51
|
Yu Z, Xu L, He K, Lu M, Yan R, Song X, Li X. Actin depolymerizing factor-based nanomaterials: A novel strategy to enhance E. mitis-specific immunity. Front Immunol 2022; 13:1080630. [PMID: 36618362 PMCID: PMC9810622 DOI: 10.3389/fimmu.2022.1080630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
The epidemic of avian coccidiosis seriously threatens the animals' welfare and the economic gains of the poultry industry. Widespread in avian coccidiosis, Eimeria mitis (E. mitis) could obviously impair the production performance of the infected chickens. So far, few effective vaccines targeting E. mitis have been reported, and the nanovaccines composed of nanospheres captured our particular attention. At the present study, we construct two kinds of nanospheres carrying the recombinant E. mitis actin depolymerizing factor (rEmADF), then the characterization was then analyzed. After safety evaluation, the protective efficacy of rEmADF along with its nanospheres were investigated in chickens. The promoted secretions of antibodies and cytokines, as well as the enhanced percentages of CD4+ and CD8+ T cells were evaluated by the ELISA and flow cytometry assay. In addition, the absolute quantitative real-time PCR (qPCR) assay implied that vaccinations with rEmADF-entrapped nanospheres could significantly reduce the replications of E. mitis in feces. Compared with the rEmADF-loaded chitosan (EmADF-CS) nanospheres, the PLGA nanospheres carrying rEmADF (EmADF-PLGA nanosphers) were more effective in up-regulating weight efficiency of animals and generated equally ability in controlling E. mitis burdens in feces, suggesting the PLGA and CS nanospheres loaded with rEmADF were the satisfactory nanovaccines for E. mitis defense. Collectively, nanomaterials may be an effective antigen delivery system that could help recombinant E. mitis actin depolymerizing factor to enhance immunoprotections in chicken against the infections of E. mitis.
Collapse
Affiliation(s)
- ZhengQing Yu
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China,Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - LiXin Xu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ke He
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - MingMin Lu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - RuoFeng Yan
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - XiaoKai Song
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - XiangRui Li
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China,*Correspondence: XiangRui Li,
| |
Collapse
|
52
|
Mak PHW, Rehman MA, Kiarie EG, Topp E, Diarra MS. Production systems and important antimicrobial resistant-pathogenic bacteria in poultry: a review. J Anim Sci Biotechnol 2022; 13:148. [PMID: 36514172 DOI: 10.1186/s40104-022-00786-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/18/2022] [Indexed: 12/15/2022] Open
Abstract
Economic losses and market constraints caused by bacterial diseases such as colibacillosis due to avian pathogenic Escherichia coli and necrotic enteritis due to Clostridium perfringens remain major problems for poultry producers, despite substantial efforts in prevention and control. Antibiotics have been used not only for the treatment and prevention of such diseases, but also for growth promotion. Consequently, these practices have been linked to the selection and spread of antimicrobial resistant bacteria which constitute a significant global threat to humans, animals, and the environment. To break down the antimicrobial resistance (AMR), poultry producers are restricting the antimicrobial use (AMU) while adopting the antibiotic-free (ABF) and organic production practices to satisfy consumers' demands. However, it is not well understood how ABF and organic poultry production practices influence AMR profiles in the poultry gut microbiome. Various Gram-negative (Salmonella enterica serovars, Campylobacter jejuni/coli, E. coli) and Gram-positive (Enterococcus spp., Staphylococcus spp. and C. perfringens) bacteria harboring multiple AMR determinants have been reported in poultry including organically- and ABF-raised chickens. In this review, we discussed major poultry production systems (conventional, ABF and organic) and their impacts on AMR in some potential pathogenic Gram-negative and Gram-positive bacteria which could allow identifying issues and opportunities to develop efficient and safe production practices in controlling pathogens.
Collapse
Affiliation(s)
- Philip H W Mak
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada.,Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Muhammad Attiq Rehman
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Edward Topp
- London Research and Development Center, AAFC, London, ON, Canada
| | - Moussa S Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada.
| |
Collapse
|
53
|
Coccidiostats and Poultry: A Comprehensive Review and Current Legislation. Foods 2022; 11:foods11182738. [PMID: 36140870 PMCID: PMC9497773 DOI: 10.3390/foods11182738] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Coccidiosis remains one of the major problems of the poultry industry. Caused by Eimeria species, Coccidiosis is a contagious parasitic disease affecting poultry with great economic significance. Currently, in order to prevent health problems caused by this disease, broiler farmers make extensive use of coccidiostats in poultry feed, maintaining animal health and, in some cases, enhancing feed conversion. The presence of unauthorized substances, residues of veterinary products and chemical contaminants in the food industry is of concern, since they may pose a risk to public health. As the use of coccidiostats has been increasing without any requirements for veterinary prescription, research and surveillance of coccidiostat residues in poultry meat is becoming imperative. This review presents an up-to-date comprehensive discussion of the state of the art regarding coccidiosis, the most used anticoccidials in poultry production, their mode of action, their prophylactic use, occurrence and the European Union (EU) applicable legislation.
Collapse
|
54
|
Zaheer T, Abbas RZ, Imran M, Abbas A, Butt A, Aslam S, Ahmad J. Vaccines against chicken coccidiosis with particular reference to previous decade: progress, challenges, and opportunities. Parasitol Res 2022; 121:2749-2763. [PMID: 35925452 PMCID: PMC9362588 DOI: 10.1007/s00436-022-07612-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/24/2022] [Indexed: 11/29/2022]
Abstract
Chicken coccidiosis is an economically significant disease of commercial chicken industry accounting for losses of more than £10.4 billion (according to 2016 prices). Additionally, the costs incurred in prophylaxis and therapeutics against chicken coccidiosis in developing countries (for instance Pakistan according to 2018 prices) reached US $45,000.00 while production losses for various categories of chicken ranges 104.74 to US $2,750,779.00. The infection has been reported from all types of commercial chickens (broiler, layer, breeder) having a range of reported prevalence of 7-90%. The concern of resistance towards major anticoccidials has provided a way forward to vaccine research and development. For prophylaxis of chicken coccidiosis, live virulent, attenuated, ionophore tolerant strains and recombinant vaccines have been extensively trialed and commercialized. Eimeria antigens and novel vaccine adjuvants have elicited the protective efficacy against coccidial challenge. The cost of production and achieving robust immune responses in birds are major challenges for commercial vaccine production. In the future, research should be focused on the development of multivalent anticoccidial vaccines for commercial poultry. Efforts should also be made on the discovery of novel antigens for incorporation into vaccine designs which might be more effective against multiple Eimeria species. This review presents a recap to the overall progress against chicken Eimeria with particular reference to previous decade. The article presents critical analysis of potential areas for future research in chicken Eimeria vaccine development.
Collapse
Affiliation(s)
- Tean Zaheer
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan.
| | - Muhammad Imran
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Asghar Abbas
- Faculty of Veterinary Science, Muhammad Nawaz Shareef University of Agriculture Multan, Multan, Pakistan
| | - Ali Butt
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Sarfraz Aslam
- Institute of Physiology, Pharmacology and Pharmaceutics, University of Agriculture, Faisalabad, Pakistan
| | - Jameel Ahmad
- Institute of Physiology, Pharmacology and Pharmaceutics, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
55
|
Nash T, Vervelde L. Advances, challenges and future applications of avian intestinal in vitro models. Avian Pathol 2022; 51:317-329. [PMID: 35638458 DOI: 10.1080/03079457.2022.2084363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
There is a rapidly growing interest in how the avian intestine is affected by dietary components and probiotic microorganisms, as well as its role in the spread of infectious diseases in both the developing and developed world. A paucity of physiologically relevant models has limited research in this essential field of poultry gut health and led to an over-reliance on the use of live birds for experiments. The intestine is characterized by a complex cellular composition with numerous functions, unique dynamic locations and interdependencies making this organ challenging to recreate in vitro. This review illustrates the in vitro tools that aim to recapitulate this intestinal environment; from the simplest cell lines, which mimic select features of the intestine but lack anatomical and physiological complexity, to the more recently developed complex 3D enteroids, which recreate more of the intestine's intricate microanatomy, heterogeneous cell populations and signalling gradients. We highlight the benefits and limitations of in vitro intestinal models and describe their current applications and future prospective utilizations in intestinal biology and pathology research. We also describe the scope to improve on the current systems to include, for example, microbiota and a dynamic mechanical environment, vital components which enable the intestine to develop and maintain homeostasis in vivo. As this review explains, no one model is perfect, but the key to choosing a model or combination of models is to carefully consider the purpose or scientific question.
Collapse
Affiliation(s)
- Tessa Nash
- The Roslin Institute & R(D)SVS, University of Edinburgh, Edinburgh, UK
| | - Lonneke Vervelde
- The Roslin Institute & R(D)SVS, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
56
|
Shi H, Wang J, Teng PY, Tompkins YH, Jordan B, Kim WK. Effects of phytase and coccidial vaccine on growth performance, nutrient digestibility, bone mineralization, and intestinal gene expression of broilers. Poult Sci 2022; 101:102124. [PMID: 36130448 PMCID: PMC9489506 DOI: 10.1016/j.psj.2022.102124] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 11/08/2022] Open
Abstract
A study was conducted to evaluate effects of phytase and coccidial vaccine on growth performance, bone mineralization, nutrient digestibility, and intestinal gene expression of broiler chickens. The experiment was conducted in a 2 × 4 completely randomized factorial arrangement with 6 replicates per treatment and 10 birds each. Applications of coccidiosis vaccine and different dietary treatments were the 2 main factors in the current study. The dietary treatments included 1) a positive control (PC; 0.90% Ca and 0.45% available P: avP); 2) a negative control (NC; 0.75% Ca and 0.30% AvP); 3) NC + 500 FTU/kg of phytase (NC + 500PHY); and 4) NC + 1500 FTU/kg of phytase (NC + 1500PHY). Data were analyzed using SAS by 2-way ANOVA via GLM procedure. The statistical significance was set at P ≤ 0.05, and means were further separated using Tukey's Test. The results indicated that vaccination had no effect on growth performance except for feed intake from 0 to 14 d but negatively (P < 0.05) regulated bone ash and Ca digestibility. Birds fed with the Ca and P-reduced diet (NC) showed a lower BWG and bone ash compared to birds fed with the normal diet (PC), but supplementing phytase mitigated the negative effects on those birds. Broilers fed the NC diet had higher (P < 0.05) total Ca and P digestibility, and phytate degradation; supplementing phytase further increased P digestibility and phytate degradation of the broilers. A significant interaction (P < 0.05) between phytase and vaccination was observed, suggesting the vaccinated birds fed the PC diet and the unvaccinated birds fed the NC + 1500PHY increased calcium-sensing receptor gene expression compared with the unvaccinated birds fed the PC diet. In conclusion, in spite of coccidiosis vaccine, supplementing phytase at 1,500 FTU/kg alleviated the negative effects on growth performance, bone mineralization, and apparent ileal digestibility of P and phytate.
Collapse
|
57
|
Nawarathne SR, Kim DM, Cho HM, Hong J, Kim Y, Yu M, Yi YJ, Lee H, Wan V, Ng NKJ, Tan CH, Heo JM. Combinatorial Effect of Dietary Oregano Extracts and 3,4,5-Trihydroxy Benzoic Acid on Growth Performance and Elimination of Coccidiosis in Broiler Chickens. J Poult Sci 2022; 59:233-246. [PMID: 35989693 PMCID: PMC9346594 DOI: 10.2141/jpsa.0210116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/24/2021] [Indexed: 11/21/2022] Open
Abstract
We aimed to compare the combinatorial effect of 3,4,5-trihydroxybenzoic acid (THB) and oregano extracts (OE) with THB alone on the growth performance and elimination of deleterious effects in coccidiosis-infected broilers. A total of 210 one-day-old broilers were randomly assigned to one of five dietary treatments, with six replicates each, for 35 days. Dietary treatments were: 1) non-challenged, non-treated (NC); 2) challenged, non-treated (PC); 3) PC+ Salinomycin (0.05 g/kg; AB); 4) PC+THB (0.1 g/kg; THB); and 5) PC+THB+OE (0.1 g/kg; COM). On day 14, all groups except for NC were challenged with a 10-fold dose of Livacox® T anticoccidial vaccine to induce mild coccidiosis. All treatments significantly improved (P<0.05) body weight, average daily gain, and average daily feed intake, compared to PC, on days 21, 28, and 35. However, all treatments significantly reduced (P<0.05) the feed conversion ratio of PC by more than 14.60% on day 35, 11.76% during growing period, and 10.36% through the entire period. Broilers receiving anticoccidial treatments had 54.23% and 51.86% lower lesion scores (P<0.05) at 4 and 7 days post-infection, respectively, compared to PC. Additionally, the villus height of COM was significantly longer (P < 0.05) than that of THB. Although the molecular action of COM remains unclear, OE addition to THB reduced the shedding of oocysts better than THB alone (P<0.05, 9-11 days post-infection). Most importantly, COM effectively minimized the mortality of challenged birds from as high as 11.90% (PC) to 0%, a level similar to NC and AB, while THB maintained a mortality of 2.38%. In conclusion, the anticoccidial effect of THB can be enhanced by the addition of OE for better animal performance and the elimination of deleterious effects from coccidiosis-infected broilers for 35 days.
Collapse
Affiliation(s)
- Shan Randima Nawarathne
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dong-Myung Kim
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyun-Min Cho
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Junseon Hong
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yubin Kim
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Myunghwan Yu
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Young-Joo Yi
- Department of Agricultural Education, College of Education, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Hans Lee
- Kemin Industries, Inc., 758200, Singapore
| | - Vannie Wan
- Kemin Industries, Inc., 758200, Singapore
| | | | | | - Jung-Min Heo
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
58
|
Kulappu Arachchige SN, Underwood GJ, Andrews DM, Hasanthi Abeykoon AM, Wawegama NK, Browning GF. Measures of tracheal lesions are more discriminatory and reproducible indications of chronic respiratory disease caused by Mycoplasma gallisepticum in poultry. Avian Pathol 2022; 51:550-560. [PMID: 35849061 DOI: 10.1080/03079457.2022.2103396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Mycoplasma gallisepticum is the primary causative agent of chronic respiratory disease in poultry and vaccination is the measure most commonly used for its control. Pathological changes caused by M. gallisepticum are mainly observed in the trachea and air sacs, but assessment of air sac lesions is subjective. Standardised parameters for evaluation of pathological changes, and their reproducibility and discrimination in uninfected and infected groups, are critical when assessing the efficacy of M. gallisepticum vaccination. This study reviewed and critically appraised the published literature on evaluation of vaccine efficacy against pathological changes caused by M. gallisepticum in poultry in the trachea and air sacs. A search of four electronic databases, with subsequent manual filtering, identified 23 eligible papers published since 1962 describing the assessment of histopathological changes in the trachea using tracheal lesion scores and/or measurement of tracheal mucosal thicknesses and assessment of gross air sac lesions using lesion scores. Measurement of tracheal lesions proved a more reliable and robust method of assessing disease induced by M. gallisepticum when compared to assessment of air sac lesions, highlighting the importance of including assessment of tracheal lesions as the primary outcome variable in vaccine efficacy studies. In addition, this study also identified the necessity for use of a standardised model for evaluation and reporting on M. gallisepticum vaccines to minimise variations between vaccine efficacy studies and to allow direct comparisons between them.
Collapse
Affiliation(s)
- Sathya N Kulappu Arachchige
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia.,Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Gregory J Underwood
- Bioproperties Proprietary Limited, 36 Charter Street, Ringwood, Victoria, Australia
| | - Daniel M Andrews
- Bioproperties Proprietary Limited, 36 Charter Street, Ringwood, Victoria, Australia
| | - A M Hasanthi Abeykoon
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Nadeeka K Wawegama
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
59
|
Characterization of vaccine-induced immune responses against coccidiosis in broiler chickens. Vaccine 2022; 40:3893-3902. [PMID: 35623907 DOI: 10.1016/j.vaccine.2022.05.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022]
Abstract
Coccidiosis, caused by Eimeria protozoan species, is an economically important enteric disease of poultry. Although commercial live vaccines are widely used for disease control, the vaccine-induced protective immune mechanisms are poorly characterized. The present study used a commercial broiler vaccine containing a mixture of E. acervulina, E. maxima, and E. tenella. One-day-old chicks were vaccinated by spray followed by a challenge at 21 days of age with a mixture of wild type Eimeria species via oral gavage. Oocyst shedding, immune gene expression and cellular responses in the spleen and cecal tonsils were measured at pre- (days 14 and 21) and post-challenge (days 24, 28 and 35) time points. Results showed that the oocyst counts were significantly reduced in the vaccinated chickens at post-challenge compared to unvaccinated control group. While the vaccinated birds had a significantly increased toll-like receptor (TLR) 21 gene expression at pre-challenge, the transcription of interferon (IFN)γ, Interleukin (IL)-12 and CD40 genes in spleen and cecal tonsils of these birds was significantly higher at post-challenge compared to unvaccinated chickens. Cellular immunophenotyping analysis found that vaccination led to increased frequency of macrophages and activated T cells (CD8+CD44+ and CD4+CD44+) in the spleen and cecal tonsils at post-challenge. Furthermore, in vitro stimulation of chicken macrophages (MQ-NCSU cells) with purified individual species of E. acervulina, E. maxima, and E. tenella showed a significantly increased expression of TLR21, TLR2 and IFNγ genes as well as nitric oxide production. Collectively, these findings suggest that TLR21 and TLR2 may be involved in the immune cell recognition of Eimeria parasites and that the vaccine can induce a robust macrophage activation leading to a T helper-1 dominated protective response at both local and systemic lymphoid tissues.
Collapse
|
60
|
Lee Y, Park I, Wickramasuriya SS, Arous JB, Koziol ME, Lillehoj HS. Co-administration of chicken IL-7 or NK-lysin peptide 2 enhances the efficacy of Eimeria elongation factor-1α vaccination against Eimeria maxima infection in broiler chickens. Poult Sci 2022; 101:102013. [PMID: 35905546 PMCID: PMC9335386 DOI: 10.1016/j.psj.2022.102013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022] Open
Abstract
This study was conducted to develop a recombinant Eimeria elongation factor-1α (EF-1α)-vaccination strategy against Eimeria maxima (E. maxima) infection by co-administering with chicken IL-7 (chIL-7) or chicken NK-lysin peptide 2 (cNK-2) in commercial broiler chickens. Chickens were divided into the following 5 groups: control (CON, no Eimeria infection), nonimmunized control (NC, PBS plus Montanide ISA 78 VG), Vaccination 1 (VAC1, 100 µg of recombinant EF-1α plus Montanide ISA 78 VG), Vaccination 2 (VAC2, VAC1 plus 1 µg of chIL-7), and Vaccination 3 (VAC3, VAC2 plus 5 µg of cNK-2 peptide). The first immunization except the cNK-2 injection was performed intramuscularly on day 4, and the secondary immunization was given with the same concentration of components as the primary immunization 1 wk later. All chickens except the CON group were orally inoculated with freshly prepared E. maxima (1.0 × 104 oocysts per chicken) oocysts on Day 19. The results of the in vivo vaccination trial showed that chickens of all groups immunized with recombinant EF-1α antigen (VAC1, VAC2, and VAC3) showed higher serum antibody levels to EF-1α, and co-injection with chIL-7 further increased the serum IL-7 level in the VAC2 and VAC3 groups. Chickens in the VAC2 group showed significantly (P < 0.01) higher body weight gains at 6 and 9 d post-E. maxima challenge infection (dpi) with reduced gut lesions in the jejunum at 6 dpi. The VAC3 group showed reduced fecal oocyst shedding compared to the nonimmunized and infected chickens (NC). At 4 dpi, E. maxima infection significantly (P < 0.05) up-regulated the expression levels of proinflammatory cytokines (IL-β and IL-17F) and type Ι cytokines (IFN-γ and IL-10) in the jejunum (NC), but the expression of these cytokines was significantly (P < 0.05) down-regulated in the VAC1, VAC2, and VAC3 groups. Furthermore, E. maxima challenge infection significantly (P < 0.05) down-regulated the expressions of jejunal tight junction (TJ) proteins (Jam2 and Occludin) at 4 dpi, but their expression was up-regulated in the VAC2 and VAC3 groups. Collectively, these results show the protective effects of the EF-1α recombinant vaccine, which can be further enhanced by co-injection with chIL-7 or cNK-2 peptide against E. maxima infection.
Collapse
Affiliation(s)
- Youngsub Lee
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA
| | - Inkyung Park
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA
| | - Samiru S Wickramasuriya
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA
| | - Juliette Ben Arous
- SEPPIC, 50 Boulevard National, Paris la Défense, 92257 La Garenne Colombes, France
| | - Marie-Eve Koziol
- SEPPIC, 50 Boulevard National, Paris la Défense, 92257 La Garenne Colombes, France
| | - Hyun S Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA.
| |
Collapse
|
61
|
Xu L, Yu Z, He K, Wen Z, Aleem MT, Yan R, Song X, Lu M, Li X. PLGA Nanospheres as Delivery Platforms for Eimeria mitis 1a Protein: A Novel Strategy to Improve Specific Immunity. Front Immunol 2022; 13:901758. [PMID: 35693811 PMCID: PMC9178187 DOI: 10.3389/fimmu.2022.901758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
The infections of chicken coccidiosis impact the welfare of chickens and the economical production of poultry. Eimeria mitis is ubiquitous in chicken coccidiosis, and E. mitis infection can significantly affect the productivity of birds. Up to now, few efficient vaccines against E. mitis have been reported, whereas the recombinant subunit vaccines delivered by nanomaterials may elicit an encouraging outcome. Thus, in this study, we chose E. mitis 1a (Em1a) protein as the candidate antigen to generate Em1a preparations. The recombinant Em1a (rEm1a) protein was encapsulated with poly lactic-co-glycolic acid (PLGA) and chitosan (CS) nanospheres. The physical characterization of the rEm1a-PLGA and rEm1a-CS nanospheres was investigated, and the resulting nanospheres were proven to be nontoxic. The protective efficacy of rEm1a-PLGA and rEm1a-CS preparations was evaluated in E. mitis-challenged birds in comparison with two preparations containing rEm1a antigen emulsified in commercially available adjuvants. ELISA assay, flow cytometry analysis, and quantitative real-time PCR (qPCR) analysis indicated that vaccination with rEm1a-loaded nanospheres significantly upregulated the secretions of antibodies and cytokines and proportions of CD4+ and CD8+ T lymphocytes. Compared with the other three preparations, rEm1a-PLGA nanosphere was more effective in improving growth performance and inhibiting oocyst output in feces, indicating that the PLGA nanosphere was associated with optimal protection against E. mitis. Collectively, our results highlighted the advantages of nanovaccine in eliciting protective immunity and may provide a new perspective for developing effective vaccines against chicken coccidiosis.
Collapse
|
62
|
Nasri T, Sangmaneedet S, Nam NH, Worawong K, Taweenan W, Sukon P. Protective efficacy of new-generation anticoccidial vaccine candidates against Eimeria infection in chickens: A meta-analysis of challenge trials. Vet Parasitol 2022; 306:109724. [DOI: 10.1016/j.vetpar.2022.109724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/09/2022]
|
63
|
Yu Z, Chen S, Huang J, Ding W, Chen Y, Su J, Yan R, Xu L, Song X, Li X. A multiepitope vaccine encoding four Eimeria epitopes with PLGA nanospheres: a novel vaccine candidate against coccidiosis in laying chickens. Vet Res 2022; 53:27. [PMID: 35365221 PMCID: PMC9350682 DOI: 10.1186/s13567-022-01045-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/21/2022] [Indexed: 12/31/2022] Open
Abstract
With a worldwide distribution, Eimeria spp. could result in serious economic losses to the poultry industry. Due to drug resistance and residues, there are no ideal drugs and vaccines against Eimeria spp. in food animals. In the current study, a bioinformatics approach was employed to design a multiepitope antigen, named NSLC protein, encoding antigenic epitopes of E. necatrix NA4, E. tenella SAG1, E. acervulina LDH, and E. maxima CDPK. Thereafter, the protective immunity of NSLC protein along with five adjuvants and two nanospheres in laying chickens was evaluated. Based on the humoral immunity, cellular immunity, oocyst burden, and the coefficient of growth, the optimum adjuvant was evaluated. Furthermore, the optimum immune route and dosage were also investigated according to the oocyst burden and coefficient of growth. Accompanied by promoted secretion of antibodies and enhanced CD4+ and CD8+ T lymphocyte proportions, NSLC proteins entrapped in PLGA nanospheres were more effective in stimulating protective immunity than other adjuvants or nanospheres, indicating that PLGA nanospheres were the optimum adjuvant for NSLC protein. In addition, a significantly inhibited oocyst burden and growth coefficient promotion were also observed in animals vaccinated with NSLC proteins entrapped in PLGA nanospheres, indicating that the optimum adjuvant for NSLC proteins was PLGA nanospheres. The results also suggested that the intramucosal route with PLGA nanospheres containing 300 μg of NSLC protein was the most efficient approach to induce protective immunity against the four Eimeria species. Collectively, PLGA nanospheres loaded with NSLC antigens are potential vaccine candidates against avian coccidiosis.
Collapse
Affiliation(s)
- ZhengQing Yu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - SiYing Chen
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - JianMei Huang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - WenXi Ding
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - YuFeng Chen
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - JunZhi Su
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - RuoFeng Yan
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - LiXin Xu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - XiaoKai Song
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - XiangRui Li
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
64
|
Barba E, Guedes AC, Molina JM, Martín S, Muñoz MC, Ferrer O, Lara PC, Hermosilla C, Taubert A, Ruiz A. Immunoprotection against mixed Eimeria spp. infections in goat kids induced by X-irradiated oocysts. Parasitol Res 2022; 121:1517-1525. [PMID: 35238997 PMCID: PMC8993715 DOI: 10.1007/s00436-022-07465-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/08/2022] [Indexed: 11/30/2022]
Abstract
Strategies to control goat coccidiosis traditionally rely on the use of management practices combined with anticoccidial treatments, and limited effort has been made, so far, to address immunological control of caprine Eimeria infections. Previously, we showed that monospecific immunization with X-Rad-attenuated Eimeria ninakohlyakimovae oocysts induced considerable immunoprotection upon challenge. In the present study, we conducted a similar vaccination trial but using a mixture of caprine Eimeria species typically present in natural infected goats. For immunization, sporulated oocysts were attenuated by X irradiation (20 kilorad). All infections were performed orally applying 105 sporulated oocysts of mixed Eimeria spp. per animal. In total, 18 goat kids were grouped as follows: (G1) immunized + challenge infected; (G2) primary + challenge infected; (G3) challenge infection control; and (G4) non-immunized/non-infected control. Overall, goat kids infected with attenuated oocysts (= immunized) shed less oocysts in the faeces and showed a lower degree of clinical coccidiosis than animals infected with non-attenuated oocysts. Animals of both challenge groups (G1 and G2) showed partial immunoprotection upon reinfection when compared to challenge infection control (G3). However, the degree of immunoprotection was less pronounced than recently reported for monospecific vaccination against Eimeria ninakohlyakimovae, most probably due to the complexity of the pathogenesis and related immune responses against mixed Eimeria spp. infections. Nevertheless, the data of the present study demonstrate that immunization with attenuated Eimeria spp. oocysts may be worth pursuing as a strategy to control goat coccidiosis.
Collapse
Affiliation(s)
- Emilio Barba
- Parasitology Unit, Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, 35413, Arucas, Las Palmas, Spain
| | - Aránzazu Carmen Guedes
- Parasitology Unit, Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, 35413, Arucas, Las Palmas, Spain
| | - José Manuel Molina
- Parasitology Unit, Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, 35413, Arucas, Las Palmas, Spain
| | - Sergio Martín
- Parasitology Unit, Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, 35413, Arucas, Las Palmas, Spain
| | - María Carmen Muñoz
- Parasitology Unit, Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, 35413, Arucas, Las Palmas, Spain
| | - Otilia Ferrer
- Parasitology Unit, Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, 35413, Arucas, Las Palmas, Spain
| | - Pedro Carlos Lara
- University Fernando Pessoa and University Hospital San Roque, Las Palmas, Spain
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, Biomedical Research Center Seltersberg, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, Biomedical Research Center Seltersberg, Giessen, Germany
| | - Antonio Ruiz
- Parasitology Unit, Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, 35413, Arucas, Las Palmas, Spain.
| |
Collapse
|
65
|
Coccidiosis: Recent Progress in Host Immunity and Alternatives to Antibiotic Strategies. Vaccines (Basel) 2022; 10:vaccines10020215. [PMID: 35214673 PMCID: PMC8879868 DOI: 10.3390/vaccines10020215] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Coccidiosis is an avian intestinal disease caused by several distinct species of Eimeria parasites that damage the host’s intestinal system, resulting in poor nutrition absorption, reduced growth, and often death. Increasing evidence from recent studies indicates that immune-based strategies such as the use of recombinant vaccines and various dietary immunomodulating feed additives can improve host defense against intracellular parasitism and reduce intestinal damage due to inflammatory responses induced by parasites. Therefore, a comprehensive understanding of the complex interactions between the host immune system, gut microbiota, enteroendocrine system, and parasites that contribute to the outcome of coccidiosis is necessary to develop logical strategies to control coccidiosis in the post-antibiotic era. Most important for vaccine development is the need to understand the protective role of the local intestinal immune response and the identification of various effector molecules which mediate anti-coccidial activity against intracellular parasites. This review summarizes the current understanding of the host immune response to coccidiosis in poultry and discusses various non-antibiotic strategies which are being developed for coccidiosis control. A better understanding of the basic immunobiology of pertinent host–parasite interactions in avian coccidiosis will facilitate the development of effective anti-Eimeria strategies to mitigate the negative effects of coccidiosis.
Collapse
|
66
|
Taylor J, Walk C, Misiura M, Sorbara JOB, Giannenas I, Kyriazakis I. Quantifying the effect of coccidiosis on broiler performance and infection outcomes in the presence and absence of control methods. Poult Sci 2022; 101:101746. [PMID: 35219136 PMCID: PMC8881651 DOI: 10.1016/j.psj.2022.101746] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 01/31/2023] Open
Abstract
A systematic review and meta-analysis was conducted to investigate the role of Eimeria species, dose and inoculation time, on performance and infection outcomes of different broiler strains infected for different study durations. The meta-analysis addressed E. acervulina, E. maxima, E. tenella, and mixed species infections, and involved data from 72 peer-reviewed articles, corresponding to 521 treatments performed on 20,756 broilers. A secondary objective was to investigate the effects of synthetic anticoccidials, ionophores, and vaccination against Eimeria on the above outcomes. Performance during infection was scaled (%) to that of the uninfected birds. Infection reduced scaled ADFI and ADG (P < 0.001) and increased feed conversion ratio (FCR; P < 0.05); there was a significant interaction between dose and species on scaled ADFI and ADG, suggesting that different species affected these variables to different extents (P < 0.001). There was a tendency for an interaction between dose and broiler strain on scaled ADFI (P = 0.079), and a significant interaction between these variables on scaled ADG (P < 0.01). A tendency for an interaction between oocyst dose and Eimeria species (P = 0.067) on maximum number of oocysts excreted was observed. Lesion scores were significantly affected by dose, species, and their interaction (P < 0.05), the latter caused by an increase in the lesion scores during E. maxima and E. tenella infections. Control methods significantly affected scaled ADG and FCR (P < 0.05) and there was an interaction between dose and control methods on ADFI (P < 0.001). Synthetic anticoccidial use improved scaled ADG (P < 0.01), whereas ionophores improved FCR compared with untreated birds (P < 0.01). An interaction between dose and control method on scaled ADFI was caused by the higher ADFI of vaccinated compared to untreated birds, as dose increased. There was a significant effect of control methods on lesion scores (P < 0.01). All findings advance our understanding of the factors that influence the impact of coccidiosis and its controls in broilers.
Collapse
Affiliation(s)
- James Taylor
- Institute for Global Food Security, Queen's University, Belfast BT7 1NN, United Kingdom
| | - Carrie Walk
- DSM Nutritional Products, Kaiseraugst 4303, Switzerland
| | - Maciej Misiura
- Institute for Global Food Security, Queen's University, Belfast BT7 1NN, United Kingdom
| | | | - Ilias Giannenas
- Laboratory of Nutrition, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece
| | - Ilias Kyriazakis
- Institute for Global Food Security, Queen's University, Belfast BT7 1NN, United Kingdom.
| |
Collapse
|
67
|
Elmahallawy EK, Fehaid A, EL-shewehy DMM, Ramez AM, Alkhaldi AAM, Mady R, Nasr NE, Arafat N, Hassanen EAA, Alsharif KF, Abdo W. S-Methylcysteine Ameliorates the Intestinal Damage Induced by Eimeria tenella Infection via Targeting Oxidative Stress and Inflammatory Modulators. Front Vet Sci 2022; 8:754991. [PMID: 35071376 PMCID: PMC8767015 DOI: 10.3389/fvets.2021.754991] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Avian coccidiosis is one of the major parasitic diseases in the poultry industry. The infection is caused by Eimeria species, and its treatment relies mainly on the administration of anticoccidial drugs, which can result in drug resistance and side effects. The recent trends in avian coccidiosis treatment is directed to the development of a new therapy using herbal compounds. S-Methylcysteine (SMC) is considered one of the organosulfur compounds in garlic that showed promising activity in the treatment of different pathological conditions via a wide range of anti-inflammatory and antioxidant mechanisms. In this study, the anticoccidial activity of SMC was investigated in Eimeria tenella-infected chickens compared to diclazuril as a widely used anticoccidial drug. In this regard, 14-day-old broilers were divided into six groups (n = 18). The first group (G1) was the healthy control group, while the second group (G2) was the non-infected SMC group treated at a dose of 50 mg/kg b.w. (high dose). Moreover, the third group (G3) was the positive control group (infected and non-treated). The fourth group (G4) was the infected group treated with SMC of 25 mg/kg b.w. (low dose), while the fifth group (G5) was the infected group treated with SMC of 50 mg/kg b.w. (high dose). Conversely, the sixth group (G6) was the diclazuril-treated group. The anticoccidial effects of SMC and diclazuril were evaluated by counting oocysts and recording the body weight gain, feed conversion ratio, clinical signs, lesions, and mortality rate. Interestingly, SMC showed potent anticoccidial activity, which was exemplified by reduction of oocyst count. Furthermore, the biochemical, antioxidant, and anti-inflammatory parameters in the cecal tissues were restored toward their control levels in G4, G5, and G6. Histopathological observation of cecal tissues was consistent with the aforementioned results revealing the ameliorative effect of SMC against E. tenella infection. This study concluded novel findings in relation to the anticoccidial role of SMC as a plant-based compound against the E. tenella-induced coccidiosis in broiler chickens combined with its antioxidative and anti-inflammatory properties. Further studies for exploring the mechanistic pathways involved in this activity and the potential benefits from its use in association with conventional anticoccidial drugs are warranted.
Collapse
Affiliation(s)
- Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Alaa Fehaid
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | | | - Amany M. Ramez
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | | - Rehab Mady
- Department of Pharmacology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Nasr Elsayed Nasr
- Biochemistry and Clinical Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Nagah Arafat
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Eman A. A. Hassanen
- Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| |
Collapse
|
68
|
Liu Z, Geng X, Zhao Q, Zhu S, Han H, Yu Y, Huang W, Yao Y, Huang B, Dong H. Effects of host vimentin on Eimeria tenella sporozoite invasion. Parasit Vectors 2022; 15:8. [PMID: 34983604 PMCID: PMC8729122 DOI: 10.1186/s13071-021-05107-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/19/2021] [Indexed: 12/23/2022] Open
Abstract
Background Chicken coccidiosis is a parasitic disease caused by Eimeria of Apicomplexa, which has caused great economic loss to the poultry breeding industry. Host vimentin is a key protein in the process of infection of many pathogens. In an earlier phosphorylation proteomics study, we found that the phosphorylation level of host vimentin was significantly regulated after Eimeria tenella sporozoite infection. Therefore, we explored the role of host vimentin in the invasion of host cells by sporozoites. Methods Chicken vimentin protein was cloned and expressed. We used qPCR, western blotting, and indirect immunofluorescence to detect levels of mRNA transcription, translation, and phosphorylation, and changes in the distribution of vimentin after E. tenella sporozoite infection. The sporozoite invasion rate in DF-1 cells treated with vimentin polyclonal antibody or with small interfering RNA (siRNA), which downregulated vimentin expression, was assessed by an in vitro invasion test. Results The results showed that vimentin transcription and translation levels increased continually at 6–72 h after E. tenella sporozoite infection, and the total phosphorylation levels of vimentin also changed. About 24 h after sporozoite infection, vimentin accumulated around sporozoites in DF-1 cells. Treating DF-1 cells with vimentin polyclonal antibody or downregulating vimentin expression by siRNA significantly improved the invasion efficiency of sporozoites. Conclusion In this study, we showed that vimentin played an inhibitory role during the invasion of sporozoites. These data provided a foundation for clarifying the relationship between Eimeria and the host. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05107-4.
Collapse
Affiliation(s)
- Zhan Liu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, 200241, Shanghai, People's Republic of China
| | - Xiangfei Geng
- Beijing YuanDa Spark Medicine Technology Co., Ltd, Beijing, 100088, People's Republic of China
| | - Qiping Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, 200241, Shanghai, People's Republic of China
| | - Shunhai Zhu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, 200241, Shanghai, People's Republic of China
| | - Hongyu Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, 200241, Shanghai, People's Republic of China
| | - Yu Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, 200241, Shanghai, People's Republic of China
| | - Wenhao Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, 200241, Shanghai, People's Republic of China
| | - Yawen Yao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, 200241, Shanghai, People's Republic of China
| | - Bing Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, 200241, Shanghai, People's Republic of China
| | - Hui Dong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, 200241, Shanghai, People's Republic of China.
| |
Collapse
|
69
|
Martins RR, Azevedo VS, Pereira AMPT, Silva LJG, Duarte SC, Pena A. Risk Assessment of Nine Coccidiostats in Commercial and Home Raised Poultry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14287-14293. [PMID: 34788026 DOI: 10.1021/acs.jafc.1c05656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
For the first time, this paper aimed to evaluate nine ionophore and synthetic coccidiostat residues in poultry muscle samples, obtained from different production types, by solid-liquid extraction followed by liquid chromatography with tandem mass spectrometry (LC-MS/MS). The fully validated methodology was successfully applied to a total of 101 chicken and turkey samples obtained from canteens, supermarkets, and home productions in Portugal. Halofuginone, diclazuril, decoquinate, narasin, lasalocid, and salinomycin were detected in 20.8% of the samples. Home raised samples showed a greater frequency, 47.1%. The synthetic coccidiostats halofuginone, diclazuril, and decoquinate were found in averages of 0.7 μg kg-1,2.9 μg kg-1, and 3.7 μg kg-1, respectively, while averages of 1.2 μg kg-1, 1.6 μg kg-1, and 1.3 μg kg-1 were found regarding the ionophores narasin, lasalocid, and salinomycin. As for the risk assessment, values lower than 8.06% of the acceptable daily intake (ADI) were observed, indicating that exposure to coccidiostats through consumption of poultry meat does not represent risk to consumers.
Collapse
Affiliation(s)
- Rui R Martins
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Centre of Studies in Animal and Veterinary Science (CECAV), University of Trás-os Montes e Alto Douro (UTAD), Apartado 1013, 5001-801 Vila Real, Portugal
| | - Vanessa S Azevedo
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - André M P T Pereira
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Liliana J G Silva
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Sofia C Duarte
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Centro de Investigação Vasco da Gama, Escola Universitária Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes 197, Campus Universitário de Lordemão, 3020-210, Coimbra, Portugal
| | - Angelina Pena
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
70
|
Tucker MS, O’Brien CN, Jenkins MC, Rosenthal BM. Dynamically expressed genes provide candidate viability biomarkers in a model coccidian. PLoS One 2021; 16:e0258157. [PMID: 34597342 PMCID: PMC8486141 DOI: 10.1371/journal.pone.0258157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/18/2021] [Indexed: 11/29/2022] Open
Abstract
Eimeria parasites cause enteric disease in livestock and the closely related Cyclosporacayetanensis causes human disease. Oocysts of these coccidian parasites undergo maturation (sporulation) before becoming infectious. Here, we assessed transcription in maturing oocysts of Eimeria acervulina, a widespread chicken parasite, predicted gene functions, and determined which of these genes also occur in C. cayetanensis. RNA-Sequencing yielded ~2 billion paired-end reads, 92% of which mapped to the E. acervulina genome. The ~6,900 annotated genes underwent temporally-coordinated patterns of gene expression. Fifty-three genes each contributed >1,000 transcripts per million (TPM) throughout the study interval, including cation-transporting ATPases, an oocyst wall protein, a palmitoyltransferase, membrane proteins, and hypothetical proteins. These genes were enriched for 285 gene ontology (GO) terms and 13 genes were ascribed to 17 KEGG pathways, defining housekeeping processes and functions important throughout sporulation. Expression differed in mature and immature oocysts for 40% (2,928) of all genes; of these, nearly two-thirds (1,843) increased their expression over time. Eight genes expressed most in immature oocysts, encoding proteins promoting oocyst maturation and development, were assigned to 37 GO terms and 5 KEGG pathways. Fifty-six genes underwent significant upregulation in mature oocysts, each contributing at least 1,000 TPM. Of these, 40 were annotated by 215 GO assignments and 9 were associated with 18 KEGG pathways, encoding products involved in respiration, carbon fixation, energy utilization, invasion, motility, and stress and detoxification responses. Sporulation orchestrates coordinated changes in the expression of many genes, most especially those governing metabolic activity. Establishing the long-term fate of these transcripts in sporulated oocysts and in senescent and deceased oocysts will further elucidate the biology of coccidian development, and may provide tools to assay infectiousness of parasite cohorts. Moreover, because many of these genes have homologues in C. cayetanensis, they may prove useful as biomarkers for risk.
Collapse
Affiliation(s)
- Matthew S. Tucker
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Celia N. O’Brien
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Mark C. Jenkins
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Benjamin M. Rosenthal
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America
- * E-mail:
| |
Collapse
|
71
|
Attree E, Sanchez-Arsuaga G, Jones M, Xia D, Marugan-Hernandez V, Blake D, Tomley F. Controlling the causative agents of coccidiosis in domestic chickens; an eye on the past and considerations for the future. CABI AGRICULTURE AND BIOSCIENCE 2021; 2:37. [PMID: 34604790 PMCID: PMC8475900 DOI: 10.1186/s43170-021-00056-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/06/2021] [Indexed: 05/07/2023]
Abstract
Coccidiosis is a potentially severe enteritis caused by species of obligate intracellular parasites of the genus Eimeria. These parasites cause significant economic losses to the poultry industry, predominantly due to compromised efficiency of production as well as the cost of control. These losses were recently estimated to cost chicken producers approximately £10.4 billion worldwide annually. High levels of Eimeria infection cause clinical coccidiosis which is a significant threat to poultry welfare, and a pre-disposing contributory factor for necrotic enteritis. Control of Eimeria parasites and coccidiosis is therefore an important endeavour; multiple approaches have been developed and these are often deployed together. This review summarises current trends in strategies for control of Eimeria, focusing on three main areas: good husbandry, chemoprophylaxis and vaccination. There is currently no "perfect solution" and there are advantages and limitations to all existing methods. Therefore, the aim of this review is to present current control strategies and suggest how these may develop in the future.
Collapse
Affiliation(s)
- Elizabeth Attree
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| | - Gonzalo Sanchez-Arsuaga
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| | - Michelle Jones
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| | - Dong Xia
- Department of Clinical Science and Services, The Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| | - Virginia Marugan-Hernandez
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| | - Damer Blake
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| | - Fiona Tomley
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
- UKRI GCRF One Health Poultry Hub, Ahmedabad, India
| |
Collapse
|
72
|
Genetic Diversity of Microneme Protein 2 and Surface Antigen 1 of Eimeria tenella. Genes (Basel) 2021; 12:genes12091418. [PMID: 34573400 PMCID: PMC8470435 DOI: 10.3390/genes12091418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022] Open
Abstract
Avian coccidiosis is a disease caused by members of the genus Eimeria. Huge economic losses incurred by the global poultry industry due to coccidiosis have increased the need for cost-effective and easily available recombinant vaccines. Microneme protein 2 (MIC2) and surface antigen 1 (SAG1) of E. tenella have been recognised as potential vaccine candidates. However, the genetic diversity of the antigens in field isolates, which affects vaccine efficacy, has yet to be largely investigated. Here, we analysed genetic diversity and natural selection of etmic2 and etsag1 in Korean E. tenella isolates. Both genes exhibited low levels of genetic diversity in Korean isolates. However, the two genes showed different patterns of nucleotide diversity and amino acid polymorphism involving the E. tenella isolates obtained from different countries including China and India. These results underscore the need to investigate the genetic diversity of the vaccine candidate antigens and warrant monitoring of genetic heterogeneity and evolutionary aspects of the genes in larger numbers of E. tenella field isolates from different geographical areas to design effective coccidial vaccines.
Collapse
|
73
|
Sandholt AKS, Wattrang E, Lilja T, Ahola H, Lundén A, Troell K, Svärd SG, Söderlund R. Dual RNA-seq transcriptome analysis of caecal tissue during primary Eimeria tenella infection in chickens. BMC Genomics 2021; 22:660. [PMID: 34521339 PMCID: PMC8438895 DOI: 10.1186/s12864-021-07959-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/29/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Coccidiosis is an infectious disease with large negative impact on the poultry industry worldwide. It is an enteric infection caused by unicellular Apicomplexan parasites of the genus Eimeria. The present study aimed to gain more knowledge about interactions between parasites and the host immune system during the early asexual replication phase of E. tenella in chicken caeca. For this purpose, chickens were experimentally infected with E. tenella oocysts, sacrificed on days 1-4 and 10 after infection and mRNA from caecal tissues was extracted and sequenced. RESULTS Dual RNA-seq analysis revealed time-dependent changes in both host and parasite gene expression during the course of the infection. Chicken immune activation was detected from day 3 and onwards with the highest number of differentially expressed immune genes recorded on day 10. Among early (days 3-4) responses up-regulation of genes for matrix metalloproteinases, several chemokines, interferon (IFN)-γ along with IFN-stimulated genes GBP, IRF1 and RSAD2 were noted. Increased expression of genes with immune suppressive/regulatory effects, e.g. IL10, SOCS1, SOCS3, was also observed among early responses. For E. tenella a general up-regulation of genes involved in protein expression and energy metabolism as well as a general down-regulation genes for DNA and RNA processing were observed during the infection. Specific E. tenella genes with altered expression during the experiment include those for proteins in rhoptry and microneme organelles. CONCLUSIONS The present study provides novel information on both the transcriptional activity of E. tenella during schizogony in ceacal tissue and of the local host responses to parasite invasion during this phase of infection. Results indicate a role for IFN-γ and IFN-stimulated genes in the innate defence against Eimeria replication.
Collapse
Affiliation(s)
- Arnar K S Sandholt
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Eva Wattrang
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden.
| | - Tobias Lilja
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Harri Ahola
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Anna Lundén
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Karin Troell
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Robert Söderlund
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| |
Collapse
|
74
|
Madlala T, Adeleke VT, Fatoba AJ, Okpeku M, Adeniyi AA, Adeleke MA. Designing multiepitope-based vaccine against Eimeria from immune mapped protein 1 (IMP-1) antigen using immunoinformatic approach. Sci Rep 2021; 11:18295. [PMID: 34521964 PMCID: PMC8440781 DOI: 10.1038/s41598-021-97880-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023] Open
Abstract
Drug resistance against coccidiosis has posed a significant threat to chicken welfare and productivity worldwide, putting daunting pressure on the poultry industry to reduce the use of chemoprophylactic drugs and live vaccines in poultry to treat intestinal diseases. Chicken coccidiosis, caused by an apicomplexan parasite of Eimeria spp., is a significant challenge worldwide. Due to the experience of economic loss in production and prevention of the disease, development of cost-effective vaccines or drugs that can stimulate defence against multiple Eimeria species is imperative to control coccidiosis. This study explored Eimeria immune mapped protein-1 (IMP-1) to develop a multiepitope-based vaccine against coccidiosis by identifying antigenic T-cell and B-cell epitope candidates through immunoinformatic techniques. This resulted in the design of 7 CD8+, 21 CD4+ T-cell epitopes and 6 B-cell epitopes, connected using AAY, GPGPG and KK linkers to form a vaccine construct. A Cholera Toxin B (CTB) adjuvant was attached to the N-terminal of the multiepitope construct to improve the immunogenicity of the vaccine. The designed vaccine was assessed for immunogenicity (8.59968), allergenicity and physiochemical parameters, which revealed the construct molecular weight of 73.25 kDa, theoretical pI of 8.23 and instability index of 33.40. Molecular docking simulation of vaccine with TLR-5 with binding affinity of - 151.893 kcal/mol revealed good structural interaction and stability of protein structure of vaccine construct. The designed vaccine predicts the induction of immunity and boosted host's immune system through production of antibodies and cytokines, vital in hindering surface entry of parasites into host. This is a very important step in vaccine development though further experimental study is still required to validate these results.
Collapse
Affiliation(s)
- Thabile Madlala
- grid.16463.360000 0001 0723 4123Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, 4000 South Africa
| | - Victoria T. Adeleke
- grid.16463.360000 0001 0723 4123Discipline of Chemical Engineering, University of KwaZulu-Natal, Howard Campus, Durban, 4041 South Africa
| | - Abiodun J. Fatoba
- grid.16463.360000 0001 0723 4123Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, 4000 South Africa
| | - Moses Okpeku
- grid.16463.360000 0001 0723 4123Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, 4000 South Africa
| | - Adebayo A. Adeniyi
- grid.412219.d0000 0001 2284 638XDepartment of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa ,grid.448729.40000 0004 6023 8256Department of Industrial Chemistry, Federal University Oye-Ekiti, Oye-Ekiti, Nigeria
| | - Matthew A. Adeleke
- grid.16463.360000 0001 0723 4123Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, 4000 South Africa
| |
Collapse
|
75
|
Nguyen BT, Flores RA, Cammayo PLT, Kim S, Kim WH, Min W. Anticoccidial Activity of Berberine against Eimeria-Infected Chickens. THE KOREAN JOURNAL OF PARASITOLOGY 2021; 59:403-408. [PMID: 34470092 PMCID: PMC8413861 DOI: 10.3347/kjp.2021.59.4.403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/30/2021] [Indexed: 12/29/2022]
Abstract
Avian coccidiosis has a major economic impact on the poultry industry, it is caused by 7 species of Eimeria, and has been primarily controlled using chemotherapeutic agents. Due to the emergence of drug-resistant strains, alternative control strategies are needed. We assessed anticoccidial effects of berberine-based diets in broiler chickens following oral infection with 5 Eimeria species (E. acervulina, E. maxima, E. tenella, E. mitis, and E. praecox). When 0.2% berberine, a concentration that does not affect weight gain, was added to the diet, the 4 groups infected with E. acervulina, E. tenella, E. mitis, or E. praecox showed significant reductions in fecal oocyst shedding (P<0.05) compared to their respective infected and untreated controls. In chickens treated 0.5% berberine instead of 0.2% and infected with E. maxima, fecal oocyst production was significantly reduced, but body weight deceased, indicating that berberine treatment was not useful for E. maxima infection. Taken together, these results illustrate the applicability of berberine for prophylactic use to control most Eimeria infections except E. maxima. Further studies on the mechanisms underlying the differences in anticoccidial susceptibility to berberine, particularly E. maxima, are remained.
Collapse
Affiliation(s)
- Binh Thanh Nguyen
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Rochelle Alipio Flores
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Paula Leona Taymen Cammayo
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Suk Kim
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Woo Hyun Kim
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Wongi Min
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
76
|
Ribeiro E Silva A, Sausset A, Bussière FI, Laurent F, Lacroix-Lamandé S, Silvestre A. Genome-Wide Expression Patterns of Rhoptry Kinases during the Eimeria tenella Life-Cycle. Microorganisms 2021; 9:microorganisms9081621. [PMID: 34442701 PMCID: PMC8399136 DOI: 10.3390/microorganisms9081621] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/07/2023] Open
Abstract
Kinome from apicomplexan parasites is composed of eukaryotic protein kinases and Apicomplexa specific kinases, such as rhoptry kinases (ROPK). Ropk is a gene family that is known to play important roles in host–pathogen interaction in Toxoplasma gondii but is still poorly described in Eimeria tenella, the parasite responsible for avian coccidiosis worldwide. In the E. tenella genome, 28 ropk genes are predicted and could be classified as active (n = 7), inactive (incomplete catalytic triad, n = 12), and non-canonical kinases (active kinase with a modified catalytic triad, n = 9). We characterized the ropk gene expression patterns by real-time quantitative RT-PCR, normalized by parasite housekeeping genes, during the E. tenella life-cycle. Analyzed stages were: non-sporulated oocysts, sporulated oocysts, extracellular and intracellular sporozoites, immature and mature schizonts I, first- and second-generation merozoites, and gametes. Transcription of all those predicted ropk was confirmed. The mean intensity of transcription was higher in extracellular stages and 7–9 ropk were specifically transcribed in merozoites in comparison with sporozoites. Transcriptional profiles of intracellular stages were closely related to each other, suggesting a probable common role of ROPKs in hijacking signaling pathways and immune responses in infected cells. These results provide a solid basis for future functional analysis of ROPK from E. tenella.
Collapse
|
77
|
Chadwick E, Beckstead R. Two Blackhead Disease Outbreaks in Commercial Turkey Flocks Were Potentially Exacerbated by Poor Poult Quality and Coccidiosis. Avian Dis 2021; 64:522-524. [PMID: 33570098 DOI: 10.1637/aviandiseases-d20-00052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/17/2020] [Indexed: 11/05/2022]
Abstract
Field visits at two different farms suggest a correlation between commercial turkey (Meleagridis gallopavo) flocks having increased mortality from blackhead disease (histomoniasis) if they suffer from poor poult quality at placement and coccidiosis (Eimeria spp.) before age 6 wk. In both cases, the flocks were all-in/all-out with curtain-sided houses and received a coccidiosis vaccine on day of hatch. At Farm I 2018, poults from different hatcheries were placed in two houses on the same farm (Houses 1 and 2). House 2 had poults considered poor quality and suffered from mortality associated with coccidiosis at 2 and 4 wk of age. At 8 wk, blackhead disease was diagnosed in both houses by postmortem examination. House 2 had mortality of >2000 poults, and the subpopulation of necropsied poults had gross lesions characteristic of histomoniasis. Gross lesions associated with blackhead disease were only found in eight poults in House 1, which was populated with good-quality poults and did not have a second spike in mortality due to coccidiosis. The Farm II 2020 poults were delivered from the same hatchery onto a three-house farm (Houses A, B, and C). House C had poults that were considered poor quality and had mortality associated with coccidiosis at 3 wk of age. At 8-9 wk, House C had mortality approaching 1000 birds, with all poults examined postmortem having clinical signs of blackhead disease. Houses A and B were populated with good-quality poults and had no diagnosed mortality from coccidiosis or blackhead disease. The similarity of these two cases suggest that poult quality at placement coupled with coccidiosis before 6 wk of age can influence the severity of blackhead disease in commercial turkey flocks.
Collapse
Affiliation(s)
- Elle Chadwick
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695
| | - Robert Beckstead
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
78
|
Das Q, Shay J, Gauthier M, Yin X, Hasted TL, Ross K, Julien C, Yacini H, Kennes YM, Warriner K, Marcone MF, Diarra MS. Effects of Vaccination Against Coccidiosis on Gut Microbiota and Immunity in Broiler Fed Bacitracin and Berry Pomace. Front Immunol 2021; 12:621803. [PMID: 34149685 PMCID: PMC8213364 DOI: 10.3389/fimmu.2021.621803] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Feeding practices have been found to influence gut microbiota which play a major role in immunity of poultry. In the present study, changes in cecal microbiota and humoral responses resulting in the 55 ppm bacitracin (BACI), 1% each of cranberry (CP1) and wild blueberry (BP1) pomace alone or in combination (CP+BP) feeding in broiler Cobb 500 vaccinated or not against coccidiosis were investigated. In the non-vaccinated group, no significant treatment effects were observed on performance parameters. Vaccination significantly affected bird's performance parameters particularly during the growing phase from 10 to 20 days of age. In general, the prevalence of coccidiosis and necrotic enteritis (NE) was reduced by vaccination (P < 0.05). BACI-treated birds showed low intestinal lesion scores, and both CP1 and BP1 feed supplementations reduced Eimeria acervulina and Clostridium perfringens incidences similar to BACI. Vaccination induced change in serum enzymes, minerals, and lipid levels in 21-day old birds while, levels of triglyceride (TRIG) and non-esterified fatty acids (NEFA) were higher (P < 0.05) in CP1 treated non-vaccinated group than in the control. The levels of NEFA were lower in BACI- and CP1-fed birds than in the control in non-vaccinated day 28 old birds. The highest levels of all estimated three immunoglobulins (IgY, IgM, and IgA) were found in the vaccinated birds. Metagenomics analysis of the cecal bacterial community in 21-day old birds showed the presence of Firmicutes (90%), Proteobacteria (5%), Actinobacteria (2%), and Bacteroidetes (2%). In the vaccinated group, an effect of BACI was noted on Proteobacteria (P = 0.03). Vaccination and/or dietary treatments influenced the population of Lactobacillaceae, Enterobacteriaceae, Clostridiaceae, and Streptococcaceae which were among the most abundant families. Overall, this study revealed that besides their beneficial effects on performance, alike bacitracin, berry pomaces in poultry feed have profound impacts on the chicken cecal microbiota and blood metabolites that could be influenced by vaccination against coccidiosis.
Collapse
Affiliation(s)
- Quail Das
- Department of Food Science, University of Guelph, Guelph, ON, Canada.,Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Julie Shay
- Ottawa Laboratory (Carling) - Research and Development, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Martin Gauthier
- Biological Informatics Centre of Excellence, AAFC, Saint-Hyacinthe, QC, Canada
| | - Xianhua Yin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Teri-Lyn Hasted
- Department of Food Science, University of Guelph, Guelph, ON, Canada.,Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Kelly Ross
- Summerland Research and Development Centre, AAFC, Summerland, BC, Canada
| | - Carl Julien
- Centre de recherche en sciences animales de Deschambault, Deschambault, QC, Canada
| | - Hassina Yacini
- Centre de recherche en sciences animales de Deschambault, Deschambault, QC, Canada
| | - Yan Martel Kennes
- Centre de recherche en sciences animales de Deschambault, Deschambault, QC, Canada
| | - Keith Warriner
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Massimo F Marcone
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Moussa S Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| |
Collapse
|
79
|
Juárez-Estrada MA, Gayosso-Vázquez A, Tellez-Isaias G, Alonso-Morales RA. Protective Immunity Induced by an Eimeria tenella Whole Sporozoite Vaccine Elicits Specific B-Cell Antigens. ANIMALS : AN OPEN ACCESS JOURNAL FROM MDPI 2021; 11:ani11051344. [PMID: 34065041 PMCID: PMC8151427 DOI: 10.3390/ani11051344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary Coccidiosis caused by Eimeria tenella is a dreadful disease with a significant economic impact to the poultry industry. The disease has been controlled by routine medication of feed with synthetic chemicals or ionophore drugs. However, the rising appearance of drug resistance and public demands for reduced drug use in poultry production have driven a dramatic change, replacing anticoccidial drugs with alternative methods, such as vaccination with either virulent or attenuated Eimeria oocysts. Based on preliminary studies, the immune protection evaluating whole-sporozoites of E. tenella vaccine was verified. After this vaccine provided successful protection, the humoral response of a heterologous species like the rabbit was compared with the natural host immune response. Several B-cells antigens from the E. tenella sporozoite suitable for a genetically engineered vaccine were identified. Vaccination with newly identified recombinant antigens offers a feasible alternative for the control of avian coccidiosis into the broiler barns favoring the gradual withdrawal of the anticoccidial drugs. Abstract This study investigated protection against Eimeria tenella following the vaccination of chicks with 5.3 × 106E. tenella whole-sporozoites emulsified in the nanoparticle adjuvant IMS 1313 N VG Montanide™ (EtSz-IMS1313). One-day-old specific pathogen-free (SPF) chicks were subcutaneously injected in the neck with EtSz-IMS1313 on the 1st and 10th days of age. Acquired immunity was assayed through a challenge with 3 × 104 homologous sporulated oocysts at 21 days of age. The anticoccidial index (ACI) calculated for every group showed the effectiveness of EtSz-IMS1313 as a vaccine with an ACI of 186; the mock-injected control showed an ACI of 18 and the unimmunized, challenged control showed an ACI of −28. In a comparison assay, antibodies from rabbits and SPF birds immunized with EtSz-IMS1313 recognized almost the same polypeptides in the blotting of E. tenella sporozoites and merozoites. However, rabbit antisera showed the clearest recognition pattern. Polypeptides of 120, 105, 94, 70, 38, and 19 kDa from both E. tenella life cycle stages were the most strongly recognized by both animal species. The E. tenella zoite-specific IgG antibodies from the rabbits demonstrated the feasibility for successful B cell antigen identification.
Collapse
Affiliation(s)
- Marco A. Juárez-Estrada
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, Cd. De México 04510, Mexico
- Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, Cd. De México 04510, Mexico; (A.G.-V.); (R.A.A.-M.)
- Correspondence:
| | - Amanda Gayosso-Vázquez
- Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, Cd. De México 04510, Mexico; (A.G.-V.); (R.A.A.-M.)
| | | | - Rogelio A. Alonso-Morales
- Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, Cd. De México 04510, Mexico; (A.G.-V.); (R.A.A.-M.)
| |
Collapse
|
80
|
Criado-Mesas L, Abdelli N, Noce A, Farré M, Pérez JF, Solà-Oriol D, Martin-Venegas R, Forouzandeh A, González-Solé F, Folch JM. Transversal gene expression panel to evaluate intestinal health in broiler chickens in different challenging conditions. Sci Rep 2021; 11:6315. [PMID: 33737699 PMCID: PMC7973573 DOI: 10.1038/s41598-021-85872-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/08/2021] [Indexed: 01/31/2023] Open
Abstract
There is a high interest on gut health in poultry with special focus on consequences of the intestinal diseases, such as coccidiosis and C. perfringens-induced necrotic enteritis (NE). We developed a custom gene expression panel, which could provide a snapshot of gene expression variation under challenging conditions. Ileum gene expression studies were performed through high throughput reverse transcription quantitative real-time polymerase chain reaction. A deep review on the bibliography was done and genes related to intestinal health were selected for barrier function, immune response, oxidation, digestive hormones, nutrient transport, and metabolism. The panel was firstly tested by using a nutritional/Clostridium perfringens model of intestinal barrier failure (induced using commercial reused litter and wheat-based diets without exogenous supplementation of enzymes) and the consistency of results was evaluated by another experiment under a coccidiosis challenge (orally gavaged with a commercial coccidiosis vaccine, 90× vaccine dose). Growth traits and intestinal morphological analysis were performed to check the gut barrier failure occurrence. Results of ileum gene expression showed a higher expression in genes involved in barrier function and nutrient transport in chickens raised in healthy conditions, while genes involved in immune response presented higher expression in C.perfringens-challenged birds. On the other hand, the Eimeria challenge also altered the expression of genes related to barrier function and metabolism, and increased the expression of genes related to immune response and oxidative stress. The panel developed in the current study gives us an overview of genes and pathways involved in broiler response to pathogen challenge. It also allows us to deep into the study of differences in gene expression pattern and magnitude of responses under either a coccidial vaccine or a NE.
Collapse
Affiliation(s)
- L Criado-Mesas
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain.
| | - N Abdelli
- Animal Nutrition and Welfare Service, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - A Noce
- Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - M Farré
- Department of Mathematics, Area of Statistics and Operations Research, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - J F Pérez
- Animal Nutrition and Welfare Service, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - D Solà-Oriol
- Animal Nutrition and Welfare Service, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - R Martin-Venegas
- Department of Biochemistry and Physiology, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028, Barcelona, Spain
- Research Institute of Nutrition and Food Safety (INSA-UB), Universitat de Barcelona, 08291, Santa Coloma de Gramanet, Spain
| | - A Forouzandeh
- Animal Nutrition and Welfare Service, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - F González-Solé
- Animal Nutrition and Welfare Service, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - J M Folch
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
- Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
81
|
Soutter F, Werling D, Kim S, Pastor-Fernández I, Marugán-Hernández V, Tomley FM, Blake DP. Impact of Eimeria tenella Oocyst Dose on Parasite Replication, Lesion Score and Cytokine Transcription in the Caeca in Three Breeds of Commercial Layer Chickens. Front Vet Sci 2021; 8:640041. [PMID: 33693044 PMCID: PMC7937735 DOI: 10.3389/fvets.2021.640041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
Eimeria species parasites infect the gastrointestinal tract of chickens, causing disease and impacting on production. The poultry industry relies on anticoccidial drugs and live vaccines to control Eimeria and there is a need for novel, scalable alternatives. Understanding the outcomes of experimental infection in commercial chickens is valuable for assessment of novel interventions. We examined the impact of different infectious doses of Eimeria tenella (one low dose, three high doses) in three commercial layer chicken lines, evaluating lesion score, parasite replication and cytokine response in the caeca. Groups of eight to ten chickens were housed together and infected with 250, 4,000, 8,000 or 12,000 sporulated oocysts at 21 days of age. Five days post-infection caeca were assessed for lesions and to quantify parasite replication by qPCR and cytokine transcription by RT-qPCR. Comparison of the three high doses revealed no significant variation between them in observed lesions or parasite replication with all being significantly higher than the low dose infection. Transcription of IFN-γ and IL-10 increased in all infected chickens relative to unchallenged controls, with no significant differences associated with dose magnitude (p > 0.05). No significant differences were detected in lesion score, parasite replication or caecal cytokine expression between the three lines of chickens. We therefore propose 4,000 E. tenella oocysts is a sufficient dose to reliably induce lesions in commercial layer chickens, and that estimates of parasite replication can be derived by qPCR from these same birds. However, more accurate quantification of Eimeria replication requires a separate low dose challenge group. Optimisation of challenge dose in an appropriate chicken line is essential to maximize the value of in vivo efficacy studies. For coccidiosis, this approach can reduce the numbers of chickens required for statistically significant studies and reduce experimental severity.
Collapse
Affiliation(s)
- Francesca Soutter
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| | - Dirk Werling
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| | - Sungwon Kim
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| | - Iván Pastor-Fernández
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom.,SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | | | - Fiona M Tomley
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| | - Damer P Blake
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| |
Collapse
|
82
|
Dual RNA-Seq transcriptome analysis of chicken macrophage-like cells (HD11) infected in vitro with Eimeria tenella. Parasitology 2021; 148:712-725. [PMID: 33536090 PMCID: PMC8056837 DOI: 10.1017/s0031182021000111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The study aimed to monitor parasite and host gene expression during the early stages of Eimeria tenella infection of chicken cells using dual RNA-Seq analysis. For this, we used chicken macrophage-like cell line HD11 cultures infected in vitro with purified E. tenella sporozoites. Cultures were harvested between 2 and 72 h post-infection and mRNA was extracted and sequenced. Dual RNA-Seq analysis showed clear patterns of altered expression for both parasite and host genes during infection. For example, genes in the chicken immune system showed upregulation early (2–4 h), a strong downregulation of genes across the immune system at 24 h and a repetition of early patterns at 72 h, indicating that invasion by a second generation of parasites was occurring. The observed downregulation may be due to immune self-regulation or to immune evasive mechanisms exerted by E. tenella. Results also suggested pathogen recognition receptors involved in E. tenella innate recognition, MRC2, TLR15 and NLRC5 and showed distinct chemokine and cytokine induction patterns. Moreover, the expression of several functional categories of Eimeria genes, such as rhoptry kinase genes and microneme genes, were also examined, showing distinctive differences which were expressed in sporozoites and merozoites.
Collapse
|
83
|
Berto BP, Lopes CWG. Coccidia of Wild Birds as Ecological Biomarkers: Some Approaches on Parasite-Host-Environment Interaction. J Parasitol 2021; 106:707-713. [PMID: 33120407 DOI: 10.1645/19-148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Bruno Pereira Berto
- Departamento de Biologia Animal, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Carlos Wilson Gomes Lopes
- Departamento de Parasitologia Animal, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| |
Collapse
|
84
|
Wang S, Suo X. Still naïve or primed: Anticoccidial vaccines call for memory. Exp Parasitol 2020; 216:107945. [PMID: 32615133 DOI: 10.1016/j.exppara.2020.107945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 01/15/2023]
Abstract
Despite decades of investigation to clarify protective mechanisms of anticoccidial responses, one crucial field is neglected, that is, protective memory responses in primed birds. Protective memory immunity is critical for host resistance to reinfection and is the basis of modern vaccinology, especially in developing successful subunit vaccines. There are important differences between the immune responses induced by infections and antigens delivered either as killed, recombinant proteins or as live, replicating vector vaccines or as DNA vaccines. Animals immunized with these vaccines may fail to develop protective memory immunity, and is still naïve to Eimeria infection. This may explain why limited success is achieved in developing next-generation anticoccidial vaccines. In this review, we try to decipher the protective memory responses against Eimeria infection, assess immune responses elicited by various anticoccidial vaccine candidates, and propose possible approaches to develop rational vaccines that can induce a protective memory response to chicken coccidiosis.
Collapse
Affiliation(s)
- Si Wang
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| | - Xun Suo
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|