51
|
Li Y, Fan H, Wei W, Zhu H, Wang H, Lyu D, Zhang Z, Tan Y. A Silent Threat: Deep Vein Thrombosis in Early-Stage Parkinson's Disease. Risk Manag Healthc Policy 2024; 17:2169-2179. [PMID: 39263553 PMCID: PMC11389711 DOI: 10.2147/rmhp.s469725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
Introduction The primary clinical manifestation of venous thrombosis is discomfort in the lower extremities. Some early Parkinson's disease (PD) patients feel discomfort in the lower limbs. Venous thrombosis can risk lives by causing pulmonary embolism. This study examines the incidence of DVT in early PD patients and its correlation with different clinical and lab features. Methods A cross-sectional study was conducted on 117 patients with early-stage PD. Ultrasonography was employed to detect the presence of DVT. Factors such as age, gender, body mass index, lifestyle habits (smoking and drinking), medical history (hypertension, diabetes, atrial fibrillation, and tumor), and other lab tests linked to thrombosis were analyzed. Results In 117 patients, 11 (9.4%) had DVT, while 106 (90.6%) did not. There were no significant differences in gender, BMI, habits, medical history, or other thrombosis-related tests between both groups. However, DVT patients were older with higher d-dimer levels. They also showed an increased right substantia nigra ultrasound echo area, higher HY grades, higher UPDRS 3 scores, less improvement in UPDRS 3 scores and levodopa response. Discussion The primary risk factors for lower extremity venous thrombosis were found to be age, d-dimer levels, and low-dose levodopa. Therefore, for elderly patients with early-stage PD, it is crucial to conduct d-dimer and lower extremity vascular ultrasound tests. The prevention of venous thrombosis in the lower extremities of early PD patients is of utmost importance.
Collapse
Affiliation(s)
- Yang Li
- Department of Neurology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, People's Republic of China
| | - Huihui Fan
- Department of Ultrasound, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, People's Republic of China
| | - Wei Wei
- Department of Key Laboratory of Basic Research and Clinical Translation, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, People's Republic of China
| | - Hanyu Zhu
- Department of Neurology, Medical School of Huzhou University, Huzhou, People's Republic of China
| | - Haifeng Wang
- Department of Neurology, Medical School of Huzhou University, Huzhou, People's Republic of China
| | - Dayao Lyu
- Department of Neurology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, People's Republic of China
| | - Zengrui Zhang
- Department of Neurology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, People's Republic of China
| | - Ying Tan
- Department of Neurology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, People's Republic of China
| |
Collapse
|
52
|
Pooshani S, Azadmehr A, Saadat P, Sepidarkish M, Daraei A. Regulatory miR-SNP rs4636297A > G in miR-126 is linked to increased risk of rigidity feature in patients with Parkinson's disease. Int J Neurosci 2024:1-10. [PMID: 39207776 DOI: 10.1080/00207454.2024.2398571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 07/22/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION A growing body of strong evidence shows that the dysfunction of miRNAs plays key roles in the development and progression of Parkinson's disease (PD), however, little data has been reported on the association of their SNPs with PD susceptibility. In this study, we investigated the association of regulatory miR-SNP rs4636297A > G with a functional effect on the expression of miRNA-126, as a key dysregulated miRNA in the PD, with the susceptibility and clinical features of the PD. METHODS AND MATERIALS In current study, we included a population consisting of 120 patients with PD and 120 clinically healthy individuals, and their blood samples were taken. After extracting the DNAs, the genotyping of the miR-SNP rs4636297A > G was done through RFLP-PCR technique. Finally, the association of this SNP with the risk and clinical features of PD was determined. RESULTS Although the results showed that the two groups did not differ significantly in terms of allelic and genotype frequencies, it was clinically found that individuals with genotypes carrying the minor allele G (AG and GG genotypes) of the miR-SNP rs4636297A > G had an increased risk of developing rigidity feature in the PD compared to its homozygous major AA genotype (GG genotype; OR = 5.14, p = 0.038 & GA genotype; OR = 4.32, p = 0.032). CONCLUSION We report for the first time a significant association of functional regulatory SNP rs4636297A > G in the miR-126 with the Parkinson's clinicopathology. Therefore, this miR-SNP can have a potential predictive biomarker capacity for rigidity in PD, although this hypothesis needs further investigation in the future.
Collapse
Affiliation(s)
- Sheyda Pooshani
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Abbas Azadmehr
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Payam Saadat
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mahdi Sepidarkish
- Department of Biostatistics and Epidemiology, School of Public Health, Babol University of Medical Sciences, Babol, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
53
|
Hou K, Zheng X. A 10-Year Review on Advancements in Identifying and Treating Intellectual Disability Caused by Genetic Variations. Genes (Basel) 2024; 15:1118. [PMID: 39336708 PMCID: PMC11431063 DOI: 10.3390/genes15091118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Intellectual disability (ID) is a prevalent neurodevelopmental disorder characterized by neurodevelopmental defects such as the congenital impairment of intellectual function and restricted adaptive behavior. However, genetic studies have been significantly hindered by the extreme clinical and genetic heterogeneity of the subjects under investigation. With the development of gene sequencing technologies, more genetic variations have been discovered, assisting efforts in ID identification and treatment. In this review, the physiological basis of gene variations in ID is systematically explained, the diagnosis and therapy of ID is comprehensively described, and the potential of genetic therapies and exercise therapy in the rehabilitation of individuals with intellectual disabilities are highlighted, offering new perspectives for treatment approaches.
Collapse
Affiliation(s)
- Kexin Hou
- School of Exercise and Health, Shanghai University of Sport, 200 Hengren Road, Yangpu, Shanghai 200438, China
| | - Xinyan Zheng
- School of Exercise and Health, Shanghai University of Sport, 200 Hengren Road, Yangpu, Shanghai 200438, China
| |
Collapse
|
54
|
Hosseini L, Babaie S, Shahabi P, Fekri K, Shafiee-Kandjani AR, Mafikandi V, Maghsoumi-Norouzabad L, Abolhasanpour N. Klotho: molecular mechanisms and emerging therapeutics in central nervous system diseases. Mol Biol Rep 2024; 51:913. [PMID: 39153108 DOI: 10.1007/s11033-024-09862-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Klotho is recognized as an aging-suppressor protein that is implicated in a variety of processes and signaling pathways. The anti-inflammatory, anti-apoptotic, anti-oxidant, and anti-tumor bioactivities of klotho have extended its application in neurosciences and made the protein popular for its lifespan-extending capacity. Furthermore, it has been demonstrated that klotho levels would reduce with aging and numerous pathologies, particularly those related to the central nervous system (CNS). Evidence supports the idea that klotho can be a key therapeutic target in CNS diseases such as amyotrophic lateral sclerosis, Parkinson's disease, stroke, and Alzheimer's disease. Reviewing the literature suggests that the upregulation of klotho expression regulates various signaling pathways related to autophagy, oxidative stress, inflammation, cognition, and ferroptosis in neurological disorders. Therefore, it has been of great interest to develop drugs or agents that boost or restore klotho levels. In this regard, the present review was designed and aimed to gather the delegated documents regarding the therapeutic potential of Klotho in CNS diseases focusing on the molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soraya Babaie
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Faculty of Medicine, Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kiarash Fekri
- Department of Paramedicine, Amol School of Paramedicine, Mazandaran University of Medical Sciences, Sari, Iran
- Preclinical Department, Amol Campus of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Reza Shafiee-Kandjani
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vida Mafikandi
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nasrin Abolhasanpour
- Research Center for Evidence‑Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
55
|
Bolado-Carrancio A, Tapia O, Rodríguez-Rey JC. Ubiquitination Insight from Spinal Muscular Atrophy-From Pathogenesis to Therapy: A Muscle Perspective. Int J Mol Sci 2024; 25:8800. [PMID: 39201486 PMCID: PMC11354275 DOI: 10.3390/ijms25168800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Spinal muscular atrophy (SMA) is one of the most frequent causes of death in childhood. The disease's molecular basis is deletion or mutations in the SMN1 gene, which produces reduced survival motor neuron protein (SMN) levels. As a result, there is spinal motor neuron degeneration and a large increase in muscle atrophy, in which the ubiquitin-proteasome system (UPS) plays a significant role. In humans, a paralogue of SMN1, SMN2 encodes the truncated protein SMNΔ7. Structural differences between SMN and SMNΔ7 affect the interaction of the proteins with UPS and decrease the stability of the truncated protein. SMN loss affects the general ubiquitination process by lowering the levels of UBA1, one of the main enzymes in the ubiquitination process. We discuss how SMN loss affects both SMN stability and the general ubiquitination process, and how the proteins involved in ubiquitination could be used as future targets for SMA treatment.
Collapse
Affiliation(s)
- Alfonso Bolado-Carrancio
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria-and Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain;
| | - Olga Tapia
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas, Universidad de la Laguna, 38200 La Laguna, Spain
| | - José C. Rodríguez-Rey
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria-and Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain;
| |
Collapse
|
56
|
D’Aversa E, Salvatori F, Vaccarezza M, Antonica B, Grisafi M, Singh AV, Secchiero P, Zauli G, Tisato V, Gemmati D. circRNAs as Epigenetic Regulators of Integrity in Blood-Brain Barrier Architecture: Mechanisms and Therapeutic Strategies in Multiple Sclerosis. Cells 2024; 13:1316. [PMID: 39195206 PMCID: PMC11352526 DOI: 10.3390/cells13161316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease leading to progressive demyelination and neuronal loss, with extensive neurological symptoms. As one of the most widespread neurodegenerative disorders, with an age onset of about 30 years, it turns out to be a socio-health and economic issue, thus necessitating therapeutic interventions currently unavailable. Loss of integrity in the blood-brain barrier (BBB) is one of the distinct MS hallmarks. Brain homeostasis is ensured by an endothelial cell-based monolayer at the interface between the central nervous system (CNS) and systemic bloodstream, acting as a selective barrier. MS results in enhanced barrier permeability, mainly due to the breakdown of tight (TJs) and adherens junctions (AJs) between endothelial cells. Specifically, proinflammatory mediator release causes failure in cytoplasmic exposure of junctions, resulting in compromised BBB integrity that enables blood cells to cross the barrier, establishing iron deposition and neuronal impairment. Cells with a compromised cytoskeletal protein network, fiber reorganization, and discontinuous junction structure can occur, resulting in BBB dysfunction. Recent investigations on spatial transcriptomics have proven circularRNAs (circRNAs) to be powerful multi-functional molecules able to epigenetically regulate transcription and structurally support proteins. In the present review, we provide an overview of the recent role ascribed to circRNAs in maintaining BBB integrity/permeability via cytoskeletal stability. Increased knowledge of the mechanisms responsible for impairment and circRNA's role in driving BBB damage and dysfunction might be helpful for the recognition of novel therapeutic targets to overcome BBB damage and unrestrained neurodegeneration.
Collapse
Affiliation(s)
- Elisabetta D’Aversa
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Francesca Salvatori
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Mauro Vaccarezza
- Curtin Medical School & Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Bianca Antonica
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Miriana Grisafi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 11462, Saudi Arabia
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Centre Haemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
57
|
Alkhazaali-Ali Z, Sahab-Negah S, Boroumand AR, Tavakol-Afshari J. MicroRNA (miRNA) as a biomarker for diagnosis, prognosis, and therapeutics molecules in neurodegenerative disease. Biomed Pharmacother 2024; 177:116899. [PMID: 38889636 DOI: 10.1016/j.biopha.2024.116899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Neurodegenerative diseases that include Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), Huntington's disease (HD), and multiple sclerosis (MS) that arise due to numerous causes like protein accumulation and autoimmunity characterized by neurologic depletion which lead to incapacity in normal physiological function such as thinking and movement in these patients. Glial cells perform an important role in protective neuronal function; in the case of neuroinflammation, glial cell dysfunction can promote the development of neurodegenerative diseases. miRNA that participates in gene regulation and plays a vital role in many biological processes in the body; in the central nervous system (CNS), it can play an essential part in neural maturation and differentiation. In neurodegenerative diseases, miRNA dysregulation occurs, enhancing the development of these diseases. In this review, we discuss neurodegenerative disease (Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS)) and how miRNA is preserved as a diagnostic biomarker or therapeutic agent in these disorders. Finally, we highlight miRNA as therapy.
Collapse
Affiliation(s)
- Zahraa Alkhazaali-Ali
- Department of Immunology, Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Amir Reza Boroumand
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol-Afshari
- Department of Immunology, Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
58
|
Wang K, Han C, Yang J, Xu W, Wang L, Li H, Wang Y. Benfotiamine protects MPTP-induced Parkinson's disease mouse model via activating Nrf2 signaling pathway. PLoS One 2024; 19:e0307012. [PMID: 39042624 PMCID: PMC11265681 DOI: 10.1371/journal.pone.0307012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
The pursuit of drugs and methods to safeguard dopaminergic neurons holds paramount importance in Parkinson's disease (PD) research. Benfotiamine (BFT) has demonstrated neuroprotective properties, yet its precise mechanisms in PD remain elusive. This study investigated BFT's potential protective effects against dopamine neuron damage in a PD animal model and the underlying mechanisms. The PD mouse model was induced by 5 consecutive MPTP injections, followed by BFT intervention for 28 days. Motor deficits were assessed via pole test, hang test, gait analysis, and open field test, while dopaminergic neuron damage was evaluated through Immunofluorescence, Nissl staining, and Western blot analysis of Tyrosine Hydroxylase (TH) in the substantia nigra and striatum. High Performance Liquid Chromatography quantified dopamine (DA) levels and its metabolites. Genetic pathways were explored using RNA-seq and bioinformatics analysis on substantia nigra tissues, confirmed by qPCR. Activation of the Nrf2 pathway was examined through nuclear translocation and expression of downstream antioxidant enzymes HO-1, GCLM, and NQO1 at mRNA and protein levels. Additionally, measurements of MDA content, GSH activity, and SOD activity were taken in the substantia nigra and striatum. BFT administration improved motor function and protected against dopaminergic neuron degeneration in MPTP mice, with partial recovery in TH expression and DA levels. RNA-seq analysis revealed distinct effects of BFT and the NLRP3 inhibitor MCC950 on Parkinson-related pathways and genes. Control of Nrf2 proved crucial for BFT, as it facilitated Nrf2 movement to the nucleus, upregulating antioxidant genes and enzymes while mitigating oxidative damage. This study elucidates BFT's neuroprotective effects in a PD mouse model via Nrf2-mediated antioxidant mechanisms and gene expression modulation, underscoring its potential as a therapeutic agent for PD.
Collapse
Affiliation(s)
- Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Shushan District, Hefei, Anhui Province, People’s Republic of China
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University, Luyang District, Hefei, Anhui Province, People’s Republic of China
| | - Chao Han
- Division of Life Sciences and Medicine, Department of Neurology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Luyang District, Hefei, Anhui Province, People’s Republic of China
| | - Jinwei Yang
- Department of Critical Care Medicine, The Affiliated Fuyang People’s Hospital of Anhui Medical University, Chengnanxin District, Fuyang, Anhui Province, People’s Republic of China
| | - Wenhao Xu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Shushan District, Hefei, Anhui Province, People’s Republic of China
| | - Lei Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Shushan District, Hefei, Anhui Province, People’s Republic of China
| | - Huaiyu Li
- Division of Life Sciences and Medicine, Department of Neurology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Luyang District, Hefei, Anhui Province, People’s Republic of China
| | - Yu Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Shushan District, Hefei, Anhui Province, People’s Republic of China
| |
Collapse
|
59
|
Inokuchi S, Shimamoto K. Wnt/β-catenin pathway as a potential target for Parkinson's disease: a cohort study of romosozumab using routinely collected health data in Japan. Front Pharmacol 2024; 15:1411285. [PMID: 39104397 PMCID: PMC11298754 DOI: 10.3389/fphar.2024.1411285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Romosozumab is a monoclonal antibody approved for osteoporosis which targets sclerostin, an endogenous inhibitor of Wnt/β-catenin pathway. Given the essential roles of the Wnt/β-catenin pathway in various tissues, we hypothesized romosozumab treatment may influence other conditions. Methods This cohort study included patients prescribed romosozumab or parathyroid receptor (PTHR) agonists after 1 January 2019, using a Japanese electronic medical record database. The outcomes of interest included autoimmune disease, interstitial pneumonia, cardiovascular outcome, Alzheimer's disease, Parkinson's disease (PD), serious infections, and malignancies. A stabilized inverse probability-weighted Cox proportional hazard model was used to estimate the hazard ratios. Age- and gender-based subgroup analyses were conducted. Exploratory outcomes based on three-digit International Classification of Diseases 10th Revision-based were also examined. Results In total, 2,673 patients treated with romosozumab and 5,980 treated with PTHR agonists were identified, respectively. While most outcomes of interest showed no association with romosozumab, the risk of PD decreased with romosozumab (hazard ratio [95% confidence interval], 0.37 [0.14-0.94]) compared with PTHR agonist. Regarding the cardiovascular outcome, no notable association was identified overall; however, gender-based subgroup analysis suggested that male sex may be a potential risk factor with romosozumab treatment. Only 16 of 903 exploratory outcomes were potentially influenced by romosozumab. Conclusion Romosozumab lowered the risk of PD development compared with PTHR agonist. The study also highlights the utility of routinely collected health data for drug repositioning. While further validation is warranted, the findings suggest that the Wnt-β-catenin pathway holds promise as a therapeutic target for PD.
Collapse
Affiliation(s)
- Shoichiro Inokuchi
- Research and Analytics Department, Real World Data Co., Ltd., Kyoto, Japan
| | | |
Collapse
|
60
|
Yang Z, Feng R, Zhao H. Cuproptosis and Cu: a new paradigm in cellular death and their role in non-cancerous diseases. Apoptosis 2024:10.1007/s10495-024-01993-y. [PMID: 39014119 DOI: 10.1007/s10495-024-01993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
Cuproptosis, a newly characterized form of regulated cell death driven by copper accumulation, has emerged as a significant mechanism underlying various non-cancerous diseases. This review delves into the complex interplay between copper metabolism and the pathogenesis of conditions such as Wilson's disease (WD), neurodegenerative disorders, and cardiovascular pathologies. We examine the molecular mechanisms by which copper dysregulation induces cuproptosis, highlighting the pivotal roles of key copper transporters and enzymes. Additionally, we evaluate the therapeutic potential of copper chelation strategies, which have shown promise in experimental models by mitigating copper-induced cellular damage and restoring physiological homeostasis. Through a comprehensive synthesis of recent advancements and current knowledge, this review underscores the necessity of further research to translate these findings into clinical applications. The ultimate goal is to harness the therapeutic potential of targeting cuproptosis, thereby improving disease management and patient outcomes in non-cancerous conditions associated with copper dysregulation.
Collapse
Affiliation(s)
- Zhibo Yang
- Department of Neurosurgery, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, 723000, Shaanxi, China
| | - Ridong Feng
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine (FAHZU), 79 Qingchun Rd., Shangcheng District, Hangzhou, 330100, Zhejiang, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China.
| |
Collapse
|
61
|
Wei N, Zhang LM, Xu JJ, Li SL, Xue R, Ma SL, Li C, Sun MM, Chen KS. Astaxanthin Rescues Memory Impairments in Rats with Vascular Dementia by Protecting Against Neuronal Death in the Hippocampus. Neuromolecular Med 2024; 26:29. [PMID: 39014255 DOI: 10.1007/s12017-024-08796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
Vascular dementia (VaD) is a cognitive disorder characterized by a decline in cognitive function resulting from cerebrovascular disease. The hippocampus is particularly susceptible to ischemic insults, leading to memory deficits in VaD. Astaxanthin (AST) has shown potential therapeutic effects in neurodegenerative diseases. However, the mechanisms underlying its protective effects in VaD and against hippocampal neuronal death remain unclear. In this study, We used the bilateral common carotid artery occlusion (BCCAO) method to establish a chronic cerebral hypoperfusion (CCH) rat model of VaD and administered a gastric infusion of AST at 25 mg/kg per day for 4 weeks to explore its therapeutic effects. Memory impairments were assessed using Y-maze and Morris water maze tests. We also performed biochemical analyses to evaluate levels of hippocampal neuronal death and apoptosis-related proteins, as well as the impact of astaxanthin on the PI3K/Akt/mTOR pathway and oxidative stress. Our results demonstrated that AST significantly rescued memory impairments in VaD rats. Furthermore, astaxanthin treatment protected against hippocampal neuronal death and attenuated apoptosis. We also observed that AST modulated the PI3K/Akt/mTOR pathway, suggesting its involvement in promoting neuronal survival and synaptic plasticity. Additionally, AST exhibited antioxidant properties, mitigating oxidative stress in the hippocampus. These findings provide valuable insights into the potential therapeutic effects of AST in VaD. By elucidating the mechanisms underlying the actions of AST, this study highlights the importance of protecting hippocampal neurons and suggests potential targets for intervention in VaD. There are still some unanswered questions include long-term effects and optimal dosage of the use in human. Further research is warranted to fully understand the therapeutic potential of AST and its application in the clinical treatment of VaD.
Collapse
Affiliation(s)
- Na Wei
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China.
- Henan Key Laboratory of Tumor Pathology, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China.
- Department of Pathology, School of Basic Medicine, Zhengzhou University, No.100 Ke Xue Avenue, Zhengzhou, 450002, People's Republic of China.
| | - Luo-Man Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
- Henan Key Laboratory of Tumor Pathology, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
- Department of Pathology, School of Basic Medicine, Zhengzhou University, No.100 Ke Xue Avenue, Zhengzhou, 450002, People's Republic of China
| | - Jing-Jing Xu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
- Henan Key Laboratory of Tumor Pathology, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
- Department of Pathology, School of Basic Medicine, Zhengzhou University, No.100 Ke Xue Avenue, Zhengzhou, 450002, People's Republic of China
| | - Sheng-Lei Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
- Henan Key Laboratory of Tumor Pathology, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
- Department of Pathology, School of Basic Medicine, Zhengzhou University, No.100 Ke Xue Avenue, Zhengzhou, 450002, People's Republic of China
| | - Rui Xue
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
| | - Sheng-Li Ma
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
| | - Cai Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, 450002, People's Republic of China
| | - Miao-Miao Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
- Henan Key Laboratory of Tumor Pathology, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
- Department of Pathology, School of Basic Medicine, Zhengzhou University, No.100 Ke Xue Avenue, Zhengzhou, 450002, People's Republic of China
| | - Kui-Sheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
- Henan Key Laboratory of Tumor Pathology, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
- Department of Pathology, School of Basic Medicine, Zhengzhou University, No.100 Ke Xue Avenue, Zhengzhou, 450002, People's Republic of China
| |
Collapse
|
62
|
Catlin JP, Tooley CES. Exploring potential developmental origins of common neurodegenerative disorders. Biochem Soc Trans 2024; 52:1035-1044. [PMID: 38661189 PMCID: PMC11440815 DOI: 10.1042/bst20230422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/12/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
In the United States, it is now estimated that 6.7 million people over the age of 65 are afflicted by Alzheimer's disease (AD), over 1 million people are living with Parkinson's disease (PD), and over 200 000 have or are at risk for developing Huntington's disease (HD). All three of these neurodegenerative diseases result in the ultimate death of distinct neuronal subtypes, and it is widely thought that age-related damage is the single biggest contributing factor to this neuronal death. However, recent studies are now suggesting that developmental defects during early neurogenesis could also play a role in the pathology of neurodegenerative diseases. Loss or overexpression of proteins associated with HD, PD, and AD also result in embryonic phenotypes but whether these developmental defects slowly unmask over time and contribute to age-related neurodegeneration remains highly debated. Here, we discuss known links between embryonic neurogenesis and neurodegenerative disorders (including common signaling pathways), potential compensatory mechanisms that could delay presentation of neurodegenerative disorders, and the types of model systems that could be used to study these links in vivo.
Collapse
Affiliation(s)
- James P. Catlin
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Christine E. Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
63
|
Zhou Y, Yang Y, Qi T, Hou Z, Ge Q, Lu Z. Transcriptome Study of rd1Mouse Brain and Association with Parkinson's Disease. ACS OMEGA 2024; 9:25756-25765. [PMID: 38911794 PMCID: PMC11191077 DOI: 10.1021/acsomega.3c09938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
Degeneration of the retina is intrinsically associated with the pathogenesis and progression of neurodegenerative diseases. However, the cellular and molecular mechanisms underlying the association between neurodegeneration and retinal degeneration are still under exploration due to the complexity of the connectivity network of the nervous system. In this study, RNA-seq data from the brains of model retinitis pigmentosa (RP) mice and previously studied Parkinson's disease (PD) mice were analyzed to explore the commonalities between retinal degenerative and neurodegenerative diseases. Differentially expressed genes in RP were compared with neurodegenerative disease-related genes and intersecting genes were identified, including Cnr1 and Septin14. These genes were verified by quantitative real-time reverse transcription PCR and Western blotting experiments. The key proteins CNR1 and SEPTIN14 were found to be potential cotherapeutic targets for retinal degeneration and neurodegenerative disease. In conclusion, understanding the commonalities between retinal degenerative diseases and neurodegenerative processes in the brain will not only facilitate the interpretation of the underlying pathomechanisms but also contribute to early diagnosis and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Digital
Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuwei Yang
- State Key Laboratory of Digital
Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ting Qi
- State Key Laboratory of Digital
Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhuoran Hou
- State Key Laboratory of Digital
Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qinyu Ge
- State Key Laboratory of Digital
Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zuhong Lu
- State Key Laboratory of Digital
Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
64
|
Ding L, Wang L, Yang J, Jiang C, Sun X, Huang H, Zhan X, Liu F, Zhang Q. (+)-Borneol Protects Dopaminergic Neuronal Loss in Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Induced Parkinson's Disease Mice: A Study of Dopamine Level using In Vivo Brain Microdialysis. ACS Chem Neurosci 2024; 15:2308-2321. [PMID: 38747405 DOI: 10.1021/acschemneuro.4c00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Considerable research efforts have been directed toward the symptom relief of Parkinson's disease (PD) by attenuating dopamine (DA) depletion. One common feature of these existing therapies is their unavailability of preventing the neurodegenerative process of dopaminergic neurons. (+)-Borneol, a natural highly lipid-soluble bicyclic monoterpene, has been reported to regulate the levels of monoamine neurotransmitters in the central nervous system and exhibit neuroprotective effects. However, the effect of (+)-borneol on the dopaminergic neuronal loss of methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice is not defined. Herein, we first report that 30 mg/kg (+)-borneol significantly attenuated the motor deficits of PD mice, which benefits from markedly increasing the level of DA and decreasing the metabolic rate of DA in the striatum of conscious and freely moving mouse detected by ultraperformance liquid chromatography tandem mass spectrometry online combined with in vivo brain microdialysis sampling. It is worth noting that the enhanced level of DA by (+)-borneol was enabled by the reduction in loss of tyrosine hydroxylase-immunoreactive dopaminergic neurons in the substantia nigra and striatum and promotion of reserpine- or nomifensine-induced DA release in PD mice. Interestingly, (+)-borneol evidently inhibited the decreased expression levels of DA transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) on the MPTP mouse model of PD. Moreover, (+)-borneol suppressed the neuroinflammation by inhibiting the production of IL-1β, IL-6, and TNF-α and attenuated oxidative stress by decreasing the level of MDA and increasing the activities of SOD and GSH-px in PD mice. These findings demonstrate that (+)-borneol protects DA neurons by inhibiting neuroinflammation and oxidative stress. Further research work for the neuroprotection mechanism of (+)-borneol will focus on reactive oxygen species-mediated apoptosis. Therefore, (+)-borneol is a potential therapeutic candidate for retarding the neurodegenerative process of PD.
Collapse
Affiliation(s)
- Lina Ding
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
| | - Long Wang
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
| | - Jiaxin Yang
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
| | - Cuicui Jiang
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
| | - Xifeng Sun
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
| | - Huite Huang
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
| | - Xiuyuan Zhan
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
| | - Feilong Liu
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
| | - Qunlin Zhang
- Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230032, China
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
| |
Collapse
|
65
|
Tripathi PN, Lodhi A, Rai SN, Nandi NK, Dumoga S, Yadav P, Tiwari AK, Singh SK, El-Shorbagi ANA, Chaudhary S. Review of Pharmacotherapeutic Targets in Alzheimer's Disease and Its Management Using Traditional Medicinal Plants. Degener Neurol Neuromuscul Dis 2024; 14:47-74. [PMID: 38784601 PMCID: PMC11114142 DOI: 10.2147/dnnd.s452009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired daily functioning. While there is currently no cure for AD, several pharmacotherapeutic targets and management strategies have been explored. Additionally, traditional medicinal plants have gained attention for their potential role in AD management. Pharmacotherapeutic targets in AD include amyloid-beta (Aβ) aggregation, tau protein hyperphosphorylation, neuroinflammation, oxidative stress, and cholinergic dysfunction. Traditional medicinal plants, such as Ginkgo biloba, Huperzia serrata, Curcuma longa (turmeric), and Panax ginseng, have demonstrated the ability to modulate these targets through their bioactive compounds. Ginkgo biloba, for instance, contains flavonoids and terpenoids that exhibit neuroprotective effects by reducing Aβ deposition and enhancing cerebral blood flow. Huperzia serrata, a natural source of huperzine A, has acetylcholinesterase-inhibiting properties, thus improving cholinergic function. Curcuma longa, enriched with curcumin, exhibits anti-inflammatory and antioxidant effects, potentially mitigating neuroinflammation and oxidative stress. Panax ginseng's ginsenosides have shown neuroprotective and anti-amyloidogenic properties. The investigation of traditional medicinal plants as a complementary approach to AD management offers several advantages, including a lower risk of adverse effects and potential multi-target interactions. Furthermore, the cultural knowledge and utilization of these plants provide a rich source of information for the development of new therapies. However, further research is necessary to elucidate the precise mechanisms of action, standardize preparations, and assess the safety and efficacy of these natural remedies. Integrating traditional medicinal-plant-based therapies with modern pharmacotherapies may hold the key to a more comprehensive and effective approach to AD treatment. This review aims to explore the pharmacotherapeutic targets in AD and assess the potential of traditional medicinal plants in its management.
Collapse
Affiliation(s)
- Prabhash Nath Tripathi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Ankit Lodhi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Sachchida Nand Rai
- Center of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Nilay Kumar Nandi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Shweta Dumoga
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Pooja Yadav
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Amit Kumar Tiwari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Santosh Kumar Singh
- Center of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Abdel-Nasser A El-Shorbagi
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Sachin Chaudhary
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
66
|
Liu LC, Liang JY, Liu YH, Liu B, Dong XH, Cai WH, Zhang N. The Intersection of cerebral cholesterol metabolism and Alzheimer's disease: Mechanisms and therapeutic prospects. Heliyon 2024; 10:e30523. [PMID: 38726205 PMCID: PMC11079309 DOI: 10.1016/j.heliyon.2024.e30523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease in the elderly, the exact pathogenesis of which remains incompletely understood, and effective preventive and therapeutic drugs are currently lacking. Cholesterol plays a vital role in cell membrane formation and neurotransmitter synthesis, and its abnormal metabolism is associated with the onset of AD. With the continuous advancement of imaging techniques and molecular biology methods, researchers can more accurately explore the relationship between cholesterol metabolism and AD. Elevated cholesterol levels may lead to vascular dysfunction, thereby affecting neuronal function. Additionally, abnormal cholesterol metabolism may affect the metabolism of β-amyloid protein, thereby promoting the onset of AD. Brain cholesterol levels are regulated by multiple factors. This review aims to deepen the understanding of the subtle relationship between cholesterol homeostasis and AD, and to introduce the latest advances in cholesterol-regulating AD treatment strategies, thereby inspiring readers to contemplate deeply on this complex relationship. Although there are still many unresolved important issues regarding the risk of brain cholesterol and AD, and some studies may have opposite conclusions, further research is needed to enrich our understanding. However, these findings are expected to deepen our understanding of the pathogenesis of AD and provide important insights for the future development of AD treatment strategies targeting brain cholesterol homeostasis.
Collapse
Affiliation(s)
- Li-cheng Liu
- Pharmaceutical Branch, Harbin Pharmaceutical Group Co., Harbin, Heilongjiang Province, China
| | - Jun-yi Liang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Yan-hong Liu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Bin Liu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xiao-hong Dong
- Jiamusi College, Heilongjiang University of Traditional Chinese Medicine, Jiamusi, Heilongjiang Province, China
| | - Wen-hui Cai
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Ning Zhang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| |
Collapse
|
67
|
Ameli A, Peña-Castillo L, Usefi H. Assessing the reproducibility of machine-learning-based biomarker discovery in Parkinson's disease. Comput Biol Med 2024; 174:108407. [PMID: 38603902 DOI: 10.1016/j.compbiomed.2024.108407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
Feature selection and machine learning algorithms can be used to analyze Single Nucleotide Polymorphisms (SNPs) data and identify potential disease biomarkers. Reproducibility of identified biomarkers is critical for them to be useful for clinical research; however, genotyping platforms and selection criteria for individuals to be genotyped affect the reproducibility of identified biomarkers. To assess biomarkers reproducibility, we collected five SNPs datasets from the database of Genotypes and Phenotypes (dbGaP) and explored several data integration strategies. While combining datasets can lead to a reduction in classification accuracy, it has the potential to improve the reproducibility of potential biomarkers. We evaluated the agreement among different strategies in terms of the SNPs that were identified as potential Parkinson's disease (PD) biomarkers. Our findings indicate that, on average, 93% of the SNPs identified in a single dataset fail to be identified in other datasets. However, through dataset integration, this lack of replication is reduced to 62%. We discovered fifty SNPs that were identified at least twice, which could potentially serve as novel PD biomarkers. These SNPs are indirectly linked to PD in the literature but have not been directly associated with PD before. These findings open up new potential avenues of investigation.
Collapse
Affiliation(s)
- Ali Ameli
- Department of Computer Science, Memorial University of Newfoundland, 230 Elizabeth Ave, St. John's, A1C5S7, NL, Canada
| | - Lourdes Peña-Castillo
- Department of Computer Science, Memorial University of Newfoundland, 230 Elizabeth Ave, St. John's, A1C5S7, NL, Canada; Department of Biology, Memorial University of Newfoundland, 230 Elizabeth Ave, St. John's, A1C5S7, NL, Canada.
| | - Hamid Usefi
- Department of Computer Science, Memorial University of Newfoundland, 230 Elizabeth Ave, St. John's, A1C5S7, NL, Canada; Department of Mathematics and Statistics, Memorial University of Newfoundland, 230 Elizabeth Ave, St. John's, A1C5S7, NL, Canada.
| |
Collapse
|
68
|
Thamke V, Suryawanshi S, Aware C, Mali P, Shinde B, Patil D, Rane M, Chaudhari A, Tapase S, Jadhav J. Mucuna laticifera: unprecedented L-dopa content and its role in neurodegenerative and inflammatory conditions. 3 Biotech 2024; 14:126. [PMID: 38585411 PMCID: PMC10994908 DOI: 10.1007/s13205-024-03969-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/26/2024] [Indexed: 04/09/2024] Open
Abstract
Genus Mucuna encompasses several plant species renowned for their utilization in traditional Ayurvedic medicine for the treatment of Parkinson's disease, chiefly due to their exceptionally high L-dopa content relative to other plants. However, limited information exists regarding Mucuna laticifera, a newly identified species within the Mucuna genus. This study unveils a remarkable L-dopa content of 174.3 mg/g in M. laticifera seeds, surpassing all previously documented Mucuna species. Moreover, this research marks the first documentation of L-dopa, flavonoids, and phenolics within M. laticifera seeds. Furthermore, the aqueous extract derived from these seeds exhibits robust antioxidant properties. Investigation into its anti-inflammatory potential reveals a significant reduction in paw swelling and neutrophil infiltration at inflammatory sites in a carrageenan-induced rat model. Gene expression analysis utilizing a rat paw model demonstrates that the seed extract significantly downregulates the expression of various inflammation-related genes compared to carrageenan-treated rats. Collectively, these findings clearly substantiate the anti-inflammatory activity of M. laticifera seed extract. The exceptional L-dopa content combined with its anti-inflammatory properties position M. laticifera seeds as a promising therapeutic option for neurodegenerative diseases like Parkinson's, as well as various inflammatory conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03969-w.
Collapse
Affiliation(s)
- Viresh Thamke
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, 416004 India
| | - Suresh Suryawanshi
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, 416004 India
| | - Chetan Aware
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, 416004 India
| | - Pratibha Mali
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, 416004 India
| | - Balkrishna Shinde
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, 416004 India
| | - Devashree Patil
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, 416004 India
| | - Manali Rane
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, 416004 India
| | - Ashvini Chaudhari
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, 416004 India
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007 India
| | - Savita Tapase
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, 416004 India
| | - Jyoti Jadhav
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, 416004 India
| |
Collapse
|
69
|
Wang Q, Cui C, Zhang N, Lin W, Chai S, Chow SKH, Wong RMY, Hu Y, Law SW, Cheung WH. Effects of physical exercise on neuromuscular junction degeneration during ageing: A systematic review. J Orthop Translat 2024; 46:91-102. [PMID: 38817243 PMCID: PMC11137388 DOI: 10.1016/j.jot.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 06/01/2024] Open
Abstract
The neuromuscular junction (NMJ) is a specialized chemical synapse that converts neural impulses into muscle action. Age-associated NMJ degeneration, which involves nerve terminal and postsynaptic decline, denervation, and loss of motor units, significantly contributes to muscle weakness and dysfunction. Although physical training has been shown to make substantial modifications in NMJ of both young and aged animals, the results are often influenced by methodological variables in existing studies. Moreover, there is still lack of strong consensus on the specific effects of exercise on improving the morphology and function of the ageing NMJ. Consequently, the purpose of this study was to conduct a systematic review to elucidate the effects of exercise training on NMJ compartments in the elderly. We conducted a systematic review using PubMed, Embase, and Web of Science databases, employing relevant keywords. Two independent reviewers selected studies that detailed NMJ changes during exercise in ageing, written in English, and available in full text. In total, 20 papers were included. We examined the altered adaptation of the NMJ to exercise, focusing on presynaptic and postsynaptic structures and myofibers in older animals or humans. Our findings indicated that aged NMJs exhibited different adaptive responses to physical exercise compared to younger counterparts. Endurance training, compared with resistance and voluntary exercise regimens, was found to have a more pronounced effect on NMJ structural remodeling, particularly in fast twitch muscle fibers. Physical exercise was observed to promote the formation and maintenance of acetylcholine receptor (AChR) clusters by increasing the recombinant docking protein 7 (Dok7) expression and stabilizing Agrin and lipoprotein receptor-related protein 4 (LRP4). These insights suggest that research on exercise-related therapies could potentially attenuate the progression of neuromuscular degeneration. Translational potential of this article: This systematic review provides a detailed overview of the effects of different types of physical exercise on improving NMJ in the elderly, providing scientific support for the timely intervention of muscle degeneration in the elderly by physical exercise, and providing help for the development of new therapeutic interventions in the future.
Collapse
Affiliation(s)
- Qianjin Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Can Cui
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Ning Zhang
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Wujian Lin
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Senlin Chai
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Simon Kwoon-Ho Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Ronald Man Yeung Wong
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Yong Hu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Sheung Wai Law
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Wing-Hoi Cheung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| |
Collapse
|
70
|
Katariya R, Mishra K, Sammeta S, Umekar M, Kotagale N, Taksande B. Agmatine mitigates behavioral abnormalities and neurochemical dysregulation associated with 3-Nitropropionic acid-induced Huntington's disease in rats. Neurotoxicology 2024; 102:12-28. [PMID: 38453033 DOI: 10.1016/j.neuro.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/15/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative condition characterized by a severe motor incoordination, cognitive decline, and psychiatric complications. However, a definitive cure for this devastating disorder remains elusive. Agmatine, a biogenic amine, has gain attention for its reported neuromodulatory and neuroprotective properties. The present study was designed to examine the influence of agmatine on the behavioral, biochemical, and molecular aspects of HD in an animal model. A mitochondrial toxin, 3-nitro propionic acid (3-NP), was used to induce HD phenotype and similar symptoms such as motor incoordination, memory impairment, neuro-inflammation, and depressive-like behavior in rats. Rats were pre-treated with 3-NP (10 mg/kg, i.p.) on days 1, 3, 5, 7, and 9 and then continued on agmatine treatment (5 - 20 µg/rat, i.c.v.) from day-8 to day-27 of the treatment protocol. 3-NP-induced cognitive impairment was associated with declined in agmatine levels within prefrontal cortex, striatum, and hippocampus. Further, the 3-NP-treated rats showed an increase in IL-6 and TNF-α and a reduction in BDNF immunocontent within these brain areas. Agmatine treatment not only improved the 3-NP-induced motor incoordination, depression-like behavior, rota-rod performance, and learning and memory impairment but also normalized the GABA/glutamate, BDNF, IL-6, and TNF-α levels in discrete brain areas. Similarly, various agmatine modulators, which increase the endogenous agmatine levels in the brain, such as L-arginine (biosynthetic precursor), aminoguanidine (diamine oxidase inhibitor), and arcaine (agmatinase inhibitor) also demonstrated similar effects exhibiting the importance of endogenous agmatinergic pathway in the pathogenesis of 3-NP-induced HD like symptoms. The present study proposed the possible role of agmatine in the pathogenesis and treatment of HD associated motor incoordination, and psychiatric and cognitive complications.
Collapse
Affiliation(s)
- Raj Katariya
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Kartikey Mishra
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Shivkumar Sammeta
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Nandkishor Kotagale
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, M.S. 444604, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India.
| |
Collapse
|
71
|
Zheng W, Li K, Zhong M, Wu K, Zhou L, Huang J, Liu L, Chen Z. Mitophagy activation by rapamycin enhances mitochondrial function and cognition in 5×FAD mice. Behav Brain Res 2024; 463:114889. [PMID: 38301932 DOI: 10.1016/j.bbr.2024.114889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/20/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, characterized by severe mitochondrial dysfunction, which is an intracellular process that is significantly compromised in the early stages of AD. Mitophagy, the selective removal of damaged mitochondria, is a potential therapeutic strategy for AD. Rapamycin, a mammalian target of rapamycin (mTOR) inhibitor, augmented autophagy and mitigated cognitive impairment. Our study revealed that rapamycin enhances cognitive function by activating mitophagy, alleviating neuronal loss, and improving mitochondrial dysfunction in 5 ×FAD mice. Interestingly, the neuroprotective effect of rapamycin in AD were negated by treatment with 3-MA, a mitophagy inhibitor. Overall, our findings suggest that rapamycin ameliorates cognitive impairment in 5 ×FAD mice via mitophagy activation and its downstream PINK1-Parkin pathway, which aids in the clearance of amyloid-β (Aβ) and damaged mitochondria. This study reveals a novel mechanism involving mitophagy regulation underlying the therapeutic effect of rapamycin in AD. This study provides new insights and therapeutic targets for rapamycin in the treatment of AD. However, there are still some shortcomings in this topic; if we can further knock out the PINK1/Parkin gene in animals or use siRNA technology, we can further confirm the experimental results.
Collapse
Affiliation(s)
- Wenrong Zheng
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Kualiang Li
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Fujian Institute of Microbiology, Fuzhou 350007, China
| | - Meihua Zhong
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Kejun Wu
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Lele Zhou
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Jie Huang
- Fujian Institute of Microbiology, Fuzhou 350007, China
| | - Libin Liu
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Zhou Chen
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
72
|
Sorraksa N, Kaokaen P, Kunhorm P, Heebkaew N, Promjantuek W, Noisa P. Rapid induction of dopaminergic neuron-like cells from human fibroblasts by autophagy activation with only 2-small molecules. 3 Biotech 2024; 14:115. [PMID: 38524239 PMCID: PMC10954591 DOI: 10.1007/s13205-024-03957-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/08/2024] [Indexed: 03/26/2024] Open
Abstract
The dopaminergic neurons are responsible for the release of dopamine. Several diseases that affect motor function, including Parkinson's disease (PD), are rooted in inadequate dopamine (DA) neurotransmission. The study's goal was to create a quick way to make dopaminergic neuron-like cells from human fibroblasts (hNF) using only two small molecules: hedgehog pathway inhibitor 1 (HPI-1) and neurodazine (NZ). Two small compounds have been shown to induce the transdifferentiation of hNF cells into dopaminergic neuron-like cells. After 10 days of treatment, hNF cells had a big drop in fibroblastic markers (Col1A1, KRT18, and Elastin) and a rise in neuron marker genes (TUJ1, PAX6, and SOX1). Different proteins and factors related to dopaminergic neurons (TH, TUJ1, and dopamine) were significantly increased in cells that behave like dopaminergic neurons after treatment. A study of the autophagy signaling pathway showed that apoptotic genes were downregulated while autophagy genes (LC3, ATG5, and ATG12) were significantly upregulated. Our results showed that treating hNF cells with both HPI-1 and NZ together can quickly change them into mature neurons that have dopaminergic activity. However, the current understanding of the underlying mechanisms involved in nerve guidance remains unstable and complex. Ongoing research in this field must continue to advance for a more in-depth understanding. This is crucial for the safe and highly effective clinical application of the knowledge gained to promote neural regeneration in different neurological diseases.
Collapse
Affiliation(s)
- Natchadaporn Sorraksa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000 Thailand
| | - Palakorn Kaokaen
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000 Thailand
| | - Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000 Thailand
| | - Nudjanad Heebkaew
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000 Thailand
| | - Wilasinee Promjantuek
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000 Thailand
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000 Thailand
| |
Collapse
|
73
|
Chen M, Yang Y, Cui J, Qiu L, Zou X, Zeng X. Upstream Stimulating Factor 2 Aggravates Spinal Nerve Ligation-Induced Neuropathic Pain in Mice via Regulating SNHG5/miR-181b-5p. Dev Neurosci 2024; 47:1-11. [PMID: 38471480 DOI: 10.1159/000538178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
INTRODUCTION Upstream stimulating factor 2 (USF2) belongs to basic Helix-Loop-Helix-Leucine zipper transcription factor family, regulating expression of genes involved in immune response or energy metabolism network. Role of USF2 in neuropathic pain was evaluated. METHODS Mice were intraspinally injected with adenovirus for knockdown of USF2 (Ad-shUSF2) and then subjected to spinal nerve ligation (SNL) to induce neuropathic pain. Distribution and expression of USF2 were detected by western blot and immunofluorescence. Mechanical and thermal pain sensitivity were examined by paw withdrawal thresholds (PWT) and paw withdrawal latency (PWL). Chromatin immunoprecipitation (ChIP) and luciferase activity assays were performed to detect binding ability between USF2 and SNHG5. RESULTS The expression of USF2 was elevated and colocalized with astrocytes and microglia in L5 dorsal root ganglion (DRG) of SNL-induced mice. Injection of Ad-shUSF2 attenuated SNL-induced decrease of PWT and PWL in mice. Knockdown of USF2 increased the level of IL-10 but decreased TNF-α, IL-1β, and IL-6 in SNL-induced mice. Silence of USF2 enhanced protein expression of CD206 while reducing expression of CD16 and CD32 in SNL-induced mice. USF2 binds to promoter of SNHG5 and weakens SNL-induced up-regulation of SNHG5. SNHG5 binds to miR-181b-5p, and miR-181b-5p to interact with CXCL5. CONCLUSION Silence of USF2 ameliorated neuropathic pain, suppressed activation of M1 microglia, and inhibited inflammation in SNL-induced mice through regulation of SNHG5/miR-181b-5p/CXCL5 axis. Therefore, USF2/SNHG5/miR-181b-5p/CXCL5 might be a promising target for neuropathic pain. However, the effect of USF2/SNHG5/miR-181b-5p/CXCL5 on neuropathic pain should also be investigated in further research.
Collapse
Affiliation(s)
- Mi Chen
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yang Yang
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jiatian Cui
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Li Qiu
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaohua Zou
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xianggang Zeng
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
74
|
Valente HB, Gervazoni NDL, Laurino MJL, Stoco-Oliveira MC, Ribeiro F, de Carvalho AC, Vanderlei LCM, Garner DM. Monitoring autonomic responses in Parkinson's disease individuals: non-linear and chaotic global metrics of heart rate variability. Int J Neurosci 2024:1-11. [PMID: 38433652 DOI: 10.1080/00207454.2024.2325020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
AIM To examine and compare the autonomic responses, as assessed through the non-linear and chaotic global metrics of heart rate variability in two groups: the Parkinson's Disease Group (PDG) and the Control Group (CG), both at rest and during an active tilt test. METHODS The study encompassed 46 participants (PDG: n = 23; 73.73 ± 7.28 years old; CG: n = 23; 70.17 ± 8.20 years old). Initial data collection involved the acquisition of participant's characteristics. The autonomic modulation was estimated both at rest and during the active tilt test. For this assessment, we computed non-linear indices derived from five entropies (Approximate, Sample, Shannon, Renyi, Tsallis), Detrended Fluctuation Analysis and the seven chaotic global metrics (hsCFP1-hsCFP7). RESULTS At rest, the PDG exhibited lower values of hsCFP3 (0.818 ± 0.116 vs. 0.904 ± 0.065; p < 0.05) and Sample Entropy (0.720 ± 0.149 vs. 0.799 ± 0.171; p < 0.05). During the test, the PDG demonstrated lower values of ApEn, while the CG presented lower values of SampEn, hsCFP1, hsCFP3, hsCFP7, and higher values of hsCFP5. An interaction was observed, indicating that hsCFP1 and hsCFP3 exhibit differential behavior for the CG and PDG in response to the test. CONCLUSION subjects with PD exhibited reduced complexity of the RR interval series at rest, and a diminished autonomic response to the active tilt test when compared with the CG. The test, together with non-linear indices, may serve for assessing the Autonomic Nervous System in individuals with PD in a clinical setting. The interpretation of these data should be approached with caution, given the possible influences of pharmacotherapies and the inclusion of diabetic participants.
Collapse
Affiliation(s)
- Heloisa Balotari Valente
- Faculdade de Ciências e Tecnologia, Departamento de Fisioterapia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Presidente Prudente, Brazil
| | - Natacha de Lima Gervazoni
- Faculdade de Ciências e Tecnologia, Departamento de Fisioterapia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Presidente Prudente, Brazil
| | - Maria Júlia Lopez Laurino
- Faculdade de Ciências e Tecnologia, Departamento de Fisioterapia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Presidente Prudente, Brazil
| | - Mileide Cristina Stoco-Oliveira
- Faculdade de Ciências e Tecnologia, Departamento de Fisioterapia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Presidente Prudente, Brazil
| | - Felipe Ribeiro
- Faculdade de Ciências e Tecnologia, Departamento de Fisioterapia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Presidente Prudente, Brazil
| | - Augusto Cesinando de Carvalho
- Faculdade de Ciências e Tecnologia, Departamento de Fisioterapia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Presidente Prudente, Brazil
| | - Luiz Carlos Marques Vanderlei
- Faculdade de Ciências e Tecnologia, Departamento de Fisioterapia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Presidente Prudente, Brazil
| | - David M Garner
- Cardiorespiratory Research Group, Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
75
|
Fukuda N, Toriuchi K, Mimoto R, Aoki H, Kakita H, Suzuki Y, Takeshita S, Tamura T, Yamamura H, Inoue Y, Hayashi H, Yamada Y, Aoyama M. Hypothermia Attenuates Neurotoxic Microglial Activation via TRPV4. Neurochem Res 2024; 49:800-813. [PMID: 38112974 DOI: 10.1007/s11064-023-04075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Therapeutic hypothermia (TH) provides neuroprotection. However, the cellular mechanisms underlying the neuroprotective effects of TH are not fully elucidated. Regulation of microglial activation has the potential to treat a variety of nervous system diseases. Transient receptor potential vanilloid 4 (TRPV4), a nonselective cation channel, is activated by temperature stimulus at 27-35 °C. Although it is speculated that TRPV4 is associated with the neuroprotective mechanisms of TH, the role of TRPV4 in the neuroprotective effects of TH is not well understood. In the present study, we investigated whether hypothermia attenuates microglial activation via TRPV4 channels. Cultured microglia were incubated under normothermic (37 °C) or hypothermic (33.5 °C) conditions following lipopolysaccharide (LPS) stimulation. Hypothermic conditions suppressed the expression of pro-inflammatory cytokines, inducible nitric oxide synthase, and the number of phagocytic microglia. AMP-activated protein kinase (AMPK)-NF-κB signaling was inhibited under hypothermic conditions. Furthermore, hypothermia reduced neuronal damage induced by LPS-treated microglial cells. Treatment with TRPV4 antagonist in normothermic culture replicated the suppressive effects of hypothermia on microglial activation and microglia-induced neuronal damage. In contrast, treatment with a TRPV4 agonist in hypothermic culture reversed the suppressive effect of hypothermia. These findings suggest that TH suppresses microglial activation and microglia-induced neuronal damage via the TRPV4-AMPK-NF-κB pathway. Although more validation is needed to consider differences according to age, sex, and specific central nervous system regions, our findings may offer a novel therapeutic approach to complement TH.
Collapse
Affiliation(s)
- Naoya Fukuda
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Kohki Toriuchi
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Rina Mimoto
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Hiromasa Aoki
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Hiroki Kakita
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
- Department of Perinatal and Neonatal Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Satoru Takeshita
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
- Department of Perinatal and Neonatal Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Tetsuya Tamura
- Department of Anesthesiology and Intensive Care Medicine, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Ku, Nagoya, Aichi, 467-8601, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Yasumichi Inoue
- Department of Cell Signaling, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-Dori, Mizuho-Ku, Nagoya, Aichi, 467-8603, Japan
- Department of Innovative Therapeutic Sciences, Cooperative Major in Nanopharmaceutical Sciences, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-Dori, Mizuho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-Dori, Mizuho-Ku, Nagoya, Aichi, 467-8603, Japan
- Department of Innovative Therapeutic Sciences, Cooperative Major in Nanopharmaceutical Sciences, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-Dori, Mizuho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Yasumasa Yamada
- Department of Perinatal and Neonatal Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Mineyoshi Aoyama
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan.
| |
Collapse
|
76
|
Jiang Z, Zhou W, Tian X, Zou P, Li N, Zhang C, Li Y, Liu G. A Protective Role of Canonical Wnt/ β-Catenin Pathway in Pathogenic Bacteria-Induced Inflammatory Responses. Mediators Inflamm 2024; 2024:8869510. [PMID: 38445290 PMCID: PMC10914433 DOI: 10.1155/2024/8869510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/04/2023] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
Inflammation is a complex host defensive response against various disease-associated pathogens. A baseline extent of inflammation is supposed to be tightly associated with a sequence of immune-modulated processes, resulting in the protection of the host organism against pathogen invasion; however, as a matter of fact is that an uncontrolled inflammatory cascade is the main factor responsible for the host damage, accordingly suggesting a significant and indispensable involvement of negative feedback mechanism in modulation of inflammation. Evidence accumulated so far has supported a repressive effect of the canonical Wnt/β-catenin pathway on microbial-triggered inflammation via diverse mechanisms, although that consequence is dependent on the cellular context, types of stimuli, and cytokine environment. It is of particular interest and importance to comprehend the precise way in which the Wnt/β-catenin pathway is activated, due to its essential anti-inflammatory properties. It is assumed that an inflammatory milieu is necessary for initiating and activating this signaling, implying that Wnt activity is responsible for shielding tissues from overwhelming inflammation, thus sustaining a balanced physiological condition against bacterial infection. This review gathers the recent efforts to elucidate the mechanistic details through how Wnt/β-catenin signaling modulates anti-inflammatory responses in response to bacterial infection and its interactions with other inflammatory signals, which warrants further study for the development of specific interventions for the treatment of inflammatory diseases. Further clinical trials from different disease settings are required.
Collapse
Affiliation(s)
- Zhongjia Jiang
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang 110034, China
- Key Laboratory of Environment Pollution and Microecology of Liaoning Province, Shenyang 110034, China
| | - Weiping Zhou
- Department of Pathogen Biology, Shenyang Medical College, Shenyang 110034, China
| | - Xing Tian
- Department of Physiology, Shenyang Medical College, Shenyang 110034, China
| | - Peng Zou
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang 110034, China
| | - Ning Li
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang 110034, China
| | - Chunmeng Zhang
- Department of Pathogen Biology, Shenyang Medical College, Shenyang 110034, China
| | - Yanting Li
- Department of Pathogen Biology, Shenyang Medical College, Shenyang 110034, China
| | - Guangyan Liu
- Key Laboratory of Environment Pollution and Microecology of Liaoning Province, Shenyang 110034, China
- Department of Pathogen Biology, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
77
|
Zhang JB, Wang F, Tang YT, Pang MZ, Li D, Liu CF. Inhibition of GluN2D-Containing NMDA Receptors Protects Dopaminergic Neurons against 6-OHDA-Induced Neurotoxicity via Activating ERK/NRF2/HO-1 Signaling. ACS Chem Neurosci 2024; 15:572-581. [PMID: 38277219 DOI: 10.1021/acschemneuro.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024] Open
Abstract
Abnormal glutamate signaling is implicated in the heightened vulnerability of dopaminergic neurons in Parkinson's disease (PD). NMDA receptors are ion-gated glutamate receptors with high calcium permeability, and their GluN2D subunits are prominently distributed in the basal ganglia and brainstem nuclei. Previous studies have reported that dopamine depletion led to the dysfunctions of GluN2D-containing NMDA receptors in PD animal models. However, it remains unknown whether selective modulation of GluN2D could protect dopaminergic neurons against neurotoxicity in PD. In this study, we found that allosteric activation of GluN2D-containing NMDA receptors decreased the cell viability of MES23.5 dopaminergic cells and the GluN2D inhibitor, QNZ46, showed antioxidant effects and significantly relieved apoptosis in 6-OHDA-treated cells. Meanwhile, we demonstrated that QNZ46 might act via activation of the ERK/NRF2/HO-1 pathway. We also verified that QNZ46 could rescue abnormal behaviors and attenuate dopaminergic cell loss in a 6-OHDA-lesioned rat model of PD. Although the precise mechanisms underlying the efficacy of QNZ46 in vivo remain elusive, the inhibition of the GluN2D subunit should be a considerable way to treat PD. More GluN2D-selective drugs, which present minimal side effects and broad therapeutic windows, need to be developed for PD treatment in future studies.
Collapse
Affiliation(s)
- Jin-Bao Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215004, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215004, China
| | - Yu-Ting Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215004, China
| | - Meng-Zhu Pang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215004, China
| | - Dan Li
- Department of Neurology, Suqian First Hospital, Suqian 223800, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215004, China
- Department of Neurology, Suqian First Hospital, Suqian 223800, China
| |
Collapse
|
78
|
Wang Y, Li H, He Q, Zou R, Cai J, Zhang L. Ferroptosis: underlying mechanisms and involvement in neurodegenerative diseases. Apoptosis 2024; 29:3-21. [PMID: 37848673 DOI: 10.1007/s10495-023-01902-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2023] [Indexed: 10/19/2023]
Abstract
Ferroptosis, a mode of cell death that was recently identified in 2012, is driven by iron-dependent lipid peroxidation and distinct from other mechanisms of cell death such as autophagy and apoptosis. Ferroptosis has the unique features of disruptions in iron equilibrium, iron-induced lipid peroxidation, and the accumulation of glutamate-induced cellular toxicity. The regulation of ferroptosis mainly involves the iron, lipid, and amino acid metabolic pathways, which are controlled by system Xc-, voltage-dependent anion channels, p53 and other pathways. Neurodegenerative diseases involve gradual neuronal loss predominantly within the central nervous system and are categorized into both sporadic and rare hereditary disorders. These diseases result in the progressive decline of specific neuron populations and their interconnections. Recent investigations have revealed a strong correlation between the manifestation and progression of neurodegenerative diseases and ferroptosis. The pharmacological modulation of ferroptosis, whether by induction or inhibition, exhibits promising prospects for therapeutic interventions for these diseases. This review aims to examine the literature on ferroptosis and its implications in various neurodegenerative diseases. We hope to offer novel insights into the potential therapies targeting ferroptosis in central nervous system neurodegenerative diseases. However, there are still limitations of this review. First, despite our efforts to maintain objectivity during our analysis, this review does not cover all the studies on ferroptosis and neurodegenerative diseases. Second, cell death in neurodegenerative diseases is not solely caused by ferroptosis. Future research should focus on the interplay of different cell death mechanisms to better elucidate the specific disease pathogenesis.
Collapse
Affiliation(s)
- Yi Wang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - HongJing Li
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - QianXiong He
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rong Zou
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - JinRui Cai
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Lin Zhang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.
- Key Laboratory of Tibetan Medicine Research, Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Northwest Institute of Plateau Biology, Xining, 810008, Qinghai, China.
| |
Collapse
|
79
|
Liang J, Wan Z, Qian C, Rasheed M, Cao C, Sun J, Wang X, Chen Z, Deng Y. The pyroptosis mediated biomarker pattern: an emerging diagnostic approach for Parkinson's disease. Cell Mol Biol Lett 2024; 29:7. [PMID: 38172670 PMCID: PMC10765853 DOI: 10.1186/s11658-023-00516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) affects 1% of people over 60, and long-term levodopa treatment can cause side effects. Early diagnosis is of great significance in slowing down the pathological process of PD. Multiple pieces of evidence showed that non-coding RNAs (ncRNAs) could participate in the progression of PD pathology. Pyroptosis is known to be regulated by ncRNAs as a key pathological feature of PD. Therefore, evaluating ncRNAs and pyroptosis-related proteins in serum could be worthy biomarkers for early diagnosis of PD. METHODS NcRNAs and pyroptosis/inflammation mRNA levels were measured with reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). Luciferase assays were performed to confirm GSDME as a target of miR-675-5p and HMGB1 as a target of miR-1247-5p. In the serum of healthy controls (n = 106) and PD patients (n = 104), RT-qPCR was utilized to assess miR-675-5p, miR-1247-5p, and two related ncRNAs (circSLC8A1and lncH19) levels. The enzyme-linked immunosorbent assay measured serum levels of pyroptosis-related proteins in controls (n = 54) and PD patients (n = 70). RESULTS Our data demonstrated that miR-675-5p and miR-1247-5p significantly changed in PD neuron and animal models. Overexpressed miR-675-5p or downregulated miR-1247-5p could regulate pyroptosis and inflammation in PD neuron models. Using the random forest algorithm, we constructed a classifier based on PD neuron-pyroptosis pathology (four ncRNAs and six proteins) having better predictive power than single biomarkers (AUC = 92%). Additionally, we verified the performance of the classifier in early-stage PD patients (AUC ≥ 88%). CONCLUSION Serum pyroptosis-related ncRNAs and proteins could serve as reliable, inexpensive, and non-invasive diagnostic biomarkers for PD. LIMITATIONS All participants were from the same region. Additionally, longitudinal studies in the aged population are required to explore the practical application value of the classifier.
Collapse
Affiliation(s)
- Junhan Liang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Zhirong Wan
- Department of Neurology, Aerospace Center Hospital, Beijing, 100049, People's Republic of China
| | - Cheng Qian
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Madiha Rasheed
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Changling Cao
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Jingyan Sun
- School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Xuezhe Wang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Zixuan Chen
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China.
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
80
|
Zhang MZ, Sun Y, Chen YM, Guo F, Gao PY, Tan L, Tan MS. Associations of Multimorbidity with Cerebrospinal Fluid Biomarkers for Neurodegenerative Disorders in Early Parkinson's Disease: A Crosssectional and Longitudinal Study. Curr Alzheimer Res 2024; 21:201-213. [PMID: 39041277 DOI: 10.2174/0115672050314397240708060314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 07/24/2024]
Abstract
OBJECT The study aims to determine whether multimorbidity status is associated with cerebrospinal fluid (CSF) biomarkers for neurodegenerative disorders. METHODS A total of 827 patients were enrolled from the Parkinson's Progression Markers Initiative (PPMI) database, including 638 patients with early-stage Parkinson's disease (PD) and 189 healthy controls (HCs). Multimorbidity status was evaluated based on the count of long-term conditions (LTCs) and the multimorbidity pattern. Using linear regression models, cross-sectional and longitudinal analyses were conducted to assess the associations of multimorbidity status with CSF biomarkers for neurodegenerative disorders, including α-synuclein (αSyn), amyloid-β42 (Aβ42), total tau (t-tau), phosphorylated tau (p-tau), glial fibrillary acidic protein (GFAP), and neurofilament light chain protein (NfL). RESULTS At baseline, the CSF t-tau (p = 0.010), p-tau (p = 0.034), and NfL (p = 0.049) levels showed significant differences across the three categories of LTC counts. In the longitudinal analysis, the presence of LTCs was associated with lower Aβ42 (β < -0.001, p = 0.020), and higher t-tau (β = 0.007, p = 0.026), GFAP (β = 0.013, p = 0.022) and NfL (β = 0.020, p = 0.012); Participants with tumor/musculoskeletal/mental disorders showed higher CSF levels of t-tau (β = 0.016, p = 0.011) and p-tau (β = 0.032, p = 0.044) than those without multimorbidity. CONCLUSION Multimorbidity, especially severe multimorbidity and the pattern of mental/musculoskeletal/ tumor disorders, was associated with CSF biomarkers for neurodegenerative disorders in early-stage PD patients, suggesting that multimorbidity might play a crucial role in aggravating neuronal damage in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ming-Zhan Zhang
- School of Clinical Medicine, Shandong Second Medical University (formerly Weifang Medical University), Weifang 261000, Shandong, China
| | - Yan Sun
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan-Ming Chen
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Fan Guo
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Pei-Yang Gao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Meng-Shan Tan
- School of Clinical Medicine, Shandong Second Medical University (formerly Weifang Medical University), Weifang 261000, Shandong, China
- Department of Neurology, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
81
|
Cai H, Liu D, Xue WW, Ma L, Xie HT, Ning K. Lipid-based nanoparticles for drug delivery in Parkinson's disease. Transl Neurosci 2024; 15:20220359. [PMID: 39654878 PMCID: PMC11627081 DOI: 10.1515/tnsci-2022-0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 12/12/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that predominantly affects dopaminergic neurons in the substantia nigra and ventral tegmental area, resulting in symptoms such as tremors, muscle rigidity, bradykinesia, and potential cognitive and affective disturbances. The effective delivery of pharmacological agents to the central nervous system is hindered by various factors, including the restrictive properties of the blood‒brain barrier and blood‒spinal cord barrier, as well as the physicochemical characteristics of the drugs. Traditional drug delivery methods may not provide the therapeutic concentrations necessary for functional restoration in PD patients. However, lipid-based nanoparticles (NPs) offer new possibilities for enhancing the bioavailability of established treatment regimens and developing innovative therapies that can modify the course of the disease. This review provides a concise overview of recent advances in lipid-based NP strategies aimed at mitigating specific pathological mechanisms relevant to PD progression. This study also explores the potential applications of nanotechnological innovations in the development of advanced treatment modalities for individuals with PD.
Collapse
Affiliation(s)
- Han Cai
- Guangdong Celconta Biotechnology Co., Ltd, 9 Xincheng Road, Songshan Lake Park, Dongguan, Guangdong, PR China
| | - Dong Liu
- Guangdong Celconta Biotechnology Co., Ltd, 9 Xincheng Road, Songshan Lake Park, Dongguan, Guangdong, PR China
| | - Wei-Wei Xue
- Guangdong Celconta Biotechnology Co., Ltd, 9 Xincheng Road, Songshan Lake Park, Dongguan, Guangdong, PR China
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Liya Ma
- Guangdong Celconta Biotechnology Co., Ltd, 9 Xincheng Road, Songshan Lake Park, Dongguan, Guangdong, PR China
| | - Hai-Tao Xie
- Guangdong Celconta Biotechnology Co., Ltd, 9 Xincheng Road, Songshan Lake Park, Dongguan, Guangdong, PR China
| | - Ke Ning
- Guangdong Celconta Biotechnology Co., Ltd, 9 Xincheng Road, Songshan Lake Park, Dongguan, Guangdong, PR China
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
82
|
Rodrigues JFR, Rodrigues LP, de Araújo Filho GM. Alzheimer's Disease and Suicide: An Integrative Literature Review. Curr Alzheimer Res 2024; 20:758-768. [PMID: 38409712 DOI: 10.2174/0115672050292472240216052614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/28/2024]
Abstract
INTRODUCTION Suicide has been described in patients with Alzheimer's disease. Some promising medications for treating Alzheimer's disease have had their studies suspended because they increase the risk of suicide. Understanding the correlations between suicide and Alzheimer's disease is essential in an aging world. METHODS A search was carried out on electronic websites (PubMed and Scielo) using the MeSH Terms "suicide" and "Alzheimer" (1986-2023). Of a total of 115 articles, 26 were included in this review. RESULTS Depression and the allele ε4 of Apolipoprotein (APOE4) were demonstrated to be the main risk factors for suicide in patients with Alzheimer's disease. CONCLUSION Adequately delineating which elderly people are vulnerable to suicide is important so that new treatments for Alzheimer's disease can be successful. This review showed a need for new studies to investigate the interface between Alzheimer's disease and suicide.
Collapse
Affiliation(s)
- Juliano Flávio Rubatino Rodrigues
- Faculdade de Medicina de Marília (FAMEMA), Marília, SP, Brazil
- Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, SP, Brazil
- Unimed Bauru Cooperativa de Trabalho Médico, Bauru, SP, Brazil
| | - Livia Peregrino Rodrigues
- Faculdade de Medicina de Barbacena (FAME), Barbacena, MG, Brazil
- Faculdade de Medicina da Universidade de Marília (UNIMAR), Marília, SP, Brazil
| | | |
Collapse
|
83
|
Prajapat M, Kaur G, Choudhary G, Pahwa P, Bansal S, Joshi R, Batra G, Mishra A, Singla R, Kaur H, Prabha PK, Patel AP, Medhi B. A systematic review for the development of Alzheimer's disease in in vitro models: a focus on different inducing agents. Front Aging Neurosci 2023; 15:1296919. [PMID: 38173557 PMCID: PMC10761490 DOI: 10.3389/fnagi.2023.1296919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Alzheimer's disease (AD) is the most common progressive neurodegenerative disease and is associated with dementia. Presently, various chemical and environmental agents are used to induce in-vitro models of Alzheimer disease to investigate the efficacy of different therapeutic drugs. We screened literature from databases such as PubMed, ScienceDirect, and Google scholar, emphasizing the diverse targeting mechanisms of neuro degeneration explored in in-vitro models. The results revealed studies in which different types of chemicals and environmental agents were used for in-vitro development of Alzheimer-targeting mechanisms of neurodegeneration. Studies using chemically induced in-vitro AD models included in this systematic review will contribute to a deeper understanding of AD. However, none of these models can reproduce all the characteristics of disease progression seen in the majority of Alzheimer's disease subtypes. Additional modifications would be required to replicate the complex conditions of human AD in an exact manner. In-vitro models of Alzheimer's disease developed using chemicals and environmental agents are instrumental in providing insights into the disease's pathophysiology; therefore, chemical-induced in-vitro AD models will continue to play vital role in future AD research. This systematic screening revealed the pivotal role of chemical-induced in-vitro AD models in advancing our understanding of AD pathophysiology and is therefore important to understand the potential of these chemicals in AD pathogenesis.
Collapse
Affiliation(s)
| | - Gurjeet Kaur
- Department of Pharmacology, PGIMER, Chandigarh, India
| | | | - Paras Pahwa
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Seema Bansal
- MM College of Pharmacy, Maharishi Markandeshwar (DU) University, Mullana, Ambala, India
| | - Rupa Joshi
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Gitika Batra
- Department of Neurology, PGIMER, Chandigarh, India
| | - Abhishek Mishra
- Department of Biomedical Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Rubal Singla
- Department of Pharmacology, PGIMER, Chandigarh, India
| | | | | | | | - Bikash Medhi
- Department of Pharmacology, PGIMER, Chandigarh, India
| |
Collapse
|
84
|
Wang Y, Cui L, Zhao H, He H, Chen L, Song X, Liu D, Qiu J, Sun Y. Exploring the Connectivity of Neurodegenerative Diseases: Microglia as the Center. J Inflamm Res 2023; 16:6107-6121. [PMID: 38107384 PMCID: PMC10725686 DOI: 10.2147/jir.s440377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023] Open
Abstract
Degenerative diseases affect people's life and health and cause a severe social burden. Relevant mechanisms of microglia have been studied, aiming to control and reduce degenerative disease occurrence effectively. This review discussed the specific mechanisms underlying microglia in neurodegenerative diseases, age-related hearing loss, Alzheimer's disease, Parkinson's disease, and peripheral nervous system (PNS) degenerative diseases. It also reviewed the studies of microglia inhibitors (PLX3397/PLX5622) and activators (lipopolysaccharide), and suggested that reducing microglia can effectively curb the genesis and progression of degenerative diseases. Finally, microglial cells' anti-inflammatory and pro-inflammatory dual role was considered the critical communication point in central and peripheral degenerative diseases. Although it is difficult to describe the complex morphological structure of microglia in a unified manner, this does not prevent them from being a target for future treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yan Wang
- The Second Medical College, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
| | - Limei Cui
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
| | - He Zhao
- The Second Medical College, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
| | - Huhuifen He
- The Second Medical College, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
| | - Liang Chen
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
| | - Xicheng Song
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
| | - Dawei Liu
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
| | - Jingjing Qiu
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
| | - Yan Sun
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
| |
Collapse
|
85
|
Zhao G, Zhang Y, Tian Y, Huang J, Gao P, Zhao Q, Yang Z. Antioxidant and anti-inflammatory effects of selenomethionine promote osteogenesis via Wnt/β-Catenin pathway. Biochem Biophys Rep 2023; 36:101559. [PMID: 37881410 PMCID: PMC10594567 DOI: 10.1016/j.bbrep.2023.101559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/19/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
Background Recently, the antioxidant properties of the natural compound, selenomethionine (Se-Met), have been recognized. However, its effect on the osteogenic mineralization of the Wnt/β-Catenin pathway under conditions of oxidative stress and inflammation remain unclear. Methods This study utilized tert-butyl hydroperoxide (TBHP) to simulate oxidative stress and inflammation. Se-Met was then subsequently used to inhibit these effects in vitro. Results TBHP induces oxidative stress and inflammatory responses by increasing the expression of reactive oxygen species and NLRP3, whereas decreasing the expression of GPX4, thereby inhibiting the viability of MC3T3-E1 cells. TBHP further promotes lipid peroxidation and damages the ultrastructure of mitochondria. Furthermore, TBHP inhibits the expression levels of β-Catenin, thereby reducing the activity of the Wnt pathway, which in turn suppresses the osteogenic differentiation and mineralization capacity. Importantly, Se-Met significantly alters the aforementioned responses to enhance expression levels of Wnt pathway-related proteins and improving the osteogenic differentiation and mineralization capacity of the cells. Conclusion Se-Met enhances antioxidant and anti-inflammatory responses in MC3T3-E1 cells via the Wnt/β-Catenin signaling pathway to promote osteogenesis. Thus, Se-Met plays a crucial role in the field of bone homeostasis, and presents an opportunity for the future development of novel drugs for treating osteoporosis and maintaining bone stability. However, further detailed preclinical animal studies are required to generate solid and reliable data to aid this development.
Collapse
Affiliation(s)
- Guodong Zhao
- Hubei University of Medicine, Shiyan, 442000, Hubei, China
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, Hubei, China
| | - Yiting Zhang
- Hubei University of Medicine, Shiyan, 442000, Hubei, China
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, Hubei, China
| | - Yinping Tian
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, Hubei, China
| | - Jing Huang
- Hubei University of Medicine, Shiyan, 442000, Hubei, China
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, Hubei, China
| | - Peiyi Gao
- Hubei University of Medicine, Shiyan, 442000, Hubei, China
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, Hubei, China
| | - Qin Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 440000, Hubei, China
| | - Zaibo Yang
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, Hubei, China
| |
Collapse
|
86
|
Chen K, Tang F, Du B, Yue Z, Jiao L, Ding X, Tuo Q, Meng J, He S, Dai L, Lei P, Wei X. Leucine-rich repeat kinase 2 (LRRK2) inhibition upregulates microtubule-associated protein 1B to ameliorate lysosomal dysfunction and parkinsonism. MedComm (Beijing) 2023; 4:e429. [PMID: 38020716 PMCID: PMC10661827 DOI: 10.1002/mco2.429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Mutations in LRRK2 (encoding leucine-rich repeat kinase 2 protein, LRRK2) are the most common genetic risk factors for Parkinson's disease (PD), and increased LRRK2 kinase activity was observed in sporadic PD. Therefore, inhibition of LRRK2 has been tested as a disease-modifying therapeutic strategy using the LRRK2 mutant mice and sporadic PD. Here, we report a newly designed molecule, FL090, as a LRRK2 kinase inhibitor, verified in cell culture and animal models of PD. Using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice and SNCA A53T transgenic mice, FL090 ameliorated motor dysfunctions, reduced LRRK2 kinase activity, and rescued loss in the dopaminergic neurons in the substantia nigra. Notably, by RNA-Seq analysis, we identified microtubule-associated protein 1 (MAP1B) as a crucial mediator of FL090's neuroprotective effects and found that MAP1B and LRRK2 co-localize. Overexpression of MAP1B rescued 1-methyl-4-phenylpyridinium induced cytotoxicity through rescuing the lysosomal function, and the protective effect of FL090 was lost in MAP1B knockout cells. Further studies may be focused on the in vivo mechanisms of MAP1B and microtubule function in PD. Collectively, these findings highlight the potential of FL090 as a therapeutic agent for sporadic PD and familial PD without LRRK2 mutations.
Collapse
Affiliation(s)
- Kang Chen
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Fei Tang
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Bin Du
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Zhe‐Zhou Yue
- Guizhou Yiluoqini Techno. Co., Ltd, Guizhou Shuanglong Airport Economic ZoneGuiyangP. R. China
| | - Ling‐Ling Jiao
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Xu‐Long Ding
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Qing‐Zhang Tuo
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Jie Meng
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Si‐Yu He
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Lunzhi Dai
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Xia‐Wei Wei
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
- Guizhou Yiluoqini Techno. Co., Ltd, Guizhou Shuanglong Airport Economic ZoneGuiyangP. R. China
| |
Collapse
|
87
|
Guo Y, Sun CK, Tang L, Tan MS. Microglia PTK2B/Pyk2 in the Pathogenesis of Alzheimer's Disease. Curr Alzheimer Res 2023; 20:692-704. [PMID: 38321895 DOI: 10.2174/0115672050299004240129051655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
Alzheimer's disease (AD) is a highly hereditary disease with complex genetic susceptibility factors. Extensive genome-wide association studies have established a distinct susceptibility link between the protein tyrosine kinase 2β (PTK2B) gene and late-onset Alzheimer's disease (LOAD), but the specific pathogenic mechanisms remain incompletely understood. PTK2B is known to be expressed in neurons, and recent research has revealed its more important significance in microglia. Elucidating the role of PTK2B high expression in microglia in AD's progression is crucial for uncovering novel pathogenic mechanisms of the disease. Our review of existing studies suggests a close relationship between PTK2B/proline-rich tyrosine kinase 2 (Pyk2) and tau pathology, and this process might be β-amyloid (Aβ) dependence. Pyk2 is hypothesized as a pivotal target linking Aβ and tau pathologies. Concurrently, Aβ-activated Pyk2 participates in the regulation of microglial activation and its proinflammatory functions. Consequently, it is reasonable to presume that Pyk2 in microglia contributes to amyloid-induced tau pathology in AD via a neuroinflammatory pathway. Furthermore, many things remain unclear, such as identifying the specific pathways that lead to the release of downstream inflammatory factors due to Pyk2 phosphorylation and whether all types of inflammatory factors can activate neuronal kinase pathways. Additionally, further in vivo experiments are essential to validate this hypothesized pathway. Considering PTK2B/Pyk2's potential role in AD pathogenesis, targeting this pathway may offer innovative and promising therapeutic approaches for AD.
Collapse
Affiliation(s)
- Yun Guo
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Cheng-Kun Sun
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, China
| | - Lian Tang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Meng-Shan Tan
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, China
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Department of Neurology, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
88
|
Maziero MP, Rocha NP, Teixeira AL. Antipsychotics in Alzheimer's Disease: Current Status and Therapeutic Alternatives. Curr Alzheimer Res 2023; 20:682-691. [PMID: 38409713 DOI: 10.2174/0115672050287534240215052417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/28/2024]
Abstract
Psychosis and hyperactive behaviors, such as agitation and wandering, affect a significant proportion of patients with Alzheimer's disease (AD). These symptoms are often treated with antipsychotics, usually in an off-label approach. This mini-review provides an updated perspective on the pharmacological approach for the neuropsychiatric symptoms (NPS) in AD. The results of new studies have provided a better understanding of AD-related NPS management, but high-quality evidence still needs to be obtained. Herein, we argue for a more cautious approach to the use of antipsychotics in AD and highlight the importance of exploring alternative treatments for NPS. By doing so, we can ensure that patients with AD receive optimal care that is both effective and safe.
Collapse
Affiliation(s)
- Maria Paula Maziero
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Texas 77030, USA
| | - Natalia P Rocha
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Texas 77030, USA
| | - Antonio L Teixeira
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Texas 77030, USA
- The Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, The University of Texas Health Science Center at San Antonio, TX, USA
| |
Collapse
|