51
|
Al-Musa A, Chou J, LaBere B. The resurgence of a neglected orthopoxvirus: Immunologic and clinical aspects of monkeypox virus infections over the past six decades. Clin Immunol 2022; 243:109108. [PMID: 36067982 PMCID: PMC9628774 DOI: 10.1016/j.clim.2022.109108] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022]
Abstract
Monkeypox is a zoonotic Orthopoxvirus which has predominantly affected humans living in western and central Africa since the 1970s. Type I and II interferon signaling, NK cell function, and serologic immunity are critical for host immunity against monkeypox. Monkeypox can evade host viral recognition and block interferon signaling, leading to overall case fatality rates of up to 11%. The incidence of monkeypox has increased since cessation of smallpox vaccination. In 2022, a global outbreak emerged, predominantly affecting males, with exclusive human-to-human transmission and more phenotypic variability than earlier outbreaks. Available vaccines are safe and effective tools for prevention of severe disease, but supply is limited. Now considered a public health emergency, more studies are needed to better characterize at-risk populations and to develop new anti-viral therapies.
Collapse
Affiliation(s)
- Amer Al-Musa
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA..
| | - Brenna LaBere
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA..
| |
Collapse
|
52
|
Lum FM, Torres-Ruesta A, Tay MZ, Lin RTP, Lye DC, Rénia L, Ng LFP. Monkeypox: disease epidemiology, host immunity and clinical interventions. Nat Rev Immunol 2022; 22:597-613. [PMID: 36064780 PMCID: PMC9443635 DOI: 10.1038/s41577-022-00775-4] [Citation(s) in RCA: 253] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 12/11/2022]
Abstract
Monkeypox virus (MPXV), which causes disease in humans, has for many years been restricted to the African continent, with only a handful of sporadic cases in other parts of the world. However, unprecedented outbreaks of monkeypox in non-endemic regions have recently taken the world by surprise. In less than 4 months, the number of detected MPXV infections has soared to more than 48,000 cases, recording a total of 13 deaths. In this Review, we discuss the clinical, epidemiological and immunological features of MPXV infections. We also highlight important research questions and new opportunities to tackle the ongoing monkeypox outbreak.
Collapse
Affiliation(s)
- Fok-Moon Lum
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Anthony Torres-Ruesta
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Matthew Z Tay
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Raymond T P Lin
- National Public Health Laboratory, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David C Lye
- National Centre for Infectious Diseases, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Laurent Rénia
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Lisa F P Ng
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK.
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
53
|
Hu H, Fu M, Li C, Zhang B, Li Y, Hu Q, Zhang M. Herpes simplex virus type 2 inhibits TNF-α-induced NF-κB activation through viral protein ICP22-mediated interaction with p65. Front Immunol 2022; 13:983502. [PMID: 36211339 PMCID: PMC9538160 DOI: 10.3389/fimmu.2022.983502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus type 2 (HSV-2) is a prevalent human pathogen and the main cause of genital herpes. After initial infection, HSV-2 can establish lifelong latency within dorsal root ganglia by evading the innate immunity of the host. NF-κB has a crucial role in regulating cell proliferation, inflammation, apoptosis, and immune responses. It is known that inhibition of NF-κB activation by a virus could facilitate it to establish infection in the host. In the current study, we found that HSV-2 inhibited TNF-α-induced activation of NF-κB-responsive promoter in a dose-dependent manner, while UV-inactivated HSV-2 did not have such capability. We further identified the immediate early protein ICP22 of HSV-2 as a vital viral element in inhibiting the activation of NF-κB-responsive promoter. The role of ICP22 was confirmed in human cervical cell line HeLa and primary cervical fibroblasts in the context of HSV-2 infection, showing that ICP22 deficient HSV-2 largely lost the capability in suppressing NF-κB activation. HSV-2 ICP22 was further shown to suppress the activity of TNF receptor-associated factor 2 (TRAF2)-, IκB kinase α (IKK α)-, IKK β-, IKK γ-, or p65-induced activation of NF-κB-responsive promoter. Mechanistically, HSV-2 ICP22 inhibited the phosphorylation and nuclear translocation of p65 by directly interacting with p65, resulting in the blockade of NF-κB activation. Furthermore, ICP22 from several alpha-herpesviruses could also inhibit NF-κB activation, suggesting the significance of ICP22 in herpesvirus immune evasion. Findings in this study highlight the importance of ICP22 in inhibiting NF-κB activation, revealing a novel mechanism by which HSV-2 evades the host antiviral responses.
Collapse
Affiliation(s)
- Huimin Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Fu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chuntian Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Binman Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yuncheng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
- *Correspondence: Mudan Zhang, ; Qinxue Hu,
| | - Mudan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Mudan Zhang, ; Qinxue Hu,
| |
Collapse
|
54
|
Reus JB, Rex EA, Gammon DB. How to Inhibit Nuclear Factor-Kappa B Signaling: Lessons from Poxviruses. Pathogens 2022; 11:pathogens11091061. [PMID: 36145493 PMCID: PMC9502310 DOI: 10.3390/pathogens11091061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The Nuclear Factor-kappa B (NF-κB) family of transcription factors regulates key host inflammatory and antiviral gene expression programs, and thus, is often activated during viral infection through the action of pattern-recognition receptors and cytokine–receptor interactions. In turn, many viral pathogens encode strategies to manipulate and/or inhibit NF-κB signaling. This is particularly exemplified by vaccinia virus (VV), the prototypic poxvirus, which encodes at least 18 different inhibitors of NF-κB signaling. While many of these poxviral NF-κB inhibitors are not required for VV replication in cell culture, they virtually all modulate VV virulence in animal models, underscoring the important influence of poxvirus–NF-κB pathway interactions on viral pathogenesis. Here, we review the diversity of mechanisms through which VV-encoded antagonists inhibit initial NF-κB pathway activation and NF-κB signaling intermediates, as well as the activation and function of NF-κB transcription factor complexes.
Collapse
|
55
|
Abstract
Recently, monkeypox has become a global concern amid the ongoing COVID-19 pandemic. Monkeypox is an acute rash zoonosis caused by the monkeypox virus, which was previously concentrated in Africa. The re-emergence of this pathogen seems unusual on account of outbreaks in multiple nonendemic countries and the incline to spread from person to person. We need to revisit this virus to prevent the epidemic from getting worse. In this review, we comprehensively summarize studies on monkeypox, including its epidemiology, biological characteristics, pathogenesis, and clinical characteristics, as well as therapeutics and vaccines, highlighting its unusual outbreak attributed to the transformation of transmission. We also analyze the present situation and put forward countermeasures from both clinical and scientific research to address it.
Collapse
|
56
|
Poxviral ANKR/F-box Proteins: Substrate Adapters for Ubiquitylation and More. Pathogens 2022; 11:pathogens11080875. [PMID: 36014996 PMCID: PMC9414399 DOI: 10.3390/pathogens11080875] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
Poxviruses are double-stranded DNA viruses that infect insects and a variety of vertebrate species. The large genomes of poxviruses contain numerous genes that allow these viruses to successfully establish infection, including those that help evade the host immune response and prevent cell death. Ankyrin-repeat (ANKR)/F-box proteins are almost exclusively found in poxviruses, and they function as substrate adapters for Skp1-Cullin-1-F-box protein (SCF) multi-subunit E3 ubiquitin (Ub)-ligases. In this regard, they use their C-terminal F-box domain to bind Skp1, Cullin-1, and Roc1 to recruit cellular E2 enzymes to facilitate the ubiquitylation, and subsequent proteasomal degradation, of proteins bound to their N-terminal ANKRs. However, these proteins do not just function as substrate adapters as they also have Ub-independent activities. In this review, we examine both Ub-dependent and -independent activities of ANKR/F-box proteins and discuss how poxviruses use these proteins to counteract the host innate immune response, uncoat their genome, replicate, block cell death, and influence transcription. Finally, we consider important outstanding questions that need to be answered in order to better understand the function of this versatile protein family.
Collapse
|
57
|
Premraj A, Aleyas AG, Nautiyal B, Rasool TJ. Beta interferons from the extant camelids: Unique among eutherian mammals. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 133:104443. [PMID: 35568245 PMCID: PMC9095258 DOI: 10.1016/j.dci.2022.104443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/20/2022] [Accepted: 05/08/2022] [Indexed: 06/12/2023]
Abstract
The COVID-19 pandemic is a wake-up call on the zoonotic viral spillover events and the need to be prepared for future outbreaks. Zoonotic RNA viruses like the Middle East respiratory syndrome coronavirus (MERS-CoV) are potential pathogens that could trigger the next pandemic. Dromedary camels are the only known animal source of MERS-CoV zoonotic infections, but little is known about the molecular antiviral response in this species. IFN-β and other type-I interferons provide the first line of defense against invading pathogens in the host immune response. We identified the IFNB gene of the dromedary camel and all extant members of the family Camelidae. Camelid IFN-β is unique with an even number of cysteines in the mature protein compared to other eutherian mammals with an odd number of cysteines. The viral mimetic poly(I:C) strongly induced IFN-β expression in camel kidney cells. Induction of IFN-β expression upon infection with camelpox virus was late and subdued when compared to poly(I:C) treatment. Prokaryotically expressed recombinant dromedary IFN-β induced expression of IFN-responsive genes in camel kidney cells. Further, recombinant IFN-β conferred antiviral resistance to camel kidney cells against the cytopathic effects of the camelpox virus, an endemic zoonotic pathogen. IFN-β from this unique group of mammals will offer insights into antiviral immune mechanisms and aid in the development of specific antivirals against pathogens that have the potential to be the next zoonotic pandemic.
Collapse
Affiliation(s)
- Avinash Premraj
- Camel Biotechnology Center, Presidential Camels & Camel Racing Affairs Centre, Department of the President's Affairs, PO Box 17292, Al Ain, United Arab Emirates
| | - Abi George Aleyas
- Camel Biotechnology Center, Presidential Camels & Camel Racing Affairs Centre, Department of the President's Affairs, PO Box 17292, Al Ain, United Arab Emirates
| | - Binita Nautiyal
- Camel Biotechnology Center, Presidential Camels & Camel Racing Affairs Centre, Department of the President's Affairs, PO Box 17292, Al Ain, United Arab Emirates
| | - Thaha Jamal Rasool
- Camel Biotechnology Center, Presidential Camels & Camel Racing Affairs Centre, Department of the President's Affairs, PO Box 17292, Al Ain, United Arab Emirates.
| |
Collapse
|
58
|
Fu F, Lin Z, Li Y, Wang J, Li Y, Liu P, Wang Z, Ma J, Yan Y, Sun J, Cheng Y. Goose STING mediates IFN signaling activation against RNA viruses. Front Immunol 2022; 13:921800. [PMID: 35958568 PMCID: PMC9360538 DOI: 10.3389/fimmu.2022.921800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Stimulator of the interferon gene (STING) is involved in mammalian antiviral innate immunity as an interferon (IFN) activator. However, there is still a lack of clarity regarding the molecular characterization of goose STING (GoSTING) and its role in the innate immune response. In the present study, we cloned GoSTING and performed a series of bioinformatics analyses. GoSTING was grouped into avian clades and showed the highest sequence similarity to duck STING. The in vitro experiments showed that the mRNA levels of GoSTING, IFNs, IFN-stimulated genes (ISGs), and proinflammatory cytokines were significantly upregulated in goose embryo fibroblast cells (GEFs) infected with Newcastle disease virus (NDV). Overexpression of GoSTING in DF-1 cells and GEFs strongly activated the IFN-β promoter as detected by a dual-luciferase reporter assay. Furthermore, overexpression of GoSTING induced the expression of other types of IFN, ISGs, and proinflammatory cytokines and inhibited green fluorescent protein (GFP)-tagged NDV (NDV-GFP) and GFP-tagged vesicular stomatitis virus (VSV) (VSV-GFP) replication in vitro. In conclusion, these data suggest that GoSTING is an important regulator of the type I IFN pathway and is critical in geese’s innate immune host defense against RNA viruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jianhe Sun
- *Correspondence: Yuqiang Cheng, ; Jianhe Sun,
| | | |
Collapse
|
59
|
Crocodilepox Virus Protein 157 Is an Independently Evolved Inhibitor of Protein Kinase R. Viruses 2022; 14:v14071564. [PMID: 35891544 PMCID: PMC9318007 DOI: 10.3390/v14071564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 02/05/2023] Open
Abstract
Crocodilepox virus (CRV) belongs to the Poxviridae family and mainly infects hatchling and juvenile Nile crocodiles. Most poxviruses encode inhibitors of the host antiviral protein kinase R (PKR), which is activated by viral double-stranded (ds) RNA formed during virus replication, resulting in the phosphorylation of eIF2α and the subsequent shutdown of general mRNA translation. Because CRV lacks orthologs of known poxviral PKR inhibitors, we experimentally characterized one candidate (CRV157), which contains a predicted dsRNA-binding domain. Bioinformatic analyses indicated that CRV157 evolved independently from other poxvirus PKR inhibitors. CRV157 bound to dsRNA, co-localized with PKR in the cytosol, and inhibited PKR from various species. To analyze whether CRV157 could inhibit PKR in the context of a poxvirus infection, we constructed recombinant vaccinia virus strains that contain either CRV157, or a mutant CRV157 deficient in dsRNA binding in a strain that lacks PKR inhibitors. The presence of wild-type CRV157 rescued vaccinia virus replication, while the CRV157 mutant did not. The ability of CRV157 to inhibit PKR correlated with virus replication and eIF2α phosphorylation. The independent evolution of CRV157 demonstrates that poxvirus PKR inhibitors evolved from a diverse set of ancestral genes in an example of convergent evolution.
Collapse
|
60
|
Zhao N, Wang F, Kong Z, Shang Y. Pseudorabies Virus Tegument Protein UL13 Suppresses RLR-Mediated Antiviral Innate Immunity through Regulating Receptor Transcription. Viruses 2022; 14:1465. [PMID: 35891444 PMCID: PMC9317333 DOI: 10.3390/v14071465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Pseudorabies virus (PRV) has evolved various strategies to escape host antiviral immune responses. However, it remains unclear whether and how PRV-encoded proteins modulate the RIG-I-like receptor (RLR)-mediated signals for immune evasion. Here, we show that the PRV tegument protein UL13 functions as an antagonist of RLR-mediated antiviral responses via suppression of the transcription of RIG-I and MDA5, but not LGP2. UL13 overexpression significantly inhibits both the mRNA and protein levels of RIG-I and MDA5, along with RIG-I- or MDA5-mediated antiviral immune responses, whereas overexpression of RIG-I or MDA5 counteracts such UL13-induced suppression. Mechanistically, UL13 suppresses the expression of RIG-I and MDA5 by inhibiting activation of the transcription factor NF-κB. Consequently, overexpression of p65 promotes the activation of RIG-I and MDA5 promoters. Moreover, deletion of the p65-binding sites in the promoters of RIG-I or MDA5 abolishes the suppression role of UL13. As a result, mutant PRV lacking UL13 elicits stronger host antiviral immune responses than PRV-WT. Hence, our results provide a novel functional role of UL13-induced suppression of host antiviral immunity through modulating receptors' transcription.
Collapse
Affiliation(s)
- Ningning Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (N.Z.); (F.W.); (Z.K.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
- Institute of Immunology, Shandong Agricultural University, Taian 271018, China
| | - Fan Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (N.Z.); (F.W.); (Z.K.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Zhengjie Kong
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (N.Z.); (F.W.); (Z.K.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Yingli Shang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (N.Z.); (F.W.); (Z.K.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
- Institute of Immunology, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
61
|
Rattay S, Hufbauer M, Hagen C, Putschli B, Coch C, Akgül B, Hartmann G. Human Beta Papillomavirus Type 8 E1 and E2 Proteins Suppress the Activation of the RIG-I-like Receptor MDA5. Viruses 2022; 14:v14071361. [PMID: 35891343 PMCID: PMC9317666 DOI: 10.3390/v14071361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/25/2022] Open
Abstract
Persistent infections of the skin with the human papillomavirus of genus beta (β-HPV) in immunocompetent individuals are asymptomatic, but in immunosuppressed patients, β-HPV infections exhibit much higher viral loads on the skin and are associated with an increased risk of skin cancer. Unlike with HPV16, a high-risk α-HPV, the impact of β-HPV early genes on the innate immune sensing of viral nucleic acids has not been studied. Here, we used primary skin keratinocytes and U2OS cells expressing HPV8 or distinct HPV8 early genes and well-defined ligands of the nucleic-acid-sensing receptors RIG-I, MDA5, TLR3, and STING to analyze a potential functional interaction. We found that primary skin keratinocytes and U2OS cells expressed RIG-I, MDA5, TLR3, and STING, but not TLR7, TLR8, or TLR9. While HPV16-E6 downregulated the expression of RIG-I, MDA5, TLR3, and STING and, in conjunction with HPV16-E7, effectively suppressed type I IFN in response to MDA5 activation, the presence of HPV8 early genes showed little effect on the expression of these immune receptors, except for HPV8-E2, which was associated with an elevated expression of TLR3. Nevertheless, whole HPV8 genome expression, as well as the selective expression of HPV8-E1 or HPV8-E2, was found to suppress MDA5-induced type I IFN and the proinflammatory cytokine IL-6. Furthermore, RNA isolated from HPV8-E2 expressing primary human keratinocytes, but not control cells, stimulated a type I IFN response in peripheral blood mononuclear cells, indicating that the expression of HPV8-E2 in keratinocytes leads to the formation of stimulatory RNA ligands that require the active suppression of immune recognition. These results identify HPV8-E1 and HPV8-E2 as viral proteins that are responsible for the immune escape of β-HPV from the innate recognition of viral nucleic acids, a mechanism that may be necessary for establishing persistent β-HPV infections.
Collapse
Affiliation(s)
- Stephanie Rattay
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Gebäude 12, Venusberg-Campus 1, 53127 Bonn, Germany; (C.H.); (B.P.); (C.C.); (G.H.)
- Institute of Virology, Medical Faculty and University Hospital Cologne, University of Cologne, Fürst-Pückler-Str. 56., 50935 Cologne, Germany; (M.H.); (B.A.)
- Correspondence: ; Tel.: +49-221-478-85821; Fax: +49-221-478-85802
| | - Martin Hufbauer
- Institute of Virology, Medical Faculty and University Hospital Cologne, University of Cologne, Fürst-Pückler-Str. 56., 50935 Cologne, Germany; (M.H.); (B.A.)
| | - Christian Hagen
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Gebäude 12, Venusberg-Campus 1, 53127 Bonn, Germany; (C.H.); (B.P.); (C.C.); (G.H.)
| | - Bastian Putschli
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Gebäude 12, Venusberg-Campus 1, 53127 Bonn, Germany; (C.H.); (B.P.); (C.C.); (G.H.)
| | - Christoph Coch
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Gebäude 12, Venusberg-Campus 1, 53127 Bonn, Germany; (C.H.); (B.P.); (C.C.); (G.H.)
| | - Baki Akgül
- Institute of Virology, Medical Faculty and University Hospital Cologne, University of Cologne, Fürst-Pückler-Str. 56., 50935 Cologne, Germany; (M.H.); (B.A.)
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Gebäude 12, Venusberg-Campus 1, 53127 Bonn, Germany; (C.H.); (B.P.); (C.C.); (G.H.)
| |
Collapse
|
62
|
Li T, Ren Y, Zhang T, Zhai X, Wang X, Wang J, Xing B, Miao R, Li N, Wei L. Duck LGP2 Downregulates RIG-I Signaling Pathway-Mediated Innate Immunity Against Tembusu Virus. Front Immunol 2022; 13:916350. [PMID: 35784309 PMCID: PMC9241487 DOI: 10.3389/fimmu.2022.916350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
In mammals, the retinoic acid-inducible gene I (RIG-I)-like receptors (RLR) has been demonstrated to play a critical role in activating downstream signaling in response to viral RNA. However, its role in ducks' antiviral innate immunity is less well understood, and how gene-mediated signaling is regulated is unknown. The regulatory role of the duck laboratory of genetics and physiology 2 (duLGP2) in the duck RIG-I (duRIG-I)-mediated antiviral innate immune signaling system was investigated in this study. In duck embryo fibroblast (DEF) cells, overexpression of duLGP2 dramatically reduced duRIG-I-mediated IFN-promotor activity and cytokine expression. In contrast, the knockdown of duLGP2 led to an opposite effect on the duRIG-I-mediated signaling pathway. We demonstrated that duLGP2 suppressed the duRIG-I activation induced by duck Tembusu virus (DTMUV) infection. Intriguingly, when duRIG-I signaling was triggered, duLGP2 enhanced the production of inflammatory cytokines. We further showed that duLGP2 interacts with duRIG-I, and this interaction was intensified during DTMUV infection. In summary, our data suggest that duLGP2 downregulated duRIG-I mediated innate immunity against the Tembusu virus. The findings of this study will help researchers better understand the antiviral innate immune system's regulatory networks in ducks.
Collapse
Affiliation(s)
- Tianxu Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
| | - Yanyan Ren
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
| | - Tingting Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, College of Basic Medical Sciences, Shandong First Medical University, Tai’an City, China
| | - Xinyu Zhai
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
| | - Xiuyuan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
| | - Jinchao Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
| | - Bin Xing
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
| | - Runchun Miao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
| | - Ning Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
| | - Liangmeng Wei
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, College of Basic Medical Sciences, Shandong First Medical University, Tai’an City, China
| |
Collapse
|
63
|
Liu Q, Kausar S, Tang Y, Huang W, Tang B, Abbas MN, Dai L. The Emerging Role of STING in Insect Innate Immune Responses and Pathogen Evasion Strategies. Front Immunol 2022; 13:874605. [PMID: 35619707 PMCID: PMC9127187 DOI: 10.3389/fimmu.2022.874605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Emerging evidence reveals that the stimulator of the interferon genes (STING) signaling pathway in insects and other animal cells helps them to sense and effectively respond to infection caused by numerous types of microbial pathogens. Recent studies have shown that genomic material from microbial pathogens induces the STING signaling pathway for the production of immune factors to attenuate infection. In contrast, microbial pathogens are equipped with various factors that assist them in evading the STING signaling cascade. Here we discuss the STING signaling pathway different animal groups compared to human and then focus on its crucial biological roles and application in the microbial infection of insects. In addition, we examine the negative and positive modulators of the STING signaling cascade. Finally, we describe the microbial pathogen strategies to evade this signaling cascade for successful invasion.
Collapse
Affiliation(s)
- Qiuning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yingyu Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wuren Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Boping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Lishang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
64
|
Maladaptation after a virus host switch leads to increased activation of the pro-inflammatory NF-κB pathway. Proc Natl Acad Sci U S A 2022; 119:e2115354119. [PMID: 35549551 PMCID: PMC9171774 DOI: 10.1073/pnas.2115354119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Myxoma virus (MYXV) is benign in the natural brush rabbit host but causes a fatal disease in European rabbits. Here, we demonstrate that MYXV M156 inhibited brush rabbit protein kinase R (bPKR) more efficiently than European rabbit PKR (ePKR). Because ePKR was not completely inhibited by M156, there was a depletion of short–half-life proteins like the nuclear factor kappa B (NF-κB) inhibitor IκBα, concomitant NF-κB activation and NF-κB target protein expression in ePKR-expressing cells. NF-κB pathway activation was blocked by either hypoactive or hyperactive M156 mutants. This demonstrates that maladaptation of viral immune antagonists can result in substantially different immune responses in aberrant hosts. These different host responses may contribute to altered viral dissemination and may influence viral pathogenesis. Myxoma virus (MYXV) causes localized cutaneous fibromas in its natural hosts, tapeti and brush rabbits; however, in the European rabbit, MYXV causes the lethal disease myxomatosis. Currently, the molecular mechanisms underlying this increased virulence after cross-species transmission are poorly understood. In this study, we investigated the interaction between MYXV M156 and the host protein kinase R (PKR) to determine their crosstalk with the proinflammatory nuclear factor kappa B (NF-κB) pathway. Our results demonstrated that MYXV M156 inhibits brush rabbit PKR (bPKR) more strongly than European rabbit PKR (ePKR). This moderate ePKR inhibition could be improved by hyperactive M156 mutants. We hypothesized that the moderate inhibition of ePKR by M156 might incompletely suppress the signal transduction pathways modulated by PKR, such as the NF-κB pathway. Therefore, we analyzed NF-κB pathway activation with a luciferase-based promoter assay. The moderate inhibition of ePKR resulted in significantly higher NF-κB–dependent reporter activity than complete inhibition of bPKR. We also found a stronger induction of the NF-κB target genes TNFα and IL-6 in ePKR-expressing cells than in bPKR-expressing cells in response to M156 in both transfection and infections assays. Furthermore, a hyperactive M156 mutant did not cause ePKR-dependent NF-κB activation. These observations indicate that M156 is maladapted for ePKR inhibition, only incompletely blocking translation in these hosts, resulting in preferential depletion of short–half-life proteins, such as the NF-κB inhibitor IκBα. We speculate that this functional activation of NF-κB induced by the intermediate inhibition of ePKR by M156 may contribute to the increased virulence of MYXV in European rabbits.
Collapse
|
65
|
Feraoun Y, Palgen JL, Joly C, Tchitchek N, Marcos-Lopez E, Dereuddre-Bosquet N, Gallouet AS, Contreras V, Lévy Y, Martinon F, Le Grand R, Beignon AS. The Route of Vaccine Administration Determines Whether Blood Neutrophils Undergo Long-Term Phenotypic Modifications. Front Immunol 2022; 12:784813. [PMID: 35058925 PMCID: PMC8764446 DOI: 10.3389/fimmu.2021.784813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Innate immunity modulates adaptive immunity and defines the magnitude, quality, and longevity of antigen-specific T- and B- cell immune memory. Various vaccine and administration factors influence the immune response to vaccination, including the route of vaccine delivery. We studied the dynamics of innate cell responses in blood using a preclinical model of non-human primates immunized with a live attenuated vaccinia virus, a recombinant Modified vaccinia virus Ankara (MVA) expressing a gag-pol-nef fusion of HIV-1, and mass cytometry. We previously showed that it induces a strong, early, and transient innate response, but also late phenotypic modifications of blood myeloid cells after two months when injected subcutaneously. Here, we show that the early innate effector cell responses and plasma inflammatory cytokine profiles differ between subcutaneous and intradermal vaccine injection. Additionally, we show that the intradermal administration fails to induce more highly activated/mature neutrophils long after immunization, in contrast to subcutaneous administration. Different batches of antibodies, staining protocols and generations of mass cytometers were used to generate the two datasets. Mass cytometry data were analyzed in parallel using the same analytical pipeline based on three successive clustering steps, including SPADE, and categorical heatmaps were compared using the Manhattan distance to measure the similarity between cell cluster phenotypes. Overall, we show that the vaccine per se is not sufficient for the late phenotypic modifications of innate myeloid cells, which are evocative of innate immune training. Its route of administration is also crucial, likely by influencing the early innate response, and systemic inflammation, and vaccine biodistribution.
Collapse
Affiliation(s)
- Yanis Feraoun
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Jean-Louis Palgen
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Candie Joly
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Nicolas Tchitchek
- UMR_S 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université and Inserm, Paris, France
| | - Ernesto Marcos-Lopez
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Anne-Sophie Gallouet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Vanessa Contreras
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Yves Lévy
- INSERM U955, Henri Mondor Hospital, University of Paris East, Créteil, France.,Vaccine Research Institute (VRI), Créteil, France
| | - Frédéric Martinon
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Anne-Sophie Beignon
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| |
Collapse
|
66
|
Anti-Inflammatory Functions of Methanol Extract from Malus baccata (L.) Borkh. Leaves and Shoots by Targeting the NF-κB Pathway. PLANTS 2022; 11:plants11050646. [PMID: 35270116 PMCID: PMC8912290 DOI: 10.3390/plants11050646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023]
Abstract
Malus baccata (L.) Borkh. is a widely used medical plant in Asia. Since the anti-inflammatory mechanism of this plant is not fully understood, the aim of this study was to explore the anti-inflammatory function and mechanism of Malus baccata (L.) Borkh. methanol extract (Mb-ME). For in vitro experiments, nitric oxide production assay, PCR, overexpression strategy, immunoblotting, luciferase reporter assay, and immunoprecipitation were employed to explore the molecular mechanism and the target proteins of Mb-ME. For in vivo experiments, an HCl/EtOH-induced gastritis mouse model was used to confirm the anti-inflammatory function. Mb-ME showed a strong ability to inhibit the production of nitric oxide and the expression of inflammatory genes. Mb-ME decreased NF-κB luciferase activity mediated by MyD88 and TRIF. Moreover, Mb-ME blocked the activation of Src, Syk, p85, Akt, p50, p60, IKKα/β, and IκBα in LPS-induced RAW264.7 cells. Overexpression and immunoprecipitation analyses suggested Syk and Src as the target enzymes of Mb-ME. In vitro results showed that Mb-ME could alleviate gastritis and relieve the protein expression of p-Src, p-Syk, and COX-2, as well as the gene expression of COX-2 and TNF-α. In summary, this study implied that Mb-ME performs an anti-inflammatory role by suppressing Syk and Src in the NF-κB signaling pathway, both in vivo and in vitro.
Collapse
|
67
|
Szczerba M, Subramanian S, Trainor K, McCaughan M, Kibler KV, Jacobs BL. Small Hero with Great Powers: Vaccinia Virus E3 Protein and Evasion of the Type I IFN Response. Biomedicines 2022; 10:biomedicines10020235. [PMID: 35203445 PMCID: PMC8869630 DOI: 10.3390/biomedicines10020235] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 12/14/2022] Open
Abstract
Poxviridae have developed a plethora of strategies to evade innate and adaptive immunity. In this review, we focused on the vaccinia virus E3 protein, encoded by the E3L gene. E3 is present within the Chordopoxvirinae subfamily (with the exception of the avipoxviruses and molluscum contagiosum virus) and displays pleiotropic effects on the innate immune system. Initial studies identified E3 as a double-stranded RNA (dsRNA)-binding protein (through its C terminus), able to inhibit the activation of protein kinase dependent on RNA (PKR) and the 2′5′-oligoadenylate synthetase (OAS)/RNase L pathway, rendering E3 a protein counteracting the type I interferon (IFN) system. In recent years, N-terminal mutants of E3 unable to bind to Z-form nucleic acids have been shown to induce the cellular death pathway necroptosis. This pathway was dependent on host IFN-inducible Z-DNA-binding protein 1 (ZBP1); full-length E3 is able to inhibit ZBP1-mediated necroptosis. Binding to what was identified as Z-RNA has emerged as a novel mechanism of counteracting the type I IFN system and has broadened our understanding of innate immunity against viral infections. This article gives an overview of the studies leading to our understanding of the vaccinia virus E3 protein function and its involvement in viral pathogenesis. Furthermore, a short summary of other viral systems is provided.
Collapse
Affiliation(s)
- Mateusz Szczerba
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85281, USA; (M.S.); (S.S.); (K.T.); (M.M.); (K.V.K.)
| | - Sambhavi Subramanian
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85281, USA; (M.S.); (S.S.); (K.T.); (M.M.); (K.V.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Kelly Trainor
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85281, USA; (M.S.); (S.S.); (K.T.); (M.M.); (K.V.K.)
- Faculty of Biology, Coconino Community College, Flagstaff, AZ 86005, USA
| | - Megan McCaughan
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85281, USA; (M.S.); (S.S.); (K.T.); (M.M.); (K.V.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Karen V. Kibler
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85281, USA; (M.S.); (S.S.); (K.T.); (M.M.); (K.V.K.)
| | - Bertram L. Jacobs
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85281, USA; (M.S.); (S.S.); (K.T.); (M.M.); (K.V.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Correspondence:
| |
Collapse
|
68
|
Hu T, Pan M, Yin Y, Wang C, Cui Y, Wang Q. The Regulatory Network of Cyclic GMP-AMP Synthase-Stimulator of Interferon Genes Pathway in Viral Evasion. Front Microbiol 2021; 12:790714. [PMID: 34966372 PMCID: PMC8711784 DOI: 10.3389/fmicb.2021.790714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/04/2021] [Indexed: 01/06/2023] Open
Abstract
Virus infection has been consistently threatening public health. The cyclic GMP-AMP synthase (cGAS)-Stimulator of Interferon Genes (STING) pathway is a critical defender to sense various pathogens and trigger innate immunity of mammalian cells. cGAS recognizes the pathogenic DNA in the cytosol and then synthesizes 2'3'-cyclic GMP-AMP (2'3'cGAMP). As the second messenger, cGAMP activates STING and induces the following cascade to produce type I interferon (IFN-I) to protect against infections. However, viruses have evolved numerous strategies to hinder the cGAS-STING signal transduction, promoting their immune evasion. Here we outline the current status of the viral evasion mechanism underlying the regulation of the cGAS-STING pathway, focusing on how post-transcriptional modifications, viral proteins, and non-coding RNAs involve innate immunity during viral infection, attempting to inspire new targets discovery and uncover potential clinical antiviral treatments.
Collapse
Affiliation(s)
- Tongyu Hu
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Mingyu Pan
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yue Yin
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chen Wang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ye Cui
- Division of Immunology, The Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Quanyi Wang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|