51
|
Agborbesong E, Zhou JX, Li LX, Harris PC, Calvet JP, Li X. Prdx5 regulates DNA damage response through autophagy-dependent Sirt2-p53 axis. Hum Mol Genet 2023; 32:567-579. [PMID: 36067023 PMCID: PMC9896474 DOI: 10.1093/hmg/ddac218] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/26/2022] [Indexed: 02/07/2023] Open
Abstract
DNA damage response (DDR) is an important signaling-transduction network that promotes the repair of DNA lesions which can induce and/or support diseases. However, the mechanisms involved in its regulation are not fully understood. Recent studies suggest that the peroxiredoxin 5 (Prdx5) enzyme, which detoxifies reactive oxygen species, is associated to genomic instability and signal transduction. Its role in the regulation of DDR, however, is not well characterized. In this study, we demonstrate a role of Prdx5 in the regulation of the DDR signaling pathway. Knockdown of Prdx5 resulted in DNA damage manifested by the induction of phosphorylated histone H2AX (γ-H2AX) and p53-binding protein 1 (53BP1). We show that Prdx5 regulates DDR through (1) polo-like kinase 1 (Plk1) mediated phosphorylation of ataxia telangiectasia mutated (ATM) kinase to further trigger downstream mediators Chek1 and Chek2; (2) the increase of the acetylation of p53 at lysine 382, stabilizing p53 in the nucleus and enhancing transcription and (3) the induction of autophagy, which regulates the recycling of molecules involved in DDR. We identified Sirt2 as a novel deacetylase of p53 at lysine 382, and Sirt2 regulated the acetylation status of p53 at lysine 382 in a Prdx5-dependent manner. Furthermore, we found that exogenous expression of Prdx5 decreased DNA damage and the activation of ATM in Pkd1 mutant renal epithelial cells, suggesting that Prdx5 may play a protective role from DNA damage in cystic renal epithelial cells. This study identified a novel mechanism of Prdx5 in the regulation of DDR through the ATM/p53/Sirt2 signaling cascade.
Collapse
Affiliation(s)
- Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Julie X Zhou
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Linda X Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Peter C Harris
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - James P Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
52
|
Legartová S, Fagherazzi P, Goswami P, Brazda V, Lochmanová G, Koutná I, Bártová E. Irradiation potentiates p53 phosphorylation and p53 binding to the promoter and coding region of the TP53 gene. Biochimie 2023; 204:154-168. [PMID: 36167255 DOI: 10.1016/j.biochi.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/08/2022] [Accepted: 09/21/2022] [Indexed: 01/12/2023]
Abstract
An essential factor of the DNA damage response is 53BP1, a multimeric protein that inhibits the resection-dependent double-strand break (DBS) repair. The p53 protein is a tumor suppressor known as a guardian of the genome. Although the interaction between 53BP1 and its p53 partner is well-known in regulating gene expression, a question remains whether genome injury can affect the interaction between 53BP1 and p53 proteins or p53 binding to DNA. Here, using mass spectrometry, we determine post-translational modifications and interaction properties of 53BP1 and p53 proteins in non-irradiated and γ-irradiated cells. In addition, we used Atomic Force Microscopy (AFM) and Fluorescent Lifetime Imaging Microscopy combined with Fluorescence Resonance Energy Transfer (FLIM-FRET) for studies of p53 binding to DNA. Also, we used local laser microirradiation as a tool of advanced confocal microscopy, showing selected protein accumulation at locally induced DNA lesions. We observed that 53BP1 and p53 proteins accumulate at microirradiated chromatin but with distinct kinetics. The density of 53BP1 (53BP1pS1778) phosphorylated form was lower in DNA lesions than in the non-specified form. By mass spectrometry, we found 22 phosphorylations, 4 acetylation sites, and methylation of arginine 1355 within the DNA-binding domain of the 53BP1 protein (aa1219-1711). The p53 protein was phosphorylated on 8 amino acids and acetylated on the N-terminal domain. Post-translational modifications (PTMs) of 53BP1 were not changed in cells exposed to γ-radiation, while γ-rays increased the level of S6ph and S15ph in p53. Interaction analysis showed that 53BP1 and p53 proteins have 54 identical interaction protein partners, and AFM revealed that p53 binds to both non-specific and TP53-specific sequences (AGACATGCCTA GGCATGTCT). Irradiation by γ-rays enhanced the density of the p53 protein at the AGACATGCCTAGGCATGTCT region, and the binding of p53 S15ph to the TP53 promoter was potentiated in irradiated cells. These findings show that γ-irradiation, in general, strengthens the binding of phosphorylated p53 protein to the encoding gene.
Collapse
Affiliation(s)
- Soňa Legartová
- Department of Cell Biology and Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | - Paolo Fagherazzi
- Department of Cell Biology and Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Pratik Goswami
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Vaclav Brazda
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | - Gabriela Lochmanová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Irena Koutná
- The International Clinical Research Center of St. Anne's University Hospital in Brno (FNUSA-ICRC), Pekařská 53, 656 91, Brno, Czech Republic
| | - Eva Bártová
- Department of Cell Biology and Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| |
Collapse
|
53
|
Shang S, Liu J, Hua F. Protein acylation: mechanisms, biological functions and therapeutic targets. Signal Transduct Target Ther 2022; 7:396. [PMID: 36577755 PMCID: PMC9797573 DOI: 10.1038/s41392-022-01245-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/27/2022] [Accepted: 11/06/2022] [Indexed: 12/30/2022] Open
Abstract
Metabolic reprogramming is involved in the pathogenesis of not only cancers but also neurodegenerative diseases, cardiovascular diseases, and infectious diseases. With the progress of metabonomics and proteomics, metabolites have been found to affect protein acylations through providing acyl groups or changing the activities of acyltransferases or deacylases. Reciprocally, protein acylation is involved in key cellular processes relevant to physiology and diseases, such as protein stability, protein subcellular localization, enzyme activity, transcriptional activity, protein-protein interactions and protein-DNA interactions. Herein, we summarize the functional diversity and mechanisms of eight kinds of nonhistone protein acylations in the physiological processes and progression of several diseases. We also highlight the recent progress in the development of inhibitors for acyltransferase, deacylase, and acylation reader proteins for their potential applications in drug discovery.
Collapse
Affiliation(s)
- Shuang Shang
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| | - Jing Liu
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| | - Fang Hua
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| |
Collapse
|
54
|
Wolfrum P, Fietz A, Schnichels S, Hurst J. The function of p53 and its role in Alzheimer's and Parkinson's disease compared to age-related macular degeneration. Front Neurosci 2022; 16:1029473. [PMID: 36620455 PMCID: PMC9811148 DOI: 10.3389/fnins.2022.1029473] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
The protein p53 is the main human tumor suppressor. Since its discovery, extensive research has been conducted, which led to the general assumption that the purview of p53 is also essential for additional functions, apart from the prevention of carcinogenesis. In response to cellular stress and DNA damages, p53 constitutes the key point for the induction of various regulatory processes, determining whether the cell induces cell cycle arrest and DNA repair mechanisms or otherwise cell death. As an implication, aberrations from its normal functioning can lead to pathogeneses. To this day, neurodegenerative diseases are considered difficult to treat, which arises from the fact that in general the underlying pathological mechanisms are not well understood. Current research on brain and retina-related neurodegenerative disorders suggests that p53 plays an essential role in the progression of these conditions as well. In this review, we therefore compare the role and similarities of the tumor suppressor protein p53 in the pathogenesis of Alzheimer's (AD) and Parkinson's disease (PD), two of the most prevalent neurological diseases, to the age-related macular degeneration (AMD) which is among the most common forms of retinal degeneration.
Collapse
|
55
|
Krois AS, Park S, Martinez-Yamout MA, Dyson HJ, Wright PE. Mapping Interactions of the Intrinsically Disordered C-Terminal Regions of Tetrameric p53 by Segmental Isotope Labeling and NMR. Biochemistry 2022; 61:2709-2719. [PMID: 36380579 PMCID: PMC9788666 DOI: 10.1021/acs.biochem.2c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The C-terminal region of the tumor suppressor protein p53 contains three domains, nuclear localization signal (NLS), tetramerization domain (TET), and C-terminal regulatory domain (CTD), which are essential for p53 function. Characterization of the structure and interactions of these domains within full-length p53 has been limited by the overall size and flexibility of the p53 tetramer. Using trans-intein splicing, we have generated full-length p53 constructs in which the C-terminal region is isotopically labeled with 15N for NMR analysis, allowing us to obtain atomic-level information on the C-terminal domains in the context of the full-length protein. Resonances of NLS and CTD residues have narrow linewidths, showing that these regions are largely solvent-exposed and dynamically disordered, whereas resonances from the folded TET are broadened beyond detection. Two regions of the CTD, spanning residues 369-374 and 381-388 and with high lysine content, make dynamic and sequence-independent interactions with DNA in regions that flank the p53 recognition element. The population of DNA-bound states increases as the length of the flanking regions is extended up to approximately 20 base pairs on either side of the recognition element. Acetylation of K372, K373, and K382, using a construct of the transcriptional coactivator CBP containing the TAZ2 and acetyltransferase domains, inhibits interaction of the CTD with DNA. This work provides high-resolution insights into the behavior of the intrinsically disordered C-terminal regions of p53 within the full-length tetramer and the molecular basis by which the CTD mediates DNA binding and specificity.
Collapse
Affiliation(s)
- Alexander S Krois
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California92037, United Sates
| | - Sangho Park
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California92037, United Sates
| | - Maria A Martinez-Yamout
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California92037, United Sates
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California92037, United Sates
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California92037, United Sates
| |
Collapse
|
56
|
Kim U, Kim KS, Park JK, Um HD. Hyperacetylation of the C-terminal domain of p53 inhibits the formation of the p53/p21 complex. Biochem Biophys Res Commun 2022; 635:52-56. [DOI: 10.1016/j.bbrc.2022.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022]
|
57
|
Insights into Regulators of p53 Acetylation. Cells 2022; 11:cells11233825. [PMID: 36497084 PMCID: PMC9737083 DOI: 10.3390/cells11233825] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
The tumor suppressor p53 is a transcription factor that regulates the expression of dozens of target genes and diverse physiological processes. To precisely regulate the p53 network, p53 undergoes various post-translational modifications and alters the selectivity of target genes. Acetylation plays an essential role in cell fate determination through the activation of p53. Although the acetylation of p53 has been examined, the underlying regulatory mechanisms remain unclear and, thus, have attracted the interest of researchers. We herein discuss the role of acetylation in the p53 pathway, with a focus on p53 acetyltransferases and deacetylases. We also review recent findings on the regulators of these enzymes to understand the mode of p53 acetylation from a broader perspective.
Collapse
|
58
|
Szabó B, Németh K, Mészáros K, Krokker L, Likó I, Saskői É, Németh K, Szabó PT, Szücs N, Czirják S, Szalóki G, Patócs A, Butz H. Aspirin Mediates Its Antitumoral Effect Through Inhibiting PTTG1 in Pituitary Adenoma. J Clin Endocrinol Metab 2022; 107:3066-3079. [PMID: 36059148 PMCID: PMC9681612 DOI: 10.1210/clinem/dgac496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT DNA demethylation and inhibitory effects of aspirin on pituitary cell proliferation have been demonstrated. OBJECTIVE Our aim was to clarify the molecular mechanisms behind the aspirin-related effects in pituitary cells. METHODS DNA methylome and whole transcriptome profile were investigated in RC-4B/C and GH3 pituitary cell lines upon aspirin treatment. Effects of aspirin and a demethylation agent, decitabine, were further tested in vitro. PTTG1 expression in 41 human PitNET samples and whole genome gene and protein expression data of 76 PitNET and 34 control samples (available in Gene Expression Omnibus) were evaluated. RESULTS Aspirin induced global DNA demethylation and consequential transcriptome changes. Overexpression of Tet enzymes and their cofactor Uhrf2 were identified behind the increase of 5-hydroxymethylcytosine (5hmC). Besides cell cycle, proliferation, and migration effects that were validated by functional experiments, aspirin increased Tp53 activity through p53 acetylation and decreased E2f1 activity. Among the p53 controlled genes, Pttg1 and its interacting partners were downregulated upon aspirin treatment by inhibiting Pttg1 promoter activity. 5hmC positively correlated with Tet1-3 and Tp53 expression, and negatively correlated with Pttg1 expression, which was reinforced by the effect of decitabine. Additionally, high overlap (20.15%) was found between aspirin-regulated genes and dysregulated genes in PitNET tissue samples. CONCLUSION A novel regulatory network has been revealed, in which aspirin regulated global demethylation, Tp53 activity, and Pttg1 expression along with decreased cell proliferation and migration. 5hmC, a novel tissue biomarker in PitNET, indicated aspirin antitumoral effect in vitro as well. Our findings suggest the potential beneficial effect of aspirin in PitNET.
Collapse
Affiliation(s)
- Borbála Szabó
- Department of Laboratory Medicine, Semmelweis University, H-1089 Budapest, Hungary
- Hereditary Tumours Research Group, Hungarian Academy of Sciences—Semmelweis University, H-1089 Budapest, Hungary
| | - Kinga Németh
- Hereditary Tumours Research Group, Hungarian Academy of Sciences—Semmelweis University, H-1089 Budapest, Hungary
| | - Katalin Mészáros
- Hereditary Tumours Research Group, Hungarian Academy of Sciences—Semmelweis University, H-1089 Budapest, Hungary
| | - Lilla Krokker
- Department of Laboratory Medicine, Semmelweis University, H-1089 Budapest, Hungary
- Hereditary Tumours Research Group, Hungarian Academy of Sciences—Semmelweis University, H-1089 Budapest, Hungary
| | - István Likó
- Hereditary Tumours Research Group, Hungarian Academy of Sciences—Semmelweis University, H-1089 Budapest, Hungary
| | - Éva Saskői
- Department of Molecular Genetics and the National Tumor Biology Laboratory, National Institute of Oncology, H-1122 Budapest, Hungary
| | - Krisztina Németh
- MS Metabolomics Research Group, Centre for Structural Study, Research Centre for Natural Sciences, Eötvös Loránd Research Network, H-1117 Budapest, Hungary
| | - Pál Tamás Szabó
- MS Metabolomics Research Group, Centre for Structural Study, Research Centre for Natural Sciences, Eötvös Loránd Research Network, H-1117 Budapest, Hungary
| | - Nikolette Szücs
- Department of Endocrinology, Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, H-1083 Budapest, Hungary
| | - Sándor Czirják
- National Institute of Clinical Neurosciences, H-1145 Budapest, Hungary
| | - Gábor Szalóki
- Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, H-1085 Budapest, Hungary
| | - Attila Patócs
- Department of Laboratory Medicine, Semmelweis University, H-1089 Budapest, Hungary
- Hereditary Tumours Research Group, Hungarian Academy of Sciences—Semmelweis University, H-1089 Budapest, Hungary
- Department of Molecular Genetics and the National Tumor Biology Laboratory, National Institute of Oncology, H-1122 Budapest, Hungary
| | - Henriett Butz
- Correspondence: Henriett Butz MD, PhD, Hereditary Endocrine Tumours Research Group, Department of Laboratory Medicine, Semmelweis University, 4. Nagyvárad tér, H-1089, Budapest, Hungary.
| |
Collapse
|
59
|
Pieroni S, Castelli M, Piobbico D, Ferracchiato S, Scopetti D, Di-Iacovo N, Della-Fazia MA, Servillo G. The Four Homeostasis Knights: In Balance upon Post-Translational Modifications. Int J Mol Sci 2022; 23:14480. [PMID: 36430960 PMCID: PMC9696182 DOI: 10.3390/ijms232214480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
A cancer outcome is a multifactorial event that comes from both exogenous injuries and an endogenous predisposing background. The healthy state is guaranteed by the fine-tuning of genes controlling cell proliferation, differentiation, and development, whose alteration induces cellular behavioral changes finally leading to cancer. The function of proteins in cells and tissues is controlled at both the transcriptional and translational level, and the mechanism allowing them to carry out their functions is not only a matter of level. A major challenge to the cell is to guarantee that proteins are made, folded, assembled and delivered to function properly, like and even more than other proteins when referring to oncogenes and onco-suppressors products. Over genetic, epigenetic, transcriptional, and translational control, protein synthesis depends on additional steps of regulation. Post-translational modifications are reversible and dynamic processes that allow the cell to rapidly modulate protein amounts and function. Among them, ubiquitination and ubiquitin-like modifications modulate the stability and control the activity of most of the proteins that manage cell cycle, immune responses, apoptosis, and senescence. The crosstalk between ubiquitination and ubiquitin-like modifications and post-translational modifications is a keystone to quickly update the activation state of many proteins responsible for the orchestration of cell metabolism. In this light, the correct activity of post-translational machinery is essential to prevent the development of cancer. Here we summarize the main post-translational modifications engaged in controlling the activity of the principal oncogenes and tumor suppressors genes involved in the development of most human cancers.
Collapse
|
60
|
Damasio MPS, Nascimento CS, Andrade LM, de Oliveira VL, Calzavara-Silva CE. The role of T-cells in head and neck squamous cell carcinoma: From immunity to immunotherapy. Front Oncol 2022; 12:1021609. [PMID: 36338731 PMCID: PMC9632296 DOI: 10.3389/fonc.2022.1021609] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) encompass a group of complex entities of tumours affecting the aerodigestive upper tract. The main risk factors are strongly related to tobacco and alcohol consumption, but also HPV infection is often associated. Surgery, radiotherapy and/or chemotherapy are the standard treatments, though the 5-year overall survival is less than 50%. The advances in genomics, molecular medicine, immunology, and nanotechnology have shed a light on tumour biology which helps clinical researchers to obtain more efficacious and less toxic therapies. Head and neck tumours possess different immune escape mechanisms including diminishing the immune response through modulating immune checkpoints, in addition to the recruitment and differentiation of suppressive immune cells. The insights into the HNSCC biology and its strong interaction with the tumour microenvironment highlights the role of immunomodulating agents. Recently, the knowledge of the immunological features of these tumours has paved the way for the discovery of effective biomarkers that allow a better selection of patients with odds of improving overall survival through immunotherapy. Specially biomarkers regarding immune checkpoint inhibitors antibodies, such as anti-PD-1/PD-L1 and anti-CTLA-4 in combination with standard therapy or as monotherapy. New immunotherapies to treat head and neck cancer carcinomas, such as CAR T cells and nanoparticles have been the center of attention and in this review, we discuss the necessity of finding targets for the T cell in the cancer cells to generate CAR T cells, but also the relevance of evaluating specificity and safety of those therapies.
Collapse
Affiliation(s)
- Marcos Paulo S. Damasio
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Camila Sales Nascimento
- Grupo de pesquisa em Imunologia Celular e Molecular, Fundação Oswaldo Cruz, Instituto Rene Rachou, Belo Horizonte, MG, Brazil
| | - Lidia M. Andrade
- Departamento de Genética, Ecologia e Evolução, Departamento de Física, Nanobiomedical Research Group, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vivian L. de Oliveira
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, São Paulo, Brazil
- Laboratório de Imunologia, LIM19, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Carlos Eduardo Calzavara-Silva
- Grupo de pesquisa em Imunologia Celular e Molecular, Fundação Oswaldo Cruz, Instituto Rene Rachou, Belo Horizonte, MG, Brazil
| |
Collapse
|
61
|
Dang F, Wei W. Targeting the acetylation signaling pathway in cancer therapy. Semin Cancer Biol 2022; 85:209-218. [PMID: 33705871 PMCID: PMC8423867 DOI: 10.1016/j.semcancer.2021.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022]
Abstract
Acetylation represents one of the major post-translational protein modifications, which introduces an acetyl functional group into amino acids such as the lysine residue to yield an acetate ester bond, neutralizing its positive charge. Regulation of protein functions by acetylation occurs in multiple ways, such as affecting protein stability, activity, localization, and interaction with other proteins or DNA. It has been well documented that the recruitment of histone acetyltransferases (HATs) and histone deacetylases (HDACs) to the transcriptional machinery can modulate histone acetylation status, which is directly involved in the dynamic regulation of genes controlling cell proliferation and division. Dysregulation of gene expression is involved in tumorigenesis and aberrant activation of histone deacetylases has been reported in several types of cancer. Moreover, there is growing body of evidence showing that acetylation is widely involved in non-histone proteins to impact their roles in various cellular processes including tumorigenesis. As such, small molecular compounds inhibiting HAT or HDAC enzymatic activities have been developed and investigated for therapeutic purpose. Here we review the recent progress in our understanding of protein acetylation and discuss the therapeutic potential of targeting the acetylation signaling pathway in cancer.
Collapse
Affiliation(s)
- Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
62
|
Liu Y, Vandekeere A, Xu M, Fendt SM, Altea-Manzano P. Metabolite-derived protein modifications modulating oncogenic signaling. Front Oncol 2022; 12:988626. [PMID: 36226054 PMCID: PMC9549695 DOI: 10.3389/fonc.2022.988626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Malignant growth is defined by multiple aberrant cellular features, including metabolic rewiring, inactivation of tumor suppressors and the activation of oncogenes. Even though these features have been described as separate hallmarks, many studies have shown an extensive mutual regulatory relationship amongst them. On one hand, the change in expression or activity of tumor suppressors and oncogenes has extensive direct and indirect effects on cellular metabolism, activating metabolic pathways required for malignant growth. On the other hand, the tumor microenvironment and tumor intrinsic metabolic alterations result in changes in intracellular metabolite levels, which directly modulate the protein modification of oncogenes and tumor suppressors at both epigenetic and post-translational levels. In this mini-review, we summarize the crosstalk between tumor suppressors/oncogenes and metabolism-induced protein modifications at both levels and explore the impact of metabolic (micro)environments in shaping these.
Collapse
Affiliation(s)
- Yawen Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
- Laboratory of Cellular Metabolism and Metaboli Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Anke Vandekeere
- Laboratory of Cellular Metabolism and Metaboli Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metaboli Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- *Correspondence: Sarah-Maria Fendt, ; Patricia Altea-Manzano,
| | - Patricia Altea-Manzano
- Laboratory of Cellular Metabolism and Metaboli Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- *Correspondence: Sarah-Maria Fendt, ; Patricia Altea-Manzano,
| |
Collapse
|
63
|
Vong P, Ouled-Haddou H, Garçon L. Histone Deacetylases Function in the Control of Early Hematopoiesis and Erythropoiesis. Int J Mol Sci 2022; 23:9790. [PMID: 36077192 PMCID: PMC9456231 DOI: 10.3390/ijms23179790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Numerous studies have highlighted the role of post-translational modifications in the regulation of cell proliferation, differentiation and death. Among these modifications, acetylation modifies the physicochemical properties of proteins and modulates their activity, stability, localization and affinity for partner proteins. Through the deacetylation of a wide variety of functional and structural, nuclear and cytoplasmic proteins, histone deacetylases (HDACs) modulate important cellular processes, including hematopoiesis, during which different HDACs, by controlling gene expression or by regulating non-histone protein functions, act sequentially to provide a fine regulation of the differentiation process both in early hematopoietic stem cells and in more mature progenitors. Considering that HDAC inhibitors represent promising targets in cancer treatment, it is necessary to decipher the role of HDACs during hematopoiesis which could be impacted by these therapies. This review will highlight the main mechanisms by which HDACs control the hematopoietic stem cell fate, particularly in the erythroid lineage.
Collapse
Affiliation(s)
- Pascal Vong
- Université Picardie Jules Verne, HEMATIM UR4666, 80000 Amiens, France
| | | | - Loïc Garçon
- Université Picardie Jules Verne, HEMATIM UR4666, 80000 Amiens, France
- Service d’Hématologie Biologique, Centre Hospitalier Universitaire, CEDEX 1, 80054 Amiens, France
- Laboratoire de Génétique Constitutionnelle, Centre Hospitalier Universitaire, CEDEX 1, 80054 Amiens, France
| |
Collapse
|
64
|
HMG-CoA Reductase Inhibitor Statins Activate the Transcriptional Activity of p53 by Regulating the Expression of TAZ. Pharmaceuticals (Basel) 2022; 15:ph15081015. [PMID: 36015162 PMCID: PMC9412369 DOI: 10.3390/ph15081015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 12/18/2022] Open
Abstract
Transcriptional coactivator with PDZ-binding motif (TAZ) is a downstream transcriptional regulator of the Hippo pathway that controls cell growth and differentiation. The aberrant activation of TAZ correlates with a poor prognosis in human cancers, such as breast and colon cancers. We previously demonstrated that TAZ inhibited the tumor suppressor functions of p53 and enhanced cell proliferation. Statins, which are used to treat dyslipidemia, have been reported to suppress the activity of TAZ and exert anti-tumor effects. In the present study, we focused on the regulation of p53 functions by TAZ and investigated whether statins modulate these functions via TAZ. The results obtained suggest that statins, such as simvastatin and fluvastatin, activated the transcriptional function of p53 by suppressing TAZ protein expression. Furthermore, co-treatment with simvastatin and anti-tumor agents that cooperatively activate p53 suppressed cancer cell survival. These results indicate a useful mechanism by which statins enhance the effects of anti-tumor agents through the activation of p53 and may represent a novel approach to cancer therapy.
Collapse
|
65
|
Schultz‐Rogers LE, Thayer ML, Kambakam S, Wierson WA, Helmer JA, Wishman MD, Wall KA, Greig JL, Forsman JL, Puchhalapalli K, Nair S, Weiss TJ, Luiken JM, Blackburn PR, Ekker SC, Kool M, McGrail M. Rbbp4 loss disrupts neural progenitor cell cycle regulation independent of Rb and leads to Tp53 acetylation and apoptosis. Dev Dyn 2022; 251:1267-1290. [PMID: 35266256 PMCID: PMC9356990 DOI: 10.1002/dvdy.467] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Retinoblastoma binding protein 4 (Rbbp4) is a component of transcription regulatory complexes that control cell cycle gene expression. Previous work indicated that Rbbp4 cooperates with the Rb tumor suppressor to block cell cycle entry. Here, we use genetic analysis to examine the interactions of Rbbp4, Rb, and Tp53 in zebrafish neural progenitor cell cycle regulation and survival. RESULTS Rbbp4 is upregulated across the spectrum of human embryonal and glial brain cancers. Transgenic rescue of rbbp4 mutant embryos shows Rbbp4 is essential for zebrafish neurogenesis. Rbbp4 loss leads to apoptosis and γ-H2AX in the developing brain that is suppressed by tp53 knockdown or maternal zygotic deletion. Mutant retinal neural precursors accumulate in M phase and fail to initiate G0 gene expression. rbbp4; rb1 mutants show an additive effect on the number of M phase cells. In rbbp4 mutants, Tp53 acetylation is detected; however, Rbbp4 overexpression did not rescue DNA damage-induced apoptosis. CONCLUSION Rbbp4 is necessary for neural progenitor cell cycle progression and initiation of G0 independent of Rb. Tp53-dependent apoptosis in the absence of Rbpb4 correlates with Tp53 acetylation. Together these results suggest that Rbbp4 is required for cell cycle exit and contributes to neural progenitor survival through the regulation of Tp53 acetylation.
Collapse
Affiliation(s)
- Laura E. Schultz‐Rogers
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- Interdepartmental Graduate Program in Genetics and GenomicsIowa State UniversityAmesIowaUSA
- Present address:
Department of Pathology and Lab MedicineUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Michelle L. Thayer
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- Interdepartmental Graduate Program in Molecular, Cellular and Developmental BiologyIowa State UniversityAmesIowaUSA
| | - Sekhar Kambakam
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
| | - Wesley A. Wierson
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- Interdepartmental Graduate Program in Molecular, Cellular and Developmental BiologyIowa State UniversityAmesIowaUSA
| | - Jordan A. Helmer
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- GeneticsIowa State UniversityAmesIowaUSA
| | - Mark D. Wishman
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- GeneticsIowa State UniversityAmesIowaUSA
| | - Kristen A. Wall
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- BiologyIowa State UniversityAmesIowaUSA
| | - Jessica L. Greig
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- GeneticsIowa State UniversityAmesIowaUSA
| | - Jaimie L. Forsman
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- GeneticsIowa State UniversityAmesIowaUSA
| | - Kavya Puchhalapalli
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- GeneticsIowa State UniversityAmesIowaUSA
| | - Siddharth Nair
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- Kinesiology and HealthIowa State UniversityAmesUSA
| | - Trevor J. Weiss
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
| | - Jon M. Luiken
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
| | - Patrick R. Blackburn
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesotaUSA
- Present address:
Department of PathologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Stephen C. Ekker
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesotaUSA
| | - Marcel Kool
- Hopp Children's Cancer (KiTZ)HeidelbergGermany
- Division of Pediatric Neuro‐oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK)HeidelbergGermany
- Princess Maxima Center for Pediatric OncologyUtrechtNetherlands
| | - Maura McGrail
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- Interdepartmental Graduate Program in Genetics and GenomicsIowa State UniversityAmesIowaUSA
- Interdepartmental Graduate Program in Molecular, Cellular and Developmental BiologyIowa State UniversityAmesIowaUSA
- GeneticsIowa State UniversityAmesIowaUSA
- BiologyIowa State UniversityAmesIowaUSA
- Kinesiology and HealthIowa State UniversityAmesUSA
| |
Collapse
|
66
|
Hussain M, Lu Y, Tariq M, Jiang H, Shu Y, Luo S, Zhu Q, Zhang J, Liu J. A small-molecule Skp1 inhibitor elicits cell death by p53-dependent mechanism. iScience 2022; 25:104591. [PMID: 35789855 PMCID: PMC9249674 DOI: 10.1016/j.isci.2022.104591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 04/21/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022] Open
Abstract
Skp1 overexpression promotes tumor growth, whereas reduced Skp1 activity is also linked with genomic instability and neoplastic transformation. This highlights the need to gain better understanding of Skp1 biology in cancer settings. To this context, potent and cellularly active small-molecule Skp1 inhibitors may be of great value. Using a hypothesis-driven, structure-guided approach, we herein identify Z0933M as a potent Skp1 inhibitor with KD ∼0.054 μM. Z0933M occupies a hydrophobic hotspot (P1) – encompassing an aromatic cage of two phenylalanines (F101 and F139) – alongside C-terminal extension of Skp1 and, thus, hampers its ability to interact with F-box proteins, a prerequisite step to constitute intact and active SCF E3 ligase(s) complexes. In cellulo, Z0933M disrupted SCF E3 ligase(s) functioning, recapitulated previously reported effects of Skp1-reduced activity, and elicited cell death by a p53-dependent mechanism. We propose Z0933M as valuable tool for future efforts toward probing Skp1 cancer biology, with implications for cancer therapy. Z0933M manifests strong binding with Skp1 and inhibits Skp1-F-box PPIs Z0933M interacts with a P1 hotspot alongside C-terminal extension of Skp1 Z0933M alters SCF E3 ligase functioning, leading to substrate accumulation/modulation Z0933M causes cell-cycle arrest, and elicits cell death by p53-dependent mechanism
Collapse
Affiliation(s)
- Muzammal Hussain
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Laboratory of Biocomputing, Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yongzhi Lu
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Muqddas Tariq
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Hao Jiang
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
| | - Yahai Shu
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Jiancun Zhang
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Laboratory of Biocomputing, Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Biocomputing, Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Corresponding author
| |
Collapse
|
67
|
Balasubramanian S, Perumal E. A systematic review on fluoride-induced epigenetic toxicity in mammals. Crit Rev Toxicol 2022; 52:449-468. [PMID: 36422650 DOI: 10.1080/10408444.2022.2122771] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fluoride, one of the global groundwater contaminants, is ubiquitous in our day-to-day life from various natural and anthropogenic sources. Numerous in vitro, in vivo, and epidemiological studies are conducted to understand the effect of fluoride on biological systems. A low concentration of fluoride is reported to increase oral health, whereas chronic exposure to higher concentrations causes fluoride toxicity (fluorosis). It includes dental fluorosis, skeletal fluorosis, and fluoride toxicity in soft tissues. The mechanism of fluoride toxicity has been reviewed extensively. However, epigenetic regulation in fluoride toxicity has not been reviewed. This systematic review summarizes the current knowledge regarding fluoride-induced epigenetic toxicity in the in vitro, in vivo, and epidemiological studies in mammalian systems. We examined four databases for the association between epigenetics and fluoride exposure. Out of 932 articles (as of 31 March 2022), 39 met our inclusion criteria. Most of the studies focused on different genes, and overall, preliminary evidence for epigenetic regulation of fluoride toxicity was identified. We further highlight the need for epigenome studies rather than candidate genes and provide recommendations for future research. Our results indicate a correlation between fluoride exposure and epigenetic processes. Further studies are warranted to elucidate and confirm the mechanism of epigenetic alterations mediated fluoride toxicity.
Collapse
Affiliation(s)
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
68
|
Liang J, Li G, Liao J, Huang Z, Wen J, Wang Y, Chen Z, Cai G, Xu W, Ding Z, Liang H, Datta PK, Chu L, Chen X, Zhang B. Non-coding small nucleolar RNA SNORD17 promotes the progression of hepatocellular carcinoma through a positive feedback loop upon p53 inactivation. Cell Death Differ 2022; 29:988-1003. [PMID: 35034103 PMCID: PMC9090725 DOI: 10.1038/s41418-022-00929-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/13/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022] Open
Abstract
Recent evidence suggests that small nucleolar RNAs (snoRNAs) are involved in the progression of various cancers, but their precise roles in hepatocellular carcinoma (HCC) remain largely unclear. Here, we report that SNORD17 promotes the progression of HCC through a positive feedback loop with p53. HCC-related microarray datasets from the Gene Expression Omnibus (GEO) database and clinical HCC samples were used to identify clinically relevant snoRNAs in HCC. SNORD17 was found upregulated in HCC tissues compared with normal liver tissues, and the higher expression of SNORD17 predicted poor outcomes in patients with HCC, especially in those with wild-type p53. SNORD17 promoted the growth and tumorigenicity of HCC cells in vitro and in vivo by inhibiting p53-mediated cell cycle arrest and apoptosis. Mechanistically, SNORD17 anchored nucleophosmin 1 (NPM1) and MYB binding protein 1a (MYBBP1A) in the nucleolus by binding them simultaneously. Loss of SNORD17 promoted the translocation of NPM1 and MYBBP1A into the nucleoplasm, leading to NPM1/MDM2-mediated stability and MYBBP1A/p300-mediated activation of p53. Interestingly, p300-mediated acetylation of p53 inhibited SNORD17 expression by binding to the promoter of SNORD17 in turn, forming a positive feedback loop between SNORD17 and p53. Administration of SNORD17 antisense oligonucleotides (ASOs) significantly suppressed the growth of xenograft tumors in mice. In summary, this study suggests that SNORD17 drives cancer progression by constitutively inhibiting p53 signaling in HCC and may represent a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ganxun Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyu Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyuan Wen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyu Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangzhen Cai
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiqi Xu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pran K Datta
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, Birmingham, AL, USA
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China. .,Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China. .,Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China. .,Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
69
|
Deciphering the acetylation code of p53 in transcription regulation and tumor suppression. Oncogene 2022; 41:3039-3050. [PMID: 35487975 PMCID: PMC9149126 DOI: 10.1038/s41388-022-02331-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022]
Abstract
Although it is well established that p53-mediated tumor suppression mainly acts through its ability in transcriptional regulation, the molecular mechanisms of this regulation are not completely understood. Among a number of regulatory modes, acetylation of p53 attracts great interests. p53 was one of the first non-histone proteins found to be functionally regulated by acetylation and deacetylation, and subsequent work has established that reversible acetylation is a general mechanism for regulation of non-histone proteins. Unlike other types of post-translational modifications occurred during stress responses, the role of p53 acetylation has been recently validated in vivo by using the knockin mice with both acetylation-defective and acetylation-mimicking p53 mutants. Here, we review the role of acetylation in p53-mediated activities, with a focus on which specific acetylation sites are critical for p53-dependent transcription regulation during tumor suppression and how acetylation of p53 recruits specific “readers” to execute its promoter-specific regulation of different targets. We also discuss the role of p53 acetylation in differentially regulating its classic activities in cell cycle arrest, senescence and apoptosis as well as newly identified unconventional functions such as cell metabolism and ferroptosis.
Collapse
|
70
|
Nutrition Interventions of Herbal Compounds on Cellular Senescence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1059257. [PMID: 35528514 PMCID: PMC9068308 DOI: 10.1155/2022/1059257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/01/2021] [Accepted: 04/02/2022] [Indexed: 01/10/2023]
Abstract
When cells undergo large-scale senescence, organ aging ensues, resulting in irreversible organ pathology and organismal aging. The study of senescence in cells provides an important avenue to understand the factors that influence aging and can be used as one of the useful tools for examining age-related human diseases. At present, many herbal compounds have shown effects on delaying cell senescence. This review summarizes the main characteristics and mechanisms of cell senescence, age-related diseases, and the recent progress on the natural products targeting cellular senescence, with the aim of providing insights to aid the clinical management of age-related diseases.
Collapse
|
71
|
Vattem C, Pakala SB. Metastasis-associated protein 1: A potential driver and regulator of the hallmarks of cancer. J Biosci 2022. [DOI: 10.1007/s12038-022-00263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
72
|
Huang Y, Yong P, Dickey D, Vora SM, Wu H, Bernlohr DA. Inflammasome Activation and Pyroptosis via a Lipid-regulated SIRT1-p53-ASC Axis in Macrophages From Male Mice and Humans. Endocrinology 2022; 163:6523230. [PMID: 35136993 PMCID: PMC8896164 DOI: 10.1210/endocr/bqac014] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 02/07/2023]
Abstract
Obesity-linked diabetes is associated with accumulation of proinflammatory macrophages into adipose tissue leading to inflammasome activation and pyroptotic secretion of interleukin (IL)-1β and IL-18. Targeting fatty acid binding protein 4 (FABP4) uncouples obesity from inflammation, attenuates characteristics of type 2 diabetes and is mechanistically linked to the cellular accumulation of monounsaturated fatty acids in macrophages. Herein we show that pharmacologic inhibition or genetic deletion of FABP4 activates silent mating type information regulation 2 homolog 1 (SIRT1) and deacetylates its downstream targets p53 and signal transducer and activator of transcription 3 (STAT3). Pharmacologic inhibition of fatty acid synthase or stearoyl-coenzyme A desaturase inhibits, whereas exogenous addition of C16:1 or C18:1 but not their saturated acyl chain counterparts, activates SIRT1 and p53/STAT3 signaling and IL-1β/IL-18 release. Expression of the p53 target gene ASC [apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (CARD)] required for assembly of the NLR family pyrin domain containing 3 (NLRP3) inflammasome is downregulated in FABP4 null mice and macrophage cell lines leading to loss of procaspase 1 activation and pyroptosis. Concomitant with loss of ASC expression in FABP4-/- macrophages, inflammasome activation, gasdermin D processing, and functional activation of pyroptosis are all diminished in FABP4 null macrophages but can be rescued by silencing SIRT1 or exogenous expression of ASC. Taken together, these results reveal a novel lipid-regulated pathway linking to SIRT1-p53-ASC signaling and activation of inflammasome action and pyroptosis.
Collapse
Affiliation(s)
- Yimao Huang
- Departments of Biochemistry, Molecular Biology and Biophysics
| | - Peter Yong
- Departments of Biochemistry, Molecular Biology and Biophysics
| | - Deborah Dickey
- Departments of Biochemistry, Molecular Biology and Biophysics
| | - Setu M Vora
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - David A Bernlohr
- Departments of Biochemistry, Molecular Biology and Biophysics
- Institute for Diabetes, Obesity and Metabolism University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Correspondence: David A. Bernlohr, Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA.
| |
Collapse
|
73
|
Wander P, Arentsen-Peters STCJM, Vrenken KS, Pinhanҫos SM, Koopmans B, Dolman MEM, Jones L, Garrido Castro P, Schneider P, Kerstjens M, Molenaar JJ, Pieters R, Zwaan CM, Stam RW. High-Throughput Drug Library Screening in Primary KMT2A-Rearranged Infant ALL Cells Favors the Identification of Drug Candidates That Activate P53 Signaling. Biomedicines 2022; 10:biomedicines10030638. [PMID: 35327440 PMCID: PMC8945716 DOI: 10.3390/biomedicines10030638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
KMT2A-rearranged acute lymphoblastic leukemia (ALL) in infants (<1 year of age) represents an aggressive type of childhood leukemia characterized by a poor clinical outcome with a survival chance of <50%. Implementing novel therapeutic approaches for these patients is a slow-paced and costly process. Here, we utilized a drug-repurposing strategy to identify potent drugs that could expeditiously be translated into clinical applications. We performed high-throughput screens of various drug libraries, comprising 4191 different (mostly FDA-approved) compounds in primary KMT2A-rearranged infant ALL patient samples (n = 2). The most effective drugs were then tested on non-leukemic whole bone marrow samples (n = 2) to select drugs with a favorable therapeutic index for bone marrow toxicity. The identified agents frequently belonged to several recurrent drug classes, including BCL-2, histone deacetylase, topoisomerase, microtubule, and MDM2/p53 inhibitors, as well as cardiac glycosides and corticosteroids. The in vitro efficacy of these drug classes was successfully validated in additional primary KMT2A-rearranged infant ALL samples (n = 7) and KMT2A-rearranged ALL cell line models (n = 5). Based on literature studies, most of the identified drugs remarkably appeared to lead to activation of p53 signaling. In line with this notion, subsequent experiments showed that forced expression of wild-type p53 in KMT2A-rearranged ALL cells rapidly led to apoptosis induction. We conclude that KMT2A-rearranged infant ALL cells are vulnerable to p53 activation, and that drug-induced p53 activation may represent an essential condition for successful treatment results. Moreover, the present study provides an attractive collection of approved drugs that are highly effective against KMT2A-rearranged infant ALL cells while showing far less toxicity towards non-leukemic bone marrow, urging further (pre)clinical testing.
Collapse
Affiliation(s)
- Priscilla Wander
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
- Department of Pediatric Oncology/Hematology, Erasmus MC-Sophia Children’s Hospital, 3015 CN Rotterdam, The Netherlands;
| | - Susan T. C. J. M. Arentsen-Peters
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
| | - Kirsten S. Vrenken
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
| | - Sandra Mimoso Pinhanҫos
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Bianca Koopmans
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
| | - M. Emmy M. Dolman
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, Sydney, NSW 2052, Australia
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Sydney, NSW 2031, Australia
| | - Luke Jones
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
| | - Patricia Garrido Castro
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
| | - Pauline Schneider
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
| | - Mark Kerstjens
- Department of Pediatric Oncology/Hematology, Erasmus MC-Sophia Children’s Hospital, 3015 CN Rotterdam, The Netherlands;
| | - Jan J. Molenaar
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
- Department of Pharmaceutical Sciences, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
| | - Christian Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
- Department of Pediatric Oncology/Hematology, Erasmus MC-Sophia Children’s Hospital, 3015 CN Rotterdam, The Netherlands;
| | - Ronald W. Stam
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
- Correspondence: ; Tel.: +31-(0)88-9727672
| |
Collapse
|
74
|
Abstract
ABSTRACT Accumulating evidence suggests that intestinal bacteria play an important role in the pathogenesis of colorectal cancer (CRC). Due to the complexity of the intestinal microbiome, identification of the specific causative microbial agents in CRC remains challenging, and the search for the causative microbial agents is intense. However, whether bacteria or their products can induce inflammation that results in tumorigenesis or directly causes CRC in humans is still not clear. This review will mainly focus on the progress of bacterial infection and CRC, and introduce the microbial contribution to the hallmarks of cancer. This article uses Salmonella and its chronic infection as an example to investigate a single pathogen and its role in the development of CRC, based on laboratory and epidemiological evidence. The bacterial infection leads to an altered intestinal microbiome. The review also discusses the dysfunction of the microbiome and the mechanism of host-microbial interactions, for example, bacterial virulence factors, key signaling pathways in the host, and microbial post-translational modifications in the tumorigenesis. Colonic carcinogenesis involves a progressive accumulation of mutations in a genetically susceptible host leading to cellular autonomy. Moving forward, more human data are needed to confirm the direct roles of bacterial infection in CRC development. Insights into the inhibiting infection will help to prevent cancer and develop strategies to restore the balance between host and microorganisms.
Collapse
|
75
|
Redman CW, Staff AC, Roberts JM. Syncytiotrophoblast stress in preeclampsia: the convergence point for multiple pathways. Am J Obstet Gynecol 2022; 226:S907-S927. [PMID: 33546842 DOI: 10.1016/j.ajog.2020.09.047] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/14/2020] [Accepted: 09/19/2020] [Indexed: 12/29/2022]
Abstract
Preeclampsia evolves in 2 stages: a placental problem that generates signals to the mother to cause a range of responses that comprise the second stage (preeclampsia syndrome). The first stage of early-onset preeclampsia is poor placentation, which we here call malplacentation. The spiral arteries are incompletely remodeled, leading to later placental malperfusion, relatively early in the second half of pregnancy. The long duration of the first stage (several months) is unsurprisingly associated with fetal growth restriction. The first stage of late-onset preeclampsia, approximately 80% of total cases, is shorter (several weeks) and part of a process that is common to all pregnancies. Placental function declines as it outgrows uterine capacity, with increasing chorionic villous packing, compression of the intervillous space, and fetal hypoxia, and causes late-onset clinical presentations such as "unexplained" stillbirths, late-onset fetal growth restriction, or preeclampsia. The second stages of early- and late-onset preeclampsia share syncytiotrophoblast stress as the most relevant feature that causes the maternal syndrome. Syncytiotrophoblast stress signals in the maternal circulation are probably the most specific biomarkers for preeclampsia. In addition, soluble fms-like tyrosine kinase-1 (mainly produced by syncytiotrophoblast) is the best-known biomarker and is routinely used in clinical practice in many locations. How the stress signals change over time in normal pregnancies indicates that syncytiotrophoblast stress begins on average at 30 to 32 weeks' gestation and progresses to term. At term, syncytiotrophoblast shows increasing markers of stress, including apoptosis, pyroptosis, autophagy, syncytial knots, and necrosis. We label this phenotype the "twilight placenta" and argue that it accounts for the clinical problems of postmature pregnancies. Senescence as a stress response differs in multinuclear syncytiotrophoblast from that of mononuclear cells. Syncytiotrophoblast irreversibly acquires part of the senescence phenotype (cell cycle arrest) when it is formed by cell fusion. The 2 pathways converge on the common pathologic endpoint, syncytiotrophoblast stress, and contribute to preeclampsia subtypes. We highlight that the well-known heterogeneity of the preeclampsia syndrome arises from different pathways to this common endpoint, influenced by maternal genetics, epigenetics, lifestyle, and environmental factors with different fetal and maternal responses to the ensuing insults. This complexity mandates a reassessment of our approach to predicting and preventing preeclampsia, and we summarize research priorities to maximize what we can learn about these important issues.
Collapse
|
76
|
The modulation of PD-L1 induced by the oncogenic HBXIP for breast cancer growth. Acta Pharmacol Sin 2022; 43:429-445. [PMID: 33824459 PMCID: PMC8791967 DOI: 10.1038/s41401-021-00631-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/24/2021] [Indexed: 02/03/2023]
Abstract
Programmed death ligand-1 (PD-L1)/PD-1 checkpoint extensively serves as a central mediator of immunosuppression. A tumor-promoting role for abundant PD-L1 in several cancers is revealed. However, the importance of PD-L1 and how the PD-L1 expression is controlled in breast cancer remains obscure. Here, the mechanisms of controlling PD-L1 at the transcription and protein acetylation levels in promoting breast cancer growth are presented. Overexpressed PD-L1 accelerates breast cancer growth in vitro and in vivo. RNA-seq uncovers that PD-L1 can induce some target genes affecting many cellular processes, especially cancer development. In clinical breast cancer tissues and cells, PD-L1 and HBXIP are both increased, and their expressions are positively correlated. Mechanistic exploration identifies that HBXIP stimulates the transcription of PD-L1 through co-activating ETS2. Specifically, HBXIP induces PD-L1 acetylation at K270 site through interacting with acetyltransferase p300, leading to the stability of PD-L1 protein. Functionally, depletion of HBXIP attenuates PD-L1-accelerated breast tumor growth. Aspirin alleviates breast cancer via targeting PD-L1 and HBXIP. Collectively, the findings display new light into the mechanisms of controlling tumor PD-L1 and broaden the utility for PD-L1 as a target in breast cancer therapy.
Collapse
|
77
|
Purushotham N, Singh M, Paramesha B, Kumar V, Wakode S, Banerjee SK, Poojary B, Asthana S. Design and synthesis of amino acid derivatives of substituted benzimidazoles and pyrazoles as Sirt1 inhibitors. RSC Adv 2022; 12:3809-3827. [PMID: 35425455 PMCID: PMC8981170 DOI: 10.1039/d1ra06149f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 01/10/2022] [Indexed: 12/27/2022] Open
Abstract
Owing to its presence in several biological processes, Sirt1 acts as a potential therapeutic target for many diseases. Here, we report the structure-based designing and synthesis of two distinct series of novel Sirt1 inhibitors, benzimidazole mono-peptides and amino-acid derived 5-pyrazolyl methylidene rhodanine carboxylic acid. The compounds were evaluated for in vitro enzyme-based and cell-based Sirt1 inhibition assay, and cytotoxic-activity in both liver and breast cancer cells. The tryptophan conjugates i.e.13h (IC50 = 0.66 μM, ΔG bind = -1.1 kcal mol-1) and 7d (IC50 = 0.77 μM, ΔG bind = -4.4 kcal mol-1) demonstrated the maximum efficacy to inhibit Sirt1. The MD simulation unveiled that electrostatic complementarity at the substrate-binding-site through a novel motif "SLxVxP(V/F)A" could be a cause of increased Sirt1 inhibition by 13h and 13l over Sirt2 in cell-based assay, as compared to the control Ex527 and 7d. Finally, this study highlights novel molecules 7d and 13h, along with a new key hot-spot in Sirt1, which could be used as a starting lead to design more potent and selective sirtuin inhibitors as a potential anticancer molecule.
Collapse
Affiliation(s)
- Nikil Purushotham
- Department of Studies in Chemistry, Mangalore University Mangalagangotri Karnataka-574 199 India +91 9686940403
| | - Mrityunjay Singh
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster Faridabad Haryana-121001 India +91 1292876475 +91 1292876489 +91 8447568689
- Delhi Institute of Pharmaceutical Sciences and Research, DPSR University M.B Road, Pushp Vihar, Sector 3 New Delhi 110017 India
| | - Bugga Paramesha
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster Faridabad Haryana-121001 India +91 1292876475 +91 1292876489 +91 8447568689
| | - Vasantha Kumar
- Department of Studies in Chemistry, Mangalore University Mangalagangotri Karnataka-574 199 India +91 9686940403
| | - Sharad Wakode
- Delhi Institute of Pharmaceutical Sciences and Research, DPSR University M.B Road, Pushp Vihar, Sector 3 New Delhi 110017 India
| | - Sanjay K Banerjee
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster Faridabad Haryana-121001 India +91 1292876475 +91 1292876489 +91 8447568689
| | - Boja Poojary
- Department of Studies in Chemistry, Mangalore University Mangalagangotri Karnataka-574 199 India +91 9686940403
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster Faridabad Haryana-121001 India +91 1292876475 +91 1292876489 +91 8447568689
| |
Collapse
|
78
|
Targeting Post-Translational Regulation of p53 in Colorectal Cancer by Exploiting Vulnerabilities in the p53-MDM2 Axis. Cancers (Basel) 2022; 14:cancers14010219. [PMID: 35008383 PMCID: PMC8750794 DOI: 10.3390/cancers14010219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 02/05/2023] Open
Abstract
The role played by the key tumor suppressor gene p53 and the implications of p53 mutations for the development and progression of neoplasia continue to expand. This review focuses on colorectal cancer and the regulators of p53 expression and activity identified over the past decade. These newly recognized regulatory mechanisms include (1) direct regulation of mouse double minute 2 homolog (MDM2), an E3 ubiquitin-protein ligase; (2) modulation of the MDM2-p53 interaction; (3) MDM2-independent p53 degradation; and (4) inhibition of p53 nuclear translocation. We positioned these regulatory mechanisms in the context of p53 missense mutations, which not only evade canonical p53 degradation machinery but also exhibit gain-of-function phenotypes that enhance tumor survival and metastasis. Lastly, we discuss current and potential therapeutic strategies directed against p53 mutant-bearing tumors.
Collapse
|
79
|
Marques MA, de Andrade GC, Silva JL, de Oliveira GAP. Protein of a thousand faces: The tumor-suppressive and oncogenic responses of p53. Front Mol Biosci 2022; 9:944955. [PMID: 36090037 PMCID: PMC9452956 DOI: 10.3389/fmolb.2022.944955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/18/2022] [Indexed: 12/30/2022] Open
Abstract
The p53 protein is a pleiotropic regulator working as a tumor suppressor and as an oncogene. Depending on the cellular insult and the mutational status, p53 may trigger opposing activities such as cell death or survival, senescence and cell cycle arrest or proliferative signals, antioxidant or prooxidant activation, glycolysis, or oxidative phosphorylation, among others. By augmenting or repressing specific target genes or directly interacting with cellular partners, p53 accomplishes a particular set of activities. The mechanism in which p53 is activated depends on increased stability through post-translational modifications (PTMs) and the formation of higher-order structures (HOS). The intricate cell death and metabolic p53 response are reviewed in light of gaining stability via PTM and HOS formation in health and disease.
Collapse
Affiliation(s)
- Mayra A. Marques
- *Correspondence: Mayra A. Marques, ; Guilherme A. P. de Oliveira,
| | | | | | | |
Collapse
|
80
|
Karr JP, Ferrie JJ, Tjian R, Darzacq X. The transcription factor activity gradient (TAG) model: contemplating a contact-independent mechanism for enhancer-promoter communication. Genes Dev 2022; 36:7-16. [PMID: 34969825 PMCID: PMC8763055 DOI: 10.1101/gad.349160.121] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
How distal cis-regulatory elements (e.g., enhancers) communicate with promoters remains an unresolved question of fundamental importance. Although transcription factors and cofactors are known to mediate this communication, the mechanism by which diffusible molecules relay regulatory information from one position to another along the chromosome is a biophysical puzzle-one that needs to be revisited in light of recent data that cannot easily fit into previous solutions. Here we propose a new model that diverges from the textbook enhancer-promoter looping paradigm and offer a synthesis of the literature to make a case for its plausibility, focusing on the coactivator p300.
Collapse
Affiliation(s)
- Jonathan P Karr
- University of California at Berkeley, Berkeley, California 94720, USA
| | - John J Ferrie
- University of California at Berkeley, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, Berkeley, California 94720, USA
| | - Robert Tjian
- University of California at Berkeley, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, Berkeley, California 94720, USA
| | - Xavier Darzacq
- University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
81
|
Loss of peptidase D binding restores the tumor suppressor functions of oncogenic p53 mutants. Commun Biol 2021; 4:1373. [PMID: 34880421 PMCID: PMC8655031 DOI: 10.1038/s42003-021-02880-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor suppressor p53, a critical regulator of cell fate, is frequently mutated in cancer. Mutation of p53 abolishes its tumor-suppressing functions or endows oncogenic functions. We recently found that p53 binds via its proline-rich domain to peptidase D (PEPD) and is activated when the binding is disrupted. The proline-rich domain in p53 is rarely mutated. Here, we show that oncogenic p53 mutants closely resemble p53 in PEPD binding but are transformed into tumor suppressors, rather than activated as oncoproteins, when their binding to PEPD is disrupted by PEPD knockdown. Once freed from PEPD, p53 mutants undergo multiple posttranslational modifications, especially lysine 373 acetylation, which cause them to refold and regain tumor suppressor activities that are typically displayed by p53. The reactivated p53 mutants strongly inhibit cancer cell growth in vitro and in vivo. Our study identifies a cellular mechanism for reactivation of the tumor suppressor functions of oncogenic p53 mutants.
Collapse
|
82
|
Alhebshi H, Tian K, Patnaik L, Taylor R, Bezecny P, Hall C, Muller PAJ, Safari N, Creamer DPM, Demonacos C, Mutti L, Bittar MN, Krstic-Demonacos M. Evaluation of the Role of p53 Tumour Suppressor Posttranslational Modifications and TTC5 Cofactor in Lung Cancer. Int J Mol Sci 2021; 22:ijms222413198. [PMID: 34947995 PMCID: PMC8707832 DOI: 10.3390/ijms222413198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 01/09/2023] Open
Abstract
Mutations in the p53 tumor suppressor are found in over 50% of cancers. p53 function is controlled through posttranslational modifications and cofactor interactions. In this study, we investigated the posttranslationally modified p53, including p53 acetylated at lysine 382 (K382), p53 phosphorylated at serine 46 (S46), and the p53 cofactor TTC5/STRAP (Tetratricopeptide repeat domain 5/ Stress-responsive activator of p300-TTC5) proteins in lung cancer. Immunohistochemical (IHC) analysis of lung cancer tissues from 250 patients was carried out and the results were correlated with clinicopathological features. Significant associations between total or modified p53 with a higher grade of the tumour and shorter overall survival (OS) probability were detected, suggesting that mutant and/or modified p53 acts as an oncoprotein in these patients. Acetylated at K382 p53 was predominantly nuclear in some samples and cytoplasmic in others. The localization of the K382 acetylated p53 was significantly associated with the gender and grade of the disease. The TTC5 protein levels were significantly associated with the grade, tumor size, and node involvement in a complex manner. SIRT1 expression was evaluated in 50 lung cancer patients and significant positive correlation was found with p53 S46 intensity, whereas negative TTC5 staining was associated with SIRT1 expression. Furthermore, p53 protein levels showed positive association with poor OS, whereas TTC5 protein levels showed positive association with better OS outcome. Overall, our results indicate that an analysis of p53 modified versions together with TTC5 expression, upon testing on a larger sample size of patients, could serve as useful prognostic factors or drug targets for lung cancer treatment.
Collapse
Affiliation(s)
- Hasen Alhebshi
- School of Science, Engineering and Environment, University of Salford, Cockcroft Building 305, Manchester M5 4WT, UK; (H.A.); (N.S.); (D.P.M.C.)
| | - Kun Tian
- Institute of Biological Anthropology, School of Basical Medical Science, Jinzhou Medical University, Jinzhou 121001, China;
| | - Lipsita Patnaik
- Blackpool Teaching Hospitals NHS Foundation Trust, Blackpool FY3 8NR, UK; (L.P.); (R.T.); (P.B.); (M.N.B.)
| | - Rebecca Taylor
- Blackpool Teaching Hospitals NHS Foundation Trust, Blackpool FY3 8NR, UK; (L.P.); (R.T.); (P.B.); (M.N.B.)
| | - Pavel Bezecny
- Blackpool Teaching Hospitals NHS Foundation Trust, Blackpool FY3 8NR, UK; (L.P.); (R.T.); (P.B.); (M.N.B.)
| | - Callum Hall
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Manchester SK10 4TG, UK; (C.H.); (P.A.J.M.)
| | - Patricia Anthonia Johanna Muller
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Manchester SK10 4TG, UK; (C.H.); (P.A.J.M.)
| | - Nazila Safari
- School of Science, Engineering and Environment, University of Salford, Cockcroft Building 305, Manchester M5 4WT, UK; (H.A.); (N.S.); (D.P.M.C.)
| | - Delta Patricia Menendez Creamer
- School of Science, Engineering and Environment, University of Salford, Cockcroft Building 305, Manchester M5 4WT, UK; (H.A.); (N.S.); (D.P.M.C.)
| | - Constantinos Demonacos
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, School of Health Sciences, The University of Manchester, Stopford Building, 3.124 Oxford Road, Manchester M13 9PT, UK;
| | - Luciano Mutti
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Mohamad Nidal Bittar
- Blackpool Teaching Hospitals NHS Foundation Trust, Blackpool FY3 8NR, UK; (L.P.); (R.T.); (P.B.); (M.N.B.)
| | - Marija Krstic-Demonacos
- School of Science, Engineering and Environment, University of Salford, Cockcroft Building 305, Manchester M5 4WT, UK; (H.A.); (N.S.); (D.P.M.C.)
- Correspondence:
| |
Collapse
|
83
|
Zhou L, Ouyang T, Li M, Hong T, Mhs A, Meng W, Zhang N. Ubiquitin-Specific Peptidase 7: A Novel Deubiquitinase That Regulates Protein Homeostasis and Cancers. Front Oncol 2021; 11:784672. [PMID: 34869041 PMCID: PMC8640129 DOI: 10.3389/fonc.2021.784672] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
Ubiquitin-Specific Peptidase 7 (USP7), or herpes virus-associated protease (HAUSP), is the largest family of the deubiquitinating enzymes (DUBs). Recent studies have shown that USP7 plays a vital role in regulating various physiological and pathological processes. Dysregulation of these processes mediated by USP7 may contribute to many diseases, such as cancers. Moreover, USP7 with aberrant expression levels and abnormal activity are found in cancers. Therefore, given the association between USP7 and cancers, targeting USP7 could be considered as an attractive and potential therapeutic approach in cancer treatment. This review describes the functions of USP7 and the regulatory mechanisms of its expression and activity, aiming to emphasize the necessity of research on USP7, and provide a better understanding of USP7-related biological processes and cancer.
Collapse
Affiliation(s)
- Lin Zhou
- First Clinical Medical College, Nanchang University, Nanchang, China
| | - Taohui Ouyang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Alriashy Mhs
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Wei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Na Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
84
|
Lanzi C, Favini E, Dal Bo L, Tortoreto M, Arrighetti N, Zaffaroni N, Cassinelli G. Upregulation of ERK-EGR1-heparanase axis by HDAC inhibitors provides targets for rational therapeutic intervention in synovial sarcoma. J Exp Clin Cancer Res 2021; 40:381. [PMID: 34857011 PMCID: PMC8638516 DOI: 10.1186/s13046-021-02150-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Synovial sarcoma (SS) is an aggressive soft tissue tumor with limited therapeutic options in advanced stage. SS18-SSX fusion oncogenes, which are the hallmarks of SS, cause epigenetic rewiring involving histone deacetylases (HDACs). Promising preclinical studies supporting HDAC targeting for SS treatment were not reflected in clinical trials with HDAC inhibitor (HDACi) monotherapies. We investigated pathways implicated in SS cell response to HDACi to identify vulnerabilities exploitable in combination treatments and improve the therapeutic efficacy of HDACi-based regimens. METHODS Antiproliferative and proapoptotic effects of the HDACi SAHA and FK228 were examined in SS cell lines in parallel with biochemical and molecular analyses to bring out cytoprotective pathways. Treatments combining HDACi with drugs targeting HDACi-activated prosurvival pathways were tested in functional assays in vitro and in a SS orthotopic xenograft model. Molecular mechanisms underlying synergisms were investigated in SS cells through pharmacological and gene silencing approaches and validated by qRT-PCR and Western blotting. RESULTS SS cell response to HDACi was consistently characterized by activation of a cytoprotective and auto-sustaining axis involving ERKs, EGR1, and the β-endoglycosidase heparanase, a well recognized pleiotropic player in tumorigenesis and disease progression. HDAC inhibition was shown to upregulate heparanase by inducing expression of the positive regulator EGR1 and by hampering negative regulation by p53 through its acetylation. Interception of HDACi-induced ERK-EGR1-heparanase pathway by cell co-treatment with a MEK inhibitor (trametinib) or a heparanase inhibitor (SST0001/roneparstat) enhanced antiproliferative and pro-apoptotic effects. HDAC and heparanase inhibitors had opposite effects on histone acetylation and nuclear heparanase levels. The combination of SAHA with SST0001 prevented the upregulation of ERK-EGR1-heparanase induced by the HDACi and promoted caspase-dependent cell death. In vivo, the combined treatment with SAHA and SST0001 potentiated the antitumor efficacy against the CME-1 orthotopic SS model as compared to single agent administration. CONCLUSIONS The present study provides preclinical rationale and mechanistic insights into drug combinatory strategies based on the use of ERK pathway and heparanase inhibitors to improve the efficacy of HDACi-based antitumor therapies in SS. The involvement of classes of agents already clinically available, or under clinical evaluation, indicates the transferability potential of the proposed approaches.
Collapse
Affiliation(s)
- Cinzia Lanzi
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Enrica Favini
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Laura Dal Bo
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Monica Tortoreto
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Noemi Arrighetti
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Nadia Zaffaroni
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Giuliana Cassinelli
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
85
|
Marx C, Sonnemann J, Beyer M, Maddocks ODK, Lilla S, Hauzenberger I, Piée‐Staffa A, Siniuk K, Nunna S, Marx‐Blümel L, Westermann M, Wagner T, Meyer FB, Thierbach R, Mullins CS, Kdimati S, Linnebacher M, Neri F, Heinzel T, Wang Z, Krämer OH. Mechanistic insights into p53-regulated cytotoxicity of combined entinostat and irinotecan against colorectal cancer cells. Mol Oncol 2021; 15:3404-3429. [PMID: 34258881 PMCID: PMC8637561 DOI: 10.1002/1878-0261.13060] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/23/2021] [Accepted: 07/12/2021] [Indexed: 12/21/2022] Open
Abstract
Late-stage colorectal cancer (CRC) is still a clinically challenging problem. The activity of the tumor suppressor p53 is regulated via post-translational modifications (PTMs). While the relevance of p53 C-terminal acetylation for transcriptional regulation is well defined, it is unknown whether this PTM controls mitochondrially mediated apoptosis directly. We used wild-type p53 or p53-negative human CRC cells, cells with acetylation-defective p53, transformation assays, CRC organoids, and xenograft mouse models to assess how p53 acetylation determines cellular stress responses. The topoisomerase-1 inhibitor irinotecan induces acetylation of several lysine residues within p53. Inhibition of histone deacetylases (HDACs) with the class I HDAC inhibitor entinostat synergistically triggers mitochondrial damage and apoptosis in irinotecan-treated p53-positive CRC cells. This specifically relies on the C-terminal acetylation of p53 by CREB-binding protein/p300 and the presence of C-terminally acetylated p53 in complex with the proapoptotic BCL2 antagonist/killer protein. This control of C-terminal acetylation by HDACs can mechanistically explain why combinations of irinotecan and entinostat represent clinically tractable agents for the therapy of p53-proficient CRC.
Collapse
Affiliation(s)
- Christian Marx
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
- Department of ToxicologyUniversity Medical CenterJohannes Gutenberg University MainzGermany
- Cancer Research UK Beatson InstituteGlasgowUK
- Department of BiochemistryCenter for Molecular BiomedicineInstitute for Biochemistry and BiophysicsFriedrich Schiller University of JenaGermany
| | - Jürgen Sonnemann
- Department of Paediatric Haematology and OncologyChildren's ClinicJena University HospitalGermany
- Research Center LobedaJena University HospitalGermany
| | - Mandy Beyer
- Department of ToxicologyUniversity Medical CenterJohannes Gutenberg University MainzGermany
| | - Oliver D. K. Maddocks
- Cancer Research UK Beatson InstituteGlasgowUK
- Wolfson Wohl Cancer Research CentreInstitute of Cancer SciencesUniversity of GlasgowUK
| | | | - Irene Hauzenberger
- Department of ToxicologyUniversity Medical CenterJohannes Gutenberg University MainzGermany
| | - Andrea Piée‐Staffa
- Department of ToxicologyUniversity Medical CenterJohannes Gutenberg University MainzGermany
| | | | - Suneetha Nunna
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| | - Lisa Marx‐Blümel
- Department of Paediatric Haematology and OncologyChildren's ClinicJena University HospitalGermany
- Research Center LobedaJena University HospitalGermany
| | | | - Tobias Wagner
- Department of BiochemistryCenter for Molecular BiomedicineInstitute for Biochemistry and BiophysicsFriedrich Schiller University of JenaGermany
- Cellular and Molecular MedicineHoward Hughes Medical InstituteUniversity of California, San DiegoLa JollaCAUSA
| | - Felix B. Meyer
- Department of Human NutritionInstitute of NutritionFriedrich Schiller University of JenaGermany
| | - René Thierbach
- Department of Human NutritionInstitute of NutritionFriedrich Schiller University of JenaGermany
| | - Christina S. Mullins
- Molecular Oncology and ImmunotherapyDepartment of Thoracic SurgeryUniversity of RostockGermany
| | - Said Kdimati
- Molecular Oncology and ImmunotherapyDepartment of General, Visceral, Vascular and Transplantation SurgeryUniversity of RostockGermany
| | - Michael Linnebacher
- Molecular Oncology and ImmunotherapyDepartment of General, Visceral, Vascular and Transplantation SurgeryUniversity of RostockGermany
| | - Francesco Neri
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| | - Thorsten Heinzel
- Department of BiochemistryCenter for Molecular BiomedicineInstitute for Biochemistry and BiophysicsFriedrich Schiller University of JenaGermany
| | - Zhao‐Qi Wang
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
- Faculty of Biological SciencesFriedrich‐Schiller‐University of JenaGermany
| | - Oliver H. Krämer
- Department of ToxicologyUniversity Medical CenterJohannes Gutenberg University MainzGermany
- Department of BiochemistryCenter for Molecular BiomedicineInstitute for Biochemistry and BiophysicsFriedrich Schiller University of JenaGermany
| |
Collapse
|
86
|
Tyagi A, Haq S, Ramakrishna S. Redox regulation of DUBs and its therapeutic implications in cancer. Redox Biol 2021; 48:102194. [PMID: 34814083 PMCID: PMC8608616 DOI: 10.1016/j.redox.2021.102194] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/19/2021] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) act as a double-edged sword in cancer, where low levels of ROS are beneficial but excessive accumulation leads to cancer progression. Elevated levels of ROS in cancer are counteracted by the antioxidant defense system. An imbalance between ROS generation and the antioxidant system alters gene expression and cellular signaling, leading to cancer progression or death. Post-translational modifications, such as ubiquitination, phosphorylation, and SUMOylation, play a critical role in the maintenance of ROS homeostasis by controlling ROS production and clearance. Recent evidence suggests that deubiquitinating enzymes (DUBs)-mediated ubiquitin removal from substrates is regulated by ROS. ROS-mediated oxidation of the catalytic cysteine (Cys) of DUBs, leading to their reversible inactivation, has emerged as a key mechanism regulating DUB-controlled cellular events. A better understanding of the mechanism by which DUBs are susceptible to ROS and exploring the ways to utilize ROS to pharmacologically modulate DUB-mediated signaling pathways might provide new insight for anticancer therapeutics. This review assesses the recent findings regarding ROS-mediated signaling in cancers, emphasizes DUB regulation by oxidation, highlights the relevant recent findings, and proposes directions of future research based on the ROS-induced modifications of DUB activity.
Collapse
Affiliation(s)
- Apoorvi Tyagi
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Saba Haq
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea; College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
87
|
Wang Z, Wang D, Jiang K, Guo Y, Li Z, Jiang R, Han R, Li G, Tian Y, Li H, Kang X, Liu X. A Comprehensive Proteome and Acetyl-Proteome Atlas Reveals Molecular Mechanisms Adapting to the Physiological Changes From Pre-laying to Peak-Laying Stage in Liver of Hens ( Gallus gallus). Front Vet Sci 2021; 8:700669. [PMID: 34746273 PMCID: PMC8566343 DOI: 10.3389/fvets.2021.700669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/15/2021] [Indexed: 01/12/2023] Open
Abstract
Along with sexual maturity, the liver undergoes numerous metabolic processes to adapt the physiological changes associated with egg-laying in hens. However, mechanisms regulating the processes were unclear. In this study, comparative hepatic proteome and acetyl-proteome between pre- and peak-laying hens were performed. The results showed that the upregulated proteins were mainly related to lipid and protein biosynthesis, while the downregulated proteins were mainly involved in pyruvate metabolism and were capable of inhibiting gluconeogenesis and lactate synthesis in peak-laying hens compared with that in pre-laying hens. With unchanged expression level, the significant acetylated proteins were largely functioned on activation of polyunsaturated fatty acid oxidation in peroxisome, while the significant deacetylated proteins were principally used to elevate medium and short fatty acid oxidation in mitochondria and oxidative phosphorylation. Most of the proteins which involved in gluconeogenesis, lipid transport, and detoxification were influenced by both protein expression and acetylation. Taken overall, a novel mechanism wherein an alternate source of acetyl coenzyme A was produced by activation of FA oxidation and pyruvate metabolism to meet the increased energy demand and lipid synthesis in liver of laying hens was uncovered. This study provides new insights into molecular mechanism of adaptation to physiological changes in liver of laying hens.
Collapse
Affiliation(s)
- Zhang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Dandan Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Keren Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| |
Collapse
|
88
|
Carlsen L, El-Deiry WS. Differential p53-Mediated Cellular Responses to DNA-Damaging Therapeutic Agents. Int J Mol Sci 2021; 22:ijms222111828. [PMID: 34769259 PMCID: PMC8584119 DOI: 10.3390/ijms222111828] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 01/01/2023] Open
Abstract
The gene TP53, which encodes the tumor suppressor protein p53, is mutated in about 50% of cancers. In response to cell stressors like DNA damage and after treatment with DNA-damaging therapeutic agents, p53 acts as a transcription factor to activate subsets of target genes which carry out cell fates such as apoptosis, cell cycle arrest, and DNA repair. Target gene selection by p53 is controlled by a complex regulatory network whose response varies across contexts including treatment type, cell type, and tissue type. The molecular basis of target selection across these contexts is not well understood. Knowledge gained from examining p53 regulatory network profiles across different DNA-damaging agents in different cell types and tissue types may inform logical ways to optimally manipulate the network to encourage p53-mediated tumor suppression and anti-tumor immunity in cancer patients. This may be achieved with combination therapies or with p53-reactivating targeted therapies. Here, we review the basics of the p53 regulatory network in the context of differential responses to DNA-damaging agents; discuss recent efforts to characterize differential p53 responses across treatment types, cell types, and tissue types; and examine the relevance of evaluating these responses in the tumor microenvironment. Finally, we address open questions including the potential relevance of alternative p53 transcriptional functions, p53 transcription-independent functions, and p53-independent functions in the response to DNA-damaging therapeutics.
Collapse
Affiliation(s)
- Lindsey Carlsen
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA;
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, USA
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Pathobiology Graduate Program, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA;
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, USA
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Pathobiology Graduate Program, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Department of Medicine, Hematology-Oncology Division, Rhode Island Hospital, Brown University, Providence, RI 02903, USA
- Correspondence:
| |
Collapse
|
89
|
Koike K, Masuda T, Sato K, Fujii A, Wakiyama H, Tobo T, Takahashi J, Motomura Y, Nakano T, Saito H, Matsumoto Y, Otsu H, Takeishi K, Yonemura Y, Mimori K, Nakagawa T. GET4 is a novel driver gene in colorectal cancer that regulates the localization of BAG6, a nucleocytoplasmic shuttling protein. Cancer Sci 2021; 113:156-169. [PMID: 34704338 PMCID: PMC8748226 DOI: 10.1111/cas.15174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of cancer and a significant cause of cancer mortality worldwide. Further improvements of CRC therapeutic approaches are needed. BCL2‐associated athanogene 6 (BAG6), a multifunctional scaffold protein, plays an important role in tumor progression. However, regulation of BAG6 in malignancies remains unclear. This study showed that guided entry of tail‐anchored proteins factor 4 (GET4), a component of the BAG6 complex, regulates the intercellular localization of BAG6 in CRC. Furthermore, GET4 was identified as a candidate driver gene on the short arm of chromosome 7, which is often amplified in CRC, by our bioinformatics approach using the CRC dataset from The Cancer Genome Atlas. Clinicopathologic and prognostic analyses using CRC datasets showed that GET4 was overexpressed in tumor cells due to an increased DNA copy number. High GET4 expression was an independent poor prognostic factor in CRC, whereas BAG6 was mainly overexpressed in the cytoplasm of tumor cells without gene alteration. The biological significance of GET4 was examined using GET4 KO CRC cells generated with CRISPR‐Cas9 technology or transfected CRC cells. In vitro and in vivo analyses showed that GET4 promoted tumor growth. It appears to facilitate cell cycle progression by cytoplasmic enrichment of BAG6‐mediated p53 acetylation followed by reduced p21 expression. In conclusion, we showed that GET4 is a novel driver gene and a prognostic biomarker that promotes CRC progression by inducing the cytoplasmic transport of BAG6. GET4 could be a promising therapeutic molecular target in CRC.
Collapse
Affiliation(s)
- Kensuke Koike
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan.,Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Kuniaki Sato
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Atsushi Fujii
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Hiroaki Wakiyama
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Taro Tobo
- Department of Pathology, Kyushu University Beppu Hospital, Beppu, Japan
| | - Junichi Takahashi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yushi Motomura
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Takafumi Nakano
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Hideyuki Saito
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | | | - Hajime Otsu
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Kazuki Takeishi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yusuke Yonemura
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Takashi Nakagawa
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| |
Collapse
|
90
|
Wang WW, Chen LY, Wozniak JM, Jadhav AM, Anderson H, Malone TE, Parker CG. Targeted Protein Acetylation in Cells Using Heterobifunctional Molecules. J Am Chem Soc 2021; 143:16700-16708. [PMID: 34592107 PMCID: PMC10793965 DOI: 10.1021/jacs.1c07850] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein acetylation is a central event in orchestrating diverse cellular processes. However, current strategies to investigate protein acetylation in cells are often nonspecific or lack temporal and magnitude control. Here, we developed an acetylation tagging system, AceTAG, to induce acetylation of targeted proteins. The AceTAG system utilizes bifunctional molecules to direct the lysine acetyltransferase p300/CBP to proteins fused with the small protein tag FKBP12F36V, resulting in their induced acetylation. Using AceTAG, we induced targeted acetylation of a diverse array of proteins in cells, specifically histone H3.3, the NF-κB subunit p65/RelA, and the tumor suppressor p53. We demonstrate that targeted acetylation with the AceTAG system is rapid, selective, reversible and can be controlled in a dose-dependent fashion. AceTAG represents a useful strategy to modulate protein acetylation and should enable the exploration of targeted acetylation in basic biological and therapeutic contexts.
Collapse
Affiliation(s)
- Wesley W Wang
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Li-Yun Chen
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Jacob M Wozniak
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Appaso M Jadhav
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Hayden Anderson
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Taylor E Malone
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Christopher G Parker
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
91
|
Zhitkovich A. Ascorbate: antioxidant and biochemical activities and their importance for in vitro models. Arch Toxicol 2021; 95:3623-3631. [PMID: 34596731 DOI: 10.1007/s00204-021-03167-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022]
Abstract
Ascorbate has many biological activities that involve fundamental cellular functions such as gene expression, differentiation, and redox homeostasis. Biochemically, it serves as a cofactor for a large family of dioxygenases (> 60 members) which control transcription, formation of extracellular matrix, and epigenetic processes of histone and DNA demethylation. Ascorbate is also a major antioxidant acting as a very effective scavenger of primary reactive oxygen species. Reduction of Fe(III) by ascorbate is important for cellular uptake of iron via DMT1. Cell culture models are extensively used in toxicology and pharmacology for mechanistic studies of nutrients, drugs and other xenobiotics. High-throughput screens in vitro, such as a large-scale Tox21 program in the US, offers opportunities to assess hazardous properties of a vast and growing number of industrial chemicals. However, cells in typical cultures are severely deficient in ascorbate, raising concerns about their ability to accurately recapitulate toxic and other responses in vivo. Scarcity of ascorbate and a frequently unrecognized use of media with its thiol substitute alters stress sensitivity of cells in different directions. Remediation of ascorbate deficiency in tissue culture restores the physiological state of many cellular processes and it should improve a currently limited toxicity predictability of in vitro bioassays.
Collapse
Affiliation(s)
- Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Room 507, Providence, RI, 02912, USA.
| |
Collapse
|
92
|
Lo Cascio C, McNamara JB, Melendez EL, Lewis EM, Dufault ME, Sanai N, Plaisier CL, Mehta S. Nonredundant, isoform-specific roles of HDAC1 in glioma stem cells. JCI Insight 2021; 6:e149232. [PMID: 34494550 PMCID: PMC8492336 DOI: 10.1172/jci.insight.149232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/22/2021] [Indexed: 01/02/2023] Open
Abstract
Glioblastoma (GBM) is characterized by an aberrant yet druggable epigenetic landscape. One major family of epigenetic regulators, the histone deacetylases (HDACs), are considered promising therapeutic targets for GBM due to their repressive influences on transcription. Although HDACs share redundant functions and common substrates, the unique isoform-specific roles of different HDACs in GBM remain unclear. In neural stem cells, HDAC2 is the indispensable deacetylase to ensure normal brain development and survival in the absence of HDAC1. Surprisingly, we find that HDAC1 is the essential class I deacetylase in glioma stem cells, and its loss is not compensated for by HDAC2. Using cell-based and biochemical assays, transcriptomic analyses, and patient-derived xenograft models, we find that knockdown of HDAC1 alone has profound effects on the glioma stem cell phenotype in a p53-dependent manner. We demonstrate marked suppression in tumor growth upon targeting of HDAC1 and identify compensatory pathways that provide insights into combination therapies for GBM. Our study highlights the importance of HDAC1 in GBM and the need to develop isoform-specific drugs.
Collapse
Affiliation(s)
- Costanza Lo Cascio
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona, USA.,Interdisciplinary Graduate Program in Neuroscience, School of Life Sciences, and
| | - James B McNamara
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Ernesto L Melendez
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Erika M Lewis
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Matthew E Dufault
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Nader Sanai
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Christopher L Plaisier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Shwetal Mehta
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| |
Collapse
|
93
|
Hammad SK, Eissa RG, Shaheen MA, Younis NN. Resveratrol Ameliorates Aortic Calcification in Ovariectomized Rats via SIRT1 Signaling. Curr Issues Mol Biol 2021; 43:1057-1071. [PMID: 34563044 PMCID: PMC8928980 DOI: 10.3390/cimb43020075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/26/2022] Open
Abstract
Postmenopausal women are at an increased risk of vascular calcification which is defined as the pathological deposition of minerals in the vasculature, and is strongly linked with increased cardiovascular disease risk. Since estrogen-replacement therapy is associated with increased cancer risk, there is a strong need for safer therapeutic approaches. In this study we aimed to investigate the protective and therapeutic effects of the phytoestrogen resveratrol against vascular calcification in ovariectomized rats, a preclinical model of postmenopause. Furthermore, we aimed to compare the effects of resveratrol to those of estrogen and to explore the mechanisms underpinning those effects. Treatment with resveratrol or estrogen ameliorated aortic calcification in ovariectomized rats, as shown by reduced calcium deposition in the arterial wall. Mechanistically, the effects of resveratrol and estrogen were mediated via the activation of SIRT1 signaling. SIRT1 protein expression was downregulated in the aortas of ovariectomized rats, and upregulated in rats treated with resveratrol or estrogen. Moreover, resveratrol and estrogen reduced the levels of the osteogenic markers: runt-related transcription factor 2 (RUNX2), osteocalcin and alkaline phosphatase (ALP) which have been shown to play a role during vascular calcification. Additionally, the senescence markers (p53, p16 and p21) which were also reported to play a role in the pathogenesis of vascular calcification, were reduced upon treatment with resveratrol and estrogen. In conclusion, the phytoestrogen resveratrol may be a safer alternative to estrogen, as a therapeutic approach against the progression of vascular calcification during postmenopause.
Collapse
Affiliation(s)
- Sally K. Hammad
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.G.E.); (N.N.Y.)
| | - Rana G. Eissa
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.G.E.); (N.N.Y.)
| | - Mohamed A. Shaheen
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Nahla N. Younis
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.G.E.); (N.N.Y.)
| |
Collapse
|
94
|
Guo J, Zhu Y, Yu L, Li Y, Guo J, Cai J, Liu L, Wang Z. Aspirin inhibits tumor progression and enhances cisplatin sensitivity in epithelial ovarian cancer. PeerJ 2021; 9:e11591. [PMID: 34414020 PMCID: PMC8340904 DOI: 10.7717/peerj.11591] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
Background Ovarian cancer is the most common gynecological malignancy and is difficult to manage due to the emergence of resistance to various chemotherapeutic drugs. New efforts are urgently awaited. Aspirin, which is traditionally considered a nonsteroidal anti-inflammatory drug (NSAID), has been reported to exert potential chemopreventive effects. Therefore, we aimed to investigate the anticancer effect and explore the underlying molecular mechanisms of aspirin on epithelial ovarian cancer (EOC) cells. Methods We conducted wound healing, transwell migration, EdU cell proliferation, colony formation and apoptosis detection assays to observe the effects of aspirin on the migration, proliferation and apoptosis of EOC cells (A2870, Caov-3, and SK-OV-3). EOC cells were treated with a combination of aspirin and cisplatin (CDDP) to observe the effect of aspirin on enhancing CDDP sensitivity. Orthotopic xenograft models of ovarian cancer established with A2780-Luciferase-GFP cells were applied to compare tumor growth inhibition in the control, CDDP and CDDP plus aspirin groups through in vivo imaging, which can be used to continuously monitor tumor growth. The expression and acetylation levels of p53 in EOC cells treated with aspirin were determined using western blotting, and p53 acetylation levels were examined in tumors harvested from the transplanted mice. Quantitative real-time PCR was used to assess the mRNA expression of p53 target genes. Results Aspirin inhibited migration and proliferation and induced apoptosis in EOC cell lines in a concentration-dependent manner. In vitro, aspirin enhanced the sensitivity of EOC cells to CDDP by increasing its inhibitory effect on proliferation and its effect on inducing apoptosis. In vivo, the differences in the tumor growth inhibition rates among the different CDDP experimental groups were statistically significant (p < 0.05). Aspirin did not affect p53 protein expression but increased the p53 acetylation level in a concentration-dependent manner. In addition, the mRNA levels of CDKN1A, BAX, FOXF1, PUMA, and RRAD in EOC cells were significantly increased by the aspirin treatment. Conclusions Aspirin inhibits tumor progression and enhances the CDDP sensitivity of EOC cells. These antitumor effects of aspirin might be mediated by p53 acetylation and subsequent activation of p53 target genes.
Collapse
Affiliation(s)
- Jianfeng Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yapei Zhu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Yu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
95
|
Kiss A, Csikos C, Regdon Z, Polgár Z, Virág L, Hegedűs C. NMNAT1 Is a Survival Factor in Actinomycin D-Induced Osteosarcoma Cell Death. Int J Mol Sci 2021; 22:8869. [PMID: 34445574 PMCID: PMC8396190 DOI: 10.3390/ijms22168869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 01/25/2023] Open
Abstract
Osteosarcoma is a frequent and extremely aggressive type of pediatric cancer. New therapeutic approaches are needed to improve the overall survival of osteosarcoma patients. Our previous results suggest that NMNAT1, a key enzyme in nuclear NAD+ synthesis, facilitates the survival of cisplatin-treated osteosarcoma cells. A high-throughput cytotoxicity screening was performed to identify novel pathways or compounds linked to the cancer-promoting role of NMNAT1. Nine compounds caused higher toxicity in the NMNAT1 KO U2OS cells compared to their wild type counterparts, and actinomycin D (ActD) was the most potent. ActD-treatment of NMNAT1 KO cells increased caspase activity and secondary necrosis. The reduced NAD+ content in NMNAT1 KO cells was further decreased by ActD, which partially inhibited NAD+-dependent enzymes, including the DNA nick sensor enzyme PARP1 and the NAD+-dependent deacetylase SIRT1. Impaired PARP1 activity increased DNA damage in ActD-treated NMNAT1 knockout cells, while SIRT1 impairment increased acetylation of the p53 protein, causing the upregulation of pro-apoptotic proteins (NOXA, BAX). Proliferation was decreased through both PARP- and SIRT-dependent pathways. On the one hand, PARP inhibitors sensitized wild type but not NMNAT1 KO cells to ActD-induced anti-clonogenic effects; on the other hand, over-acetylated p53 induced the expression of the anti-proliferative p21 protein leading to cell cycle arrest. Based on our results, NMNAT1 acts as a survival factor in ActD-treated osteosarcoma cells. By inhibiting both PARP1- and SIRT1-dependent cellular pathways, NMNAT1 inhibition can be a promising new tool in osteosarcoma chemotherapy.
Collapse
Affiliation(s)
- Alexandra Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.K.); (C.C.); (Z.R.); (Z.P.)
- Doctoral School of Molecular Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Csaba Csikos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.K.); (C.C.); (Z.R.); (Z.P.)
| | - Zsolt Regdon
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.K.); (C.C.); (Z.R.); (Z.P.)
| | - Zsuzsanna Polgár
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.K.); (C.C.); (Z.R.); (Z.P.)
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.K.); (C.C.); (Z.R.); (Z.P.)
- MTA-DE Cell Biology and Signaling Research Group, H-4032 Debrecen, Hungary
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.K.); (C.C.); (Z.R.); (Z.P.)
| |
Collapse
|
96
|
Chen G, Qiu L, Gao J, Wang J, Dang J, Li L, Jin Z, Liu X. Stress Hormones: Emerging Targets in Gynecological Cancers. Front Cell Dev Biol 2021; 9:699487. [PMID: 34307378 PMCID: PMC8299464 DOI: 10.3389/fcell.2021.699487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/09/2021] [Indexed: 01/06/2023] Open
Abstract
In the past decade, several discoveries have documented the existence of innervation in ovarian cancer and cervical cancer. Notably, various neurotransmitters released by the activation of the sympathetic nervous system can promote the proliferation and metastasis of tumor cells and regulate immune cells in the tumor microenvironment. Therefore, a better understanding of the mechanisms involving neurotransmitters in the occurrence and development of gynecological cancers will be beneficial for exploring the feasibility of using inexpensive β-blockers and dopamine agonists in the clinical treatment of gynecological cancers. Additionally, this article provides some new insights into targeting tumor innervation and neurotransmitters in the tumor microenvironment.
Collapse
Affiliation(s)
- Guoqiang Chen
- Department of Obstetrics and Gynecology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lei Qiu
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Jinghai Gao
- Department of Obstetrics and Gynecology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jianhong Dang
- Department of Obstetrics and Gynecology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lingling Li
- Department of Obstetrics and Gynecology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhijun Jin
- Department of Obstetrics and Gynecology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiaojun Liu
- Department of Obstetrics and Gynecology, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
97
|
Gomes AS, Ramos H, Inga A, Sousa E, Saraiva L. Structural and Drug Targeting Insights on Mutant p53. Cancers (Basel) 2021; 13:3344. [PMID: 34283062 PMCID: PMC8268744 DOI: 10.3390/cancers13133344] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
p53 is a transcription factor with a pivotal role in cell homeostasis and fate. Its impairment is a major event in tumor onset and development. In fact, about half of human cancers bear TP53 mutations that not only halt the normal function of p53, but also may acquire oncogenic gain of functions that favor tumorigenesis. Although considered undruggable for a long time, evidence has proven the capability of many compounds to restore a wild-type (wt)-like function to mutant p53 (mutp53). However, they have not reached the clinic to date. Structural studies have strongly contributed to the knowledge about p53 structure, stability, dynamics, function, and regulation. Importantly, they have afforded relevant insights into wt and mutp53 pharmacology at molecular levels, fostering the design and development of p53-targeted anticancer therapies. Herein, we provide an integrated view of mutp53 regulation, particularly focusing on mutp53 structural traits and on targeting agents capable of its reactivation, including their biological, biochemical and biophysical features. With this, we expect to pave the way for the development of improved small molecules that may advance precision cancer therapy by targeting p53.
Collapse
Affiliation(s)
- Ana Sara Gomes
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| | - Helena Ramos
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Department CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy;
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| |
Collapse
|
98
|
Lees A, Sessler T, McDade S. Dying to Survive-The p53 Paradox. Cancers (Basel) 2021; 13:3257. [PMID: 34209840 PMCID: PMC8268032 DOI: 10.3390/cancers13133257] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
The p53 tumour suppressor is best known for its canonical role as "guardian of the genome", activating cell cycle arrest and DNA repair in response to DNA damage which, if irreparable or sustained, triggers activation of cell death. However, despite an enormous amount of work identifying the breadth of the gene regulatory networks activated directly and indirectly in response to p53 activation, how p53 activation results in different cell fates in response to different stress signals in homeostasis and in response to p53 activating anti-cancer treatments remains relatively poorly understood. This is likely due to the complex interaction between cell death mechanisms in which p53 has been activated, their neighbouring stressed or unstressed cells and the local stromal and immune microenvironment in which they reside. In this review, we evaluate our understanding of the burgeoning number of cell death pathways affected by p53 activation and how these may paradoxically suppress cell death to ensure tissue integrity and organismal survival. We also discuss how these functions may be advantageous to tumours that maintain wild-type p53, the understanding of which may provide novel opportunity to enhance treatment efficacy.
Collapse
Affiliation(s)
- Andrea Lees
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK;
| | | | - Simon McDade
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK;
| |
Collapse
|
99
|
Role of Dietary Antioxidants in p53-Mediated Cancer Chemoprevention and Tumor Suppression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9924328. [PMID: 34257824 PMCID: PMC8257365 DOI: 10.1155/2021/9924328] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
Cancer arises through a complex interplay between genetic, behavioral, metabolic, and environmental factors that combined trigger cellular changes that over time promote malignancy. In terms of cancer prevention, behavioral interventions such as diet can promote genetic programs that may facilitate tumor suppression; and one of the key tumor suppressors responsible for initiating such programs is p53. The p53 protein is activated by various cellular events such as DNA damage, hypoxia, heat shock, and overexpression of oncogenes. Due to its role in cell fate decisions after DNA damage, regulatory pathways controlled by p53 help to maintain genome stability and thus “guard the genome” against mutations that cause cancer. Dietary intake of flavonoids, a C15 group of polyphenols, is known to inhibit cancer progression and assist DNA repair through p53-mediated mechanisms in human cells via their antioxidant activities. For example, quercetin arrests human cervical cancer cell growth by blocking the G2/M phase cell cycle and inducing mitochondrial apoptosis through a p53-dependent mechanism. Other polyphenols such as resveratrol upregulate p53 expression in several cancer cell lines by promoting p53 stability, which in colon cancer cells results in the activation of p53-mediated apoptosis. Finally, among vitamins, folic acid seems to play an important role in the chemoprevention of gastric carcinogenesis by enhancing gastric epithelial apoptosis in patients with premalignant lesions by significantly increased expression of p53. In this review, we discuss the role of these and other dietary antioxidants in p53-mediated cell signaling in relation to cancer chemoprevention and tumor suppression in normal and cancer cells.
Collapse
|
100
|
Shiraishi R, Kawauchi D. Epigenetic regulation in medulloblastoma pathogenesis revealed by genetically engineered mouse models. Cancer Sci 2021; 112:2948-2957. [PMID: 34050694 PMCID: PMC8353939 DOI: 10.1111/cas.14990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Medulloblastoma is the most common malignant cerebellar tumor in children. Recent technological advances in multilayered ’omics data analysis have revealed 4 molecular subgroups of medulloblastoma (Wingless/int, Sonic hedgehog, Group3, and Group4). (Epi)genomic and transcriptomic profiling on human primary medulloblastomas has shown distinct oncogenic drivers and cellular origin(s) across the subgroups. Despite tremendous efforts to identify the molecular signals driving tumorigenesis, few of the identified targets were druggable; therefore, a further understanding of the etiology of tumors is required to establish effective molecular‐targeted therapies. Chromatin regulators are frequently mutated in medulloblastoma, prompting us to investigate epigenetic changes and the accompanying activation of oncogenic signaling during tumorigenesis. For this purpose, we have used germline and non‐germline genetically engineered mice to model human medulloblastoma and to conduct useful, molecularly targeted, preclinical studies. This review discusses the biological implications of chromatin regulator mutations during medulloblastoma pathogenesis, based on recent in vivo animal studies.
Collapse
Affiliation(s)
- Ryo Shiraishi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan.,Department of NCNP Brain Physiology and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Kawauchi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| |
Collapse
|