51
|
Jadoon SK, Soomro R, Ahsan MN, Ijaz Khan RM, Iqbal S, Yasmin F, Najeeb H, Saleem N, Cho N, Resham, Shaikh TG, Saba Hasan SF, Khalid MZ, Alvi S, Rizvi AM, Asghar MS. Association of neutrophil-to-lymphocyte ratio with clinical, pathological, radiological, laboratory features and disease outcomes of invasive breast cancer patients: A retrospective observational cohort study. Medicine (Baltimore) 2023; 102:e33811. [PMID: 37335707 PMCID: PMC10194494 DOI: 10.1097/md.0000000000033811] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/27/2023] [Indexed: 06/21/2023] Open
Abstract
Inflammatory conditions play part in the progression of malignancies, and markers signifying growth of these factors can indicate prognosis. Neutrophil-to-lymphocyte (NLR) is used as a marker of subclinical inflammation that may become an integral part of workup to indicate prognosis and associated pathology. This study aims to explore the association of NLR ratio with clinical characteristics, radiological assessment and staging, histopathology, and disease outcomes of breast cancer. A retrospective cohort study was conducted in a tertiary care center to include breast cancer patients that were diagnosed between January 2001 and December 2020. Data including tumor size, lymph nodes, metastasis, histological grading, ER/PR/HER2-neu status, molecular subtypes, clinical staging); nodal findings (sentinel and axillary); pathology from frozen section; and disease outcomes were assessed. Multivariable regression and Kaplan-Meier survival curves were employed to indicate the association of NLR with breast cancer features and disease-free survival. A total of 2050 patients had a median age of 50 years, median NLR levels of 2.14, most common pathology ductal followed by lobular, and most common site of metastasis being lungs followed by bones. Disease-free rate was 7.6%, and a recurrence rate of 1.8%, while 1.6% deaths were reported. NLR was found associated with age, treatment outcomes, tumor size, lymph nodes, metastasis and clinical staging. Other positive correlations were with Ki67 proliferation index, molecular subtypes, and tumor size on frozen section (at transverse and craniocaudal dimensions). Negative correlations were seen with estrogen and progesterone receptors. However, NLR was not found predictable of disease-free survival (P = .160). Significant predictors of disease-free survival were histological grading, ER, PR status, molecular subtype, and Ki67 proliferation index. NLR being a readily available marker has shown novel findings in its association with tumor staging, disease outcomes and characteristics of breast malignancy.
Collapse
Affiliation(s)
| | - Rufina Soomro
- Department of General Surgery, Liaquat National Hospital and Medical College, Karachi, Pakistan
| | | | | | - Sadia Iqbal
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Farah Yasmin
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Hala Najeeb
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Nida Saleem
- Department of Nephrology, Dow University of Health Sciences, Karachi, Pakistan
| | - Namiya Cho
- Department of Nephrology, Dow University of Health Sciences, Karachi, Pakistan
| | - Resham
- Department of General Surgery, Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Taha Gul Shaikh
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | | | - Muhammad Zain Khalid
- Department of General Surgery, Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Sarosh Alvi
- Teaching Assistant, Faculty of Medicine, University of Bakht Al-Ruda, Khartoum, Sudan
| | | | | |
Collapse
|
52
|
Zahari S, Syafruddin SE, Mohtar MA. Impact of the Cancer Cell Secretome in Driving Breast Cancer Progression. Cancers (Basel) 2023; 15:2653. [PMID: 37174117 PMCID: PMC10177134 DOI: 10.3390/cancers15092653] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Breast cancer is a complex and heterogeneous disease resulting from the accumulation of genetic and epigenetic alterations in breast epithelial cells. Despite remarkable progress in diagnosis and treatment, breast cancer continues to be the most prevalent cancer affecting women worldwide. Recent research has uncovered a compelling link between breast cancer onset and the extracellular environment enveloping tumor cells. The complex network of proteins secreted by cancer cells and other cellular components within the tumor microenvironment has emerged as a critical player in driving the disease's metastatic properties. Specifically, the proteins released by the tumor cells termed the secretome, can significantly influence the progression and metastasis of breast cancer. The breast cancer cell secretome promotes tumorigenesis through its ability to modulate growth-associated signaling pathways, reshaping the tumor microenvironment, supporting pre-metastatic niche formation, and facilitating immunosurveillance evasion. Additionally, the secretome has been shown to play a crucial role in drug resistance development, making it an attractive target for cancer therapy. Understanding the intricate role of the cancer cell secretome in breast cancer progression will provide new insights into the underlying mechanisms of this disease and aid in the development of more innovative therapeutic interventions. Hence, this review provides a nuanced analysis of the impact of the cancer cell secretome on breast cancer progression, elucidates the complex reciprocal interaction with the components of the tumor microenvironment and highlights emerging therapeutic opportunities for targeting the constituents of the secretome.
Collapse
Affiliation(s)
| | | | - M. Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (S.Z.); (S.E.S.)
| |
Collapse
|
53
|
Lenka S, Bhola RK, Varanasi PR, Bhuyan SK, Bhuyan R. Understanding the functional relevance of oral neutrophils, phenotype and properties in OSCC. Med Oncol 2023; 40:134. [PMID: 37010645 DOI: 10.1007/s12032-023-02010-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023]
Abstract
Neutrophils are the predominant white blood cells (WBC) that are recruited to the sites of inflammation and infection. They are acknowledged to perform dual roles by promoting (pro-tumor) or by exhibiting anti-cancer properties (anti-tumor). Neutrophils are characterized based on the changes in phenotype and functional properties. To this context, circulating polymorphonuclear neutrophils (cPMN) and tumor-associated neutrophils (TANs) in cancer biology has been well explored but limited to oral polymorphonuclear neutrophils (oPMNs) in oral squamous cell carcinoma (OSCC). However, oPMNs are eminent in maintaining the healthy oral ecosystem by neutralizing microorganisms. Neutralization process enhances the expression of cell surface markers (CD11b, CD63, CD66, CD66b, CD66c, and CD66e) and inflammatory cytokines (TNF-α, IFN-γ, GM-CSF, and IL-8) and increases the recruitment of neutrophils. Along with the inflammation, it has been reported that CEACAM1 and chemerin also favors the infiltration of neutrophils to the cancer site. This indicates that oPMN might contribute to the aetiology of OSCC. The main objective of this review is to explore, the production and migration of oPMNs to the oral cavity, their phenotypes and possible role in OSCC.
Collapse
Affiliation(s)
- Sudhansubala Lenka
- Department of Medical Research, IMS and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Rajesh Kumar Bhola
- Department of Pathology, IMS and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Pavankumar R Varanasi
- Department of Medical Research, IMS and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Sanat Kumar Bhuyan
- Department of Oral Medicine and Radiology, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Ruchi Bhuyan
- Department of Medical Research, IMS and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India.
- Department of Oral Pathology and Microbiology, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be) University, Bhubaneswar, 751003, India.
| |
Collapse
|
54
|
Hashemi M, Paskeh MDA, Orouei S, Abbasi P, Khorrami R, Dehghanpour A, Esmaeili N, Ghahremanzade A, Zandieh MA, Peymani M, Salimimoghadam S, Rashidi M, Taheriazam A, Entezari M, Hushmandi K. Towards dual function of autophagy in breast cancer: A potent regulator of tumor progression and therapy response. Biomed Pharmacother 2023; 161:114546. [PMID: 36958191 DOI: 10.1016/j.biopha.2023.114546] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
As a devastating disease, breast cancer has been responsible for decrease in life expectancy of females and its morbidity and mortality are high. Breast cancer is the most common tumor in females and its treatment has been based on employment of surgical resection, chemotherapy and radiotherapy. The changes in biological behavior of breast tumor relies on genomic and epigenetic mutations and depletions as well as dysregulation of molecular mechanisms that autophagy is among them. Autophagy function can be oncogenic in increasing tumorigenesis, and when it has pro-death function, it causes reduction in viability of tumor cells. The carcinogenic function of autophagy in breast tumor is an impediment towards effective therapy of patients, as it can cause drug resistance and radio-resistance. The important hallmarks of breast tumor such as glucose metabolism, proliferation, apoptosis and metastasis can be regulated by autophagy. Oncogenic autophagy can inhibit apoptosis, while it promotes stemness of breast tumor. Moreover, autophagy demonstrates interaction with tumor microenvironment components such as macrophages and its level can be regulated by anti-tumor compounds in breast tumor therapy. The reasons of considering autophagy in breast cancer therapy is its pleiotropic function, dual role (pro-survival and pro-death) and crosstalk with important molecular mechanisms such as apoptosis. Moreover, current review provides a pre-clinical and clinical evaluation of autophagy in breast tumor.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Orouei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pegah Abbasi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esmaeili
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azin Ghahremanzade
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari 4815733971, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
55
|
Ben Hamouda S, Essafi-Benkhadir K. Interplay between Signaling Pathways and Tumor Microenvironment Components: A Paradoxical Role in Colorectal Cancer. Int J Mol Sci 2023; 24:ijms24065600. [PMID: 36982677 PMCID: PMC10057671 DOI: 10.3390/ijms24065600] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
The study of the tumor microenvironment (TME) has become an important part of colorectal cancer (CRC) research. Indeed, it is now accepted that the invasive character of a primary CRC is determined not only by the genotype of the tumor cells, but also by their interactions with the extracellular environment, which thereby orchestrates the development of the tumor. In fact, the TME cells are a double-edged sword as they play both pro- and anti-tumor roles. The interaction of the tumor-infiltrating cells (TIC) with the cancer cells induces the polarization of the TIC, exhibiting an antagonist phenotype. This polarization is controlled by a plethora of interconnected pro- and anti-oncogenic signaling pathways. The complexity of this interaction and the dual function of these different actors contribute to the failure of CRC control. Thus, a better understanding of such mechanisms is of great interest and provides new opportunities for the development of personalized and efficient therapies for CRC. In this review, we summarize the signaling pathways linked to CRC and their implication in the development or inhibition of the tumor initiation and progression. In the second part, we enlist the major components of the TME and discuss the complexity of their cells functions.
Collapse
|
56
|
Missiaen R, Lesner NP, Simon MC. HIF: a master regulator of nutrient availability and metabolic cross-talk in the tumor microenvironment. EMBO J 2023; 42:e112067. [PMID: 36808622 PMCID: PMC10015374 DOI: 10.15252/embj.2022112067] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 02/22/2023] Open
Abstract
A role for hypoxia-inducible factors (HIFs) in hypoxia-dependent regulation of tumor cell metabolism has been thoroughly investigated and covered in reviews. However, there is limited information available regarding HIF-dependent regulation of nutrient fates in tumor and stromal cells. Tumor and stromal cells may generate nutrients necessary for function (metabolic symbiosis) or deplete nutrients resulting in possible competition between tumor cells and immune cells, a result of altered nutrient fates. HIF and nutrients in the tumor microenvironment (TME) affect stromal and immune cell metabolism in addition to intrinsic tumor cell metabolism. HIF-dependent metabolic regulation will inevitably result in the accumulation or depletion of essential metabolites in the TME. In response, various cell types in the TME will respond to these hypoxia-dependent alterations by activating HIF-dependent transcription to alter nutrient import, export, and utilization. In recent years, the concept of metabolic competition has been proposed for critical substrates, including glucose, lactate, glutamine, arginine, and tryptophan. In this review, we discuss how HIF-mediated mechanisms control nutrient sensing and availability in the TME, the competition for nutrients, and the metabolic cross-talk between tumor and stromal cells.
Collapse
Affiliation(s)
- Rindert Missiaen
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas P Lesner
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
57
|
Liu H, Davila Gonzalez D, Viswanath DI, Vander Pol RS, Saunders SZ, Di Trani N, Xu Y, Zheng J, Chen S, Chua CYX, Grattoni A. Sustained Intratumoral Administration of Agonist CD40 Antibody Overcomes Immunosuppressive Tumor Microenvironment in Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206873. [PMID: 36658712 PMCID: PMC10037694 DOI: 10.1002/advs.202206873] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Indexed: 06/12/2023]
Abstract
Agonist CD40 monoclonal antibodies (mAb) is a promising immunotherapeutic agent for cold-to-hot tumor immune microenvironment (TIME) conversion. Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal cancer known as an immune desert, and therefore urgently needs more effective treatment. Conventional systemic treatment fails to effectively penetrate the characteristic dense tumor stroma. Here, it is shown that sustained low-dose intratumoral delivery of CD40 mAb via the nanofluidic drug-eluting seed (NDES) can modulate the TIME to reduce tumor burden in murine models. NDES achieves tumor reduction at a fourfold lower dosage than systemic treatment while avoiding treatment-related adverse events. Further, abscopal responses are shown where intratumoral treatment yields growth inhibition in distant untreated tumors. Overall, the NDES is presented as a viable approach to penetrate the PDAC immune barrier in a minimally invasive and effective manner, for the overarching goal of transforming treatment.
Collapse
Affiliation(s)
- Hsuan‐Chen Liu
- Department of NanomedicineHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
| | - Daniel Davila Gonzalez
- Department of NanomedicineHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
| | - Dixita Ishani Viswanath
- Department of NanomedicineHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
- Texas A&M University College of Medicine2121 W Holcombe BlvdHoustonTX77003USA
| | - Robin Shae Vander Pol
- Department of NanomedicineHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
| | - Shani Zakiya Saunders
- Department of NanomedicineHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
| | - Nicola Di Trani
- Department of NanomedicineHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
| | - Yitian Xu
- Center for Immunotherapy ResearchHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
- ImmunoMonitoring CoreHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
| | - Junjun Zheng
- Center for Immunotherapy ResearchHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
- ImmunoMonitoring CoreHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
| | - Shu‐Hsia Chen
- Center for Immunotherapy ResearchHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
- ImmunoMonitoring CoreHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
| | - Corrine Ying Xuan Chua
- Department of NanomedicineHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
| | - Alessandro Grattoni
- Department of NanomedicineHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
- Department of SurgeryHouston Methodist Hospital6565 Fannin St.HoustonTX77003USA
- Department of Radiation OncologyHouston Methodist Hospital6565 Fannin St.HoustonTX77003USA
| |
Collapse
|
58
|
Tian H, Cao J, Li B, Nice EC, Mao H, Zhang Y, Huang C. Managing the immune microenvironment of osteosarcoma: the outlook for osteosarcoma treatment. Bone Res 2023; 11:11. [PMID: 36849442 PMCID: PMC9971189 DOI: 10.1038/s41413-023-00246-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 03/01/2023] Open
Abstract
Osteosarcoma, with poor survival after metastasis, is considered the most common primary bone cancer in adolescents. Notwithstanding the efforts of researchers, its five-year survival rate has only shown limited improvement, suggesting that existing therapeutic strategies are insufficient to meet clinical needs. Notably, immunotherapy has shown certain advantages over traditional tumor treatments in inhibiting metastasis. Therefore, managing the immune microenvironment in osteosarcoma can provide novel and valuable insight into the multifaceted mechanisms underlying the heterogeneity and progression of the disease. Additionally, given the advances in nanomedicine, there exist many advanced nanoplatforms for enhanced osteosarcoma immunotherapy with satisfactory physiochemical characteristics. Here, we review the classification, characteristics, and functions of the key components of the immune microenvironment in osteosarcoma. This review also emphasizes the application, progress, and prospects of osteosarcoma immunotherapy and discusses several nanomedicine-based options to enhance the efficiency of osteosarcoma treatment. Furthermore, we examine the disadvantages of standard treatments and present future perspectives for osteosarcoma immunotherapy.
Collapse
Affiliation(s)
- Hailong Tian
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Jiangjun Cao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Bowen Li
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Edouard C. Nice
- grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800 Australia
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315020, People's Republic of China.
| | - Yi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
59
|
Goodin DA, Frieboes HB. Evaluation of innate and adaptive immune system interactions in the tumor microenvironment via a 3D continuum model. J Theor Biol 2023; 559:111383. [PMID: 36539112 DOI: 10.1016/j.jtbi.2022.111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Immune cells in the tumor microenvironment (TME) are known to affect tumor growth, vascularization, and extracellular matrix (ECM) deposition. Marked interest in system-scale analysis of immune species interactions within the TME has encouraged progress in modeling tumor-immune interactions in silico. Due to the computational cost of simulating these intricate interactions, models have typically been constrained to representing a limited number of immune species. To expand the capability for system-scale analysis, this study develops a three-dimensional continuum mixture model of tumor-immune interactions to simulate multiple immune species in the TME. Building upon a recent distributed computing implementation that enables efficient solution of such mixture models, major immune species including monocytes, macrophages, natural killer cells, dendritic cells, neutrophils, myeloid-derived suppressor cells (MDSC), cytotoxic, helper, regulatory T-cells, and effector and regulatory B-cells and their interactions are represented in this novel implementation. Immune species extravasate from blood vasculature, undergo chemotaxis toward regions of high chemokine concentration, and influence the TME in proportion to locally defined levels of stimulation. The immune species contribute to the production of angiogenic and tumor growth factors, promotion of myofibroblast deposition of ECM, upregulation of angiogenesis, and elimination of living and dead tumor species. The results show that this modeling approach offers the capability for quantitative insight into the modulation of tumor growth by diverse immune-tumor interactions and immune-driven TME effects. In particular, MDSC-mediated effects on tumor-associated immune species' activation levels, volume fraction, and influence on the TME are explored. Longer term, linking of the model parameters to particular patient tumor information could simulate cancer-specific immune responses and move toward a more comprehensive evaluation of immunotherapeutic strategies.
Collapse
Affiliation(s)
- Dylan A Goodin
- Department of Bioengineering, University of Louisville, KY, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, KY, USA; James Graham Brown Cancer Center, University of Louisville, KY, USA; Center for Predictive Medicine, University of Louisville, KY, USA.
| |
Collapse
|
60
|
Messex JK, Liou GY. Impact of Immune Cells in the Tumor Microenvironment of Prostate Cancer Metastasis. Life (Basel) 2023; 13:333. [PMID: 36836690 PMCID: PMC9967893 DOI: 10.3390/life13020333] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Prostate cancer is the most prevalent type of cancer in senior American men. Currently, the five-year survival rate after the initial diagnosis of prostate cancer is close to 100%. However, it is also the second leading cause of cancer death in senior men due to the dissemination of prostate cancer cells outside of the prostate causing growth in other organs, known as metastatic prostate cancer. The tumor microenvironment (TME) plays a critical role in the development, progression and metastasis of prostate cancer. One of the major components of the TME contains various types of immune cells, often recruited by cancer cells to the cancer formation areas. The interactions among prostate cancer cells and the infiltrating immune cells affect the outcome of prostate cancer. Here, we summarize the mechanisms various infiltrating immune cells use to regulate prostate cancer metastasis and possibly lead to the development of treatment strategies. Furthermore, the information here may also give rise to preventative strategies that focus on targeting the TME of prostate cancer patients.
Collapse
Affiliation(s)
- Justin K. Messex
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Geou-Yarh Liou
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
- Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA
| |
Collapse
|
61
|
Martinez-Cannon BA, Garcia-Ronquillo K, Rivera-Franco MM, Leon-Rodriguez E. Do circulating neutrophil extracellular traps predict recurrence in early breast cancer? Front Oncol 2023; 12:1044611. [PMID: 36727077 PMCID: PMC9885139 DOI: 10.3389/fonc.2022.1044611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/26/2022] [Indexed: 01/18/2023] Open
Abstract
Background Neutrophil extracellular traps (NETs), three-dimensional structures formed by neutrophil enzymes such as neutrophil elastase (NE) and nuclear components (DNA), have been associated with progression and metastasis in breast cancer (BC). Thus, the aim of this study was to evaluate the association of circulating NETs with clinicopathological characteristics and outcomes in early BC. Methods A prospective cohort included women with newly diagnosed early BC. NETs were defined as the presence of NE-DNA complexes in plasma, measured by optical density. Levels of NETs were dichotomized according to the median, as low and high levels of circulating NETs. Fisher's exact test was used to evaluate associations between NETs and clinicopathological characteristics and outcomes. Survival was assessed using the Kaplan Meier method and log-rank test. Results Forty patients were included, 23 (57.5%) patients with low and 17 (42.5%) with high levels of circulating NETs. No associations were found between clinicopathological characteristics and circulating NETs levels. Recurrence (p = 0.99) and site of recurrence (p = 0.99) were not statistically associated with plasma NETs levels. Overall, recurrence-free survival was not statistically different between circulating levels of NETs. Conclusions With a short follow-up and low number of events, our results suggest that circulating levels of NETs at diagnosis of early BC are not associated with more aggressive clinicopathological characteristics, recurrence, or site of recurrence.
Collapse
Affiliation(s)
| | - Karen Garcia-Ronquillo
- Hematology-Oncology Department, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Monica M. Rivera-Franco
- Eurocord, Hôpital Saint-Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
| | - Eucario Leon-Rodriguez
- Hematology-Oncology Department, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico,*Correspondence: Eucario Leon-Rodriguez,
| |
Collapse
|
62
|
Lin J, Yan J, Deng XL, Wang CS, Wang HS. SPATS2 is correlated with cell cycle progression and immune cells infiltration in hepatocellular carcinoma. BMC Gastroenterol 2023; 23:8. [PMID: 36631750 PMCID: PMC9832668 DOI: 10.1186/s12876-022-02633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
The spermatogenesis associated serine rich 2 (SPATS2) is a member of RNA-binding protein in which the abnormal expression is linked with carcinogenesis in serval types of cancer. However, there is no systematic study on the differential expression, prognostic significance, epigenetic regulation, immune infiltration of SPATS2 in hepatocellular carcinoma (HCC). In the present study, we investigated the expression, prognosis, epigenetic regulation, and immune cell infiltration of SPATS2 in HCC. We found that the elevated expression of SPATS2 was unfavorably associated with the clinical pathological stage and prognosis. Functional enrichment analysis revealed that SPATS2 is associated with cell cycle, apoptosis and cancer cell metastasis processes in HCC. Our results confirmed that knockdown of SPATS2 will affect cell cycle, apoptosis and invasion of HCC cell lines. Moreover, the expression of SPATS2 is upregulated by epigenetic regulation, including DNA methylation, m6A and histone modification in HCC. In addition, SPATS2 expression was positively correlated with immune cell infiltration or expression of immune related gene markers in HCC. Taken together, our data demonstrated that SPATS2 is associated with progression and immune infiltration, and could serve as a prognostic biomarker for HCC. In conclusion, these results highlight the potential of SPATS2 to be used as a therapeutic target for HCC.
Collapse
Affiliation(s)
- Jing Lin
- grid.411643.50000 0004 1761 0411College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia China
| | - Jia Yan
- grid.410612.00000 0004 0604 6392School of Basic Medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia China
| | - Xiu ling Deng
- grid.410612.00000 0004 0604 6392School of Basic Medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia China
| | - Chang shan Wang
- grid.411643.50000 0004 1761 0411College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia China
| | - Hai sheng Wang
- grid.410612.00000 0004 0604 6392School of Basic Medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia China
| |
Collapse
|
63
|
Liguori C, Copparoni C, Felicetti C, Pecci F, Lupi A, Pinterpe G, Berardi R, Giampieri R. Hemoglobin and Neutrophil Count as Prognostic Factors in Cholangiocarcinoma Patients in 2nd Line Treatment Setting: Results from a Small Monocentric Retrospective Study. Curr Oncol 2023; 30:1032-1045. [PMID: 36661728 PMCID: PMC9857714 DOI: 10.3390/curroncol30010079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Background: Unresectable cholangiocarcinoma prognosis can be extremely variable due to different symptoms and sites of disease involvement at diagnosis and unpredictable chemotherapy response rates. Most patients will usually receive 1st line palliative chemotherapy with platinum compounds and Gemcitabine or Gemcitabine alone. Only a few patients maintain adequate performance status after first-line treatment failure: second-line treatment with FOLFOX or FOLFIRI chemotherapy has been used in this setting with modest overall survival improvement. There is a lack of data concerning whether laboratory findings might help clinicians in identifying those patients with the highest likelihood of benefiting from 2nd line treatment. The aim of this analysis is to assess the prognostic role of a series of easily available laboratory tests in patients with bile duct cancer who received 2nd line chemotherapy. Patients and Methods: Patients with unresectable bile duct cancer treated in 2nd-line setting with platinum-based chemotherapy doublet or FOLFIRI were enrolled. The primary objective of the analysis was to assess overall survival (OS) differences among patients based on the results of lab tests. Serum hemoglobin, neutrophil, lymphocyte, monocyte, platelet absolute count, creatinine, total bilirubin, albumin, LDH, circulating CEA and CA19.9 values were collected at the start of 2nd line treatment. Cut-off values for all lab tests were set by ROC curve analysis. Survival was calculated by the Kaplan−Meier method and differences in survival among stratification factors were assessed by Log-rank test. Cox-proportional-hazard regression was used for multivariate analysis. Level of statistical significance p was set at 0.05 for all tests. Correction for false discovery error rate was performed by Holm’s stepdown procedure. Results: A total of 46 patients were eligible. Median overall survival of the entire cohort was 8.98 months (95%CI: 6.68−13.93) while mean OS was 17.10 months (standard error: 3.16). Using 6.2 months OS landmark as classification variable for ROC curve analysis, only serum hemoglobin (cut-off: >10 g/dL), albumin (cut-off: >3.5 mg/dL), CA19.9 (cut-off: ≤668 UI/mL), monocyte (cut-off: ≤510/mmc) and neutrophil count (cut-off: ≤5140/mmc) were significantly associated with the chosen end-point. Multivariate analysis confirmed an independent statistically significant impact on overall survival only for hemoglobin (Exp(b): 0.12, p = 0.0023) and neutrophil count (Exp(b): 0.30, p = 0.0039). Based on these results, using both hemoglobin and neutrophil count, three prognostic groups were defined: patients with both favorable factors had 12.63 months median OS vs. 6.75 months of patients with only one favorable factor vs. 1.31 months of those with neither. The difference between these three groups of patients was statistically significant (p < 0.0001). Discussion: Second-line palliative chemotherapy can be a potentially useful option for a few patients with unresectable/metastatic bile duct cancer. Even though assessment of patients’ prognosis might be difficult due to the complex behavior of this disease, a series of easily available laboratory tests might be used for these means: serum hemoglobin and neutrophil count we0re able to define subsets of patients with entirely different prognoses. It is hoped that this score will be prospectively validated in a larger group of patients in order to improve treatment decisions in patients with unresectable bile duct cancer candidate to receive palliative 2nd line chemotherapy.
Collapse
Affiliation(s)
- Carolina Liguori
- Clinica Oncologica, Dipartimento Scienze Cliniche e Molecolari, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Cecilia Copparoni
- Clinica Oncologica, Dipartimento Scienze Cliniche e Molecolari, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Cristiano Felicetti
- Clinica Oncologica, Dipartimento Scienze Cliniche e Molecolari, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Federica Pecci
- Clinica Oncologica, Dipartimento Scienze Cliniche e Molecolari, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Alessio Lupi
- Clinica Oncologica, Dipartimento Scienze Cliniche e Molecolari, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Giada Pinterpe
- Clinica Oncologica, Dipartimento Scienze Cliniche e Molecolari, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Rossana Berardi
- Clinica Oncologica, Dipartimento Scienze Cliniche e Molecolari, Università Politecnica delle Marche, 60121 Ancona, Italy
- Clinica Oncologica, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| | - Riccardo Giampieri
- Clinica Oncologica, Dipartimento Scienze Cliniche e Molecolari, Università Politecnica delle Marche, 60121 Ancona, Italy
- Clinica Oncologica, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| |
Collapse
|
64
|
The Tumor Microenvironment in Tumorigenesis and Therapy Resistance Revisited. Cancers (Basel) 2023; 15:cancers15020376. [PMID: 36672326 PMCID: PMC9856874 DOI: 10.3390/cancers15020376] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Tumorigenesis is a complex and dynamic process involving cell-cell and cell-extracellular matrix (ECM) interactions that allow tumor cell growth, drug resistance and metastasis. This review provides an updated summary of the role played by the tumor microenvironment (TME) components and hypoxia in tumorigenesis, and highlight various ways through which tumor cells reprogram normal cells into phenotypes that are pro-tumorigenic, including cancer associated- fibroblasts, -macrophages and -endothelial cells. Tumor cells secrete numerous factors leading to the transformation of a previously anti-tumorigenic environment into a pro-tumorigenic environment. Once formed, solid tumors continue to interact with various stromal cells, including local and infiltrating fibroblasts, macrophages, mesenchymal stem cells, endothelial cells, pericytes, and secreted factors and the ECM within the tumor microenvironment (TME). The TME is key to tumorigenesis, drug response and treatment outcome. Importantly, stromal cells and secreted factors can initially be anti-tumorigenic, but over time promote tumorigenesis and induce therapy resistance. To counter hypoxia, increased angiogenesis leads to the formation of new vascular networks in order to actively promote and sustain tumor growth via the supply of oxygen and nutrients, whilst removing metabolic waste. Angiogenic vascular network formation aid in tumor cell metastatic dissemination. Successful tumor treatment and novel drug development require the identification and therapeutic targeting of pro-tumorigenic components of the TME including cancer-associated- fibroblasts (CAFs) and -macrophages (CAMs), hypoxia, blocking ECM-receptor interactions, in addition to the targeting of tumor cells. The reprogramming of stromal cells and the immune response to be anti-tumorigenic is key to therapeutic success. Lastly, this review highlights potential TME- and hypoxia-centered therapies under investigation.
Collapse
|
65
|
Chan L, Wood GA, Wootton SK, Bridle BW, Karimi K. Neutrophils in Dendritic Cell-Based Cancer Vaccination: The Potential Roles of Neutrophil Extracellular Trap Formation. Int J Mol Sci 2023; 24:ijms24020896. [PMID: 36674412 PMCID: PMC9866544 DOI: 10.3390/ijms24020896] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Neutrophils have conflicting roles in the context of cancers, where they have been associated with contributing to both anti-tumor and pro-tumor responses. Their functional heterogenicity is plastic and can be manipulated by environmental stimuli, which has fueled an area of research investigating therapeutic strategies targeting neutrophils. Dendritic cell (DC)-based cancer vaccination is an immunotherapy that has exhibited clinical promise but has shown limited clinical efficacy. Enhancing our understanding of the communications occurring during DC cancer vaccination can uncover opportunities for enhancing the DC vaccine platform. There have been observed communications between neutrophils and DCs during natural immune responses. However, their crosstalk has been poorly studied in the context of DC vaccination. Here, we review the dual functionality of neutrophils in the context of cancers, describe the crosstalk between neutrophils and DCs during immune responses, and discuss their implications in DC cancer vaccination. This discussion will focus on how neutrophil extracellular traps can influence immune responses in the tumor microenvironment and what roles they may play in promoting or hindering DC vaccine-induced anti-tumor efficacy.
Collapse
Affiliation(s)
- Lily Chan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Geoffrey A. Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sarah K. Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Byram W. Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence: ; Tel.: +1-(519)-824-4120 (ext. 54668)
| |
Collapse
|
66
|
Liu J, Wang Z, Liu G, Liu Z, Lu H, Ji S. Assessment of Naples prognostic score in predicting survival for small cell lung cancer patients treated with chemoradiotherapy. Ann Med 2023; 55:2242254. [PMID: 37552770 PMCID: PMC10411310 DOI: 10.1080/07853890.2023.2242254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/08/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUNDS The Naples prognosis score (NPS) is a novel prognostic biomarker-based immune and nutritional status and that can be used to evaluate prognosis. Our study aimed to investigate the prognostic role of NPS in SCLC patients. METHODS Patients treated with chemoradiotherapy were retrospectively analyzed between June 2012 and August 2017. We divided patients into three groups depending on the NPS: group 0, n = 31; group 1, n = 100; and group 2, n = 48, and associations between clinical characteristics and NPS group were analyzed. The univariable and multivariable Cox analyses were used to evaluate the prognostic value of clinicopathological characteristics and laboratory indicators for overall survival (OS) and progression-free survival (PFS). RESULTS Data from 179 patients were analyzed. Treatment modality (p < 0.001) and serum CEA (p = 0.03) were significantly different among the NPS groups. The age, sex, smoking status, KPS, Karnofsky performance score (KPS), disease extent, and number of metastatic sites were not correlated with NPS (all p > 0.05). KPS, disease extent, prophylactic cranial irradiation, treatment response and NPS Group were associated with OS. In addition, KPS, disease extent, prophylactic cranial irradiation, treatment response and NPS Group were associated with PFS. Multivariate analysis results showed that NPS was identified as an independent prognostic factor for OS (Group 1: hazard ratio [HR] = 2.704, 95% confidence interval [CI] = 1.403-5.210; p = 0.003; Group 2: HR = 5.154, 95% CI = 2.614-10.166; p < 0.001) and PFS (Group 1: HR = 2.018, 95% CI = 1.014-4.014; p = 0.045; Group 2: HR = 3.339, 95% CI = 1.650-6.756; p = 0.001). CONCLUSIONS NPS is related to clinical outcomes in patients with SCLC.
Collapse
Affiliation(s)
- Jiafeng Liu
- Department of Radiotherapy & Oncology, Rizhao Central Hospital, Rizhao, China
| | - Zuosheng Wang
- Department of Radiotherapy & Oncology, Rizhao Central Hospital, Rizhao, China
| | - Guibao Liu
- Department of Radiotherapy & Oncology, Rizhao Central Hospital, Rizhao, China
| | - Zhengcao Liu
- Department of Radiotherapy & Oncology, The affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Huiling Lu
- Department of Radiotherapy & Oncology, The affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Shengjun Ji
- Department of Radiotherapy & Oncology, The affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
67
|
Intratumoral pro-oxidants promote cancer immunotherapy by recruiting and reprogramming neutrophils to eliminate tumors. Cancer Immunol Immunother 2023; 72:527-542. [PMID: 36066649 PMCID: PMC9446783 DOI: 10.1007/s00262-022-03248-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/23/2022] [Indexed: 11/06/2022]
Abstract
Neutrophils have recently gained recognition for their potential in the fight against cancer. Neutrophil plasticity between the N1 anti-tumor and N2 pro-tumor subtypes is now apparent, as is the ability to polarize these individual subtypes by interventions such as intratumoral injection of various agents including bacterial products or pro-oxidants. Metabolic responses and the production of reactive oxygen species (ROS) such as hydrogen peroxide act as potent chemoattractants and activators of N1 neutrophils that facilitates their recruitment and ensuing activation of a toxic respiratory burst in tumors. Greater understanding of the precise mechanism of N1 neutrophil activation, recruitment and regulation is now needed to fully exploit their anti-tumor potential against cancers both locally and at distant sites. This systematic review critically analyzes these new developments in cancer immunotherapy.
Collapse
|
68
|
da Silva A, Silva ASE, Petroianu A. Immuno-oncology in head and neck squamous cell carcinoma - a narrative review. Braz J Med Biol Res 2023; 56:e12703. [PMID: 36946842 PMCID: PMC10021498 DOI: 10.1590/1414-431x2023e12703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/09/2023] [Indexed: 03/22/2023] Open
Abstract
Immuno-oncology studies the immune system in cancer. In recent decades, immunotherapy has shown a good response to the treatment of various locally advanced and metastatic cancers. The main mechanisms of action include stimulation of the patient's own immune system to enhance immune responses acting in tumor escape pathways. This review examined the literature related to immune system mechanisms in head and neck squamous cell carcinoma (HNSCC) and their application in immunotherapy using biomarkers. The PUBMED, LILACS, MEDLINE, WHOLIS, and SCIELO databases were searched using the terms squamous cell carcinoma, head and neck, immuno-oncology, immunotherapy, and immunology. The main drugs currently available for clinical use in patients diagnosed with HNSCC include pembrolizumab and nivolumab, both classified as check-point inhibitors. These immunobiological agents improve patient survival and quality of life. Many authors and clinical trials point out that the recommendation of these agents is linked to the dose of PD-L1 (ligand expressed primarily by tumor cells), which proved to be an unreliable biomarker in the patient selection. Recommendation of immunotherapy depends on reliable biomarkers that must be identified in order to achieve good therapeutic results.
Collapse
Affiliation(s)
- A.T. da Silva
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - A.C. Simões e Silva
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - A. Petroianu
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| |
Collapse
|
69
|
Kim JG, Kim SI, Song SH, Gu JY, Lee M, Kim HK. Diagnostic and prognostic role of circulating neutrophil extracellular trap markers and prekallikrein in patients with high-grade serous ovarian cancer. Front Oncol 2022; 12:992056. [PMID: 36620601 PMCID: PMC9813379 DOI: 10.3389/fonc.2022.992056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Objective Tumor-promoting inflammation is among the hallmarks of cancer. Prekallikrein is among the acute-phase reactants in the inflammatory response; moreover, neutrophils release nuclear contents into the extracellular space to create neutrophil extracellular traps (NET). We aimed to investigate the diagnostic and prognostic utilities of circulating plasma NET markers and prekallikrein for high-grade serous ovarian cancer (HGSOC). Methods Circulating levels of three NET markers (histone-DNA complex, cell-free DNA, and neutrophil elastase) and prekallikrein were measured in 75 patients with HGSOC and 23 healthy controls. We used an area under the receiver operating characteristic curve (AUC) analysis to investigate their diagnostic and prognostic utilities for HGSOC. Results Compared with healthy controls, patients with HGSOC showed significantly higher levels of the three NET markers and prekallikrein. Patients with advanced-stage HGSOC showed significantly higher levels of the cell-free DNA (87.4 vs. 79.5 ng/ml; P = 0.013), compared with those with early-stage HGSOC. Further, the levels of histone-DNA complex, neutrophil elastase, and prekallikrein did not significantly differ according to the cancer stage. All markers showed significant diagnostic utility. Notably, a logistic regression-based model that comprised all four markers showed the strongest diagnostic power (AUC, 0.966; 95% confidence interval [CI], 0.933-1.000). Specifically, neutrophil elastase was identified as an independent poor prognostic factor for overall survival (adjusted hazard ratio [aHR], 10.17; 95% CI, 1.09-94.97; P = 0.042) and progression-free survival (aHR, 14.47; 95% CI, 1.52-137.35; P = 0.020) in patients with HGSOC. Conclusions The levels of the three NET markers and prekallikrein might be novel diagnostic and prognostic markers for HGSOC.
Collapse
Affiliation(s)
- Jisoo G. Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang Hoon Song
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea,Department of Laboratory Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Ja-Yoon Gu
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Maria Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea,Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea,*Correspondence: Maria Lee, ; Hyun Kyung Kim,
| | - Hyun Kyung Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea,Department of Laboratory Medicine, Seoul National University Hospital, Seoul, South Korea,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea,*Correspondence: Maria Lee, ; Hyun Kyung Kim,
| |
Collapse
|
70
|
Al-Saafeen BH, Al-Sbiei A, Bashir G, Mohamed YA, Masad RJ, Fernandez-Cabezudo MJ, al-Ramadi BK. Attenuated Salmonella potentiate PD-L1 blockade immunotherapy in a preclinical model of colorectal cancer. Front Immunol 2022; 13:1017780. [PMID: 36605208 PMCID: PMC9807881 DOI: 10.3389/fimmu.2022.1017780] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
The use of immune checkpoint inhibitors to treat cancer resulted in unprecedented and durable clinical benefits. However, the response rate among patients remains rather modest. Previous work from our laboratory demonstrated the efficacy of using attenuated bacteria as immunomodulatory anti-cancer agents. The current study investigated the potential of utilizing a low dose of attenuated Salmonella typhimurium to enhance the efficacy of PD-L1 blockade in a relatively immunogenic model of colon cancer. The response of MC38 tumors to treatment with αPD-L1 monoclonal antibody (mAb) was variable, with only 30% of the mice being responsive. Combined treatment with αPD-L1 mAb and Salmonella resulted in 75% inhibition of tumor growth in 100% of animals. Mechanistically, the enhanced response correlated with a decrease in the percentage of tumor-associated granulocytic cells, upregulation in MHC class II expression by intratumoral monocytes and an increase in tumor infiltration by effector T cells. Collectively, these alterations resulted in improved anti-tumor effector responses and increased apoptosis within the tumor. Thus, our study demonstrates that a novel combination treatment utilizing attenuated Salmonella and αPD-L1 mAb could improve the outcome of immunotherapy in colorectal cancer.
Collapse
Affiliation(s)
- Besan H. Al-Saafeen
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ashraf Al-Sbiei
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ghada Bashir
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Yassir A. Mohamed
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Razan J. Masad
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maria J. Fernandez-Cabezudo
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Basel K. al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates,*Correspondence: Basel K. al-Ramadi,
| |
Collapse
|
71
|
Magalhães-Gama F, Alves-Hanna FS, Araújo ND, Barros MS, Silva FS, Catão CLS, Moraes JS, Freitas IC, Tarragô AM, Malheiro A, Teixeira-Carvalho A, Costa AG. The Yin-Yang of myeloid cells in the leukemic microenvironment: Immunological role and clinical implications. Front Immunol 2022; 13:1071188. [PMID: 36532078 PMCID: PMC9751477 DOI: 10.3389/fimmu.2022.1071188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
The leukemic microenvironment has a high diversity of immune cells that are phenotypically and functionally distinct. However, our understanding of the biology, immunology, and clinical implications underlying these cells remains poorly investigated. Among the resident immune cells that can infiltrate the leukemic microenvironment are myeloid cells, which correspond to a heterogeneous cell group of the innate immune system. They encompass populations of neutrophils, macrophages, and myeloid-derived suppressor cells (MDSCs). These cells can be abundant in different tissues and, in the leukemic microenvironment, are associated with the clinical outcome of the patient, acting dichotomously to contribute to leukemic progression or stimulate antitumor immune responses. In this review, we detail the current evidence and the many mechanisms that indicate that the activation of different myeloid cell populations may contribute to immunosuppression, survival, or metastatic dissemination, as well as in immunosurveillance and stimulation of specific cytotoxic responses. Furthermore, we broadly discuss the interactions of tumor-associated neutrophils and macrophages (TANs and TAMs, respectively) and MDSCs in the leukemic microenvironment. Finally, we provide new perspectives on the potential of myeloid cell subpopulations as predictive biomarkers of therapeutical response, as well as potential targets in the chemoimmunotherapy of leukemias due to their dual Yin-Yang roles in leukemia.
Collapse
Affiliation(s)
- Fábio Magalhães-Gama
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
- Grupo Integrado de Pesquisas em Biomarcadores de Diagnóstico e Monitoração, Instituto René Rachou – FIOCRUZ Minas, Belo Horizonte, Brazil
| | - Fabíola Silva Alves-Hanna
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Nilberto Dias Araújo
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Mateus Souza Barros
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Flavio Souza Silva
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Claudio Lucas Santos Catão
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Júlia Santos Moraes
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Izabela Cabral Freitas
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Andréa Monteiro Tarragô
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Adriana Malheiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Andréa Teixeira-Carvalho
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
- Grupo Integrado de Pesquisas em Biomarcadores de Diagnóstico e Monitoração, Instituto René Rachou – FIOCRUZ Minas, Belo Horizonte, Brazil
| | - Allyson Guimarães Costa
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Escola de Enfermagem de Manaus, UFAM, Manaus, Brazil
| |
Collapse
|
72
|
Yu H, Wu M, Chen S, Song M, Yue Y. Biomimetic nanoparticles for tumor immunotherapy. Front Bioeng Biotechnol 2022; 10:989881. [PMID: 36440446 PMCID: PMC9682960 DOI: 10.3389/fbioe.2022.989881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/26/2022] [Indexed: 12/11/2023] Open
Abstract
Currently, tumor treatment research still focuses on the cancer cells themselves, but the fact that the immune system plays an important role in inhibiting tumor development cannot be ignored. The activation of the immune system depends on the difference between self and non-self. Unfortunately, cancer is characterized by genetic changes in the host cells that lead to uncontrolled cell proliferation and evade immune surveillance. Cancer immunotherapy aims to coordinate a patient's immune system to target, fight, and destroy cancer cells without destroying the normal cells. Nevertheless, antitumor immunity driven by the autoimmune system alone may be inadequate for treatment. The development of drug delivery systems (DDS) based on nanoparticles can not only promote immunotherapy but also improve the immunosuppressive tumor microenvironment (ITM), which provides promising strategies for cancer treatment. However, conventional nano drug delivery systems (NDDS) are subject to several limitations in clinical transformation, such as immunogenicity and the potential toxicity risks of the carrier materials, premature drug leakage at off-target sites during circulation and drug load content. In order to address these limitations, this paper reviews the trends and progress of biomimetic NDDS and discusses the applications of each biomimetic system in tumor immunotherapy. Furthermore, we review the various combination immunotherapies based on biomimetic NDDS and key considerations for clinical transformation.
Collapse
Affiliation(s)
- Hanqing Yu
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Meng Wu
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Siyu Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Mingming Song
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yulin Yue
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
73
|
Alpha-1 Antitrypsin Inhibits Tumorigenesis and Progression of Colitis-Associated Colon Cancer through Suppression of Inflammatory Neutrophil-Activated Serine Proteases and IGFBP-3 Proteolysis. Int J Mol Sci 2022; 23:ijms232213737. [PMID: 36430216 PMCID: PMC9698049 DOI: 10.3390/ijms232213737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Colitis-associated colon cancer (CAC) accompanies the massive infiltration of neutrophils during tumorigenesis and progression of CAC. Depletion of neutrophils in circulation results in significant inhibition of tumor incidence in CAC. However, the underlying mechanisms are largely unclear. In this study, we provide evidence for the crucial involvement of inflammatory neutrophil-activated serine proteases (NSPs) on the dysregulation of the anti-inflammatory and antitumor IGFBP-3/IGFBP-3R signaling axis in CAC using a chronic AOM/DSS mouse model. We also provide preclinical evidence for α1-antitrypsin (AAT) as a preventive and as a therapeutic for CAC. AAT administration not only prevented colitis-associated tumorigenesis but also inhibited established CAC. AOM/DSS treatment results in the significant activation of NSPs, leading to CAC through increased pro-inflammatory cytokines and decreased anti-inflammatory and antitumor IGFBP-3. Collectively, these data suggest that the NSPs proteolyze IGFBP-3, whereas AAT inhibits chronic colonic inflammation-induced NSP activity and subsequently suppresses IGFBP-3 proteolysis. Therefore, the anti-inflammatory and antitumor functions of the IGFBP-3/IGFBP-3R axis are restored. AAT mimicking small peptides also showed their inhibitory effects on NSP-induced IGFBP-3 proteolysis. These results suggest that targeting the NSP-IGFBP-3/IGFBP-3R axis using NSP inhibitors such as AAT and the AAT mimics and IGFBP-3R agonists could lead to novel approaches for the prevention and treatment of CAC.
Collapse
|
74
|
Lesko P, Chovanec M, Mego M. Biomarkers of disease recurrence in stage I testicular germ cell tumours. Nat Rev Urol 2022; 19:637-658. [PMID: 36028719 DOI: 10.1038/s41585-022-00624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 11/09/2022]
Abstract
Stage I testicular cancer is a disease restricted to the testicle. After orchiectomy, patients are considered to be without disease; however, the tumour is prone to relapse in ~4-50% of patients. Current predictive markers of relapse, which are tumour size and invasion to rete testis (in seminoma) or lymphovascular invasion (in non-seminoma), have limited clinical utility and are unable to correctly predict relapse in a substantial proportion of patients. Adjuvant therapeutic strategies based on available biomarkers can lead to overtreatment of 50-85% of patients. Discovery and implementation of novel biomarkers into treatment decision making will help to reduce the burden of adjuvant treatments and improve patient selection for adjuvant therapy.
Collapse
Affiliation(s)
- Peter Lesko
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia.
| |
Collapse
|
75
|
Alptekin A, Parvin M, Chowdhury HI, Rashid MH, Arbab AS. Engineered exosomes for studies in tumor immunology. Immunol Rev 2022; 312:76-102. [PMID: 35808839 DOI: 10.1111/imr.13107] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022]
Abstract
Exosomes are a type of extracellular vesicle (EV) with diameters of 30-150 nm secreted by most of the cells into the extracellular spaces and can alter the microenvironment through cell-to-cell interactions by fusion with the plasma membrane and subsequent endocytosis and release of the cargo. Because of their biocompatibility, low toxicity and immunogenicity, permeability (even through the blood-brain barrier (BBB)), stability in biological fluids, and ability to accumulate in the lesions with higher specificity, investigators have started making designer's exosomes or engineered exosomes to carry biologically active protein on the surface or inside the exosomes as well as using exosomes to carry drugs, micro RNA, and other products to the site of interest. In this review, we have discussed biogenesis, markers, and contents of various exosomes including exosomes of immune cells. We have also discussed the current methods of making engineered and designer's exosomes as well as the use of engineered exosomes targeting different immune cells in the tumors, stroke, as well as at peripheral blood. Genetic engineering and customizing exosomes create an unlimited opportunity to use in diagnosis and treatment. Very little use has been discovered, and we are far away to reach its limits.
Collapse
Affiliation(s)
- Ahmet Alptekin
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Mahrima Parvin
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | | | | | - Ali S Arbab
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
76
|
Saleem S, Amin J, Sharif M, Mallah GA, Kadry S, Gandomi AH. Leukemia segmentation and classification: A comprehensive survey. Comput Biol Med 2022; 150:106028. [PMID: 36126356 DOI: 10.1016/j.compbiomed.2022.106028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/11/2022] [Accepted: 08/20/2022] [Indexed: 11/30/2022]
Abstract
Blood is made up of leukocytes (WBCs), erythrocytes (RBCs), and thrombocytes. The ratio of blood cancer diseases is increasing rapidly, among which leukemia is one of the famous cancer which may lead to death. Leukemia cancer is initiated by the unnecessary growth of immature WBCs present in the sponge tissues of bone marrow. It is generally analyzed by etiologists by perceiving slides of blood smear images under a microscope. The morphological features and blood cells count facilitated the etiologists to detect leukemia. Due to the late detection and expensive instruments used for leukemia analysis, the death rate has risen significantly. The fluorescence-based cell sorting technique and manual recounts using a hemocytometer are error-prone and imprecise. Leukemia detection methods consist of pre-processing, segmentation, features extraction, and classification. In this article, recent deep learning methodologies and challenges for leukemia detection are discussed. These methods are helpful to examine the microscopic blood smears images and for the detection of leukemia more accurately.
Collapse
Affiliation(s)
- Saba Saleem
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Pakistan
| | - Javaria Amin
- Department of Computer Science, University of Wah, Wah Cantt, Pakistan
| | - Muhammad Sharif
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Pakistan
| | | | - Seifedine Kadry
- Department of Applied Data Science, Noroff University College, Kristiansand, Norway; Department of Electrical and Computer Engineering, Lebanese American University, Byblos, Lebanon
| | - Amir H Gandomi
- Faculty of Engineering & Information Technology, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
77
|
Cheng X, Zhang H, Hamad A, Huang H, Tsung A. Surgery-mediated tumor-promoting effects on the immune microenvironment. Semin Cancer Biol 2022; 86:408-419. [PMID: 35066156 PMCID: PMC11770836 DOI: 10.1016/j.semcancer.2022.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
Surgical resection continues to be the mainstay treatment for solid cancers even though chemotherapy and immunotherapy have significantly improved patient overall survival and progression-free survival. Numerous studies have shown that surgery induces the dissemination of circulating tumor cells (CTCs) and that the resultant inflammatory response promotes occult tumor growth and the metastatic process by forming a supportive tumor microenvironment (TME). Surgery-induced platelet activation is one of the initial responses to a wound and the formation of fibrin clots can provide the scaffold for recruited inflammatory cells. Activated platelets can also shield CTCs to protect them from blood shear forces and promote CTCs evasion of immune destruction. Similarly, neutrophils are recruited to the fibrin clot and enhance cancer metastatic dissemination and progression by forming neutrophil extracellular traps (NETs). Activated macrophages are also recruited to surgical sites to facilitate the metastatic spread. More importantly, the body's response to surgical insult results in the recruitment and expansion of immunosuppressive cell populations (i.e. myeloid-derived suppressor cells and regulatory T cells) and in the suppression of natural killer (NK) cells that contribute to postoperative cancer recurrence and metastasis. In this review, we seek to provide an overview of the pro-tumorigenic mechanisms resulting from surgery's impact on these cells in the TME. Further understanding of these events will allow for the development of perioperative therapeutic strategies to prevent surgery-associated metastasis.
Collapse
Affiliation(s)
- Xiang Cheng
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Hongji Zhang
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Ahmad Hamad
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Hai Huang
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Allan Tsung
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
78
|
Hao B, Zhang Z, Lu Z, Xiong J, Fan T, Song C, He R, Zhang L, Pan S, Li D, Meng H, Lin W, Luo B, Yang J, Li N, Geng Q. Single-cell RNA sequencing analysis revealed cellular and molecular immune profiles in lung squamous cell carcinoma. Transl Oncol 2022; 27:101568. [PMID: 36270103 PMCID: PMC9586982 DOI: 10.1016/j.tranon.2022.101568] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/05/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Although breakthroughs have been made in the treatment of non-small cell lung cancer, there are only a few choices for advanced-stage or recurrent lung squamous cell carcinoma (LUSC) patients. In our study, we identified 7 major cell types in thedepicted the immunolandscape of LUSC microenvironment using single-cell RNA sequencing. We found that an immunosuppressive receptor, T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT), was highly expressed by regulatory T cells (Tregs) and exhausted CD8+T cells, suggesting that upregulation of TIGIT might promote an immunosuppressive microenvironment and inhibit the cytotoxic ability of CD8+T cells. We also identified tumor-associated neutrophil (TAN), characterized by CXCR2, CSF3R and CXCL8, in the tumor region, and TANs upregulated the expression of interleukin 1 receptor antagonist (IL1RN) which suggested that TAN might exert an immunosuppressive role via expressing IL1RN. Furthermore, the number of SPP1+ macrophages(SPP1+M) significantly increased in tumor microenvirnment, which was correlated with the poor survival of patients. Additionally, regulatory networks based on SPP1+M revealed that the disparities of several ligand-receptor pairs existed between tumor and normal tissues. Among these pairs, SPP1-CD44 showed the most interactions between SPP1+M and other cell types. Our results provided deep insight into the immune landscape of LUSC and an essential resource for drug discovery in the future.
Collapse
Affiliation(s)
- Bo Hao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ziyao Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zilong Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Juan Xiong
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tao Fan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lin Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shize Pan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Donghang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Heng Meng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Weichen Lin
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bin Luo
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinfeng Yang
- Department of Pathology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China,Corresponding author.
| |
Collapse
|
79
|
Lai JI, Chao TC, Liu CY, Huang CC, Tseng LM. A systemic review of taxanes and their side effects in metastatic breast cancer. Front Oncol 2022; 12:940239. [PMID: 36303832 PMCID: PMC9592970 DOI: 10.3389/fonc.2022.940239] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/02/2022] [Indexed: 12/05/2022] Open
Abstract
Taxanes-containing chemotherapy constitutes an essential backbone for both early and metastatic breast cancer (mBC). However, the two major taxane drugs—paclitaxel and docetaxel—have distinct safety profiles. In this review, we summarize the safety outcome and management following treatment with both taxanes from selected clinical trials. We utilized PubMed to perform literature search before April 2021. Five phase III randomized controlled trials with reports of individual taxane adverse events (AEs) were included in this review. Grade 3/4 AEs were summarized and discussed extensively. The rates of grade 3/4 neutropenia were higher with docetaxel than with paclitaxel. For non-hematologic grade 3/4 AEs, peripheral neuropathy was more frequent with paclitaxel while fluid retention was more frequent with docetaxel. Compared to paclitaxel, docetaxel had a higher rate of grade 3/4 gastrointestinal AEs. Grade 3/4 myalgia were generally comparable between the two taxanes. Except for neutropenia, the incidence rate of grade 3/4 AEs of taxanes was generally manageable. Peripheral neuropathy was more common with paclitaxel while grade 3/4 neutropenia was more common with docetaxel.
Collapse
Affiliation(s)
- Jiun-I. Lai
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Center of Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ta-Chung Chao
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Yu Liu
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Cheng Huang
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Experimental Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ling-Ming Tseng
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Experimental Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- *Correspondence: Ling-Ming Tseng, ;
| |
Collapse
|
80
|
Sunakawa Y, Takahashi K, Kawaguchi O, Yamamoto N. Phase I study of aflibercept in combination with docetaxel in Japanese patients with advanced solid malignancies. Invest New Drugs 2022; 40:1032-1041. [PMID: 35771301 PMCID: PMC9395466 DOI: 10.1007/s10637-022-01267-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/01/2022] [Indexed: 12/15/2022]
Abstract
Angiogenesis is a hallmark of cancer development. This study sought to determine the recommended dose of aflibercept, a recombinant fusion protein targeting VEGF-A, VEGF-B and placental growth factor (PlGF), combined with docetaxel in Japanese patients with advanced solid malignancies. This phase I study was planned to include 12 patients following a 3 + 3 algorithm to determine the maximum tolerated dose of aflibercept combined with docetaxel in patients with metastatic or unresectable solid tumors (trial registration: NCT00545246). Docetaxel (75 mg/m2 every 3 weeks or 60 mg/m2 after protocol amendment) was combined with escalating doses of aflibercept (2, 4 and 6 mg/kg every 4 weeks). Free and VEGF-bound aflibercept were measured to assess free aflibercept in excess of the VEGF-bound form. At the starting dose of the combination, 3 of 6 patients treated experienced febrile neutropenia. After reducing the docetaxel dose to 60 mg/m2 in step 2 and permitting therapeutic granulocyte colony-stimulating factor (G-CSF) use, 2 of 3 patients in both cohorts experienced febrile neutropenia. Five patients (42%) had a partial response and 4 patients had stable disease (33%). Free aflibercept in excess of the VEGF-bound form was not maintained at this dose level. The dose limiting toxicity (DLT) of aflibercept combined with docetaxel was febrile neutropenia, which occurred in 2 of 3 Japanese patients at the lowest aflibercept dose level (2 mg/kg) combined with docetaxel (60 mg/m2) and therapeutic G-CSF use. A recommended dose for further studies was not determined because of the DLT at the starting dose.
Collapse
Affiliation(s)
- Yu Sunakawa
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | | | | | - Nobuyuki Yamamoto
- Third Department of Internal Medicine, Wakayama Medical University Hospital, Wakayama, Japan.
| |
Collapse
|
81
|
Design, synthesis, and molecular docking of novel pyrazole-chalcone analogs of lonazolac as 5-LOX, iNOS and tubulin polymerization inhibitors with potential anticancer and anti-inflammatory activities. Bioorg Chem 2022; 129:106171. [PMID: 36166898 DOI: 10.1016/j.bioorg.2022.106171] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/22/2022]
Abstract
Uncontrolled inflammation predisposes to pleiotropic effects leading to cancer development thanks to promoting all stages of tumorigenesis. Therefore, cancer-associated inflammation has been delegated as the seventh hallmark of cancer. Thus, raging the war against both inflammation and cancer via the innovation of bioactive agents with dual anti-inflammatory and anticancer activities is a necessity. Herein, a novel series of pyrazole-chalcone analogs of Lonazolac (7a-g and 8a-g) have been synthesized and investigated for their in vitro anticancer activity against four cancer cell lines using the MTT assay method. Among all, hybrid 8g was the most potent against three cancer cell lines, HeLa, HCT-116, and RPMI-822 with IC50 values of 2.41, 2.41, and 3.34 µM, respectively. In contrast, hybrid 8g showed moderate inhibitory activity against MCF-7 with IC50 28.93 μM and with a selectivity profile against MCF-10A (non-cancer cells). Mechanistically, hybrid 8g was the most potent inhibitor against tubulin polymerization (IC50 = 4.77 µM), suggesting tubulin as a molecular target and explaining the observed cytotoxicity of hybrid 8g. This was mirrored by the detected potent pre-G1 apoptosis induction and G2/M cell cycle arrest. Moreover, hybrid8gexhibited selectivity against COX-2 (IC50 = 5.13 µM) more than COX-1 (IC50 = 33.46 µM), indicating that 8g may have lower cardiovascular side effects, but is still not potent as celecoxib (COX-2 IC50 = 0.204 µM, COX-1 = 35.8 µM). Notably, hybrid 8g showed promising inhibitory activity towards 5-LOX (IC50 = 5.88 µM). Finally, the anti-inflammatory activity of hybrid8 g was confirmed by high iNOS and PGE2 inhibitory activities in LPS-stimulated RAW cells with IC50 values of4.93 µM and 10.98 µM, respectively, that accompanied by showingthe most potent inhibition of NO release (70.61 % inhibition rate). Molecular docking studies of hybrid 8g confirmed good correlations with the executed biological results. Furthermore, hybrid 8g had good drug-likeness and suitable physicochemical properties. Taken together, the combined results suggested hybrid8gas a promising orally administered candidate in the journey of repurposing NSAIDs for cancer chemopreventionand treatment.
Collapse
|
82
|
Khazravi M, Shirkhoda M, Saffar H, Jalaeefar A. Prognostic Value of Lymph Node Density Compared to Pre-operative Platelet-to-Lymphocyte Ratio and Neutrophil-to-Lymphocyte Ratio in Patients with Tongue Squamous Cell Carcinoma. J Maxillofac Oral Surg 2022; 21:845-855. [PMID: 36274869 PMCID: PMC9474769 DOI: 10.1007/s12663-021-01524-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/03/2021] [Indexed: 10/22/2022] Open
Abstract
Background We aimed to investigate the prognostic significance of lymph node density (LND), and pre-operative neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) for outcome measuring in tongue squamous cell carcinoma (TSCC)' patients. Methods A total of 129 patients who underwent surgery for TSCC were enrolled in this retrospective study. LND and pre-operative NLR and PLR were used as outcome measures and their correlations with different clinicopathological features were examined. Results The cutoff values for NLR, PLR, and LND were obtained 1.21, 97.81, and 0.02, respectively, by receiver operating characteristic (ROC) curve approach. Only LND was found to be significantly associated with decreased overall survival (HR = 4.24; 95% CI 1.49-12.10; P = 0.007) and disease-free survival (HR = 3.48; 95% CI 1.43-8.45; P = 0.006) both in univariate and multivariate analyzes. Conclusion Based on the findings, the LND has superiority over pre-operative NLR and PLR in predicting outcomes for the patients with TSCC.
Collapse
Affiliation(s)
- Mona Khazravi
- Department of Surgical Oncology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Research Center of Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Shirkhoda
- Department of Surgical Oncology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hana Saffar
- Department of Pathology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohsen Jalaeefar
- Department of Surgical Oncology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Research Center of Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
83
|
Neutrophil Transcriptional Deregulation by the Periodontal Pathogen Fusobacterium nucleatum in Gastric Cancer: A Bioinformatic Study. DISEASE MARKERS 2022; 2022:9584507. [PMID: 36033825 PMCID: PMC9410804 DOI: 10.1155/2022/9584507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/27/2022]
Abstract
Background Infection with the periodontal pathogen Fusobacterium nucleatum (F. nucleatum) has been associated with gastric cancer. The present study is aimed at uncovering the putative biological mechanisms underlying effects of F. nucleatum–mediated neutrophil transcriptional deregulation in gastric cancer. Materials and Methods A gene expression dataset pertaining to F. nucleatum-infected human neutrophils was utilized to identify differentially expressed genes (DEGs) using the GEO2R tool. Candidate genes associated with gastric cancer were sourced from the “Candidate Cancer Gene Database” (CCGD). Overlapping genes among these were identified as link genes. Functional profiling of the link genes was performed using “g:Profiler” tool to identify enriched Gene Ontology (GO) terms, pathways, miRNAs, transcription factors, and human phenotype ontology terms. Protein-protein interaction (PPI) network was constructed for the link genes using the “STRING” tool, hub nodes were identified as key candidate genes, and functionally enriched terms were determined. Results The gene expression dataset GEO20151 was downloaded, and 589 DEGs were identified through differential analysis. 886 candidate gastric cancer genes were identified in the CGGD database. Among these, 36 overlapping genes were identified as the link genes. Enriched GO terms included molecular function “enzyme building,” biological process “protein folding,'” cellular components related to membrane-bound organelles, transcription factors ER71 and Sp1, miRNAs miR580 and miR155, and several human phenotype ontology terms including squamous epithelium of esophagus. The PPI network contained 36 nodes and 53 edges, where the top nodes included PH4 and CANX, and functional terms related to intracellular membrane trafficking were enriched. Conclusion F nucleatum-induced neutrophil transcriptional activation may be implicated in gastric cancer via several candidate genes including DNAJB1, EHD1, IER2, CANX, and PH4B. Functional analysis revealed membrane-bound organelle dysfunction, intracellular trafficking, transcription factors ER71 and Sp1, and miRNAs miR580 and miR155 as other candidate mechanisms, which should be investigated in experimental studies.
Collapse
|
84
|
Yan M, Zheng M, Niu R, Yang X, Tian S, Fan L, Li Y, Zhang S. Roles of tumor-associated neutrophils in tumor metastasis and its clinical applications. Front Cell Dev Biol 2022; 10:938289. [PMID: 36060811 PMCID: PMC9428510 DOI: 10.3389/fcell.2022.938289] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/19/2022] [Indexed: 12/03/2022] Open
Abstract
Metastasis, a primary cause of death in patients with malignancies, is promoted by intrinsic changes in both tumor and non-malignant cells in the tumor microenvironment (TME). As major components of the TME, tumor-associated neutrophils (TANs) promote tumor progression and metastasis through communication with multiple growth factors, chemokines, inflammatory factors, and other immune cells, which together establish an immunosuppressive TME. In this review, we describe the potential mechanisms by which TANs participate in tumor metastasis based on recent experimental evidence. We have focused on drugs in chemotherapeutic regimens that target TANs, thereby providing a promising future for cancer immunotherapy.
Collapse
Affiliation(s)
- Man Yan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Rui Niu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Shifeng Tian
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Linlin Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
85
|
Gianni C, Palleschi M, Schepisi G, Casadei C, Bleve S, Merloni F, Sirico M, Sarti S, Cecconetto L, Di Menna G, Schettini F, De Giorgi U. Circulating inflammatory cells in patients with metastatic breast cancer: Implications for treatment. Front Oncol 2022; 12:882896. [PMID: 36003772 PMCID: PMC9393759 DOI: 10.3389/fonc.2022.882896] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022] Open
Abstract
Adaptive and innate immune cells play a crucial role as regulators of cancer development. Inflammatory cells in blood flow seem to be involved in pro-tumor activities and contribute to breast cancer progression. Circulating lymphocyte ratios such as the platelet-lymphocytes ratio (PLR), the monocyte-lymphocyte ratio (MLR) and the neutrophil-lymphocyte ratio (NLR) are new reproducible, routinely feasible and cheap biomarkers of immune response. These indexes have been correlated to prognosis in many solid tumors and there is growing evidence on their clinical applicability as independent prognostic markers also for breast cancer. In this review we give an overview of the possible value of lymphocytic indexes in advanced breast cancer prognosis and prediction of outcome. Furthermore, targeting the immune system appear to be a promising therapeutic strategy for breast cancer, especially macrophage-targeted therapies. Herein we present an overview of the ongoing clinical trials testing systemic inflammatory cells as therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Caterina Gianni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- *Correspondence: Caterina Gianni,
| | - Michela Palleschi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giuseppe Schepisi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Casadei
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Sara Bleve
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Filippo Merloni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Marianna Sirico
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Samanta Sarti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Lorenzo Cecconetto
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giandomenico Di Menna
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Francesco Schettini
- Department of Medical Oncology, Hospital Clinic of Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors Group, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
86
|
Zhang Z, Liu X, Chen D, Yu J. Radiotherapy combined with immunotherapy: the dawn of cancer treatment. Signal Transduct Target Ther 2022; 7:258. [PMID: 35906199 PMCID: PMC9338328 DOI: 10.1038/s41392-022-01102-y] [Citation(s) in RCA: 270] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/19/2022] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Radiotherapy (RT) is delivered for purposes of local control, but can also exert systemic effect on remote and non-irradiated tumor deposits, which is called abscopal effect. The view of RT as a simple local treatment has dramatically changed in recent years, and it is now widely accepted that RT can provoke a systemic immune response which gives a strong rationale for the combination of RT and immunotherapy (iRT). Nevertheless, several points remain to be addressed such as the interaction of RT and immune system, the identification of the best schedules for combination with immunotherapy (IO), the expansion of abscopal effect and the mechanism to amplify iRT. To answer these crucial questions, we roundly summarize underlying rationale showing the whole immune landscape in RT and clinical trials to attempt to identify the best schedules of iRT. In consideration of the rarity of abscopal effect, we propose that the occurrence of abscopal effect induced by radiation can be promoted to 100% in view of molecular and genetic level. Furthermore, the “radscopal effect” which refers to using low-dose radiation to reprogram the tumor microenvironment may amplify the occurrence of abscopal effect and overcome the resistance of iRT. Taken together, RT could be regarded as a trigger of systemic antitumor immune response, and with the help of IO can be used as a radical and systemic treatment and be added into current standard regimen of patients with metastatic cancer.
Collapse
Affiliation(s)
- Zengfu Zhang
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China
| | - Xu Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road, No. 440, Jinan, Shandong, China
| | - Dawei Chen
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China.
| | - Jinming Yu
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China.
| |
Collapse
|
87
|
Issa M, Klamer BG, Mladkova N, Laliotis GI, Karivedu V, Bhateja P, Byington C, Dibs K, Pan X, Chakravarti A, Grecula J, Jhawar SR, Mitchell D, Baliga S, Old M, Carrau RL, Rocco JW, Blakaj DM, Bonomi M. Update of a prognostic survival model in head and neck squamous cell carcinoma patients treated with immune checkpoint inhibitors using an expansion cohort. BMC Cancer 2022; 22:767. [PMID: 35836204 PMCID: PMC9284772 DOI: 10.1186/s12885-022-09809-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/14/2022] [Indexed: 11/15/2022] Open
Abstract
Background Immune checkpoint inhibitors (ICI) treatment in recurrent/metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) offers new therapeutic venues. We have previously developed a predictive survival model in this patient population based on clinical parameters, and the purpose of this study was to expand the study cohort and internally validate the model. Methods A single institutional retrospective analysis of R/M HNSCC patients treated with ICI. Clinical parameters collected included p-16 status, hemoglobin (Hb), albumin (Alb), lactate dehydrogenase (LDH), neutrophil, lymphocyte and platelet counts. Cox proportional hazard regression was used to assess the impact of patient characteristics and clinical variables on survival. A nomogram was created using the rms package to generate individualized survival prediction. Results 201 patients were included, 47 females (23%), 154 males (77%). Median age was 61 years (IQR: 55-68). P-16 negative (66%). Median OS was 12 months (95% CI: 9.4, 14.9). Updated OS model included age, sex, absolute neutrophil count, absolute lymphocyte count, albumin, hemoglobin, LDH, and p-16 status. We stratified patients into three risk groups based on this model at the 0.33 and 0.66 quantiles. Median OS in the optimal risk group reached 23.7 months (CI: 18.5, NR), 13.8 months (CI: 11.1, 20.3) in the average risk group, and 2.3 months (CI: 1.7, 4.4) in the high-risk group. Following internal validation, the discriminatory power of the model reached a c-index of 0.72 and calibration slope of 0.79. Conclusions Our updated nomogram could assist in the precise selection of patients for which ICI could be beneficial and cost-effective.
Collapse
Affiliation(s)
- Majd Issa
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| | - Brett G Klamer
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Nikol Mladkova
- Division of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Georgios I Laliotis
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Vidhya Karivedu
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Priyanka Bhateja
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Chase Byington
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Khaled Dibs
- Division of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Xueliang Pan
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Arnab Chakravarti
- Division of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - John Grecula
- Division of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Sachin R Jhawar
- Division of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Darrion Mitchell
- Division of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Sujith Baliga
- Division of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Matthew Old
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Ricardo L Carrau
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - James W Rocco
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Dukagjin M Blakaj
- Division of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Marcelo Bonomi
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| |
Collapse
|
88
|
Moeinabadi-Bidgoli K, Rezaee M, Rismanchi H, Mohammadi MM, Babajani A. Mesenchymal Stem Cell-Derived Antimicrobial Peptides as Potential Anti-Neoplastic Agents: New Insight into Anticancer Mechanisms of Stem Cells and Exosomes. Front Cell Dev Biol 2022; 10:900418. [PMID: 35874827 PMCID: PMC9298847 DOI: 10.3389/fcell.2022.900418] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/20/2022] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs), as adult multipotent cells, possess considerable regenerative and anti-neoplastic effects, from inducing apoptosis in the cancer cells to reducing multidrug resistance that bring them up as an appropriate alternative for cancer treatment. These cells can alter the behavior of cancer cells, the condition of the tumor microenvironment, and the activity of immune cells that result in tumor regression. It has been observed that during inflammatory conditions, a well-known feature of the tumor microenvironment, the MSCs produce and release some molecules called "antimicrobial peptides (AMPs)" with demonstrated anti-neoplastic effects. These peptides have remarkable targeted anticancer effects by attaching to the negatively charged membrane of neoplastic cells, disrupting the membrane, and interfering with intracellular pathways. Therefore, AMPs could be considered as a part of the wide-ranging anti-neoplastic effects of MSCs. This review focuses on the possible anti-neoplastic effects of MSCs-derived AMPs and their mechanisms. It also discusses preconditioning approaches and using exosomes to enhance AMP production and delivery from MSCs to cancer cells. Besides, the clinical administration of MSCs-derived AMPs, along with their challenges in clinical practice, were debated.
Collapse
Affiliation(s)
- Kasra Moeinabadi-Bidgoli
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Basic and Molecular Epidemiology of Gastroenterology Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Rismanchi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
89
|
Audero MM, Prevarskaya N, Fiorio Pla A. Ca 2+ Signalling and Hypoxia/Acidic Tumour Microenvironment Interplay in Tumour Progression. Int J Mol Sci 2022; 23:7377. [PMID: 35806388 PMCID: PMC9266881 DOI: 10.3390/ijms23137377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/18/2023] Open
Abstract
Solid tumours are characterised by an altered microenvironment (TME) from the physicochemical point of view, displaying a highly hypoxic and acidic interstitial fluid. Hypoxia results from uncontrolled proliferation, aberrant vascularization and altered cancer cell metabolism. Tumour cellular apparatus adapts to hypoxia by altering its metabolism and behaviour, increasing its migratory and metastatic abilities by the acquisition of a mesenchymal phenotype and selection of aggressive tumour cell clones. Extracellular acidosis is considered a cancer hallmark, acting as a driver of cancer aggressiveness by promoting tumour metastasis and chemoresistance via the selection of more aggressive cell phenotypes, although the underlying mechanism is still not clear. In this context, Ca2+ channels represent good target candidates due to their ability to integrate signals from the TME. Ca2+ channels are pH and hypoxia sensors and alterations in Ca2+ homeostasis in cancer progression and vascularization have been extensively reported. In the present review, we present an up-to-date and critical view on Ca2+ permeable ion channels, with a major focus on TRPs, SOCs and PIEZO channels, which are modulated by tumour hypoxia and acidosis, as well as the consequent role of the altered Ca2+ signals on cancer progression hallmarks. We believe that a deeper comprehension of the Ca2+ signalling and acidic pH/hypoxia interplay will break new ground for the discovery of alternative and attractive therapeutic targets.
Collapse
Affiliation(s)
- Madelaine Magalì Audero
- U1003—PHYCEL—Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d’Ascq, 59000 Lille, France; (M.M.A.); (N.P.)
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Natalia Prevarskaya
- U1003—PHYCEL—Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d’Ascq, 59000 Lille, France; (M.M.A.); (N.P.)
| | - Alessandra Fiorio Pla
- U1003—PHYCEL—Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d’Ascq, 59000 Lille, France; (M.M.A.); (N.P.)
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| |
Collapse
|
90
|
Stefanile A, Cellerino M, Koudriavtseva T. Elevated risk of thrombotic manifestations of SARS-CoV-2 infection in cancer patients: A literature review. EXCLI JOURNAL 2022; 21:906-920. [PMID: 36172074 PMCID: PMC9489888 DOI: 10.17179/excli2022-5073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) results in higher risks of hospitalization or death in older patients and those with multiple comorbidities, including malignancies. Patients with cancer have greater risks of COVID-19 onset and worse prognosis. This excess is mainly explained by thrombotic complications. Indeed, an imbalance in the equilibrium between clot formation and bleeding, increased activation of coagulation, and endothelial dysfunction characterize both COVID-19 patients and those with cancer. With this review, we provide a summary of the pathological mechanisms of coagulation and thrombotic manifestations in these patients and discuss the possible therapeutic implications of these phenomena.
Collapse
Affiliation(s)
- Annunziata Stefanile
- Department Clinical Pathology and Cancer Biobank, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), 00144 Rome, Italy
| | - Maria Cellerino
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, IFO, Via Elio Chianesi 53, 00144, Rome, Italy,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (DINOGMI), University of Genoa, Genoa, Italy,*To whom correspondence should be addressed: Maria Cellerino, Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, IFO, Via Elio Chianesi 53, 00144, Rome, Italy and Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (DINOGMI), University of Genoa, Genoa, Italy, E-mail:
| | - Tatiana Koudriavtseva
- Medical Direction, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), 00144 Rome, Italy
| |
Collapse
|
91
|
Zheng S, Liu B, Guan X. The Role of Tumor Microenvironment in Invasion and Metastasis of Esophageal Squamous Cell Carcinoma. Front Oncol 2022; 12:911285. [PMID: 35814365 PMCID: PMC9257257 DOI: 10.3389/fonc.2022.911285] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/18/2022] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers in the world, with a high rate of morbidity. The invasion and metastasis of ESCC is the main reason for high mortality. More and more evidence suggests that metastasized cancer cells require cellular elements that contribute to ESCC tumor microenvironment (TME) formation. TME contains many immune cells and stromal components, which are critical to epithelial–mesenchymal transition, immune escape, angiogenesis/lymphangiogenesis, metastasis niche formation, and invasion/metastasis. In this review, we will focus on the mechanism of different microenvironment cellular elements in ESCC invasion and metastasis and discuss recent therapeutic attempts to restore the tumor-suppressing function of cells within the TME. It will represent the whole picture of TME in the metastasis and invasion process of ESCC.
Collapse
Affiliation(s)
- Shuyue Zheng
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Beilei Liu
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xinyuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Xinyuan Guan,
| |
Collapse
|
92
|
Zhu T, Han J, Yang L, Cai Z, Sun W, Hua Y, Xu J. Immune Microenvironment in Osteosarcoma: Components, Therapeutic Strategies and Clinical Applications. Front Immunol 2022; 13:907550. [PMID: 35720360 PMCID: PMC9198725 DOI: 10.3389/fimmu.2022.907550] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma is a primary malignant tumor that tends to threaten children and adolescents, and the 5-year event-free survival rate has not improved significantly in the past three decades, bringing grief and economic burden to patients and society. To date, the genetic background and oncogenesis mechanisms of osteosarcoma remain unclear, impeding further research. The tumor immune microenvironment has become a recent research hot spot, providing novel but valuable insight into tumor heterogeneity and multifaceted mechanisms of tumor progression and metastasis. However, the immune microenvironment in osteosarcoma has been vigorously discussed, and the landscape of immune and non-immune component infiltration has been intensively investigated. Here, we summarize the current knowledge of the classification, features, and functions of the main infiltrating cells, complement system, and exosomes in the osteosarcoma immune microenvironment. In each section, we also highlight the complex crosstalk network among them and the corresponding potential therapeutic strategies and clinical applications to deepen our understanding of osteosarcoma and provide a reference for imminent effective therapies with reduced adverse effects.
Collapse
Affiliation(s)
- Tianyi Zhu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Jing Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Liu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Wei Sun
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Jing Xu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| |
Collapse
|
93
|
Stühler V, Herrmann L, Rausch S, Stenzl A, Bedke J. Role of the Systemic Immune-Inflammation Index in Patients with Metastatic Renal Cell Carcinoma Treated with First-Line Ipilimumab plus Nivolumab. Cancers (Basel) 2022; 14:cancers14122972. [PMID: 35740636 PMCID: PMC9221331 DOI: 10.3390/cancers14122972] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The aim of this study was to evaluate the predictive and prognostic value of the systemic immune-inflammation index (SII) in patients with metastatic renal cell carcinoma (mRCC) treated with first-line ipilimumab plus nivolumab. Methods: This retrospective study included forty-nine mRCC patients treated with first-line ipilimumab plus nivolumab at the Department of Urology of the University of Tuebingen, Germany. SII was assessed before starting ipilimumab plus nivolumab therapy at the time of first imaging and at tumor progression. Optimal SII cut-off was stratified by ROC-analysis. Univariable and multivariable Cox regression analyses were used to evaluate the predictive and prognostic value of SII. Results: Optimal SII cut-off was 788. Twenty-nine/forty-nine patients had high SII (≥788) before initiation of ipilimumab plus nivolumab. High SII was an independent prognostic factor for worse progression-free (HR 2.70, p = 0.014) and overall survival (HR 10.53, p = 0.025). The clinical benefit rate was higher for patients with low SII if compared to high SII (80% vs. 32.1%). An increase in SII > 20% from baseline after twelve weeks of therapy was associated with progression at first imaging (p = 0.003). Conclusions: SII is both prognostic and predictive and could refine decision making in patients with unclear imaging on therapy with ipilimumab plus nivolumab.
Collapse
Affiliation(s)
| | | | | | | | - Jens Bedke
- Correspondence: ; Tel.: +49-707-1298-0349
| |
Collapse
|
94
|
Extracellular Vesicles Derived from MDA-MB-231 Cells Trigger Neutrophils to a Pro-Tumor Profile. Cells 2022; 11:cells11121875. [PMID: 35741003 PMCID: PMC9221190 DOI: 10.3390/cells11121875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/27/2022] Open
Abstract
Immune system cells, including neutrophils, are recruited by the tumor microenvironment as a site of chronic inflammation and begin to favor tumor growth. Neutrophils present in the tumor site are called tumor-associated neutrophils (TAN) and can present two phenotypes: N1 (antitumor) or N2 (pro-tumor). Evidence shows the high capacity of immune system cells to interact with extracellular vesicles (Evs) released by tumor cells. Evs can modulate the phenotype of cells within the immune system, contributing to tumor development. Here, we investigated the role of MDA-MB-231-derived Evs upon the polarization of neutrophils towards an N2 phenotype and the underlying mechanisms. We observed that neutrophils treated with Evs released by MDA cells (MDA-Evs) had their half-life increased, increased their chemotactic capacity, and released higher levels of NETs and ROS than neutrophils treated with non-tumoral Evs. We also observed that neutrophils treated with MDA-Evs released increased IL-8, VEGF, MMP9, and increased expression of CD184, an N2-neutrophil marker. Finally, neutrophils treated with MDA-Evs increased tumor cell viability. Our results show that MDA-Evs induce an N2-like phenotype, and the blockage of phosphatidylserine by annexin-V may be an essential agent counter-regulating this effect.
Collapse
|
95
|
The relationship between pan-immune-inflammation value and survival outcomes in patients with metastatic renal cell carcinoma treated with nivolumab in the second line and beyond: a Turkish oncology group kidney cancer consortium (TKCC) study. J Cancer Res Clin Oncol 2022; 148:3537-3546. [PMID: 35616728 DOI: 10.1007/s00432-022-04055-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Pan-immune-inflammation value (PIV) is an easily accessible immune marker based on peripheral blood to estimate prognosis in patients with cancer. This study evaluates the prognostic value of PIV in patients with metastatic renal cell carcinoma (mRCC) treated with nivolumab. METHODS In this retrospective cohort study, patients with mRCC treated with nivolumab in the second line and beyond were selected from the Turkish Oncology Group Kidney Cancer Consortium (TKCC) database. PIV was calculated using the following formula: neutrophil (103/mm3) x monocyte (103/mm3) x platelet (103/mm3)/lymphocyte (103/mm3). RESULTS A total of 152 patients with mRCC were included in this study. According to cut-off value for PIV, 77 (50.7%) and 75 (49.3%) patients fell into PIV-low ([Formula: see text] 372) and PIV-high (> 372) groups, respectively. In multivariate analysis, PIV-high (HR: 1.64, 95% CI 1.04-2.58, p = 0.033 for overall survival (OS); HR: 1.55, 95% CI 1.02-2.38, p = 0.042 for progression-free survival (PFS)) was independent risk factor for OS and PFS after adjusting for confounding variables, such as performance score, the International mRCC Database Consortium (IMDC) risk score, and liver metastasis. CONCLUSION This study established that pre-treatment PIV might be a prognostic biomarker in patients with mRCC treated with nivolumab in the second line and beyond.
Collapse
|
96
|
Costanzo-Garvey DL, Case AJ, Watson GF, Alsamraae M, Chatterjee A, Oberley-Deegan RE, Dutta S, Abdalla MY, Kielian T, Lindsey ML, Cook LM. Prostate cancer addiction to oxidative stress defines sensitivity to anti-tumor neutrophils. Clin Exp Metastasis 2022; 39:641-659. [PMID: 35604506 PMCID: PMC9338904 DOI: 10.1007/s10585-022-10170-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/24/2022] [Indexed: 01/17/2023]
Abstract
Bone metastatic prostate cancer (BM-PCa) remains one of the most difficult cancers to treat due to the complex interactions of cancer and stromal cells. We previously showed that bone marrow neutrophils elicit an anti-tumor immune response against BM-PCa. Further, we demonstrated that BM-PCa induces neutrophil oxidative burst, which has previously been identified to promote primary tumor growth of other cancers, and a goal of this study was to define the importance of neutrophil oxidative burst in BM-PCa. To do this, we first examined the impact of depletion of reactive oxygen species (ROS), via systemic deletion of the main source of ROS in phagocytes, NADPH oxidase (Nox)2, which we found to suppress prostate tumor growth in bone. Further, using pharmacologic ROS inhibitors and Nox2-null neutrophils, we found that ROS depletion specifically suppresses growth of androgen-insensitive prostate cancer cells. Upon closer examination using bulk RNA sequencing analysis, we identified that metastatic prostate cancer induces neutrophil transcriptomic changes that activates pathways associated with response to oxidative stress. In tandem, prostate cancer cells resist neutrophil anti-tumor response via extracellular (i.e., regulation of neutrophils) and intracellular alterations of glutathione synthesis, the most potent cellular antioxidant. These findings demonstrate that BM-PCa thrive under oxidative stress conditions and such that regulation of ROS and glutathione programming could be leveraged for targeting of BM-PCa progression.
Collapse
Affiliation(s)
- Diane L Costanzo-Garvey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Med Center, Omaha, NE, 68198, USA
| | - Adam J Case
- Department of Psychiatry and Behavioral Sciences, Texas A&M College of Medicine, Bryan, TX, USA.,Department of Medical Physiology, Texas A&M College of Medicine, Bryan, TX, USA
| | - Gabrielle F Watson
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center and Omaha VA Medical Center, Omaha, NE, USA
| | - Massar Alsamraae
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Med Center, Omaha, NE, 68198, USA
| | - Arpita Chatterjee
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rebecca E Oberley-Deegan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Samikshan Dutta
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maher Y Abdalla
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Med Center, Omaha, NE, 68198, USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Med Center, Omaha, NE, 68198, USA
| | - Merry L Lindsey
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center and Omaha VA Medical Center, Omaha, NE, USA
| | - Leah M Cook
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Med Center, Omaha, NE, 68198, USA.
| |
Collapse
|
97
|
Ma Y, Xiao F, Lu C, Wen L. Multifunctional Nanosystems Powered Photodynamic Immunotherapy. Front Pharmacol 2022; 13:905078. [PMID: 35645842 PMCID: PMC9130658 DOI: 10.3389/fphar.2022.905078] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/25/2022] [Indexed: 12/19/2022] Open
Abstract
Photodynamic Therapy (PDT) with the intrinsic advantages including non-invasiveness, spatiotemporal selectivity, low side-effects, and immune activation ability has been clinically approved for the treatment of head and neck cancer, esophageal cancer, pancreatic cancer, prostate cancer, and esophageal squamous cell carcinoma. Nevertheless, the PDT is only a strategy for local control of primary tumor, that it is hard to remove the residual tumor cells and inhibit the tumor metastasis. Recently, various smart nanomedicine-based strategies are developed to overcome the barriers of traditional PDT including the drawbacks of traditional photosensitizers, limited tissue penetrability of light, inefficient induction of tumor cell death and tumor resistance to the therapy. More notably, a growing number of studies have focused on improving the therapeutic efficiency by eliciting host immune system with versatile nanoplatforms, which heralds a broader clinical application prospect of PDT in the future. Herein, the pathways of PDT induced-tumor destruction, especially the host immune response is summarized, and focusing on the recent progress of nanosystems-enhanced PDT through eliciting innate immunity and adaptive immunity. We expect it will provide some insights for conquering the drawbacks current PDT and expand the range of clinical application through this review.
Collapse
Affiliation(s)
- Yunong Ma
- Medical College, Guangxi University, Nanning, China
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated With Jinan University), Jinan University, Zhuhai, China
| | - Fengfeng Xiao
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated With Jinan University), Jinan University, Zhuhai, China
| | - Cuixia Lu
- Medical College, Guangxi University, Nanning, China
- *Correspondence: Cuixia Lu, ; Liewei Wen,
| | - Liewei Wen
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated With Jinan University), Jinan University, Zhuhai, China
- *Correspondence: Cuixia Lu, ; Liewei Wen,
| |
Collapse
|
98
|
Singh AK, Malviya R. Coagulation and inflammation in cancer: Limitations and prospects for treatment. Biochim Biophys Acta Rev Cancer 2022; 1877:188727. [PMID: 35378243 DOI: 10.1016/j.bbcan.2022.188727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/08/2023]
Abstract
The development of so-called immune checkpoint inhibitors (ICIs), which target specific molecular processes of tumour growth, has had a transformative effect on cancer treatment. Widespread use of antibody-based medicines to inhibit tumour cell immune evasion by modulating T cell responses is becoming more common. Despite this, response rates are still low, and secondary resistance is an issue that arises often. In addition, a wide range of serious adverse effects is triggered by enhancing the immunological response. As a result of an increased mortality rate, a higher prevalence of thrombotic complications is connected with an increased incidence of immunological reactions, complement activation, and skin toxicity. This suggests that the tumour microenvironment's interaction between coagulation and inflammation is important at every stage of the tumour's life cycle. The coagulation system's function in tumour formation is the topic of this review. By better understanding the molecular mechanisms in which tumour cells circulate, plasmatic coagulation and immune system cells are engaged, new therapy options for cancer sufferers may be discovered.
Collapse
Affiliation(s)
- Arun Kumar Singh
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
99
|
Inflammatory response mediates cross-talk with immune function and reveals clinical features in acute myeloid leukemia. Biosci Rep 2022; 42:231186. [PMID: 35441668 PMCID: PMC9093697 DOI: 10.1042/bsr20220647] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Accumulated genetic mutations are an important cause for the development of acute myeloid leukemia (AML), but abnormal changes in the inflammatory microenvironment also have regulatory effects on AML. Exploring the relationship between inflammatory response and pathological features of AML has implications for clinical diagnosis, treatment and prognosis evaluation. We analyzed the expression variation landscape of inflammatory response-related genes (IRRGs) and calculated an inflammatory response score for each sample using the gene set variation analysis (GSVA) algorithm. The differences in clinical- and immune-related characteristics between high- and low-inflammatory response groups were further analyzed. We found that most IRRGs were highly expressed in AML samples, and patients with high inflammatory response had poor prognosis and were accompanied with highly activated chemokine-, cytokine- and adhesion molecule-related signaling pathways, higher infiltration ratios of monocytes, neutrophils and M2 macrophages, high activity of type I/II interferon (IFN) response, and higher expression of immune checkpoints. We also used the Genomics of Drug Sensitivity in Cancer (GDSC) database to predict the sensitivity of AML samples with different inflammatory responses to common drugs, and found that AML samples with low inflammatory response were more sensitive to cytarabine, doxorubicin and midostaurin. SubMap algorithm also demonstrated that high-inflammatory response patients are more suitable for anti-PD-1 immunotherapy. Finally, we constructed a prognostic risk score model to predict the overall survival (OS) of AML patients. Patients with higher risk score had significantly shorter OS, which was confirmed in two validation cohorts. The analysis of inflammatory response patterns can help us better understand the differences in tumor microenvironment (TME) of AML patients, and guide clinical medication and prognosis prediction.
Collapse
|
100
|
Otasevic V, Mihaljevic B, Milic N, Stanisavljevic D, Vukovic V, Tomic K, Fareed J, Antic D. Immune activation and inflammatory biomarkers as predictors of venous thromboembolism in lymphoma patients. Thromb J 2022; 20:20. [PMID: 35439998 PMCID: PMC9016935 DOI: 10.1186/s12959-022-00381-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/12/2022] [Indexed: 12/21/2022] Open
Abstract
Background Lymphomas are characterized by elevated synthesis of inflammatory soluble mediators that could trigger the development of venous thromboembolism (VTE). However, data on the relationship between specific immune dysregulation and VTE occurrence in patients with lymphoma are scarce. Therefore, this study aimed to assess the association between inflammatory markers and the risk of VTE development in patients with lymphoma. Methods The erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), lactate dehydrogenase (LDH), total protein (TP), and albumin were assessed in 706 patients with newly diagnosed or relapsed lymphoma. Data were collected for all VTE events, while the diagnosis of VTE was established objectively based on radiographic studies. ROC (receiver operating characteristic) curve analysis was performed to define the optimal cutoff values for predicting VTE. Results The majority of patients was diagnosed with aggressive non-Hodgkin lymphoma (58.8%) and had advanced stage disease (59.9%). Sixty-nine patients (9.8%) developed VTE. The NLR, PLR, ESR, CRP, and LDH were significantly higher in the patients with lymphoma with VTE, whereas the TP and albumin were significantly lower in those patients. Using the univariate regression analysis, the NLR, PLR, TP, albumin, LDH, and CRP were prognostic factors for VTE development. In the multivariate regression model, the NLR and CRP were independent prognostic factors for VTE development. ROC curve analysis demonstrated acceptable specificity and sensitivity of the parameters: NLR, PLR, and CRP for predicting VTE. Conclusion Inflammatory dysregulation plays an important role in VTE development in patients with lymphoma. Widely accessible, simple inflammatory parameters can classify patients with lymphoma at risk of VTE development. Supplementary Information The online version contains supplementary material available at 10.1186/s12959-022-00381-3.
Collapse
Affiliation(s)
- Vladimir Otasevic
- Lymphoma Center, Clinic for Hematology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Biljana Mihaljevic
- Lymphoma Center, Clinic for Hematology, University Clinical Center of Serbia, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Natasa Milic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dejana Stanisavljevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vojin Vukovic
- Lymphoma Center, Clinic for Hematology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Kristina Tomic
- Lymphoma Center, Clinic for Hematology, University Clinical Center of Serbia, Belgrade, Serbia
| | | | - Darko Antic
- Lymphoma Center, Clinic for Hematology, University Clinical Center of Serbia, Belgrade, Serbia. .,Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|