochemical components contained in FDY003 were obtained from comprehensive herbal medicine-related databases, including TCMSP and CancerHSP. By evaluating their pharmacokinetic properties, 18 chemical compounds in FDY003 were shown to be potentially active constituents interacting with 140 BC-associated therapeutic targets to produce the pharmacological activity. Gene ontology enrichment analysis using g:Profiler indicated that the FDY003 targets were involved in the modulation of cellular processes, involving the cell proliferation, cell cycle process, and cell apoptosis. Based on a KEGG pathway enrichment analysis, we further revealed that a variety of oncogenic pathways that play key roles in the pathology of BC were significantly enriched with the therapeutic targets of FDY003; these included PI3K-Akt, MAPK, focal adhesion, FoxO, TNF, and estrogen signaling pathways. Here, we present a network-perspective of the molecular mechanisms via which herbal drugs treat BC.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - In-Hee Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Sang-In Park
- Forestheal Hospital, 173 Ogeum-ro, Songpa-gu, Seoul 05641, Republic of Korea
| | - Seung-Joon Moon
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Chol Hee Lee
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| |
Collapse
|
87
|
Mercogliano MF, Bruni S, Mauro F, Elizalde PV, Schillaci R. Harnessing Tumor Necrosis Factor Alpha to Achieve Effective Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13030564. [PMID: 33540543 PMCID: PMC7985780 DOI: 10.3390/cancers13030564] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor alpha (TNFα) is a pleiotropic cytokine known to have contradictory roles in oncoimmunology. Indeed, TNFα has a central role in the onset of the immune response, inducing both activation and the effector function of macrophages, dendritic cells, natural killer (NK) cells, and B and T lymphocytes. Within the tumor microenvironment, however, TNFα is one of the main mediators of cancer-related inflammation. It is involved in the recruitment and differentiation of immune suppressor cells, leading to evasion of tumor immune surveillance. These characteristics turn TNFα into an attractive target to overcome therapy resistance and tackle cancer. This review focuses on the diverse molecular mechanisms that place TNFα as a source of resistance to immunotherapy such as monoclonal antibodies against cancer cells or immune checkpoints and adoptive cell therapy. We also expose the benefits of TNFα blocking strategies in combination with immunotherapy to improve the antitumor effect and prevent or treat adverse immune-related effects.
Collapse
Affiliation(s)
- María Florencia Mercogliano
- Laboratorio de Biofisicoquímica de Proteínas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires 1428, Argentina;
| | - Sofía Bruni
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Florencia Mauro
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Patricia Virginia Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Roxana Schillaci
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
- Correspondence: ; Tel.: +54-11-4783-2869; Fax: +54-11-4786-2564
| |
Collapse
|
88
|
He L, Bhat K, Duhacheck-Muggy S, Ioannidis A, Zhang L, Nguyen NT, Moatamed NA, Pajonk F. Tumor necrosis factor receptor signaling modulates carcinogenesis in a mouse model of breast cancer. Neoplasia 2020; 23:197-209. [PMID: 33383310 PMCID: PMC7779542 DOI: 10.1016/j.neo.2020.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/25/2022] Open
Abstract
Pro-inflammatory conditions have long been associated with mammary carcinogenesis and breast cancer progression. The underlying mechanisms are incompletely understood but signaling of pro-inflammatory cytokine TNFα through its receptors TNFR1 and TNFR2 is a major mediator of inflammation in both obesity and in the response of tissues to radiation, 2 known risk factors for the development of breast cancer. Here, we demonstrated the loss of one TNFR2 allele led to ductal hyperplasia in the mammary gland with increased numbers of mammary epithelial stem cell and terminal end buds. Furthermore, loss of one TNFR2 allele increased the incidence of breast cancer in MMTV-Wnt1 mice and resulted in tumors with a more aggressive phenotype and metastatic potential. The underlying mechanisms include a preferential activation of canonical NF-κB signaling pathway and autocrine production of TNFα. Analysis of the TCGA dataset indicated inferior overall survival for patients with down-regulated TNFR2 expression. These findings unravel the imbalances in TNFR signaling promote the development and progression of breast cancer, indicating that selective agonists of TNFR2 could potentially modulate the risk for breast cancer in high-risk populations.
Collapse
Affiliation(s)
- Ling He
- Department of Radiation Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kruttika Bhat
- Department of Radiation Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Sara Duhacheck-Muggy
- Department of Radiation Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Angeliki Ioannidis
- Department of Radiation Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Le Zhang
- Department of Radiation Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nhan T Nguyen
- Department of Radiation Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Neda A Moatamed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Frank Pajonk
- Department of Radiation Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
89
|
Boucherit N, Gorvel L, Olive D. 3D Tumor Models and Their Use for the Testing of Immunotherapies. Front Immunol 2020; 11:603640. [PMID: 33362787 PMCID: PMC7758240 DOI: 10.3389/fimmu.2020.603640] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/10/2020] [Indexed: 12/31/2022] Open
Abstract
Over the past decade, immunotherapy has become a powerful and evident tool in the fight against cancers. Notably, the rise of checkpoint blockade using monoclonal antibodies (anti-CTLA4, anti-PD1) to avoid interaction between inhibitory molecules allowed the betterment of patient care. Indeed, immunotherapies led to increased overall survival in forms of cutaneous melanoma or lung cancer. However, the percentage of patients responding varies from 20 to 40% depending on the type of cancer and on the expression of the target molecules by the tumor. This is due to the tumor microenvironment which allows the acquisition of resistance mechanisms to immunotherapies by tumor cells. These are closely linked to the architecture and cellular composition of the tumor microenvironment. This one acts on different parameters such as the immune cells infiltrate its composition and therefore, favors the recruitment of immunosuppressive cells as well as the tumor expression of checkpoint inhibitors such as Programmed Death Ligand-1 (PD-L1). Therefore, the analysis and modeling of the complexity of the microenvironment is an important parameter to consider, not only in the search for new therapies but also for the identification and stratification of patients likely to respond to immunotherapy. This is why the use of 3D culture models, reflecting the architecture and cellular composition of a tumor, is essential in immuno-oncology studies. Nowadays, there are several 3-D culture methods such as spheroids and organoids, which are applicable to immuno-oncology. In this review we evaluate 3D culture models as tools for the development of treatments in the field of immuno-oncology.
Collapse
Affiliation(s)
- Nicolas Boucherit
- Cancer Research Center in Marseille, CRCM, Paoli Calmette Institute, Marseille, France
| | - Laurent Gorvel
- Cancer Research Center in Marseille, CRCM, Paoli Calmette Institute, Marseille, France
| | - Daniel Olive
- Cancer Research Center in Marseille, CRCM, Paoli Calmette Institute, Marseille, France
| |
Collapse
|
90
|
Cable J, Greenbaum B, Pe'er D, Bollard CM, Bruni S, Griffin ME, Allison JP, Wu CJ, Subudhi SK, Mardis ER, Brentjens R, Sosman JA, Cemerski S, Zavitsanou AM, Proia T, Egeblad M, Nolan G, Goswami S, Spranger S, Mackall CL. Frontiers in cancer immunotherapy-a symposium report. Ann N Y Acad Sci 2020; 1489:30-47. [PMID: 33184911 DOI: 10.1111/nyas.14526] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022]
Abstract
Cancer immunotherapy has dramatically changed the approach to cancer treatment. The aim of targeting the immune system to recognize and destroy cancer cells has afforded many patients the prospect of achieving deep, long-term remission and potential cures. However, many challenges remain for achieving the goal of effective immunotherapy for all cancer patients. Checkpoint inhibitors have been able to achieve long-term responses in a minority of patients, yet improving response rates with combination therapies increases the possibility of toxicity. Chimeric antigen receptor T cells have demonstrated high response rates in hematological cancers, although most patients experience relapse. In addition, some cancers are notoriously immunologically "cold" and typically are not effective targets for immunotherapy. Overcoming these obstacles will require new strategies to improve upon the efficacy of current agents, identify biomarkers to select appropriate therapies, and discover new modalities to expand the accessibility of immunotherapy to additional tumor types and patient populations.
Collapse
Affiliation(s)
| | - Benjamin Greenbaum
- Computational Oncology, Program for Computational Immuno-Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer, New York, New York
| | - Dana Pe'er
- Program for Computational and Systems Biology, Sloan Kettering Institute and Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital, The George Washington University, Washington, District of Columbia
| | - Sofia Bruni
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Matthew E Griffin
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University New York, New York, New York
| | - James P Allison
- Immunotherapy Platform and Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Sumit K Subudhi
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elaine R Mardis
- The Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Renier Brentjens
- Department of Medicine and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jeffry A Sosman
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cancer Center, New York, New York
| | - Garry Nolan
- Baxter Laboratory in Stem Cell Biology and Department of Microbiology and Immunology, Stanford University, Stanford, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Sangeeta Goswami
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research and Biology Department, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford, California.,Department of Pediatrics, Stanford University School of Medicine, Stanford, California.,Department of Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
91
|
Abstract
Tumors represent a hostile environment for the effector cells of cancer immunosurveillance. Immunosuppressive receptors and soluble or membrane-bound ligands are abundantly exposed and released by malignant entities and their stromal accomplices. As a consequence, executioners of antitumor immunity inefficiently navigate across cancer tissues and fail to eliminate malignant targets. By inducing immunogenic cancer cell death, oncolytic viruses profoundly reshape the tumor microenvironment. They trigger the local spread of danger signals and tumor-associated (as well as viral) antigens, thus attracting antigen-presenting cells, promoting the activation and expansion of lymphocytic populations, facilitating their infiltration in the tumor bed, and reinvigorating cytotoxic immune activity. The present review recapitulates key chemokines, growth factors and other cytokines that orchestrate this ballet of antitumoral leukocytes upon oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan G Pol
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, Paris, France; Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, Villejuif, France.
| | - Samuel T Workenhe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Shashi Gujar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Biology, Dalhousie University, Halifax, NS, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, Paris, France; Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
92
|
Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther 2020; 5:209. [PMID: 32958760 PMCID: PMC7506548 DOI: 10.1038/s41392-020-00312-6] [Citation(s) in RCA: 1126] [Impact Index Per Article: 225.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
NF-κB pathway consists of canonical and non-canonical pathways. The canonical NF-κB is activated by various stimuli, transducing a quick but transient transcriptional activity, to regulate the expression of various proinflammatory genes and also serve as the critical mediator for inflammatory response. Meanwhile, the activation of the non-canonical NF-κB pathway occurs through a handful of TNF receptor superfamily members. Since the activation of this pathway involves protein synthesis, the kinetics of non-canonical NF-κB activation is slow but persistent, in concordance with its biological functions in the development of immune cell and lymphoid organ, immune homeostasis and immune response. The activation of the canonical and non-canonical NF-κB pathway is tightly controlled, highlighting the vital roles of ubiquitination in these pathways. Emerging studies indicate that dysregulated NF-κB activity causes inflammation-related diseases as well as cancers, and NF-κB has been long proposed as the potential target for therapy of diseases. This review attempts to summarize our current knowledge and updates on the mechanisms of NF-κB pathway regulation and the potential therapeutic application of inhibition of NF-κB signaling in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Hui Yu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Liangbin Lin
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Huiyuan Zhang
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
93
|
Shirmohammadi E, Ebrahimi SES, Farshchi A, Salimi M. The efficacy of etanercept as anti-breast cancer treatment is attenuated by residing macrophages. BMC Cancer 2020; 20:836. [PMID: 32883235 PMCID: PMC7469281 DOI: 10.1186/s12885-020-07228-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Interaction between microenvironment and breast cancer cells often is not considered at the early stages of drug development leading to failure of many drugs at later clinical stages. Etanercept is a TNF-alpha inhibitor that has been investigated for potential antitumor effect in breast cancer with conflicting results. METHODS Secretome data on MDA-MB-231 cancer cell-line were from public repositories and subjected to gene enrichment analyses. Since MDA-MB-231 cells secrete high levels of Granulocyte-Monocyte Colony Stimulating Factor, which activates macrophages to promote tumor growth, the effect of macrophage co-culturing on anticancer efficacy of Etanercept in breast cancer was evaluated using the Boolean network modeling and in vitro experiments including invasion, cell cycle, Annexin PI, and tetrazolium based viability assays and NFKB activity. RESULTS The secretome profile of MDA-MB-231 cells was similar to the expression of genes following treatment of breast cancer cells with TNF-α. Accordingly, inhibition of TNF-α by Etanercept decreased MDA-MB-231 cell survival, induced apoptosis and cell cycle arrest in vitro and inhibited NFKB activation. The inhibitory effect of Etanercept on cell viability, cell cycle progression, invasion and induction of apoptosis decreased following co-culturing of the cancer cells with macrophages. The Boolean network modeling of the changes in the dynamics of intracellular signaling pathways revealed NFKB activation by secretome of macrophages, leading to a decreased efficacy of Etanercept, suggesting NFKB inhibition as an alternative approach to inhibit cancer cell growth in the presence of macrophage crosstalk. CONCLUSION This study indicates that the effect of Etanercept may be influenced by residing macrophages in tumor microenvironment, and suggests a method to predict the effect of drugs in the presence of stromal cells to guide experimental designs in drug development.
Collapse
Affiliation(s)
- Elnaz Shirmohammadi
- School of Pharmacy, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amir Farshchi
- Biopharmaceutical Research Center, AryoGen Pharmed Inc., Alborz University of Medical Sciences, Karaj, Iran
| | - Mona Salimi
- Physiology and Pharmacology Department, Pasteur Institute of Iran, P.O. Box: 13164, Tehran, Iran.
| |
Collapse
|