51
|
Samec T, Boulos J, Gilmore S, Hazelton A, Alexander-Bryant A. Peptide-based delivery of therapeutics in cancer treatment. Mater Today Bio 2022; 14:100248. [PMID: 35434595 PMCID: PMC9010702 DOI: 10.1016/j.mtbio.2022.100248] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/14/2022] [Accepted: 03/27/2022] [Indexed: 11/09/2022] Open
Abstract
Current delivery strategies for cancer therapeutics commonly cause significant systemic side effects due to required high doses of therapeutic, inefficient cellular uptake of drug, and poor cell selectivity. Peptide-based delivery systems have shown the ability to alleviate these issues and can significantly enhance therapeutic loading, delivery, and cancer targetability. Peptide systems can be tailor-made for specific cancer applications. This review describes three peptide classes, targeting, cell penetrating, and fusogenic peptides, as stand-alone nanoparticle systems, conjugations to nanoparticle systems, or as the therapeutic modality. Peptide nanoparticle design, characteristics, and applications are discussed as well as peptide applications in the clinical space.
Collapse
Affiliation(s)
- Timothy Samec
- Nanobiotechnology Laboratory, Clemson University, Department of Bioengineering, Clemson, SC, USA
| | - Jessica Boulos
- Nanobiotechnology Laboratory, Clemson University, Department of Bioengineering, Clemson, SC, USA
| | - Serena Gilmore
- Nanobiotechnology Laboratory, Clemson University, Department of Bioengineering, Clemson, SC, USA
| | - Anthony Hazelton
- Nanobiotechnology Laboratory, Clemson University, Department of Bioengineering, Clemson, SC, USA
| | - Angela Alexander-Bryant
- Nanobiotechnology Laboratory, Clemson University, Department of Bioengineering, Clemson, SC, USA
| |
Collapse
|
52
|
Hadianamrei R, Zhao X. Current state of the art in peptide-based gene delivery. J Control Release 2022; 343:600-619. [PMID: 35157938 DOI: 10.1016/j.jconrel.2022.02.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022]
Abstract
Gene therapy involves introduction of exogenous genetic materials into the cells in order to correct a specific pathological condition. However, efficient delivery of the genetic materials to the target cells is hampered by a number of extracellular and intracellular barriers which necessitates the use of gene vectors. Despite the high transfection efficiencies of the viral vectors, their immunogenicity and complex manufacturing procedures has led to the quest for development of non-viral vectors with lower toxicity and easier fabrication from a variety of materials such as polymers and lipids. More recently, peptides have been introduced as new promising biomaterials for gene delivery owing to their desirable physicochemical properties and their biocompatibility. Various naturally derived, synthetic or hybrid peptides with varying sizes and structural features have been used for gene delivery. In this review, a summary of recent advances in the development of peptide-based gene delivery systems for delivery of different types of genetic materials to different types of cells/tissues has been provided. The focus of this review is on gene delivery systems consisting merely of peptides without incorporation of polymers or lipids. The transfection efficiencies of different groups of peptides and their abilities for targeted gene delivery have been viewed in the context of their chemical structures in order to provide an insight into the structural features required for efficient gene delivery by different classes of peptides and to serve as a guide for rational design of new types of peptide vectors for highly efficient and tissue-specific gene delivery.
Collapse
Affiliation(s)
- Roja Hadianamrei
- Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK; School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
53
|
Masaki Y, Maruyama A, Yoshida K, Tomori T, Kishimura T, Seio K. Oligodeoxynucleotides Modified with 2'- O-(Cysteinylaminobutyl)carbamoylethylribothymidine Residues for Native Chemical Ligation with Peptide at Internal Positions. Bioconjug Chem 2022; 33:272-278. [PMID: 35129971 DOI: 10.1021/acs.bioconjchem.1c00575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We used native chemical ligation (NCL) to synthesize a 2'-O-{N-[N-(S-tert-butylthiocysteinyl)aminobutyl]carbamoylethyl} (CysBCE) ribothymidine-derived oligonucleotide to expand the variety of peptide conjugation sites, allowing the incorporation of peptides at the 2'-hydroxy group when the oligonucleotide forms a duplex with the complementary strand. The NCL reaction with a peptide thioester and the modified oligonucleotide proceeded smoothly even when the CysBCE modification was in the middle of the oligonucleotide sequence. In addition, we incorporated two CysBCEs into an oligonucleotide to conjugate two peptides to one oligonucleotide. The results indicated that the tandem NCL reactions proceeded efficiently when the oligonucleotide hybridized to the complementary strand to avoid intramolecular disulfide formation between the two CysBCE groups. This method could be useful for peptide conjugation on the 2'-position.
Collapse
Affiliation(s)
- Yoshiaki Masaki
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-J2-16 Nagatsuta, Midori, Yokohama, Kanagawa 226-8501, Japan.,Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Atsuya Maruyama
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-J2-16 Nagatsuta, Midori, Yokohama, Kanagawa 226-8501, Japan
| | - Keita Yoshida
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-J2-16 Nagatsuta, Midori, Yokohama, Kanagawa 226-8501, Japan
| | - Takahito Tomori
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-J2-16 Nagatsuta, Midori, Yokohama, Kanagawa 226-8501, Japan
| | - Tomohiro Kishimura
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-J2-16 Nagatsuta, Midori, Yokohama, Kanagawa 226-8501, Japan
| | - Kohji Seio
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-J2-16 Nagatsuta, Midori, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
54
|
Zoulikha M, Xiao Q, Boafo GF, Sallam MA, Chen Z, He W. Pulmonary delivery of siRNA against acute lung injury/acute respiratory distress syndrome. Acta Pharm Sin B 2022; 12:600-620. [PMID: 34401226 PMCID: PMC8359643 DOI: 10.1016/j.apsb.2021.08.009] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/14/2021] [Accepted: 07/02/2021] [Indexed: 02/08/2023] Open
Abstract
The use of small interfering RNAs (siRNAs) has been under investigation for the treatment of several unmet medical needs, including acute lung injury/acute respiratory distress syndrome (ALI/ARDS) wherein siRNA may be implemented to modify the expression of pro-inflammatory cytokines and chemokines at the mRNA level. The properties such as clear anatomy, accessibility, and relatively low enzyme activity make the lung a good target for local siRNA therapy. However, the translation of siRNA is restricted by the inefficient delivery of siRNA therapeutics to the target cells due to the properties of naked siRNA. Thus, this review will focus on the various delivery systems that can be used and the different barriers that need to be surmounted for the development of stable inhalable siRNA formulations for human use before siRNA therapeutics for ALI/ARDS become available in the clinic.
Collapse
Key Words
- AAV, adeno-associated virus
- ALI/ARDS
- ALI/ARDS, acute lung injury/acute respiratory distress syndrome
- AM, alveolar macrophage
- ATI, alveolar cell type I
- ATII, alveolar cell type II
- AV, adenovirus
- Ago-2, argonaute 2
- CFDA, China Food and Drug Administration
- COPD, chronic obstructive pulmonary disease
- CPP, cell-penetrating peptide
- CS, cigarette smoke
- CXCR4, C–X–C motif chemokine receptor type 4
- Cellular uptake
- DAMPs, danger-associated molecular patterns
- DC-Chol, 3β-(N-(N′,N′-dimethylethylenediamine)-carbamoyl) cholesterol
- DDAB, dimethyldioctadecylammonium bromide
- DODAP, 1,2-dioleyl-3-dimethylammonium-propane
- DODMA, 1,2-dioleyloxy-N,N-dimethyl-3-aminopropane
- DOGS, dioctadecyl amido glycin spermine
- DOPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine
- DOPE, 1,2-dioleoyl-l-α-glycero-3-phosphatidylethanolamine
- DOSPA, 2,3-dioleyloxy-N-[2-(sperminecarboxamido)ethyl]-N,N-dimethyl-1-propanaminium
- DOTAP, 1,2-dioleoyl-3-trimethylammonium-propane
- DOTMA, N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium
- DPI, dry powder inhaler
- DPPC, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
- Drug delivery
- EC, endothelial cell
- EPC, egg phosphatidylcholine
- EXOs, exosomes
- Endosomal escape
- EpiC, epithelial cell
- FDA, US Food and Drug Administration
- HALI, hyperoxic acute lung injury
- HMGB1, high-mobility group box 1
- HMVEC, human primary microvascular endothelial cell
- HNPs, hybrid nanoparticles
- Hem-CLP, hemorrhagic shock followed by cecal ligation and puncture septic challenge
- ICAM-1, intercellular adhesion molecule-1
- IFN, interferons
- Inflammatory diseases
- LPS, lipopolysaccharides
- MEND, multifunctional envelope-type nano device
- MIF, macrophage migration inhibitory factor
- Myd88, myeloid differentiation primary response 88
- N/P ratio, nitrogen /phosphate ratio
- NETs, neutrophil extracellular traps
- NF-κB, nuclear factor kappa B
- NPs, nanoparticles
- Nanoparticles
- PAI-1, plasminogen activator inhibitor-1
- PAMAM, polyamidoamine
- PAMPs, pathogen-associated molecular patterns
- PD-L1, programmed death ligand-1
- PDGFRα, platelet-derived growth factor receptor-α
- PEEP, positive end-expiratory pressure
- PEG, polyethylene glycol
- PEI, polyethyleneimine
- PF, pulmonary fibrosis
- PFC, perfluorocarbon
- PLGA, poly(d,l-lactic-co-glycolic acid)
- PMs, polymeric micelles
- PRR, pattern recognition receptor
- PS, pulmonary surfactant
- Pulmonary administration
- RIP2, receptor-interacting protein 2
- RISC, RNA-induced silencing complex
- RNAi, RNA interference
- ROS, reactive oxygen species
- SLN, solid lipid nanoparticle
- SNALP, stable nucleic acid lipid particle
- TGF-β, transforming growth factor-β
- TLR, Toll-like receptor
- TNF-α, tumor necrosis factor-α
- VALI, ventilator-associated lung injury
- VILI, ventilator-induced lung injury
- dsDNA, double-stranded DNA
- dsRNA, double-stranded RNA
- eggPG, l-α-phosphatidylglycerol
- mRNA, messenger RNA
- miRNA, microRNA
- pDNA, plasmid DNA
- shRNA, short RNA
- siRNA
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Makhloufi Zoulikha
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qingqing Xiao
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - George Frimpong Boafo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Marwa A. Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
55
|
Quemener AM, Centomo ML, Sax SL, Panella R. Small Drugs, Huge Impact: The Extraordinary Impact of Antisense Oligonucleotides in Research and Drug Development. Molecules 2022; 27:536. [PMID: 35056851 PMCID: PMC8781596 DOI: 10.3390/molecules27020536] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 01/27/2023] Open
Abstract
Antisense oligonucleotides (ASOs) are an increasingly represented class of drugs. These small sequences of nucleotides are designed to precisely target other oligonucleotides, usually RNA species, and are modified to protect them from degradation by nucleases. Their specificity is due to their sequence, so it is possible to target any RNA sequence that is already known. These molecules are very versatile and adaptable given that their sequence and chemistry can be custom manufactured. Based on the chemistry being used, their activity may significantly change and their effects on cell function and phenotypes can differ dramatically. While some will cause the target RNA to decay, others will only bind to the target and act as a steric blocker. Their incredible versatility is the key to manipulating several aspects of nucleic acid function as well as their process, and alter the transcriptome profile of a specific cell type or tissue. For example, they can be used to modify splicing or mask specific sites on a target. The entire design rather than just the sequence is essential to ensuring the specificity of the ASO to its target. Thus, it is vitally important to ensure that the complete process of drug design and testing is taken into account. ASOs' adaptability is a considerable advantage, and over the past decades has allowed multiple new drugs to be approved. This, in turn, has had a significant and positive impact on patient lives. Given current challenges presented by the COVID-19 pandemic, it is necessary to find new therapeutic strategies that would complement the vaccination efforts being used across the globe. ASOs may be a very powerful tool that can be used to target the virus RNA and provide a therapeutic paradigm. The proof of the efficacy of ASOs as an anti-viral agent is long-standing, yet no molecule currently has FDA approval. The emergence and widespread use of RNA vaccines during this health crisis might provide an ideal opportunity to develop the first anti-viral ASOs on the market. In this review, we describe the story of ASOs, the different characteristics of their chemistry, and how their characteristics translate into research and as a clinical tool.
Collapse
Affiliation(s)
- Anais M. Quemener
- University Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes)-UMR 6290, F-35000 Rennes, France;
| | - Maria Laura Centomo
- Department of Oncology, University of Turin, 10124 Turin, Italy;
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA;
| | - Scott L. Sax
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA;
| | - Riccardo Panella
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA;
| |
Collapse
|
56
|
Liczner C, Hanna CC, Payne RJ, Wilds CJ. Generation of oligonucleotide conjugates via one-pot diselenide-selenoester ligation-deselenization/alkylation. Chem Sci 2022; 13:410-420. [PMID: 35126973 PMCID: PMC8729807 DOI: 10.1039/d1sc04937b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022] Open
Abstract
A breadth of strategies are needed to efficiently modify oligonucleotides with peptides or lipids to capitalize on their therapeutic and diagnostic potential, including the modulation of in vivo chemical stability and for applications in cell-targeting and cell-permeability. The chemical linkages typically used in peptide oligonucleotide conjugates (POCs) have limitations in terms of stability and/or ease of synthesis. Herein, we report an efficient method for POC synthesis using a diselenide-selenoester ligation (DSL)-deselenization strategy that rapidly generates a stable amide linkage between the two biomolecules. This conjugation strategy is underpinned by a novel selenide phosphoramidite building block that can be incorporated into an oligonucleotide by solid-phase synthesis to generate diselenide dimer molecules. These can be rapidly ligated with peptide selenoesters and, following in situ deselenization, lead to the efficient generation of POCs. The diselenide within the oligonucleotide also serves as a flexible functionalisation handle that can be leveraged for fluorescent labelling, as well as for alkylation to generate micelles.
Collapse
Affiliation(s)
- Christopher Liczner
- Department of Chemistry and Biochemistry, Concordia University 7141 Rue Sherbrooke Ouest Montréal Québec H4B 1R6 Canada
| | - Cameron C Hanna
- School of Chemistry, The University of Sydney Sydney NSW 2006 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney Sydney NSW 2006 Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney Sydney NSW 2006 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney Sydney NSW 2006 Australia
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University 7141 Rue Sherbrooke Ouest Montréal Québec H4B 1R6 Canada
| |
Collapse
|
57
|
Snider DB, Arthur GK, Falduto GH, Olivera A, Ehrhardt-Humbert LC, Smith E, Smith C, Metcalfe DD, Cruse G. Targeting KIT by frameshifting mRNA transcripts as a therapeutic strategy for aggressive mast cell neoplasms. Mol Ther 2022; 30:295-310. [PMID: 34371183 PMCID: PMC8753370 DOI: 10.1016/j.ymthe.2021.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/21/2021] [Accepted: 07/31/2021] [Indexed: 01/07/2023] Open
Abstract
Activating mutations in c-KIT are associated with the mast cell (MC) clonal disorders cutaneous mastocytosis and systemic mastocytosis and its variants, including aggressive systemic mastocytosis, MC leukemia, and MC sarcoma. Currently, therapies inhibiting KIT signaling are a leading strategy to treat MC proliferative disorders. However, these approaches may have off-target effects, and in some patients, complete remission or improved survival time cannot be achieved. These limitations led us to develop an approach using chemically stable exon skipping oligonucleotides (ESOs) that induce exon skipping of precursor (pre-)mRNA to alter gene splicing and introduce a frameshift into mature KIT mRNA transcripts. The result of this alternate approach results in marked downregulation of KIT expression, diminished KIT signaling, inhibition of MC proliferation, and rapid induction of apoptosis in neoplastic HMC-1.2 MCs. We demonstrate that in vivo administration of KIT targeting ESOs significantly inhibits tumor growth and systemic organ infiltration using both an allograft mastocytosis model and a humanized xenograft MC tumor model. We propose that our innovative approach, which employs well-tolerated, chemically stable oligonucleotides to target KIT expression through unconventional pathways, has potential as a KIT-targeted therapeutic alone, or in combination with agents that target KIT signaling, in the treatment of KIT-associated malignancies.
Collapse
Affiliation(s)
- Douglas B. Snider
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Biomedical Partnership Center, 1060 William Moore Drive, Raleigh, NC 27607, USA,Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Greer K. Arthur
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Biomedical Partnership Center, 1060 William Moore Drive, Raleigh, NC 27607, USA,Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Guido H. Falduto
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ana Olivera
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lauren C. Ehrhardt-Humbert
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Biomedical Partnership Center, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - Emmaline Smith
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Biomedical Partnership Center, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - Cierra Smith
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Biomedical Partnership Center, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - Dean D. Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Glenn Cruse
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Biomedical Partnership Center, 1060 William Moore Drive, Raleigh, NC 27607, USA,Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA,Corresponding author: Glenn Cruse, PhD, Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Biomedical Partnership Center, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| |
Collapse
|
58
|
Zorko M, Jones S, Langel Ü. Cell-penetrating peptides in protein mimicry and cancer therapeutics. Adv Drug Deliv Rev 2022; 180:114044. [PMID: 34774552 DOI: 10.1016/j.addr.2021.114044] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022]
Abstract
Extensive research has been undertaken in the pursuit of anticancer therapeutics. Many anticancer drugs require specificity of delivery to cancer cells, whilst sparing healthy tissue. Cell-penetrating peptides (CPPs), now well established as facilitators of intracellular delivery, have in recent years advanced to incorporate target specificity and thus possess great potential for the targeted delivery of anticancer cargoes. Though none have yet been approved for clinical use, this novel technology has already entered clinical trials. In this review we present CPPs, discuss their classification, mechanisms of cargo internalization and highlight strategies for conjugation to anticancer moieties including their incorporation into therapeutic proteins. As the mainstay of this review, strategies to build specificity into tumor targeting CPP constructs through exploitation of the tumor microenvironment and the use of tumor homing peptides are discussed, whilst acknowledging the extensive contribution made by CPP constructs to target specific protein-protein interactions integral to intracellular signaling pathways associated with tumor cell survival and progression. Finally, antibody/antigen CPP conjugates and their potential roles in cancer immunotherapy and diagnostics are considered. In summary, this review aims to harness the potential of CPP-aided drug delivery for future cancer therapies and diagnostics whilst highlighting some of the most recent achievements in selective delivery of anticancer drugs, including cytostatic drugs, to a range of tumor cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Matjaž Zorko
- University of Ljubljana, Medical Faculty, Institute of Biochemistry and Molecular Genetics, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Sarah Jones
- University of Wolverhampton, School of Pharmacy, Faculty of Science & Engineering, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| | - Ülo Langel
- University of Stockholm, Department of Biochemistry and Biophysics, Svante Arrhenius väg 16, 106 91 Stockholm, Sweden; Institute of Technology, University of Tartu, Nooruse 1, Tartu, Estonia 50411, Estonia.
| |
Collapse
|
59
|
Abstract
In this introductory chapter, we first define cell-penetrating peptides (CPPs), give short overview of CPP history and discuss several aspects of CPP classification. Next section is devoted to the mechanism of CPP penetration into the cells, where direct and endocytic internalization of CPP is explained. Kinetics of internalization is discussed more extensively, since this topic is not discussed in other chapters of this book. At the end of this section some features of the thermodynamics of CPP interaction with the membrane is also presented. Finally, we present different cargoes that can be transferred into the cells by CPPs and briefly discuss the effect of cargo on the rate and efficiency of penetration into the cells.
Collapse
Affiliation(s)
- Matjaž Zorko
- Medical Faculty, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, Ljubljana, Slovenia.
| | - Ülo Langel
- Department of Biochemistry and Biophysics, University of Stockholm, Stockholm, Sweden.,Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
60
|
Geng J, Xia X, Teng L, Wang L, Chen L, Guo X, Belingon B, Li J, Feng X, Li X, Shang W, Wan Y, Wang H. Emerging landscape of cell-penetrating peptide-mediated nucleic acid delivery and their utility in imaging, gene-editing, and RNA-sequencing. J Control Release 2022; 341:166-183. [PMID: 34822907 DOI: 10.1016/j.jconrel.2021.11.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
The safety issues like immunogenicity and unacceptable cancer risk of viral vectors for DNA/mRNA vaccine delivery necessitate the development of non-viral vectors with no toxicity. Among the non-viral strategies, cell-penetrating peptides (CPPs) have been a topic of interest recently because of their ability to cross plasma membranes and facilitate nucleic acids delivery both in vivo and in vitro. In addition to the application in the field of gene vaccine and gene therapy, CPPs based nucleic acids delivery have been proved by its potential application like gene editing, RNA-sequencing, and imaging. Here, we focus on summarizing the recent applications and progress of CPPs-mediated nucleic acids delivery and discuss the current problems and solutions in this field.
Collapse
Affiliation(s)
- Jingping Geng
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Xuan Xia
- Department of Physiology and Pathophysiology, Medical School, China Three Gorges University, Yichang 443002, China
| | - Lin Teng
- Department of Cardiovascular Medicine, The First Clinical Medical College of China Three Gorges University, Yichang 443002, China
| | - Lidan Wang
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Linlin Chen
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; Affiliated Ren He Hospital of China Three Gorges University, Yichang 443002, China
| | - Xiangli Guo
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Bonn Belingon
- Institute of Cell Engineering, Johns Hopkins University, Baltimore, MD 21210, USA
| | - Jason Li
- Department of Biology, Johns Hopkins University, Baltimore, MD 21210, USA
| | - Xuemei Feng
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Xianghui Li
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Wendou Shang
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Yingying Wan
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Hu Wang
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
61
|
Yokoo H, Oba M, Uchida S. Cell-Penetrating Peptides: Emerging Tools for mRNA Delivery. Pharmaceutics 2021; 14:pharmaceutics14010078. [PMID: 35056974 PMCID: PMC8781296 DOI: 10.3390/pharmaceutics14010078] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/23/2022] Open
Abstract
Messenger RNAs (mRNAs) were previously shown to have great potential for preventive vaccination against infectious diseases and therapeutic applications in the treatment of cancers and genetic diseases. Delivery systems for mRNAs, including lipid- and polymer-based carriers, are being developed for improving mRNA bioavailability. Among these systems, cell-penetrating peptides (CPPs) of 4–40 amino acids have emerged as powerful tools for mRNA delivery, which were originally developed to deliver membrane-impermeable drugs, peptides, proteins, and nucleic acids to cells and tissues. Various functionalities can be integrated into CPPs by tuning the composition and sequence of natural and non-natural amino acids for mRNA delivery. With the employment of CPPs, improved endosomal escape efficiencies, selective targeting of dendritic cells (DCs), modulation of endosomal pathways for efficient antigen presentation by DCs, and effective mRNA delivery to the lungs by dry powder inhalation have been reported; additionally, they have been found to prolong protein expression by intracellular stabilization of mRNA. This review highlights the distinctive features of CPP-based mRNA delivery systems.
Collapse
Affiliation(s)
- Hidetomo Yokoo
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 606-0823, Japan;
| | - Makoto Oba
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 606-0823, Japan;
- Correspondence: (M.O.); (S.U.); Tel.: +81-75-703-4937 (M.O.); +81-75-703-4938 (S.U.)
| | - Satoshi Uchida
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 606-0823, Japan;
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki 210-0821, Japan
- Correspondence: (M.O.); (S.U.); Tel.: +81-75-703-4937 (M.O.); +81-75-703-4938 (S.U.)
| |
Collapse
|
62
|
Hegde S, Tang Z, Zhao J, Wang J. Inhibition of SARS-CoV-2 by Targeting Conserved Viral RNA Structures and Sequences. Front Chem 2021; 9:802766. [PMID: 35004621 PMCID: PMC8733332 DOI: 10.3389/fchem.2021.802766] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 01/18/2023] Open
Abstract
The ongoing COVID-19/Severe Acute Respiratory Syndrome CoV-2 (SARS-CoV-2) pandemic has become a significant threat to public health and has hugely impacted societies globally. Targeting conserved SARS-CoV-2 RNA structures and sequences essential for viral genome translation is a novel approach to inhibit viral infection and progression. This new pharmacological modality compasses two classes of RNA-targeting molecules: 1) synthetic small molecules that recognize secondary or tertiary RNA structures and 2) antisense oligonucleotides (ASOs) that recognize the RNA primary sequence. These molecules can also serve as a "bait" fragment in RNA degrading chimeras to eliminate the viral RNA genome. This new type of chimeric RNA degrader is recently named ribonuclease targeting chimera or RIBOTAC. This review paper summarizes the sequence conservation in SARS-CoV-2 and the current development of RNA-targeting molecules to combat this virus. These RNA-binding molecules will also serve as an emerging class of antiviral drug candidates that might pivot to address future viral outbreaks.
Collapse
Affiliation(s)
| | | | | | - Jingxin Wang
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
63
|
Arghiani N, Shah K. Modulating microRNAs in cancer: Next-generation therapies. Cancer Biol Med 2021; 19:j.issn.2095-3941.2021.0294. [PMID: 34846108 PMCID: PMC8958885 DOI: 10.20892/j.issn.2095-3941.2021.0294] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenously expressed non-coding regulators of the genome with an ability to mediate a variety of biological and pathological processes. There is growing evidence demonstrating frequent dysregulation of microRNAs in cancer cells, which is associated with tumor initiation, development, migration, invasion, resisting cell death, and drug resistance. Studies have shown that modulation of these small RNAs is a novel and promising therapeutic tool in the treatment of a variety of diseases, especially cancer, due to their broad influence on multiple cellular processes. However, suboptimal delivery of the appropriate miRNA to the cancer sites, quick degradation by nucleases in the blood circulation, and off target effects have limited their research and clinical applications. Therefore, there is a pressing need to improve the therapeutic efficacy of miRNA modulators, while at the same time reducing their toxicities. Several delivery vehicles for miRNA modulators have been shown to be effective in vitro and in vivo. In this review, we will discuss the role and importance of miRNAs in cancer and provide perspectives on currently available carriers for miRNA modulation. We will also summarize the challenges and prospects for the clinical translation of miRNA-based therapeutic strategies.
Collapse
Affiliation(s)
- Nahid Arghiani
- Center for Stem Cell and Translational Immunotherapy (CSTI), Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Khalid Shah
- Center for Stem Cell and Translational Immunotherapy (CSTI), Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
64
|
Antisense Oligonucleotide-Based Therapy of Viral Infections. Pharmaceutics 2021; 13:pharmaceutics13122015. [PMID: 34959297 PMCID: PMC8707165 DOI: 10.3390/pharmaceutics13122015] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid-based therapeutics have demonstrated their efficacy in the treatment of various diseases and vaccine development. Antisense oligonucleotide (ASO) technology exploits a single-strand short oligonucleotide to either cause target RNA degradation or sterically block the binding of cellular factors or machineries to the target RNA. Chemical modification or bioconjugation of ASOs can enhance both its pharmacokinetic and pharmacodynamic performance, and it enables customization for a specific clinical purpose. ASO-based therapies have been used for treatment of genetic disorders, cancer and viral infections. In particular, ASOs can be rapidly developed for newly emerging virus and their reemerging variants. This review discusses ASO modifications and delivery options as well as the design of antiviral ASOs. A better understanding of the viral life cycle and virus-host interactions as well as advances in oligonucleotide technology will benefit the development of ASO-based antiviral therapies.
Collapse
|
65
|
López-Vidal EM, Schissel CK, Mohapatra S, Bellovoda K, Wu CL, Wood JA, Malmberg AB, Loas A, Gómez-Bombarelli R, Pentelute BL. Deep Learning Enables Discovery of a Short Nuclear Targeting Peptide for Efficient Delivery of Antisense Oligomers. JACS AU 2021; 1:2009-2020. [PMID: 34841414 PMCID: PMC8611673 DOI: 10.1021/jacsau.1c00327] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Indexed: 06/01/2023]
Abstract
Therapeutic macromolecules such as proteins and oligonucleotides can be highly efficacious but are often limited to extracellular targets due to the cell's impermeable membrane. Cell-penetrating peptides (CPPs) are able to deliver such macromolecules into cells, but limited structure-activity relationships and inconsistent literature reports make it difficult to design effective CPPs for a given cargo. For example, polyarginine motifs are common in CPPs, promoting cell uptake at the expense of systemic toxicity. Machine learning may be able to address this challenge by bridging gaps between experimental data in order to discern sequence-activity relationships that evade our intuition. Our earlier data set and deep learning model led to the design of miniproteins (>40 amino acids) for antisense delivery. Here, we leveraged and expanded our model with data augmentation in the short CPP sequence space of the data set to extrapolate and discover short, low-arginine-content CPPs that would be easier to synthesize and amenable to rapid conjugation to desired cargo, and with minimal in vivo toxicity. The lead predicted peptide, termed P6, is as active as a polyarginine CPP for the delivery of an antisense oligomer, while having only one arginine side chain and 18 total residues. We determined the pentalysine motif and the C-terminal cysteine of P6 to be the main drivers of activity. The antisense conjugate was able to enhance corrective splicing in an animal model to produce functional eGFP in heart tissue in vivo while remaining nontoxic up to a dose of 60 mg/kg. In addition, P6 was able to deliver an enzyme to the cytosol of cells. Our findings suggest that, given a data set of long CPPs, we can discover by extrapolation short, active sequences that deliver antisense oligomers.
Collapse
Affiliation(s)
- Eva M. López-Vidal
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Carly K. Schissel
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Somesh Mohapatra
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kamela Bellovoda
- Sarepta
Therapeutics, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Chia-Ling Wu
- Sarepta
Therapeutics, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Jenna A. Wood
- Sarepta
Therapeutics, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Annika B. Malmberg
- Sarepta
Therapeutics, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Andrei Loas
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Rafael Gómez-Bombarelli
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bradley L. Pentelute
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Center
for Environmental Health Sciences, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Broad Institute
of MIT and Harvard, 415
Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
66
|
Raguraman P, Balachandran AA, Chen S, Diermeier SD, Veedu RN. Antisense Oligonucleotide-Mediated Splice Switching: Potential Therapeutic Approach for Cancer Mitigation. Cancers (Basel) 2021; 13:5555. [PMID: 34771719 PMCID: PMC8583451 DOI: 10.3390/cancers13215555] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Splicing is an essential process wherein precursor messenger RNA (pre-mRNA) is reshaped into mature mRNA. In alternative splicing, exons of any pre-mRNA get rearranged to form mRNA variants and subsequently protein isoforms, which are distinct both by structure and function. On the other hand, aberrant splicing is the cause of many disorders, including cancer. In the past few decades, developments in the understanding of the underlying biological basis for cancer progression and therapeutic resistance have identified many oncogenes as well as carcinogenic splice variants of essential genes. These transcripts are involved in various cellular processes, such as apoptosis, cell signaling and proliferation. Strategies to inhibit these carcinogenic isoforms at the mRNA level are promising. Antisense oligonucleotides (AOs) have been developed to inhibit the production of alternatively spliced carcinogenic isoforms through splice modulation or mRNA degradation. AOs can also be used to induce splice switching, where the expression of an oncogenic protein can be inhibited by the induction of a premature stop codon. In general, AOs are modified chemically to increase their stability and binding affinity. One of the major concerns with AOs is efficient delivery. Strategies for the delivery of AOs are constantly being evolved to facilitate the entry of AOs into cells. In this review, the different chemical modifications employed and delivery strategies applied are discussed. In addition to that various AOs in clinical trials and their efficacy are discussed herein with a focus on six distinct studies that use AO-mediated exon skipping as a therapeutic strategy to combat cancer.
Collapse
Affiliation(s)
- Prithi Raguraman
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Akilandeswari Ashwini Balachandran
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| | - Rakesh N. Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| |
Collapse
|
67
|
Gupta A, Andresen JL, Manan RS, Langer R. Nucleic acid delivery for therapeutic applications. Adv Drug Deliv Rev 2021; 178:113834. [PMID: 34492233 DOI: 10.1016/j.addr.2021.113834] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
Recent medical advances have exploited the ability to address a given disease at the underlying level of transcription and translation. These treatment paradigms utilize nucleic acids - including short interfering RNA (siRNA), microRNA (miRNA), antisense oligonucleotides (ASO), and messenger RNA (mRNA) - to achieve a desired outcome ranging from gene knockdown to induced expression of a selected target protein. Towards this end, numerous strategies for encapsulation or stabilization of various nucleic acid structures have been developed in order to achieve intracellular delivery. In this review, we discuss several therapeutic applications of nucleic acids directed towards specific diseases and tissues of interest, in particular highlighting recent technologies which have reached late-stage clinical trials and received FDA approval.
Collapse
Affiliation(s)
- Akash Gupta
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Jason L Andresen
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rajith S Manan
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
68
|
Schissel CK, Mohapatra S, Wolfe JM, Fadzen CM, Bellovoda K, Wu CL, Wood JA, Malmberg AB, Loas A, Gómez-Bombarelli R, Pentelute BL. Deep learning to design nuclear-targeting abiotic miniproteins. Nat Chem 2021; 13:992-1000. [PMID: 34373596 PMCID: PMC8819921 DOI: 10.1038/s41557-021-00766-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/05/2021] [Indexed: 02/08/2023]
Abstract
There are more amino acid permutations within a 40-residue sequence than atoms on Earth. This vast chemical search space hinders the use of human learning to design functional polymers. Here we show how machine learning enables the de novo design of abiotic nuclear-targeting miniproteins to traffic antisense oligomers to the nucleus of cells. We combined high-throughput experimentation with a directed evolution-inspired deep-learning approach in which the molecular structures of natural and unnatural residues are represented as topological fingerprints. The model is able to predict activities beyond the training dataset, and simultaneously deciphers and visualizes sequence-activity predictions. The predicted miniproteins, termed 'Mach', reach an average mass of 10 kDa, are more effective than any previously known variant in cells and can also deliver proteins into the cytosol. The Mach miniproteins are non-toxic and efficiently deliver antisense cargo in mice. These results demonstrate that deep learning can decipher design principles to generate highly active biomolecules that are unlikely to be discovered by empirical approaches.
Collapse
Affiliation(s)
- Carly K. Schissel
- Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Somesh Mohapatra
- Massachusetts Institute of Technology, Department of Materials Science and Engineering, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Justin M. Wolfe
- Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Colin M. Fadzen
- Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Kamela Bellovoda
- Sarepta Therapeutics, 215 First Street, Cambridge, MA 02142, USA
| | - Chia-Ling Wu
- Sarepta Therapeutics, 215 First Street, Cambridge, MA 02142, USA
| | - Jenna A. Wood
- Sarepta Therapeutics, 215 First Street, Cambridge, MA 02142, USA
| | | | - Andrei Loas
- Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Rafael Gómez-Bombarelli
- Massachusetts Institute of Technology, Department of Materials Science and Engineering, 77 Massachusetts Avenue, Cambridge, MA 02139, USA,Correspondence to: ,
| | - Bradley L. Pentelute
- Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, MA 02139, USA,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA,Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA,Correspondence to: ,
| |
Collapse
|
69
|
Pandey M, Ojha D, Bansal S, Rode AB, Chawla G. From bench side to clinic: Potential and challenges of RNA vaccines and therapeutics in infectious diseases. Mol Aspects Med 2021; 81:101003. [PMID: 34332771 DOI: 10.1016/j.mam.2021.101003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/27/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022]
Abstract
The functional and structural versatility of Ribonucleic acids (RNAs) makes them ideal candidates for overcoming the limitations imposed by small molecule-based drugs. Hence, RNA-based biopharmaceuticals such as messenger RNA (mRNA) vaccines, antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), microRNA mimics, anti-miRNA oligonucleotides (AMOs), aptamers, riboswitches, and CRISPR-Cas9 are emerging as vital tools for the treatment and prophylaxis of many infectious diseases. Some of the major challenges to overcome in the area of RNA-based therapeutics have been the instability of single-stranded RNAs, delivery to the diseased cell, and immunogenicity. However, recent advancements in the delivery systems of in vitro transcribed mRNA and chemical modifications for protection against nucleases and reducing the toxicity of RNA have facilitated the entry of several exogenous RNAs into clinical trials. In this review, we provide an overview of RNA-based vaccines and therapeutics, their production, delivery, current advancements, and future translational potential in treating infectious diseases.
Collapse
Affiliation(s)
- Manish Pandey
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Divya Ojha
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Sakshi Bansal
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Ambadas B Rode
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology, Faridabad, 121001, India.
| | - Geetanjali Chawla
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India.
| |
Collapse
|
70
|
Application of Non-Viral Vectors in Drug Delivery and Gene Therapy. Polymers (Basel) 2021; 13:polym13193307. [PMID: 34641123 PMCID: PMC8512075 DOI: 10.3390/polym13193307] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 12/13/2022] Open
Abstract
Vectors and carriers play an indispensable role in gene therapy and drug delivery. Non-viral vectors are widely developed and applied in clinical practice due to their low immunogenicity, good biocompatibility, easy synthesis and modification, and low cost of production. This review summarized a variety of non-viral vectors and carriers including polymers, liposomes, gold nanoparticles, mesoporous silica nanoparticles and carbon nanotubes from the aspects of physicochemical characteristics, synthesis methods, functional modifications, and research applications. Notably, non-viral vectors can enhance the absorption of cargos, prolong the circulation time, improve therapeutic effects, and provide targeted delivery. Additional studies focused on recent innovation of novel synthesis techniques for vector materials. We also elaborated on the problems and future research directions in the development of non-viral vectors, which provided a theoretical basis for their broad applications.
Collapse
|
71
|
Bost JP, Barriga H, Holme MN, Gallud A, Maugeri M, Gupta D, Lehto T, Valadi H, Esbjörner EK, Stevens MM, El-Andaloussi S. Delivery of Oligonucleotide Therapeutics: Chemical Modifications, Lipid Nanoparticles, and Extracellular Vesicles. ACS NANO 2021; 15:13993-14021. [PMID: 34505766 PMCID: PMC8482762 DOI: 10.1021/acsnano.1c05099] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 05/04/2023]
Abstract
Oligonucleotides (ONs) comprise a rapidly growing class of therapeutics. In recent years, the list of FDA-approved ON therapies has rapidly expanded. ONs are small (15-30 bp) nucleotide-based therapeutics which are capable of targeting DNA and RNA as well as other biomolecules. ONs can be subdivided into several classes based on their chemical modifications and on the mechanisms of their target interactions. Historically, the largest hindrance to the widespread usage of ON therapeutics has been their inability to effectively internalize into cells and escape from endosomes to reach their molecular targets in the cytosol or nucleus. While cell uptake has been improved, "endosomal escape" remains a significant problem. There are a range of approaches to overcome this, and in this review, we focus on three: altering the chemical structure of the ONs, formulating synthetic, lipid-based nanoparticles to encapsulate the ONs, or biologically loading the ONs into extracellular vesicles. This review provides a background to the design and mode of action of existing FDA-approved ONs. It presents the most common ON classifications and chemical modifications from a fundamental scientific perspective and provides a roadmap of the cellular uptake pathways by which ONs are trafficked. Finally, this review delves into each of the above-mentioned approaches to ON delivery, highlighting the scientific principles behind each and covering recent advances.
Collapse
Affiliation(s)
- Jeremy P. Bost
- Department
of Laboratory Medicine, Karolinska Institutet, Huddinge 14152, Sweden
| | - Hanna Barriga
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Margaret N. Holme
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Audrey Gallud
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, Gothenburg 41296, Sweden
- Advanced
Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg 43150, Sweden
| | - Marco Maugeri
- Department
of Rheumatology and Inflammation Research, Institute of Medicine,
Sahlgrenska Academy, University of Gothenburg, Gothenburg 41390, Sweden
| | - Dhanu Gupta
- Department
of Laboratory Medicine, Karolinska Institutet, Huddinge 14152, Sweden
| | - Taavi Lehto
- Department
of Laboratory Medicine, Karolinska Institutet, Huddinge 14152, Sweden
- Institute
of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Hadi Valadi
- Department
of Rheumatology and Inflammation Research, Institute of Medicine,
Sahlgrenska Academy, University of Gothenburg, Gothenburg 41390, Sweden
| | - Elin K. Esbjörner
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, Gothenburg 41296, Sweden
| | - Molly M. Stevens
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
- Department
of Materials, Department of Bioengineering, Institute of Biomedical
Engineering, Imperial College London, London SW7 2BU, United Kingdom
| | - Samir El-Andaloussi
- Department
of Laboratory Medicine, Karolinska Institutet, Huddinge 14152, Sweden
| |
Collapse
|
72
|
Klabenkova K, Fokina A, Stetsenko D. Chemistry of Peptide-Oligonucleotide Conjugates: A Review. Molecules 2021; 26:5420. [PMID: 34500849 PMCID: PMC8434111 DOI: 10.3390/molecules26175420] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/25/2022] Open
Abstract
Peptide-oligonucleotide conjugates (POCs) represent one of the increasingly successful albeit costly approaches to increasing the cellular uptake, tissue delivery, bioavailability, and, thus, overall efficiency of therapeutic nucleic acids, such as, antisense oligonucleotides and small interfering RNAs. This review puts the subject of chemical synthesis of POCs into the wider context of therapeutic oligonucleotides and the problem of nucleic acid drug delivery, cell-penetrating peptide structural types, the mechanisms of their intracellular transport, and the ways of application, which include the formation of non-covalent complexes with oligonucleotides (peptide additives) or covalent conjugation. The main strategies for the synthesis of POCs are viewed in detail, which are conceptually divided into (a) the stepwise solid-phase synthesis approach and (b) post-synthetic conjugation either in solution or on the solid phase, especially by means of various click chemistries. The relative advantages and disadvantages of both strategies are discussed and compared.
Collapse
Affiliation(s)
- Kristina Klabenkova
- Faculty of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia; (K.K.); (D.S.)
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | - Alesya Fokina
- Faculty of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia; (K.K.); (D.S.)
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | - Dmitry Stetsenko
- Faculty of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia; (K.K.); (D.S.)
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| |
Collapse
|
73
|
Sun Y, Meng L, Zhang Y, Zhao D, Lin Y. The Application of Nucleic Acids and Nucleic Acid Materials in Antimicrobial Research. Curr Stem Cell Res Ther 2021; 16:66-73. [PMID: 32436832 DOI: 10.2174/1574888x15666200521084417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/16/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023]
Abstract
Due to the misuse of antibiotics, multiple drug-resistant pathogenic bacteria have increasingly emerged. This has increased the difficulty of treatment as these bacteria directly affect public health by diminishing the potency of existing antibiotics. Developing alternative therapeutic strategies is the urgent need to reduce the mortality and morbidity related to drug-resistant bacterial infections. In the past 10 to 20 years, nanomedicines have been widely studied and applied as an antibacterial agent. They have become a novel tool for fighting resistant bacteria. The most common innovative substances, metal and metal oxide nanoparticles (NPs), have been widely reported. Until recently, DNA nanostructures were used alone or functionalized with specific DNA sequences by many scholars for antimicrobial purposes which were alternatively selected as therapy for severe bacterial infections. These are a potential candidate for treatments and have a considerable role in killing antibiotic-resistant bacteria. This review involves the dimensions of multidrug resistance and the mechanism of bacteria developing drug resistance. The importance of this article is that we summarized the current study of nano-materials based on nucleic acids in antimicrobial use. Meanwhile, the current progress and the present obstacles for their antibacterial and therapeutic use and special function of stem cells in this field are also discussed.
Collapse
Affiliation(s)
- Yue Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lingxian Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuxin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dan Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
74
|
Barkau CL, O'Reilly D, Eddington SB, Damha MJ, Gagnon KT. Small nucleic acids and the path to the clinic for anti-CRISPR. Biochem Pharmacol 2021; 189:114492. [PMID: 33647260 PMCID: PMC8725204 DOI: 10.1016/j.bcp.2021.114492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
CRISPR-based therapeutics have entered clinical trials but no methods to inhibit Cas enzymes have been demonstrated in a clinical setting. The ability to inhibit CRISPR-based gene editing or gene targeting drugs should be considered a critical step in establishing safety standards for many CRISPR-Cas therapeutics. Inhibitors can act as a failsafe or as an adjuvant to reduce off-target effects in patients. In this review we discuss the need for clinical inhibition of CRISPR-Cas systems and three existing inhibitor technologies: anti-CRISPR (Acr) proteins, small molecule Cas inhibitors, and small nucleic acid-based CRISPR inhibitors, CRISPR SNuBs. Due to their unique properties and the recent successes of other nucleic acid-based therapeutics, CRISPR SNuBs appear poised for clinical application in the near-term.
Collapse
Affiliation(s)
- Christopher L Barkau
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Daniel O'Reilly
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Seth B Eddington
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Keith T Gagnon
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, USA.
| |
Collapse
|
75
|
Holl NJ, Lee HJ, Huang YW. Evolutionary Timeline of Genetic Delivery and Gene Therapy. Curr Gene Ther 2021; 21:89-111. [PMID: 33292120 DOI: 10.2174/1566523220666201208092517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 11/22/2022]
Abstract
There are more than 3,500 genes that are being linked to hereditary diseases or correlated with an elevated risk of certain illnesses. As an alternative to conventional treatments with small molecule drugs, gene therapy has arisen as an effective treatment with the potential to not just alleviate disease conditions but also cure them completely. In order for these treatment regimens to work, genes or editing tools intended to correct diseased genetic material must be efficiently delivered to target sites. There have been many techniques developed to achieve such a goal. In this article, we systematically review a variety of gene delivery and therapy methods that include physical methods, chemical and biochemical methods, viral methods, and genome editing. We discuss their historical discovery, mechanisms, advantages, limitations, safety, and perspectives.
Collapse
Affiliation(s)
- Natalie J Holl
- Department of Biological Sciences, College of Arts, Sciences, and Business, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Han-Jung Lee
- Department of Natural Resources and Environmental Studies, College of Environmental Studies, National Dong Hwa University, Hualien 974301, Taiwan
| | - Yue-Wern Huang
- Department of Biological Sciences, College of Arts, Sciences, and Business, Missouri University of Science and Technology, Rolla, MO 65409, United States
| |
Collapse
|
76
|
Gagliardi M, Ashizawa AT. The Challenges and Strategies of Antisense Oligonucleotide Drug Delivery. Biomedicines 2021; 9:biomedicines9040433. [PMID: 33923688 PMCID: PMC8072990 DOI: 10.3390/biomedicines9040433] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 12/27/2022] Open
Abstract
Antisense oligonucleotides (ASOs) are used to selectively inhibit the translation of disease-associated genes via Ribonuclease H (RNaseH)-mediated cleavage or steric hindrance. They are being developed as a novel and promising class of drugs targeting a wide range of diseases. Despite the great potential and numerous ASO drugs in preclinical research and clinical trials, there are many limitations to this technology. In this review we will focus on the challenges of ASO delivery and the strategies adopted to improve their stability in the bloodstream, delivery to target sites, and cellular uptake. Focusing on liposomal delivery, we will specifically describe liposome-incorporated growth factor receptor-bound protein-2 (Grb2) antisense oligodeoxynucleotide BP1001. BP1001 is unique because it is uncharged and is essentially non-toxic, as demonstrated in preclinical and clinical studies. Additionally, its enhanced biodistribution makes it an attractive therapeutic modality for hematologic malignancies as well as solid tumors. A detailed understanding of the obstacles that ASOs face prior to reaching their targets and continued advances in methods to overcome them will allow us to harness ASOs’ full potential in precision medicine.
Collapse
|
77
|
RNA-Targeting Splicing Modifiers: Drug Development and Screening Assays. Molecules 2021; 26:molecules26082263. [PMID: 33919699 PMCID: PMC8070285 DOI: 10.3390/molecules26082263] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
RNA splicing is an essential step in producing mature messenger RNA (mRNA) and other RNA species. Harnessing RNA splicing modifiers as a new pharmacological modality is promising for the treatment of diseases caused by aberrant splicing. This drug modality can be used for infectious diseases by disrupting the splicing of essential pathogenic genes. Several antisense oligonucleotide splicing modifiers were approved by the U.S. Food and Drug Administration (FDA) for the treatment of spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD). Recently, a small-molecule splicing modifier, risdiplam, was also approved for the treatment of SMA, highlighting small molecules as important warheads in the arsenal for regulating RNA splicing. The cellular targets of these approved drugs are all mRNA precursors (pre-mRNAs) in human cells. The development of novel RNA-targeting splicing modifiers can not only expand the scope of drug targets to include many previously considered “undruggable” genes but also enrich the chemical-genetic toolbox for basic biomedical research. In this review, we summarized known splicing modifiers, screening methods for novel splicing modifiers, and the chemical space occupied by the small-molecule splicing modifiers.
Collapse
|
78
|
Mendonça MCP, Kont A, Aburto MR, Cryan JF, O'Driscoll CM. Advances in the Design of (Nano)Formulations for Delivery of Antisense Oligonucleotides and Small Interfering RNA: Focus on the Central Nervous System. Mol Pharm 2021; 18:1491-1506. [PMID: 33734715 PMCID: PMC8824433 DOI: 10.1021/acs.molpharmaceut.0c01238] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
RNA-based therapeutics have emerged
as one of the most powerful
therapeutic options used for the modulation of gene/protein expression
and gene editing with the potential to treat neurodegenerative diseases.
However, the delivery of nucleic acids to the central nervous system
(CNS), in particular by the systemic route, remains a major hurdle.
This review will focus on the strategies for systemic delivery of
therapeutic nucleic acids designed to overcome these barriers. Pathways
and mechanisms of transport across the blood–brain barrier
which could be exploited for delivery are described, focusing in particular
on smaller nucleic acids including antisense oligonucleotides (ASOs)
and small interfering RNA (siRNA). Approaches used to enhance delivery
including chemical modifications, nanocarrier systems, and target
selection (cell-specific delivery) are critically analyzed. Learnings
achieved from a comparison of the successes and failures reported
for CNS delivery of ASOs versus siRNA will help identify opportunities
for a wider range of nucleic acids and accelerate the clinical translation
of these innovative therapies.
Collapse
Affiliation(s)
- Monique C P Mendonça
- Pharmacodelivery Group, School of Pharmacy, University College Cork, T12 YT20 Cork, Ireland
| | - Ayse Kont
- Pharmacodelivery Group, School of Pharmacy, University College Cork, T12 YT20 Cork, Ireland
| | - Maria Rodriguez Aburto
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, T12 XF62 Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, T12 XF62 Cork, Ireland
| | - Caitriona M O'Driscoll
- Pharmacodelivery Group, School of Pharmacy, University College Cork, T12 YT20 Cork, Ireland
| |
Collapse
|
79
|
Wei Y, Zhang M, Jiao P, Zhang X, Yang G, Xu X. Intracellular Paclitaxel Delivery Facilitated by a Dual-Functional CPP with a Hydrophobic Hairpin Tail. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4853-4860. [PMID: 33474938 DOI: 10.1021/acsami.0c20180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In our pervious study, a dual-functional peptide R7 was developed to form a complex with paclitaxel (PTX) for enhancement of PTX translocation. However, because of the unstable noncovalent bond between R7 and PTX, PTX redistributed after the introduction of heparin, leading to R7-PTX complex dissociation, further causing less PTX penetration than expected. Thus, a novel positive CPP carrier of P9 was developed to improve CPP-PTX affinity via a double-proline (Pro, P) hairpin tail and enhance PTX translocation through the reduction of translocation energy barrier, confirmed by the MM-PBSA analysis and umbrella sampling simulation. Cellular uptake study reveals that P9 can quickly translocate into the HeLa cells within 1 min and exhibits no noticeable cytotoxicity. Compared to R7, P9 is able to help PTX translocation, leading to a remarkable increase in the intracellular concentration of PTX, eventually resulting in a significant loss in tumor cell viability. In vivo experiments demonstrate that a vein injection of P9-PTX complex dramatically inhibits tumor growth. Our study provides a novel perspective for designing CPP-facilitated drug carrier to enhance antitumor efficiency.
Collapse
Affiliation(s)
- Yuping Wei
- School of Life Science and Technology, Nanyang Normal University, Nanyang, Henan Province 473061, P.R. China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Man Zhang
- Department of Oncology, Nanyang First People's Hospital, Henan Province, 473002, P.R. China
| | - Pengfei Jiao
- School of Life Science and Technology, Nanyang Normal University, Nanyang, Henan Province 473061, P.R. China
| | - Xin Zhang
- School of Life Science and Technology, Nanyang Normal University, Nanyang, Henan Province 473061, P.R. China
| | - Ganggang Yang
- Biochemical Engineering Research Centre, Anhui University of Technology, Ma'anshan, Anhui Province 243032, P.R. China
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui Province 243032, P.R. China
| | - Xia Xu
- Biochemical Engineering Research Centre, Anhui University of Technology, Ma'anshan, Anhui Province 243032, P.R. China
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui Province 243032, P.R. China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| |
Collapse
|
80
|
Shiraishi T, Ghavami M, Nielsen PE. In Vitro Cellular Delivery of Peptide Nucleic Acid (PNA). Methods Mol Biol 2021; 2105:173-185. [PMID: 32088870 DOI: 10.1007/978-1-0716-0243-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cellular delivery methods are a prerequisite for cellular studies with PNA. This chapter describes PNA cellular delivery using cell-penetrating peptide (CPP)-PNA conjugates and transfection of PNA-ligand conjugates mediated by cationic lipids. Furthermore, two endosomolytic procedures employing chloroquine treatment or photochemical internalization (PCI) for significantly improving PNA delivery efficacy are described.
Collapse
Affiliation(s)
- Takehiko Shiraishi
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Mahdi Ghavami
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
81
|
Abstract
Cell-Penetrating Peptides (CPP) are valuable tools capable of crossing the plasma membrane to deliver therapeutic cargo inside cells. Small interfering RNAs (siRNA) are double-stranded RNA molecules capable of silencing the expression of a specific protein triggering the RNA interference (RNAi) pathway, but they are unable to cross the plasma membrane and have a short half-life in the bloodstream. In this overview, we assessed the many different approaches used and developed in the last two decades to deliver siRNA through the plasma membrane through different CPPs sorted according to three different loading strategies: covalent conjugation, complex formation, and CPP-decorated (functionalized) nanocomplexes. Each of these strategies has pros and cons, but it appears the latter two are the most commonly reported and emerging as the most promising strategies due to their simplicity of synthesis, use, and versatility. Recent progress with siRNA delivered by CPPs seems to focus on targeted delivery to reduce side effects and amount of drugs used, and it appears to be among the most promising use for CPPs in future clinical applications.
Collapse
|
82
|
Monreal IA, Contreras EM, Wayman GA, Aguilar HC, Saludes JP. SialoPen peptides are new cationic foldamers with remarkable cell permeability. Heliyon 2020; 6:e05780. [PMID: 33409387 PMCID: PMC7773882 DOI: 10.1016/j.heliyon.2020.e05780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/03/2022] Open
Abstract
The ability to access intracellular targets is of vital importance as the number of identified druggable intracellular targets increases every year. However, intracellular delivery poses a formidable barrier, as many potential therapeutics are impermeable to cell membranes, which hinders their practical application in drug development. Herein we present de novo-designed unnatural cell penetrating peptide foldamers utilizing a 2,3-Didehydro-2-deoxyneuraminic acid (Neu2en) scaffold. Conveniently, this scaffold is amenable to standard Fmoc-based solid-phase peptide synthesis, with the advantages of tunable secondary structures and enhanced biostability. Flow cytometry and live-cell confocal microscopy studies showed that these Neu2en-based peptides, hereinafter termed SialoPen peptides, have significantly superior uptake in HeLa and primary neuronal hippocampal cells, outperforming the classical cell permeable peptides penetratin and HIV-TAT.
Collapse
Affiliation(s)
- I. Abrrey Monreal
- Immunology and Microbiology Department, Cornell University, Ithaca, NY 14850, USA
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Erik M. Contreras
- Immunology and Microbiology Department, Cornell University, Ithaca, NY 14850, USA
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Gary A. Wayman
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Hector C. Aguilar
- Immunology and Microbiology Department, Cornell University, Ithaca, NY 14850, USA
| | - Jonel P. Saludes
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
- Center for Natural Drug Discovery & Development (CND3) and Department of Chemistry, University of San Agustin, Iloilo City, 5000, Philippines
- Balik Scientist Program, Philippine Council for Health Research & Development (PCHRD), Department of Science and Technology, Bicutan, Taguig, 1631, Philippines
| |
Collapse
|
83
|
Chen S, Sbuh N, Veedu RN. Antisense Oligonucleotides as Potential Therapeutics for Type 2 Diabetes. Nucleic Acid Ther 2020; 31:39-57. [PMID: 33026966 DOI: 10.1089/nat.2020.0891] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disorder characterized by persistent hyperglycemia resulting from inefficient signaling and insufficient production of insulin. Conventional management of T2D has largely relied on small molecule-based oral hypoglycemic medicines, which do not halt the progression of the disease due to limited efficacy and induce adverse effects as well. To this end, antisense oligonucleotide has attracted immense attention in developing antidiabetic agents because of their ability to downregulate the expression of disease-causing genes at the RNA and protein level. To date, seven antisense agents have been approved by the United States Food and Drug Administration for therapies of a variety of human maladies, including genetic disorders. Herein, we provide a comprehensive review of antisense molecules developed for suppressing the causative genes believed to be responsible for insulin resistance and hyperglycemia toward preventing and treating T2D.
Collapse
Affiliation(s)
- Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia.,Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Nabayet Sbuh
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia.,Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia.,Perron Institute for Neurological and Translational Science, Perth, Australia
| |
Collapse
|
84
|
Lauroylated Histidine-Enriched S4 13-PV Peptide as an Efficient Gene Silencing Mediator in Cancer Cells. Pharm Res 2020; 37:188. [PMID: 32888084 DOI: 10.1007/s11095-020-02904-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE This study aimed to endow the cell-penetrating peptide (CPP) S413-PV with adequate features towards a safe and effective application in cancer gene therapy. METHODS Peptide/siRNA complexes were prepared with two new derivatives of the CPP S413-PV, which combine a lauroyl group attached to the N- or C-terminus with a histidine-enrichment in the N-terminus of the S413-PV peptide, being named C12-H5-S413-PV and H5-S413-PV-C12, respectively. Physicochemical characterization of siRNA complexes was performed and their cytotoxicity and efficiency to mediate siRNA delivery and gene silencing in cancer cells were assessed in the absence and presence of serum. RESULTS Peptide/siRNA complexes prepared with the C12-H5-S413-PV derivative showed a nanoscale (ca. 100 nm) particle size, as revealed by TEM, and efficiently mediated gene silencing (37%) in human U87 glioblastoma cells in the presence of 30% serum. In addition, the new C12-H5-S413-PV-based siRNA delivery system efficiently downregulated stearoyl-CoA desaturase-1, a key-enzyme of lipid metabolism overexpressed in cancer, which resulted in a significant decrease in the viability of U87 cells. Importantly, these complexes were able to spare healthy human astrocytes. CONCLUSIONS These encouraging results pave the way for a potential application of the C12-H5-S413-PV peptide as a promising tool in cancer gene therapy.
Collapse
|
85
|
Duffy K, Arangundy-Franklin S, Holliger P. Modified nucleic acids: replication, evolution, and next-generation therapeutics. BMC Biol 2020; 18:112. [PMID: 32878624 PMCID: PMC7469316 DOI: 10.1186/s12915-020-00803-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Modified nucleic acids, also called xeno nucleic acids (XNAs), offer a variety of advantages for biotechnological applications and address some of the limitations of first-generation nucleic acid therapeutics. Indeed, several therapeutics based on modified nucleic acids have recently been approved and many more are under clinical evaluation. XNAs can provide increased biostability and furthermore are now increasingly amenable to in vitro evolution, accelerating lead discovery. Here, we review the most recent discoveries in this dynamic field with a focus on progress in the enzymatic replication and functional exploration of XNAs.
Collapse
Affiliation(s)
- Karen Duffy
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | | | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
86
|
Aho A, Sulkanen M, Korhonen H, Virta P. Conjugation of Oligonucleotides to Peptide Aldehydes via a pH-Responsive N-Methoxyoxazolidine Linker. Org Lett 2020; 22:6714-6718. [PMID: 32804515 DOI: 10.1021/acs.orglett.0c01815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The formation of N-methoxyoxazolidines in the preparation of oligonucleotide-peptide conjugates was evaluated. The reaction occurred between unprotected 2'-N-(methoxy)amino-modified oligonucleotides and peptide aldehydes in reasonable yields when isolated. The reaction is reversible under slightly acidic conditions, and it is pH-responsive. The rate and the equilibrium constant may be varied with structurally different aldehydes, allowing an optimization of the ligation and cleavage rate of the resultant conjugates. Therefore, this concept can be considered a cleavable linker.
Collapse
Affiliation(s)
- Aapo Aho
- Department of Chemistry, University of Turku, 20014 Turku, Finland
| | - Mika Sulkanen
- Department of Chemistry, University of Turku, 20014 Turku, Finland
| | - Heidi Korhonen
- Department of Chemistry, University of Turku, 20014 Turku, Finland
| | - Pasi Virta
- Department of Chemistry, University of Turku, 20014 Turku, Finland
| |
Collapse
|
87
|
Transport Oligonucleotides-A Novel System for Intracellular Delivery of Antisense Therapeutics. Molecules 2020; 25:molecules25163663. [PMID: 32796768 PMCID: PMC7464317 DOI: 10.3390/molecules25163663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Biological activity of antisense oligonucleotides (asON), especially those with a neutral backbone, is often attenuated by poor cellular accumulation. In the present proof-of-concept study, we propose a novel delivery system for asONs which implies the delivery of modified antisense oligonucleotides by so-called transport oligonucleotides (tON), which are oligodeoxyribonucleotides complementary to asON conjugated with hydrophobic dodecyl moieties. Two types of tONs, bearing at the 5′-end up to three dodecyl residues attached through non-nucleotide inserts (TD series) or anchored directly to internucleotidic phosphate (TP series), were synthesized. tONs with three dodecyl residues efficiently delivered asON to cells without any signs of cytotoxicity and provided a transfection efficacy comparable to that achieved using Lipofectamine 2000. We found that, in the case of tON with three dodecyl residues, some tON/asON duplexes were excreted from the cells within extracellular vesicles at late stages of transfection. We confirmed the high efficacy of the novel and demonstrated that MDR1 mRNA targeted asON delivered by tON with three dodecyl residues significantly reduced the level of P-glycoprotein and increased the sensitivity of KB-8-5 human carcinoma cells to vinblastine. The obtained results demonstrate the efficacy of lipophilic oligonucleotide carriers and shows they are potentially capable of intracellular delivery of any kind of antisense oligonucleotides.
Collapse
|
88
|
Abstract
Oligonucleotides can be used to modulate gene expression via a range of processes including RNAi, target degradation by RNase H-mediated cleavage, splicing modulation, non-coding RNA inhibition, gene activation and programmed gene editing. As such, these molecules have potential therapeutic applications for myriad indications, with several oligonucleotide drugs recently gaining approval. However, despite recent technological advances, achieving efficient oligonucleotide delivery, particularly to extrahepatic tissues, remains a major translational limitation. Here, we provide an overview of oligonucleotide-based drug platforms, focusing on key approaches - including chemical modification, bioconjugation and the use of nanocarriers - which aim to address the delivery challenge.
Collapse
|
89
|
Klein AF, Varela MA, Arandel L, Holland A, Naouar N, Arzumanov A, Seoane D, Revillod L, Bassez G, Ferry A, Jauvin D, Gourdon G, Puymirat J, Gait MJ, Furling D, Wood MJ. Peptide-conjugated oligonucleotides evoke long-lasting myotonic dystrophy correction in patient-derived cells and mice. J Clin Invest 2020; 129:4739-4744. [PMID: 31479430 PMCID: PMC6819114 DOI: 10.1172/jci128205] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/01/2019] [Indexed: 01/28/2023] Open
Abstract
Antisense oligonucleotides (ASOs) targeting pathologic RNAs have shown promising therapeutic corrections for many genetic diseases including myotonic dystrophy (DM1). Thus, ASO strategies for DM1 can abolish the toxic RNA gain-of-function mechanism caused by nucleus-retained mutant DMPK (DM1 protein kinase) transcripts containing CUG expansions (CUGexps). However, systemic use of ASOs for this muscular disease remains challenging due to poor drug distribution to skeletal muscle. To overcome this limitation, we test an arginine-rich Pip6a cell-penetrating peptide and show that Pip6a-conjugated morpholino phosphorodiamidate oligomer (PMO) dramatically enhanced ASO delivery into striated muscles of DM1 mice following systemic administration in comparison with unconjugated PMO and other ASO strategies. Thus, low-dose treatment with Pip6a-PMO-CAG targeting pathologic expansions is sufficient to reverse both splicing defects and myotonia in DM1 mice and normalizes the overall disease transcriptome. Moreover, treated DM1 patient–derived muscle cells showed that Pip6a-PMO-CAG specifically targets mutant CUGexp-DMPK transcripts to abrogate the detrimental sequestration of MBNL1 splicing factor by nuclear RNA foci and consequently MBNL1 functional loss, responsible for splicing defects and muscle dysfunction. Our results demonstrate that Pip6a-PMO-CAG induces long-lasting correction with high efficacy of DM1-associated phenotypes at both molecular and functional levels, and strongly support the use of advanced peptide conjugates for systemic corrective therapy in DM1.
Collapse
Affiliation(s)
- Arnaud F Klein
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Miguel A Varela
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, United Kingdom.,Department of Paediatrics, John Radcliffe Hospital, and.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, United Kingdom
| | - Ludovic Arandel
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Ashling Holland
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, United Kingdom.,Department of Paediatrics, John Radcliffe Hospital, and.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, United Kingdom
| | - Naira Naouar
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Andrey Arzumanov
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, United Kingdom.,Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - David Seoane
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, United Kingdom.,Department of Paediatrics, John Radcliffe Hospital, and.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, United Kingdom
| | - Lucile Revillod
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Guillaume Bassez
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Arnaud Ferry
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Dominic Jauvin
- Unit of Human Genetics, Hôpital de l'Enfant-Jésus, CHU Research Center, Quebec, Canada
| | - Genevieve Gourdon
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Jack Puymirat
- Unit of Human Genetics, Hôpital de l'Enfant-Jésus, CHU Research Center, Quebec, Canada
| | - Michael J Gait
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Denis Furling
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Matthew Ja Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, United Kingdom.,Department of Paediatrics, John Radcliffe Hospital, and.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
90
|
Leier A, Bedwell DM, Chen AT, Dickson G, Keeling KM, Kesterson RA, Korf BR, Marquez Lago TT, Müller UF, Popplewell L, Zhou J, Wallis D. Mutation-Directed Therapeutics for Neurofibromatosis Type I. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:739-753. [PMID: 32408052 PMCID: PMC7225739 DOI: 10.1016/j.omtn.2020.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
Significant advances in biotechnology have led to the development of a number of different mutation-directed therapies. Some of these techniques have matured to a level that has allowed testing in clinical trials, but few have made it to approval by drug-regulatory bodies for the treatment of specific diseases. While there are still various hurdles to be overcome, recent success stories have proven the potential power of mutation-directed therapies and have fueled the hope of finding therapeutics for other genetic disorders. In this review, we summarize the state-of-the-art of various therapeutic approaches and assess their applicability to the genetic disorder neurofibromatosis type I (NF1). NF1 is caused by the loss of function of neurofibromin, a tumor suppressor and downregulator of the Ras signaling pathway. The condition is characterized by a variety of phenotypes and includes symptoms such as skin spots, nervous system tumors, skeletal dysplasia, and others. Hence, depending on the patient, therapeutics may need to target different tissues and cell types. While we also discuss the delivery of therapeutics, in particular via viral vectors and nanoparticles, our main focus is on therapeutic techniques that reconstitute functional neurofibromin, most notably cDNA replacement, CRISPR-based DNA repair, RNA repair, antisense oligonucleotide therapeutics including exon skipping, and nonsense suppression.
Collapse
Affiliation(s)
- Andre Leier
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David M Bedwell
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ann T Chen
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - George Dickson
- Centre of Biomedical Sciences, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Kim M Keeling
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Robert A Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Bruce R Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Ulrich F Müller
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Linda Popplewell
- Centre of Biomedical Sciences, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Deeann Wallis
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
91
|
Crooke ST, Vickers TA, Liang XH. Phosphorothioate modified oligonucleotide-protein interactions. Nucleic Acids Res 2020; 48:5235-5253. [PMID: 32356888 PMCID: PMC7261153 DOI: 10.1093/nar/gkaa299] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/08/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022] Open
Abstract
Antisense oligonucleotides (ASOs) interact with target RNAs via hybridization to modulate gene expression through different mechanisms. ASO therapeutics are chemically modified and include phosphorothioate (PS) backbone modifications and different ribose and base modifications to improve pharmacological properties. Modified PS ASOs display better binding affinity to the target RNAs and increased binding to proteins. Moreover, PS ASO protein interactions can affect many aspects of their performance, including distribution and tissue delivery, cellular uptake, intracellular trafficking, potency and toxicity. In this review, we summarize recent progress in understanding PS ASO protein interactions, highlighting the proteins with which PS ASOs interact, the influence of PS ASO protein interactions on ASO performance, and the structure activity relationships of PS ASO modification and protein interactions. A detailed understanding of these interactions can aid in the design of safer and more potent ASO drugs, as illustrated by recent findings that altering ASO chemical modifications dramatically improves therapeutic index.
Collapse
|
92
|
Xie J, Bi Y, Zhang H, Dong S, Teng L, Lee RJ, Yang Z. Cell-Penetrating Peptides in Diagnosis and Treatment of Human Diseases: From Preclinical Research to Clinical Application. Front Pharmacol 2020; 11:697. [PMID: 32508641 PMCID: PMC7251059 DOI: 10.3389/fphar.2020.00697] [Citation(s) in RCA: 278] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022] Open
Abstract
Cell-penetrating peptides (CPPs) are short peptides (fewer than 30 amino acids) that have been predominantly used in basic and preclinical research during the last 30 years. Since they are not only capable of translocating themselves into cells but also facilitate drug or CPP/cargo complexes to translocate across the plasma membrane, they have potential applications in the disease diagnosis and therapy, including cancer, inflammation, central nervous system disorders, otologic and ocular disorders, and diabetes. However, no CPPs or CPP/cargo complexes have been approved by the US Food and Drug Administration (FDA). Many issues should be addressed before translating CPPs into clinics. In this review, we summarize recent developments and innovations in preclinical studies and clinical trials based on using CPP for improved delivery, which have revealed that CPPs or CPP-based delivery systems present outstanding diagnostic therapeutic delivery potential.
Collapse
Affiliation(s)
- Jing Xie
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Ye Bi
- Practice Training Center, Changchun University of Chinese Medicine, Changchun, China
| | - Huan Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Shiyan Dong
- School of Life Sciences, Jilin University, Changchun, China
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, China
| | - Robert J. Lee
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, United States
| | - Zhaogang Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
93
|
Feger G, Angelov B, Angelova A. Prediction of Amphiphilic Cell-Penetrating Peptide Building Blocks from Protein-Derived Amino Acid Sequences for Engineering of Drug Delivery Nanoassemblies. J Phys Chem B 2020; 124:4069-4078. [PMID: 32337991 DOI: 10.1021/acs.jpcb.0c01618] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amphiphilic molecules, forming self-assembled nanoarchitectures, are typically composed of hydrophobic and hydrophilic domains. Peptide amphiphiles can be designed from two, three, or four building blocks imparting novel structural and functional properties and affinities for interaction with cellular membranes or intracellular organelles. Here we present a combined numerical approach to design amphiphilic peptide scaffolds that are derived from the human nuclear Ki-67 protein. Ki-67 acts, like a biosurfactant, as a steric and electrostatic charge barrier against the collapse of mitotic chromosomes. The proposed predictive design of new Ki-67 protein-derived amphiphilic amino acid sequences exploits the computational outcomes of a set of web-accessible predictors, which are based on machine learning methods. The ensemble of such artificial intelligence algorithms, involving support vector machine (SVM), random forest (RF) classifiers, and neural networks (NN), enables the nanoengineering of a broad range of innovative peptide materials for therapeutic delivery in various applications. Amphiphilic cell-penetrating peptides (CPP), derived from natural protein sequences, may spontaneously form self-assembled nanocarriers characterized by enhanced cellular uptake. Thanks to their inherent low immunogenicity, they may enable the safe delivery of therapeutic molecules across the biological barriers.
Collapse
Affiliation(s)
- Guillaume Feger
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay UMR8612, F-92296 Châtenay-Malabry, France
| | - Borislav Angelov
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay UMR8612, F-92296 Châtenay-Malabry, France
| |
Collapse
|
94
|
Shah SS, Casanova N, Antuono G, Sabatino D. Polyamide Backbone Modified Cell Targeting and Penetrating Peptides in Cancer Detection and Treatment. Front Chem 2020; 8:218. [PMID: 32296681 PMCID: PMC7136562 DOI: 10.3389/fchem.2020.00218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Cell penetrating and targeting peptides (CPPs and CTPs) encompass an important class of biochemically active peptides owning the capabilities of targeting and translocating within selected cell types. As such, they have been widely used in the delivery of imaging and therapeutic agents for the diagnosis and treatment of various diseases, especially in cancer. Despite their potential utility, first generation CTPs and CPPs based on the native peptide sequences are limited by poor biological and pharmacological properties, thereby restricting their efficacy. Therefore, medicinal chemistry approaches have been designed and developed to construct related peptidomimetics. Of specific interest herein, are the design applications which modify the polyamide backbone of lead CTPs and CPPs. These modifications aim to improve the biochemical characteristics of the native peptide sequence in order to enhance its diagnostic and therapeutic capabilities. This review will focus on a selected set of cell penetrating and targeting peptides and their related peptidomimetics whose polyamide backbone has been modified in order to improve their applications in cancer detection and treatment.
Collapse
Affiliation(s)
- Sunil S Shah
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, United States
| | - Nelson Casanova
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, United States
| | - Gina Antuono
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, United States
| | - David Sabatino
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, United States
| |
Collapse
|
95
|
Shukla TN, Song J, Campbell ZT. Molecular entrapment by RNA: an emerging tool for disrupting protein-RNA interactions in vivo. RNA Biol 2020; 17:417-424. [PMID: 31957541 PMCID: PMC7237136 DOI: 10.1080/15476286.2020.1717059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/09/2019] [Accepted: 01/12/2020] [Indexed: 10/25/2022] Open
Abstract
mRNA function is controlled by RNA-binding proteins. The specificity of RNA-binding factors for their targets is critical in that it enables all subsequent regulation. Despite widespread recognition of the pervasive role RNA-binding proteins play in development and disease, they remain challenging to target with small molecules. A renaissance in RNA therapeutics has led to the identification of modifications that substantially increase RNA stability. When combined with information regarding specificity, a new class of oligonucleotide mimics has emerged as a means to competitively disrupt the regulation of endogenous substrates. These decoys have been used to inhibit RNA-binding proteins in living animals. Decoys will likely provide new insights into the expansive roles of RNA-binding proteins in biology and disease. Here, we describe examples where they have been used and discuss how they could be applied to new targets.
Collapse
Affiliation(s)
- Tarjani N. Shukla
- The Department of Biological Sciences, University of Texas-Dallas, Richardson, TX, USA
| | - Jane Song
- The Department of Biological Sciences, University of Texas-Dallas, Richardson, TX, USA
| | - Zachary T. Campbell
- The Department of Biological Sciences, University of Texas-Dallas, Richardson, TX, USA
| |
Collapse
|
96
|
Zarei M, Rahbar MR, Negahdaripour M, Morowvat MH, Nezafat N, Ghasemi Y. Cell Penetrating Peptide: Sequence-Based Computational Prediction for Intercellular Delivery of Arginine Deiminase. CURR PROTEOMICS 2020. [DOI: 10.2174/1570164616666190701120351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Cell-Penetrating Peptides (CPPs), a family of short peptides, are broadly used as the carrier in the delivery of drugs and different therapeutic agents. Thanks to the existence of valuable databases, computational screening of the experimentally validated CPPs can help the researchers to select more effective CPPs for the intercellular delivery of therapeutic proteins. Arginine deiminase of Mycoplasma hominis, an arginine-degrading enzyme, is currently in the clinical trial for treating several arginine auxotrophic cancers. However, some tumor cells have developed resistance to ADI treatment. The ADI resistance arises from the over-expression of argininosuccinate synthetase 1 enzyme, which is involved in arginine synthesis. Intracellular delivery of ADI into tumor cells is suggested as an efficient approach to overcome the aforesaid drawback.Objective:In this study, in-silico tools were used for evaluating the experimentally validated CPPs to select the best CPP candidates for the intracellular delivery of ADI.Results:In this regard, 150 CPPs of protein cargo available at CPPsite were retrieved and evaluated by the CellPPD server. The best CPP candidates for the intracellular delivery of ADI were selected based on stability and antigenicity of the ADI-CPP fusion form. The conjugated forms of ADI with each of the three CPPs including EGFP-hcT (9-32), EGFP-ppTG20, and F(SG)4TP10 were stable and nonantigenic; thus, these sequences were introduced as the best CPP candidates for the intracellular delivery of ADI. In addition, the proposed CPPs had appropriate positive charge and lengths for an efficient cellular uptake.Conclusion:These three introduced CPPs not only are appropriate for the intracellular delivery of ADI, but also can overcome the limitation of its therapeutic application, including short half-life and antigenicity.
Collapse
Affiliation(s)
- Mahboubeh Zarei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Rahbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
97
|
Ruseska I, Zimmer A. Internalization mechanisms of cell-penetrating peptides. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:101-123. [PMID: 31976201 PMCID: PMC6964662 DOI: 10.3762/bjnano.11.10] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/18/2019] [Indexed: 05/19/2023]
Abstract
In today's modern era of medicine, macromolecular compounds such as proteins, peptides and nucleic acids are dethroning small molecules as leading therapeutics. Given their immense potential, they are highly sought after. However, their application is limited mostly due to their poor in vivo stability, limited cellular uptake and insufficient target specificity. Cell-penetrating peptides (CPPs) represent a major breakthrough for the transport of macromolecules. They have been shown to successfully deliver proteins, peptides, siRNAs and pDNA in different cell types. In general, CPPs are basic peptides with a positive charge at physiological pH. They are able to translocate membranes and gain entry to the cell interior. Nevertheless, the mechanism they use to enter cells still remains an unsolved piece of the puzzle. Endocytosis and direct penetration have been suggested as the two major mechanisms used for internalization, however, it is not all black and white in the nanoworld. Studies have shown that several CPPs are able to induce and shift between different uptake mechanisms depending on their concentration, cargo or the cell line used. This review will focus on the major internalization pathways CPPs exploit, their characteristics and regulation, as well as some of the factors that influence the cellular uptake mechanism.
Collapse
Affiliation(s)
- Ivana Ruseska
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, 8010 Graz, Austria
| | - Andreas Zimmer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, 8010 Graz, Austria
| |
Collapse
|
98
|
Li Y, Cong H, Wang S, Yu B, Shen Y. Liposomes modified with bio-substances for cancer treatment. Biomater Sci 2020; 8:6442-6468. [DOI: 10.1039/d0bm01531h] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, liposomes have been used in the field of biomedicine and have achieved many significant results.
Collapse
Affiliation(s)
- Yanan Li
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Song Wang
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Bing Yu
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| |
Collapse
|
99
|
Yan W, Leung SS, To KK. Updates on the use of liposomes for active tumor targeting in cancer therapy. Nanomedicine (Lond) 2019; 15:303-318. [PMID: 31802702 DOI: 10.2217/nnm-2019-0308] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the development of cancer chemotherapy, besides the discovery of new anticancer drugs, a variety of nanocarrier systems for the delivery of previously developed and new chemotherapeutic drugs have currently been explored. Liposome is one of the most studied nanocarrier systems because of its biodegradability, simple preparation method, high efficacy and low toxicity. To make the best use of this vehicle, a number of multifunctionalized liposomal formulations have been investigated. The objective of this review is to summarize the current development of novel active targeting liposomal formulations, and to give insight into the challenges and future direction of the field. The recent studies in active targeting liposomes suggest the great potential of precise targeted anticancer drug delivery in cancer therapeutics.
Collapse
Affiliation(s)
- Wei Yan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Sharon Sy Leung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Kenneth Kw To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
100
|
Cummings JC, Zhang H, Jakymiw A. Peptide carriers to the rescue: overcoming the barriers to siRNA delivery for cancer treatment. Transl Res 2019; 214:92-104. [PMID: 31404520 PMCID: PMC6848774 DOI: 10.1016/j.trsl.2019.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/15/2019] [Accepted: 07/22/2019] [Indexed: 10/26/2022]
Abstract
Cancer is a significant health concern worldwide and its clinical treatment presents many challenges. Consequently, much research effort has focused on the development of new anticancer drugs to combat this disease. One area of exploration, in particular, has been in the therapeutic application of RNA interference (RNAi). Although RNAi appears to be an attractive therapeutic tool for the treatment of cancer, one of the primary obstacles towards its pervasive use in the clinic has been cell/tissue type-specific cytosolic delivery of therapeutic small interfering RNA (siRNA) molecules. Consequently, varied drug delivery platforms have been developed and widely explored for siRNA delivery. Among these candidate drug delivery systems, peptides have shown great promise as siRNA carriers due to their varied physiochemical properties and functions, simple formulations, and flexibility in design. In this review, we will focus on distinguishing between the different classes of peptide carriers based on their functions, as well as summarize and discuss the various design strategies and advancements that have been made in circumventing the barriers to siRNA delivery for cancer treatment. Resolution of these challenges by peptide carriers will accelerate the translation of RNAi-based therapies to the clinic.
Collapse
Affiliation(s)
- James C Cummings
- Departments of Oral Health Sciences and Biochemistry & Molecular Biology, Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina
| | - Haiwen Zhang
- Departments of Oral Health Sciences and Biochemistry & Molecular Biology, Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina
| | - Andrew Jakymiw
- Departments of Oral Health Sciences and Biochemistry & Molecular Biology, Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina.
| |
Collapse
|