51
|
Qian J, Wu Z, Zhu Y, Liu C. One Health: a holistic approach for food safety in livestock. SCIENCE IN ONE HEALTH 2022; 1:100015. [PMID: 39076604 PMCID: PMC11262287 DOI: 10.1016/j.soh.2023.100015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/07/2023] [Indexed: 07/31/2024]
Abstract
The food safety of livestock is a critical issue between animals and humans due to their complex interactions. Pathogens have the potential to spread at every stage of the animal food handling process, including breeding, processing, packaging, storage, transportation, marketing and consumption. In addition, application of the antibiotic usage in domestic animals is a controversial issue because, while they can combat food-borne zoonotic pathogens and promote animal growth and productivity, they can also lead to the transmission of antibiotic-resistant microorganisms and antibiotic-resistant genes across species and habitats. Coevolution of microbiomes may occur in humans and animals as well which may alter the structure of the human microbiome through animal food consumption. One Health is a holistic approach to systematically understand the complex relationships among humans, animals and environments which may provide effective countermeasures to solve food safety problems aforementioned. This paper depicts the main pathogen spectrum of livestock and animal products, summarizes the flow of antibiotic-resistant bacteria and genes between humans and livestock along the food-chain production, and the correlation of their microbiome is reviewed as well to advocate for deeper interdisciplinary communication and collaboration among researchers in medicine, epidemiology, veterinary medicine and ecology to promote One Health approaches to address the global food safety challenges.
Collapse
Affiliation(s)
- Jing Qian
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zheyuan Wu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yongzhang Zhu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chang Liu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
52
|
Bu F, Liu M, Xie Z, Chen X, Li G, Wang X. Targeted Anti-Biofilm Therapy: Dissecting Targets in the Biofilm Life Cycle. Pharmaceuticals (Basel) 2022; 15:1253. [PMID: 36297365 PMCID: PMC9611117 DOI: 10.3390/ph15101253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/13/2024] Open
Abstract
Biofilm is a crucial virulence factor for microorganisms that causes chronic infection. After biofilm formation, the bacteria present improve drug tolerance and multifactorial defense mechanisms, which impose significant challenges for the use of antimicrobials. This indicates the urgent need for new targeted technologies and emerging therapeutic strategies. In this review, we focus on the current biofilm-targeting strategies and those under development, including targeting persistent cells, quorum quenching, and phage therapy. We emphasize biofilm-targeting technologies that are supported by blocking the biofilm life cycle, providing a theoretical basis for design of targeting technology that disrupts the biofilm and promotes practical application of antibacterial materials.
Collapse
Affiliation(s)
| | | | | | | | | | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
53
|
Li X, Zhang R, Wang C, Wang X, Yang Y, Cui S, Guo Y. Use of β-cyclodextrin and milk protein-coated activated charcoal for rapid detection of Listeria monocytogenes in leafy greens by PCR without pre-enrichment. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
54
|
Culliney P, Schmalenberger A. Cultivation Conditions of Spinach and Rocket Influence Epiphytic Growth of Listeria monocytogenes. Foods 2022; 11:foods11193056. [PMID: 36230132 PMCID: PMC9563967 DOI: 10.3390/foods11193056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022] Open
Abstract
Leafy vegetables are associated with Listeriosis outbreaks due to contamination with Listeria monocytogenes. To date, contradictory findings were reported on spinach, rocket, and kale, where some studies reported growth of L. monocytogenes, while others did not. Thus, the current study investigated the reason for conflicting findings by producing leafy vegetables, where cultivation factors were known for growth potential studies. Of all polytunnel produce, kale Nero di Toscana demonstrated the highest growth potential (2.56 log cfu g−1), followed by spinach F1 Cello (1.84 log cfu g−1), rocket Buzz (1.41 log cfu g−1), spinach F1 Trumpet (1.37 log cfu g−1), and finally rocket Esmee (1.23 log cfu g−1). Thus, plant species and variety influenced L. monocytogenes growth potentials. Moreover, significantly lower growth potentials of 0.3 log cfu g−1 were identified when rocket Buzz was cultivated in open fields (1.11 log cfu g−1) instead of a polytunnel. The opposite effect was observed for spinach F1 Trumpet, where growth potentials increased significantly by 0.84 log cfu g−1 when cultivated in open fields (2.21 log cfu g−1). Furthermore, a significant seasonality effect between batches was found (p < 0.05). This study revealed that spinach and rocket cultivation conditions are at least co-factors in the reporting of differing growth potentials of L. monocytogenes across literature and should be considered when conducting future growth potential studies.
Collapse
|
55
|
Factors that predict Listeria prevalence in distribution centers handling fresh produce. Food Microbiol 2022; 107:104065. [DOI: 10.1016/j.fm.2022.104065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/23/2022]
|
56
|
Liu X, Pang X, Wu Y, Wu Y, Shi Y, Zhang X, Chen Q. Synergistic Antibacterial Mechanism of Mannosylerythritol Lipid-A and Lactic Acid on Listeria monocytogenes Based on Transcriptomic Analysis. Foods 2022; 11:foods11172660. [PMID: 36076848 PMCID: PMC9455235 DOI: 10.3390/foods11172660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/21/2022] Open
Abstract
Mannosylerythritol lipids-A (MEL-A) is a novel biosurfactant with multiple biological effects. The synergistic antibacterial activity and mechanism of MEL-A and lactic acid (LA) against Listeria monocytogenes were investigated. The synergistic effect resulted in a significant increase in the antibacterial rate compared to LA treatment alone. Genome-wide transcriptomic analysis was applied to deeply investigate the synergistic antibacterial mechanism. Gene Ontology (GO) enrichment analysis showed that the synergy between MEL-A and LA affected many potential cellular responses, including the sugar phosphotransferase system, carbohydrate transport, and ribosomes. KEGG enrichment analysis showed that the PTS system and ribosome-related pathways were significantly enriched. In addition, synergistic treatment affected locomotion and membrane-related cellular responses in GO enrichment analysis and carbohydrate metabolism and amino acid metabolism pathways in KEGG enrichment analysis compared to LA treatment alone. The accuracy of the transcriptome analysis results was verified by qPCR (R2 = 0.9903). This study will provide new insights for the prevention and control of L. monocytogenes.
Collapse
Affiliation(s)
- Xiayu Liu
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
| | - Xinxin Pang
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
| | - Yansha Wu
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
| | - Yajing Wu
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
| | - Ying Shi
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
| | - Xinglin Zhang
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
- College of Agriculture and Forestry, Linyi University, Linyi 276005, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-571-86984316
| |
Collapse
|
57
|
Cai Y, Zou G, Xi M, Hou Y, Shen H, Ao J, Li M, Wang J, Luo A. Juglone Inhibits Listeria monocytogenes ATCC 19115 by Targeting Cell Membrane and Protein. Foods 2022; 11:foods11172558. [PMID: 36076744 PMCID: PMC9455723 DOI: 10.3390/foods11172558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Foodborne disease caused by Listeria monocytogenes is a major global food safety problem. A potential solution is the antimicrobial development of the highly bioactive natural product juglone, yet few studies exist on its antibacterial mechanism against L. monocytogenes. Thus, we aimed to elucidate the antibacterial mechanism of action of juglone against L. monocytogenes by determining the resultant cell morphology, membrane permeability, membrane integrity, and proteome changes. The minimum inhibitory concentration of juglone against L. monocytogenes was 50 μg/mL, and L. monocytogenes treated with juglone had longer lag phases compared to controls. Juglone induced L. monocytogenes cell dysfunction, leakage of potassium ions, and membrane potential hyperpolarization. Confocal laser scanning microscopy and field-emission-gun scanning electron microscope assays revealed clear membrane damage due to juglone treatment. Fourier transform infrared analyses showed that L. monocytogenes responded to juglone by some conformational and compositional changes in the molecular makeup of the cell membrane. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed that juglone either destroyed proteins or inhibited proteins synthesis in L. monocytogenes. Therefore, our findings established juglone as a natural antibacterial agent with potential to control foodborne L. monocytogenes infections.
Collapse
|
58
|
Ao B, Lv J, Yang H, He F, Hu Y, Hu B, Jiang H, Huo X, Tu J, Xia X. Moringa oleifera extract mediated the synthesis of Bio-SeNPs with antibacterial activity against Listeria monocytogenes and Corynebacterium diphtheriae. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
59
|
Tavares LS, Mancebo BD, Santana LN, Adelson do Nascimento Silva A, Silva RLDO, Benko-Iseppon AM, Ramos MV, Monteiro do Nascimento CT, Grangeiro TB, Sousa JS, Mota RA, Júnior VADS, Lima-Filho JV. Recombinant osmotin inclusion bodies from Calotropis procera produced in E. coli BL21(DE3) prevent acute inflammation in a mouse model of listeriosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154186. [PMID: 35617890 DOI: 10.1016/j.phymed.2022.154186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The osmotin from the medicinal plant Calotropis procera (CpOsm) has characteristics similar to adiponectin, a human protein with immunoregulatory actions. PURPOSE This study aimed to investigate whether recombinant osmotin inclusion bodies from C. procera (IB/rCpOsm) produced in E. coli BL21(DE3) can prevent infection-induced inflammation. A virulent strain of Listeria monocytogenes was used as an infection model. METHODS Cells of E. coli BL21(DE3) carrying the plasmid pET303-CpOsm were used to express the recombinant osmotin, which accumulated at reasonable levels as inclusion bodies (IB/rCpOsm). IB/rCpOsm were purified from induced cells and SDS-polyacrylamide gel electrophoresis followed by mass spectrometry analyses confirmed the identity of the major protein band (23 kDa apparent molecular mass) as CpOsm. Peritoneal macrophages (pMØ) from Swiss mice were cultured with IB/rCpOsm (1 or 10 µg/ml) in 96-well plates and then infected with L. monocytogenes. IB/rCpOsm (0.1, 1 or 10 mg/kg) was also administered intravenously to Swiss mice, which were then infected intraperitoneally with L. monocytogenes. RESULTS Pretreatment of the pMØ with IB/rCpOsm significantly increased cell viability after infection and reduced the intracellular bacterial load. The infiltration of neutrophils into the peritoneal cavity of mice pretreated with IB/rCpOsm at 10 mg/kg (but not 0.1 and 1 mg/kg) was reduced after infection. In these mice, the bacterial load was high in the peritoneal fluid and the liver, but histological damage was discrete. The treatments with IB/rCpOsm at 10 mg/kg significantly increased the expression of the anti-inflammatory cytokine IL-10. CONCLUSION This study shows that recombinant osmotin inclusion bodies from C. procera were bioactive and prompted anti-inflammatory actions at therapeutic dosages in the L. monocytogenes infection model.
Collapse
|
60
|
Structural and biochemical analyses of the flagellar expression regulator DegU from Listeria monocytogenes. Sci Rep 2022; 12:10856. [PMID: 35798759 PMCID: PMC9263151 DOI: 10.1038/s41598-022-14459-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 06/07/2022] [Indexed: 11/24/2022] Open
Abstract
Listeria monocytogenes is a pathogenic bacterium that produces flagella, the locomotory organelles, in a temperature-dependent manner. At 37 °C inside humans, L. monocytogenes employs MogR to repress the expression of flagellar proteins, thereby preventing the production of flagella. However, in the low-temperature environment outside of the host, the antirepressor GmaR inactivates MogR, allowing flagellar formation. Additionally, DegU is necessary for flagellar expression at low temperatures. DegU transcriptionally activates the expression of GmaR and flagellar proteins by binding the operator DNA in the fliN-gmaR promoter as a response regulator of a two-component regulatory system. To determine the DegU-mediated regulation mechanism, we performed structural and biochemical analyses on the recognition of operator DNA by DegU. The DegU-DNA interaction is primarily mediated by a C-terminal DNA-binding domain (DBD) and can be fortified by an N-terminal receiver domain (RD). The DegU DBD adopts a tetrahelical helix-turn-helix structure and assembles into a dimer. The DegU DBD dimer recognizes the operator DNA using a positive patch. Unexpectedly, unlike typical response regulators, DegU interacts with operator DNA in both unphosphorylated and phosphorylated states with similar binding affinities. Therefore, we conclude that DegU is a noncanonical response regulator that is constitutively active irrespective of phosphorylation.
Collapse
|
61
|
Kroft B, Gu G, Bolten S, Micallef SA, Luo Y, Millner P, Nou X. Effects of temperature abuse on the growth and survival of Listeria monocytogenes on a wide variety of whole and fresh-cut fruits and vegetables during storage. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
62
|
Partyka ML, Bond RF. Wastewater reuse for irrigation of produce: A review of research, regulations, and risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154385. [PMID: 35271919 DOI: 10.1016/j.scitotenv.2022.154385] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/26/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The burden of disease caused by the contamination of ready-to-eat produce with common waterborne microbial pathogens suggests that irrigation supplies should be closely monitored and regulated. Simultaneously freshwater resources have become increasingly scarce worldwide while global demand continues to grow. Since the turn of the 20th century with the advent of modern wastewater treatment plants, the reuse of treated wastewater is considered a safe and viable water source for irrigation of ready-to-eat vegetables. However strict, and often costly, treatment regimens mean that only a fraction of the world's wastewater supplies are being put to reuse. The purpose of this review is to explore the available literature on the risks associated with reuse water for ready-to-eat produce production including different approaches to reducing those risks as the demand for reuse water increases. It is not the intent of the authors to determine which methods of treatment should be applied, which pathogens should be considered of greatest concern, or which regulations should be applied. Rather, it is meant to be a discussion of the evolving guidelines governing irrigation with reuse water, potential risks from known pathogens common to produce production and recommendations for improving the adoption of water reuse moving forward. To date, there is little evidence to suggest that adequately treated reuse water poses more risk for produce-related illness or outbreaks than other sources of irrigation water. However, multiple epidemiological and quantitative risk assessment models suggest that guidelines for the use of reuse water should be regionally specific and based on local growing practices, available technologies for wastewater treatment, and overall population health. Though research suggests water reuse is generally safe, the assumptions of risk are both personal and of public interest, they should be considered carefully before water reuse is either allowed or disallowed in produce production environments.
Collapse
Affiliation(s)
- Melissa L Partyka
- Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States of America.
| | - Ronald F Bond
- Western Center for Food Safety, Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, United States of America
| |
Collapse
|
63
|
Application of Quantitative Microbiology and Challenge Tests to Reach a Suggested Food Safety Objective in a Middle Eastern-Style Ready-to-Cook Chicken Product. Foods 2022; 11:foods11131900. [PMID: 35804716 PMCID: PMC9265984 DOI: 10.3390/foods11131900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 12/03/2022] Open
Abstract
The contamination of ready-to-eat (RTE) and ready-to-cook (RTC) food products is a major global issue raising worry to consumers. Therefore, the behavior of Listeria monocytogenes and Salmonella spp., inoculated on a traditional Middle Eastern (M.E.) ready-to-cook (RTC) chicken product (“Taouk”-style), using the Risk Ranger® tool and the necessary management options (to accomplish the hypothetical food safety objectives (FSO)), when unsuspecting consumers may taste such a product were the primary subjects of our study. The behavior of the aforementioned pathogens was studied in the presence and absence of a selected natural antimicrobial combination (chitosan [CH] and thyme oil [T]), and were added as a combined treatment (M-CH-T) to the RTs chicken samples, stored at 4 or 8 °C for a period of 8 d. In the product, wherein no antimicrobials were added (control treatment, M), the initial counts of L. monocytogenes increased by ca. 1.5 (4 °C) and 3.0 (8 °C) log colony-forming units (CFU)/g during an 8-d storage. Salmonella spp. numbers did not increase during storage at 4 °C in the non-treated product, but at 8 °C, an increase of ca. 2.5 log CFU/g occurred. Addition of CH in combination with T to the RTC product (M-CH-T) inhibited the growth of L. monocytogenes and produced lower counts of Salmonella at 4 °C. However, M-CH-T treatment was less effective against both pathogens compared to the control after the 6th day of storage (8 °C). Predictive models based on quantitative microbiology, combined with hazard identification applied in the present study, may be potential means of assessing the safety of the RTC chicken products. It must be noted that for warranting the food safety of especially perishable items (e.g., chicken products), an efficient food safety management system must be applied, in addition to testing of the finished product, (e.g., based on the HACCP principles).
Collapse
|
64
|
Rapid-Response Magnetic Enrichment Strategy for Significantly Improving Sensitivity of Multiplex PCR Analysis of Pathogenic Listeria Species. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Listeria monocytogenes and Listeria ivanovii are important pathogenic Listeria spp. that cause infections in humans and animals. Establishing a rapid and sensitive method for the simultaneous screening of pathogenic Listeria spp. is of great significance for ensuring food safety. Multiplex polymerase chain reaction (mPCR) has been extensively reported to simultaneously detect several pathogens in food with high sensitivity, but a time-consuming pre-enrichment process is necessary. In this study, we report the usage of surface-modified polyethyleneimine-coated positively charged magnetic nanoparticles (PEI-MNPs) for rapid enrichment of pathogenic Listeria spp. through electrostatic interactions. The enrichment process takes only 10 min with high capture efficiency (more than 70%) at a wide pH range and ionic strength. Combined with mPCR analysis, the PEI-MNPs-mPCR strategy can simultaneously, rapidly, and sensitively detect pathogenic Listeria spp. without a time-consuming pre-concentration process. Under the optimal conditions, the detection limits of L. monocytogenes and L. ivanovii in lettuce were both as low as 101 CFU/mL, which was a hundred times lower than that without magnetic enrichment. In conclusion, the magnetic enrichment strategy based on charge interaction combined with mPCR analysis has great application potential in shortening the pre-concentration time of foodborne pathogens and improving the detection sensitivity.
Collapse
|
65
|
Effect of Hurdle Approaches Using Conventional and Moderate Thermal Processing Technologies for Microbial Inactivation in Fruit and Vegetable Products. Foods 2022; 11:foods11121811. [PMID: 35742009 PMCID: PMC9222969 DOI: 10.3390/foods11121811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 12/04/2022] Open
Abstract
Thermal processing of packaged fruit and vegetable products is targeted at eliminating microbial contaminants (related to spoilage or pathogenicity) and extending shelf life using microbial inactivation or/and by reducing enzymatic activity in the food. The conventional process of thermal processing involves sterilization (canning and retorting) and pasteurization. The parameters used to design the thermal processing regime depend on the time (minutes) required to eliminate a known population of bacteria in a given food matrix under specified conditions. However, due to the effect of thermal exposure on the sensitive nutrients such as vitamins or bioactive compounds present in fruits and vegetables, alternative technologies and their combinations are required to minimize nutrient loss. The novel moderate thermal regimes aim to eliminate bacterial contaminants while retaining nutritional quality. This review focuses on the “thermal” processing regimes for fruit and vegetable products, including conventional sterilization and pasteurization as well as mild to moderate thermal techniques such as pressure-assisted thermal sterilization (PATS), microwave-assisted thermal sterilization (MATS) and pulsed electric field (PEF) in combination with thermal treatment as a hurdle approach or a combined regime.
Collapse
|
66
|
Di Ciccio P, Rubiola S, Panebianco F, Lomonaco S, Allard M, Bianchi DM, Civera T, Chiesa F. Biofilm formation and genomic features of Listeria monocytogenes strains isolated from meat and dairy industries located in Piedmont (Italy). Int J Food Microbiol 2022; 378:109784. [PMID: 35749910 DOI: 10.1016/j.ijfoodmicro.2022.109784] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 12/22/2022]
Abstract
Listeria monocytogenes is considered a major challenge for the food industry as it can persist for long periods in food processing plants by forming biofilms. The aims of this study were: i) to assess the biofilm producing ability of 57 Listeria monocytogenes isolates previously subjected to whole-genome sequencing (WGS); ii) to compare the levels of biofilm formation with the presence or absence of biofilm associated genes. To determine the presence or absence of a known set of biofilm associated genes, a comparative genomic analysis was performed on each strain. Among Listeria monocytogenes isolates, 58 %, 38.5 % and 3.5 % exhibited weak, moderate or strong biofilm production, respectively. No difference in biofilm production was observed between food and environmental isolates. The percentage of Listeria monocytogenes strains isolated from meat products (57 %) classified as moderate or strong biofilm producers was higher than the percentage obtained for strains isolated from dairy products (28 %). The presence of the Stress Survival Islet 1, the arsD stress gene and the truncated inlA protein was significantly associated with increased levels of biofilm. Combining biofilm phenotype with molecular and genotyping data may provide the opportunity to better understand the relationship between genes linked to biofilm formation in Listeria monocytogenes.
Collapse
Affiliation(s)
- Pierluigi Di Ciccio
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095 Turin, Italy
| | - Selene Rubiola
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095 Turin, Italy
| | - Felice Panebianco
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095 Turin, Italy.
| | - Sara Lomonaco
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Marc Allard
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Daniela Manila Bianchi
- S.C. Sicurezza e Qualità degli Alimenti, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Tiziana Civera
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095 Turin, Italy
| | - Francesco Chiesa
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095 Turin, Italy
| |
Collapse
|
67
|
Suo Y, Qu Y, Bai Y, Zhou X, Lin T, Wang J, Chen W, Zhou C. Genetic diversity of Listeria monocytogenes isolates from farm products in Shanghai, China. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Farm products are considered important vehicles for the transmission of Listeria monocytogenes. The typing of L. monocytogenes from farm products contributes to the surveillance and source tracing of the pathogen. In this study, 77 L. monocytogenes strains from seven farm product categories in Shanghai were analyzed by serological typing, multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE) and whole-genome nucleotide polymorphism (wgSNP). The results showed that the 77 isolates were classified into four serovars (1/2a, 1/2c, 1/2b and 4b), and of these, 1/2a (n=47) was the most prevalent. Seventeen sequence types (STs) were generated by MLST with two novel STs (ST1402 and ST1403), and 20 of 77 L. monocytogenes isolates had high genetic identity with previously documented outbreak isolates according to the minimum spanning tree from the MLST results. Moreover, 34 PFGE patterns (PF1-PF34) were differentiated, and based on a similarity value higher than 80% by the UPGMA dendrogram, the discriminatory index was relatively low (equal to 0.775). Furthermore, 14 isolates were chosen and further analyzed by wgSNP based on the previous typing results, which demonstrated that wgSNP and MLST yielded mostly consistent typing results but higher resolution than PFGE. In conclusion, 77 L. monocytogenes isolates from farm products collected in nine districts in Shanghai were highly genetically diverse, and 20 of these isolates had high relatedness with previously documented outbreak strains worldwide. The results indicate a possible cross-contamination risk of L. monocytogenes and a potential public health concern resulting from farm products during the supply chain in Shanghai, China.
Collapse
|
68
|
Frozen Vegetable Processing Plants Can Harbour Diverse Listeria monocytogenes Populations: Identification of Critical Operations by WGS. Foods 2022; 11:foods11111546. [PMID: 35681295 PMCID: PMC9180799 DOI: 10.3390/foods11111546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023] Open
Abstract
Frozen vegetables have emerged as a concern due to their association with foodborne outbreaks such as the multi-country outbreak of Listeria monocytogenes serogroup IVb linked to frozen corn. The capacity of L. monocytogenes to colonize food-processing environments is well-known, making the bacteria a real problem for consumers. However, the significance of the processing environment in the contamination of frozen foods is not well established. This study aimed to identify potential contamination niches of L. monocytogenes in a frozen processing plant and characterize the recovered isolates. A frozen vegetable processing plant was monitored before cleaning activities. A total of 78 points were sampled, including frozen vegetables. Environmental samples belonged to food-contact surfaces (FCS); and non-food-contact surfaces (n-FCS). Positive L. monocytogenes samples were found in FCS (n = 4), n-FCS (n = 9), and the final product (n = 1). A whole-genome sequencing (WGS) analysis revealed two clusters belonging to serotypes 1/2a-3a and 1/2b-3b). The genetic characterization revealed the presence of four different sequence types previously detected in the food industry. The isolate obtained from the final product was the same as one isolate found in n-FCS. A multi-virulence-locus sequence typing (MVLST) analysis showed four different virulence types (VT). The results obtained highlight the relevant role that n-FCS such as floors and drains can play in spreading L. monocytogenes contamination to the final product.
Collapse
|
69
|
Isolation, characterization, and application of bacteriophages to reduce and inhibit Listeria monocytogenes in celery and enoki mushroom. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
70
|
The combined bactericidal effect of nisin and thymoquinone against Listeria monocytogenes in Tryptone Soy Broth and sterilized milk. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
71
|
Alegbeleye O, Sant’Ana AS. Survival and growth behaviour of Listeria monocytogenes in ready-to-eat vegetable salads. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
72
|
Chang Y, Bai J, Yu H, Yang X, Chang PS, Nitin N. Synergistic inactivation of Listeria and E. coli using a combination of erythorbyl laurate and mild heating and its application in decontamination of peas as a model fresh produce. Food Microbiol 2022; 102:103869. [PMID: 34809926 DOI: 10.1016/j.fm.2021.103869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/04/2022]
Abstract
We investigated the synergistic antimicrobial activity of erythorbyl laurate (EL) and mild heating co-treatment on the Gram-positive Listeria innocua and Gram-negative Escherichia coli O157:H7 bacteria. EL (2 mM) and mild heating (55 °C for 3 min) resulted in 3.1 and 0.5 log colony forming units (CFU)/mL reductions in the number of L. innocua, respectively, compared to a 6.4 log CFU/mL reduction induced by the combined treatment of EL and mild heating in saline. EL (10 mM) and mild heating (55 °C for 3 min) resulted in 1.3 and 0.7 log CFU/mL reductions in the number of E. coli O157:H7, respectively, compared to a 6.2 log CFU/mL reduction with the combined treatment in saline. EL, a membrane-active compound, showed a strong synergistic effect with mild heating, possibly due to enhanced disruption of the bacterial cell membrane. The synergistic antibacterial effect was evaluated using inoculated English peas (Pisum sativum) and this combined treatment (2 mM EL and mild heating against L. innocua and 10 mM EL and mild heating against E. coli O157:H7) resulted in more than 7 log reductions in the numbers of L. innocua and E. coli O157:H7, inoculated on the surface of fresh peas. The treatments did not show significant difference in the color or texture of treated peas compared to the non-treated controls. This is the first report illustrating synergistic activity of EL and mild heating for both the gram positive (L. innocua) and the gram negative (E. coli O157:H7) bacteria on food. Overall, this research will illustrate the development of more effective and rapid antibacterial surface disinfection method for application in the processing of minimally processed foods.
Collapse
Affiliation(s)
- Yoonjee Chang
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea; Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Jaewoo Bai
- Department of Food Science and Technology, University of California, Davis, CA, USA; Division of Applied Food System, Major in Food Science & Technology, Seoul Women's University, Seoul, 01797, Republic of Korea
| | - Hyunjong Yu
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Xu Yang
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea; Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Nitin Nitin
- Department of Food Science and Technology, University of California, Davis, CA, USA; Department of Biological and Agricultural Engineering, University of California, Davis, CA, USA.
| |
Collapse
|
73
|
Inhibition of Listeria monocytogenes by Phage Lytic Enzymes Displayed on Tailored Bionanoparticles. Foods 2022; 11:foods11060854. [PMID: 35327276 PMCID: PMC8951524 DOI: 10.3390/foods11060854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
The high mortality rate associated with Listeria monocytogenes and its ability to adapt to the harsh conditions employed in food processing has ensured that this pathogen remains a serious problem in the ready-to-eat food sector. Bacteriophage-derived enzymes can be applied as biocontrol agents to target specific foodborne pathogens. We investigated the ability of a listeriophage endolysin and derivatives thereof, fused to polyhydroxyalkanoate bionanoparticles (PHA_BNPs), to lyse and inhibit the growth of L. monocytogenes. Turbidity reduction assays confirmed the lysis of L. monocytogenes cells at 37 °C upon addition of the tailored BNPs. The application of BNPs also resulted in the growth inhibition of L. monocytogenes. BNPs displaying only the amidase domain of the phage endolysin were more effective at inhibiting growth under laboratory conditions (37 °C, 3 × 107 CFU/mL) than BNPs displaying the full-length endolysin (89% vs. 83% inhibition). Under conditions that better represent those found in food processing environments (22 °C, 1 × 103 CFU/mL), BNPs displaying the full-length endolysin demonstrated a greater inhibitory effect compared to BNPs displaying only the amidase domain (61% vs. 54% inhibition). Our results demonstrate proof-of-concept that tailored BNPs displaying recombinant listeriophage enzymes are active inhibitors of L. monocytogenes.
Collapse
|
74
|
Xu L, Du Y, Wu Y. Neglected listeria infection in pregnancy in China: 93 cases. J Matern Fetal Neonatal Med 2022; 35:9549-9557. [PMID: 35264053 DOI: 10.1080/14767058.2022.2047925] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Listeriosis is a foodborne disease that occurs in immunocompromised patients. Pregnant women are a high-risk group for the disease. Listeria infection during pregnancy is uncommon in China because of dietary habits, with little clinician attention and minimal therapeutic options due to its population-specific nature.This article studies the clinical characteristics of Listeria infection in pregnant women and the improvement of treatment methods. SUBJECTS This study collected clinical data from 16 cases of pregnant patients with laboratory-confirmed Listeria monocytogenes infections at the Women and Children's Hospital of Jiaxing University. These data were combined with 77 cases that were reported in the literature for a total of 93 cases of Listeria monocytogenes infection in pregnancy that occurred in China over a 15-year interval. METHODS We collected the clinical data of 16 pregnant patients with listeriosis diagnosed in the laboratory of the Women and Children's Hospital of Jiaxing University from May 2013 to December 2020, and combined it with 77 cases of Listeria monocytogenes during pregnancy in China obtained from a literature search. We summarized the clinical features of listeriosis in pregnancy infection and investigated its treatment methods and prevention. RESULTS Ninety-three cases of Listeria monocytogenes infection in pregnancy occurred in early, middle and late pregnancy in 31, 27, and 35 patients, respectively. The initial clinical presentation was fever in 90 patients, intermittent lower abdominal pain in 50 patients, and abnormal fetal movement and/or abnormal fetal heartbeat in 27 cases. Specimens with a positive bacterial culture included the following: 6 amniotic fluid cultures, 35 blood cultures, 37 maternal placenta and uterine secretion cultures, and 15 neonatal blood cultures. Fifty-seven cases of placental pathology, all showing of neutrophil infiltration, were 100% consistent with acute chorioamnionitis. Fifty-eight patients were initially treated with cephalosporin antibiotics, and only 24 cases were initially treated with broad-spectrum penicillins to cover the pathogenic bacteria. Drug sensitivity tests revealed resistant strains, 15 penicillin G-resistant, 14 oxacillin-resistant, and 13 ampicillin-resistant strains. After penicillin failure, vancomycin or meropenem was given. Maternal outcomes included the following: 20 cases of sepsis, 3 cases of pneumonia, 6 cases of acute pyelonephritis, 28 cases of intrauterine infection, 2 cases of multiple organ dysfunction syndromes, and 1 case of septic shock. The fetal and neonatal outcomes were as follows: 16 cases of abortion, 16 cases of intrauterine fetal death, 22 cases of death after birth, and 39 cases of cure. CONCLUSION In our study and reported cases, Listeria monocytogenes in pregnancy is associated with fever as the primary manifestation, a high incidence of adverse pregnancy outcomes, and a significant increase in fetal and neonatal mortality. The low coverage of practical use of antimicrobial drugs and the emergence of drug-resistant strains in recent years have increased the difficulty of treatment, suggesting the need for clinicians to raise awareness of the disease and strengthen healthy diet promotion for women in pregnancy.
Collapse
Affiliation(s)
- Li Xu
- Department of Internal Medicine, Women and Children's Hospital of Jiaxing University, Zhejiang Province, China
| | - Yuhai Du
- Laboratory Department, Women and Children's Hospital of Jiaxing University, Zhejiang Province, China
| | - Yan Wu
- Department of Obstetrics and Gynaecology, Women and Children's Hospital of Jiaxing University, Zhejiang Province, China
| |
Collapse
|
75
|
Lourenco A, Linke K, Wagner M, Stessl B. The Saprophytic Lifestyle of Listeria monocytogenes and Entry Into the Food-Processing Environment. Front Microbiol 2022; 13:789801. [PMID: 35350628 PMCID: PMC8957868 DOI: 10.3389/fmicb.2022.789801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is an environmentally adapted saprophyte that can change into a human and animal bacterial pathogen with zoonotic potential through several regulatory systems. In this review, the focus is on the occurrence of Listeria sensu stricto and sensu lato in different ecological niches, the detection methods, and their analytical limitations. It also highlights the occurrence of L. monocytogenes genotypes in the environment (soil, water, and wildlife), reflects on the molecular determinants of L. monocytogenes for the saprophytic lifestyle and the potential for antibiotic resistance. In particular, the strain-specific properties with which some genotypes circulate in wastewater, surface water, soil, wildlife, and agricultural environments are of particular interest for the continuously updating risk analysis.
Collapse
Affiliation(s)
- Antonio Lourenco
- Department of Food Biosciences, Teagasc Food Research Centre, Co. Cork, Ireland
- Unit for Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Kristina Linke
- Unit for Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Martin Wagner
- Unit for Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation, Tulln, Austria
| | - Beatrix Stessl
- Unit for Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
76
|
Gu G, Kroft B, Lichtenwald M, Luo Y, Millner P, Patel J, Nou X. Dynamics of Listeria monocytogenes and the microbiome on fresh-cut cantaloupe and romaine lettuce during storage at refrigerated and abusive temperatures. Int J Food Microbiol 2022; 364:109531. [PMID: 35033975 DOI: 10.1016/j.ijfoodmicro.2022.109531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/09/2021] [Accepted: 01/03/2022] [Indexed: 12/25/2022]
Abstract
Listeria monocytogenes (Lm) outbreaks and recalls associated with fresh produce in recent years have heightened concerns and demands from industry and consumers to more effectively mitigate the contamination risk of this foodborne pathogen on fresh produce. In this study, the growth of Lm and indigenous bacteria on fresh-cut cantaloupe and romaine lettuce held at refrigerated (4 °C) and abusive (10-24 °C) temperatures was determined by both culture dependent and independent methods. Composition and dynamics of bacterial communities on Lm inoculated and non-inoculated samples were analyzed by 16S rRNA high-throughput sequencing. Fresh-cut cantaloupe provided favorable growth conditions for Lm proliferation (1.7 and >6 log increase at refrigerated and abusive temperatures, respectively) to overtake indigenous bacteria. The Lm population also increased on fresh-cut lettuce, but the growth rate was lower than that of the total mesophilic bacteria, resulting in 0.4 and >2 log increase at refrigerated and abusive temperatures. Microbial diversity of fresh-cut cantaloupe was significantly lower than that of fresh-cut romaine lettuce. The Shannon index of microbial communities on cantaloupe declined after storage, but it was not significantly changed on lettuce samples. Shifts in the bacterial microbiome on cantaloupe were mainly affected by Lm inoculation, while both inoculation and storage temperature played significant roles on lettuce bacterial communities. Multiple indigenous bacteria, including Leuconostoc and Weissella spp., were negatively correlated to Lm abundance on romaine lettuce, and were determined by bioassay as potential anti-listerial species. Data derived from this study contribute to better understanding of the relationship between Lm and indigenous microbiota on fresh-cut produce during storage.
Collapse
Affiliation(s)
- Ganyu Gu
- Environmental Microbial and Food Safety Laboratory, USDA ARS, Beltsville, MD 20705, USA
| | - Brenda Kroft
- Centre for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA
| | - Marina Lichtenwald
- Environmental Microbial and Food Safety Laboratory, USDA ARS, Beltsville, MD 20705, USA
| | - Yaguang Luo
- Environmental Microbial and Food Safety Laboratory, USDA ARS, Beltsville, MD 20705, USA
| | - Patricia Millner
- Environmental Microbial and Food Safety Laboratory, USDA ARS, Beltsville, MD 20705, USA
| | - Jitendra Patel
- Environmental Microbial and Food Safety Laboratory, USDA ARS, Beltsville, MD 20705, USA
| | - Xiangwu Nou
- Environmental Microbial and Food Safety Laboratory, USDA ARS, Beltsville, MD 20705, USA.
| |
Collapse
|
77
|
Genotyping of Listeria monocytogenes isolates by high-resolution melting curve (HRM) analysis of tandem repeat locus. Braz J Infect Dis 2022; 26:102348. [PMID: 35341738 PMCID: PMC9387474 DOI: 10.1016/j.bjid.2022.102348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 11/22/2022] Open
Abstract
Listeria monocytogenes is responsible for causing listeriosis, a type of food poisoning with high mortality. This bacterium is mainly transmitted to humans through the consumption of contaminated foods. Detection of L. monocytogenes through molecular methods is crucial for food safety and clinical diagnosis. Present techniques are characterized by low discrimination power and high cost, as well as being time-consuming and taking several days to give the final result. In our study, MLVA-HRM (Multiple-Locus Variable-number tandem repeats Analysis ‒ High-Resolution Melting) was investigated as an alternative method for a fast and precise method for the genotyping of L. monocytogenes isolates. Forty-eight isolates of L. monocytogenes obtained from the microbial bank of Department of Microbiology, Iran University of Medical Sciences, were typed by MLVA-HRM analysis using five Variable Numbers of Tandem Repeat (VNTR) loci. A total of 43 different types were obtained. This research demonstrated the usefulness of the MLVA-HRMA method and its ability to discriminate L. monocytogenes isolates. Since this method is easier and more efficient than existing methods, it can be widely used in food processing plants and diagnostic laboratories as a fast and accurate method.
Collapse
|
78
|
Bland R, Brown SRB, Waite-Cusic J, Kovacevic J. Probing antimicrobial resistance and sanitizer tolerance themes and their implications for the food industry through the Listeria monocytogenes lens. Compr Rev Food Sci Food Saf 2022; 21:1777-1802. [PMID: 35212132 DOI: 10.1111/1541-4337.12910] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
The development of antibiotic resistance is a serious public health crisis, reducing our ability to effectively combat infectious bacterial diseases. The parallel study of reduced susceptibility to sanitizers is growing, particularly for environmental foodborne pathogens, such as Listeria monocytogenes. As regulations demand a seek-and-destroy approach for L. monocytogenes, understanding sanitizer efficacy and its uses are critical for the food industry. Studies have reported the ability of L. monocytogenes to survive in sanitizer concentrations 10-1000 times lower than the manufacturer-recommended concentration (MRC). Notably, data show that at MRC and when applied according to the label instructions, sanitizers remain largely effective. Studies also report that variables such as the presence of organic material, application time/temperature, and bacterial attachment to surfaces can impact sanitizer effectiveness. Due to the lack of standardization in the methodology and definitions of sanitizer resistance, tolerance, and susceptibility, different messages are conveyed in different studies. In this review, we examine the diversity of definitions, terminology, and methodologies used in studies examining L. monocytogenes resistance and susceptibility to antimicrobials. Research available to date fails to demonstrate "resistance" of L. monocytogenes to recommended sanitizer treatments as prescribed by the label. As such, sanitizer tolerance would be a more accurate description of L. monocytogenes response to low sanitizer concentrations (i.e., sub-MRC). Conservative use of word "resistance" will reduce confusion and allow for concise messaging as sanitizer research findings are communicated to industry and regulators.
Collapse
Affiliation(s)
- Rebecca Bland
- Food Innovation Center, Oregon State University, Portland, Oregon, USA.,Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Stephanie R B Brown
- Food Innovation Center, Oregon State University, Portland, Oregon, USA.,Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Joy Waite-Cusic
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Jovana Kovacevic
- Food Innovation Center, Oregon State University, Portland, Oregon, USA.,Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
79
|
Liang S, Hu X, Wang R, Fang M, Yu Y, Xiao X. The combination of thymol and cinnamaldehyde reduces the survival and virulence of Listeria monocytogenes on autoclaved chicken breast. J Appl Microbiol 2022; 132:3937-3950. [PMID: 35178822 DOI: 10.1111/jam.15496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
AIMS To reveal the antibacterial mechanism of the combination of thymol and cinnamaldehyde to Listeria monocytogenes ATCC 19115 on autoclaved chicken breast. METHODS AND RESULTS In this study, Listeria monocytogenes ATCC 19115 on autoclaved chicken breast was exposed to the stress of 125 μg/mL thymol and 125 μg/mL cinnamaldehyde, and transcriptome analysis was used to reveal the crucial antibacterial mechanism. According to the results, 1303 significantly differentially expressed genes (DEGs) were identified. Treated by thymol and cinnamaldehyde in combination, pyrimidine and branched-chain amino acids biosynthesis of L. monocytogenes were thwarted which impairs its nucleic acid biosynthesis and intracellular metabolism. The up-regulated DEGs involved in membrane composition and function contributed to membrane repair. Besides, pyruvate catabolism and TCA cycle were restrained which brought about the disturbance of amino acid metabolism. ABC transporters were also perturbed, for instance, the uptake of cysteine, D-methionine and betaine was activated, while the uptake of vitamin, iron and carnitine was repressed. Thus, L. monocytogenes tended to activate PTS, glycolysis, glycerol catabolism, and pentose phosphate pathways to obtain energy to adapt to the hostile condition. Noticeably, DEGs involved in virulence factors were totally down-regulated, including genes devoted to encoding flagella, chemotaxis, biofilm formation, internalin as well as virulence gene clusters. CONCLUSIONS The combination of thymol and cinnamaldehyde is effective to reduce the survival and potential virulence of L. monocytogenes on autoclaved chicken breast. SIGNIFICANCE AND IMPACT OF STUDY This work contributes to providing theoretical information for the application and optimization of thymol and cinnamaldehyde in ready-to-eat meat products to inhibit L. monocytogenes.
Collapse
Affiliation(s)
- Siwei Liang
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangdong Province, Guangzhou City, 510640, China
| | - Xinyi Hu
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangdong Province, Guangzhou City, 510640, China
| | - Ruifei Wang
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangdong Province, Guangzhou City, 510640, China
| | - Meimei Fang
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangdong Province, Guangzhou City, 510640, China
| | - Yigang Yu
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangdong Province, Guangzhou City, 510640, China
| | - Xinglong Xiao
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangdong Province, Guangzhou City, 510640, China
| |
Collapse
|
80
|
Antimicrobial activity of lime oil in the vapour phase against Listeria monocytogenes on ready-to-eat salad during cold storage and its possible mode of action. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
81
|
Bodie AR, Dittoe DK, Feye KM, Knueven CJ, Ovall C, Ricke SC. Comparison of ready-to-eat “organic” antimicrobials, sodium bisulfate, and sodium lactate, on Listeria monocytogenes and the indigenous microbiome of organic uncured beef frankfurters stored under refrigeration for three weeks. PLoS One 2022; 17:e0262167. [PMID: 35051217 PMCID: PMC8775584 DOI: 10.1371/journal.pone.0262167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenes has been implicated in several ready-to-eat (RTE) foodborne outbreaks, due in part to its ability to survive under refrigerated conditions. Thus, the objective of this study was to evaluate the effects of sodium bisulfate (SBS), sodium lactate (SL), and their combination as short-duration antimicrobial dips (10-s) on L. monocytogenes and the microbiome of inoculated organic frankfurters (8 Log10 CFU/g). Frankfurters were treated with tap water (TW), SBS0.39%, SBS0.78%, SL0.78%, SL1.56%, SBS+SL0.39%, SBS+SL0.78%. In addition, frankfurters were treated with frankfurter solution water (HDW)+SBS0.78%, HDW+SL1.56%, and HDW+SBS+SL0.78%. After treatment, frankfurters were vacuum packaged and stored at 4°C. Bacterial enumeration and 16S rDNA sequencing occurred on d 0, 7, 14, 21. Counts were Log10 transformed and calculated as growth potential from d 0 to d 7, 14, and 21. Data were analyzed in R using mixed-effects model and One-Way ANOVA (by day) with differences separated using Tukey’s HSD at P ≤ 0.05. The 16S rDNA was sequenced on an Illumina MiSeq and analyzed in Qiime2-2018.8 with significance at P ≤ 0.05 and Q ≤ 0.05 for main and pairwise effects. An interaction of treatment and time was observed among the microbiological plate data with all experimental treatments reducing the growth potential of Listeria across time (P < 0.0001). Efficacy of treatments was inconsistent across time; however, on d 21, SBS0.39% treated franks had the lowest growth potential compared to the control. Among diversity metrics, time had no effect on the microbiota (P > 0.05), but treatment did (P < 0.05). Thus, the treatments potentially promoted a stable microbiota across time. Using ANCOM, Listeria was the only significantly different taxa at the genus level (P < 0.05, W = 52). Therefore, the results suggest incorporating SBS over SL as an alternative antimicrobial for the control of L. monocytogenes in organic frankfurters without negatively impacting the microbiota. However, further research using multiple L. monocytogenes strains will need to be utilized in order to determine the scope of SBS use in the production of RTE meat.
Collapse
Affiliation(s)
- Aaron R. Bodie
- Meat Science and Animal Biologics Discovery, Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Dana K. Dittoe
- Meat Science and Animal Biologics Discovery, Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kristina M. Feye
- Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Carl J. Knueven
- Jones-Hamilton Co., Walbridge, Ohio, United States of America
| | - Christina Ovall
- Jones-Hamilton Co., Walbridge, Ohio, United States of America
| | - Steven C. Ricke
- Meat Science and Animal Biologics Discovery, Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
82
|
Modelling the Potential Risk of Infection Associated with Listeria monocytogenes in Irrigation Water and Agricultural Soil in Two District Municipalities in South Africa. Microorganisms 2022; 10:microorganisms10010181. [PMID: 35056626 PMCID: PMC8777899 DOI: 10.3390/microorganisms10010181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/22/2022] Open
Abstract
Listeria monocytogenes (L. monocytogenes) is the etiologic agent of listeriosis which significantly affects immunocompromised individuals. The potential risk of infection attributed to L. monocytogenes in irrigation water and agricultural soil, which are key transmission pathways of microbial hazards to the human population, was evaluated using the quantitative microbial risk assessment modelling. A Monte Carlo simulation with 10,000 iterations was used to characterize the risks. High counts of L. monocytogenes in irrigation water (mean: 11.96 × 102 CFU/100 mL; range: 0.00 to 56.67 × 102 CFU/100 mL) and agricultural soil samples (mean: 19.64 × 102 CFU/g; range: 1.33 × 102 to 62.33 × 102 CFU/g) were documented. Consequently, a high annual infection risk of 5.50 × 10−2 (0.00 to 48.30 × 10−2), 54.50 × 10−2 (9.10 × 10−3 to 1.00) and 70.50 × 10−2 (3.60 × 10−2 to 1.00) was observed for adults exposed to contaminated irrigation water, adults exposed to contaminated agricultural soil and children exposed to agricultural soil, respectively. This study, therefore, documents a huge public health threat attributed to the high probability of infection in humans exposed to L. monocytogenes in irrigation water and agricultural soil in Amathole and Chris Hani District Municipalities in the Eastern Cape province of South Africa.
Collapse
|
83
|
Proteomic analysis of hexahydro-β-acids/hydroxypropyl-β-cyclodextrin inhibit Listeria monocytogenes. Appl Microbiol Biotechnol 2022; 106:755-771. [DOI: 10.1007/s00253-022-11764-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 01/12/2023]
|
84
|
Silva RCSD, de Souza Arruda IR, Malafaia CB, de Moraes MM, Beck TS, Gomes da Camara CA, Henrique da Silva N, Vanusa da Silva M, dos Santos Correia MT, Frizzo CP, Machado G. Synthesis, characterization and antibiofilm/antimicrobial activity of nanoemulsions containing Tetragastris catuaba (Burseraceae) essential oil against disease-causing pathogens. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
85
|
BERRIOS-RODRIGUEZ A, OLANYA OM, UKUKU DO, NIEMIRA BA, MUKHOPADHYAY S, ORELLANA LE. Gamma radiation effects on the survival and reduction of Listeria monocytogenes on carrot and tomato. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.17622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
86
|
Kayode AJ, Okoh AI. Incidence and genetic diversity of multi-drug resistant Listeria monocytogenes isolates recovered from fruits and vegetables in the Eastern Cape Province, South Africa. Int J Food Microbiol 2021; 363:109513. [PMID: 34971880 DOI: 10.1016/j.ijfoodmicro.2021.109513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/02/2021] [Accepted: 12/19/2021] [Indexed: 11/24/2022]
Abstract
We investigated the prevalence, genetic diversity and antibiogram profiles of Listeria monocytogenes (Lm) recovered from fruits and vegetables sourced from three District Municipalities in the Eastern Cape Province, South Africa after the recent listeriosis outbreak in the country. The procedure outlined by the International Organization for Standardization EN ISO 11290:2017 Parts 1 and 2 was adopted for the isolation of Lm from 140 vegetable samples. Molecular detection of the pathogen and the presence of 10 virulence-associated markers were assessed. Lm was detected in 42.86% of all the vegetable samples tested. Highest prevalence was recorded in tomato (65.52%) followed by spinach (56.67%), cabbage (38.10%), apple (36.84%), mushroom (29.41%) and carrot (10%). The virulence determinants including the inlA, inlC, prfA and plcA, hly, plcB genes were detected in all Lm isolates whereas, inlJ (88.35%), inlB (86.41%), mpl (92.23%) and actA (84.55%) respectively. High susceptibility (> 50) was observed to all antibiotics tested except for sulfamethoxazole (17.48%), streptomycin (38.84%), amoxicillin (41.75%) and erythromycin (43.69%). However, high resistance against sulfamethoxazole (80.58%), amoxicillin (58.25%) and erythromycin (49.52%) were observed. About 85.44% of Lm isolates showed multidrug-resistance phenotypes against the test antibiotics. Furthermore, twenty (20) resistance genes encoding tetracyclines, sulphonamides, phenicols, aminoglycosides, β-lactamases, and variants of the extended-spectrum of β-lactamases (ESBLs) resistance were detected among the Lm isolates. The sul2 (90.81), tetM (68.42%) sul1 (45.98%) were more prevalent among the resistant strains. The dendrogram signatures generating seven clades is an indication of the high genetic diversity among the isolates. We conclude that the presence of Lm in fruits and vegetables is a potential threat to the consumers and a potential public health hazard, particularly to the high-risk group of the population.
Collapse
Affiliation(s)
- Adeoye John Kayode
- SAMRC Microbial Water Quality Monitoring Center, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| | - Anthony Ifeanyi Okoh
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; SAMRC Microbial Water Quality Monitoring Center, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| |
Collapse
|
87
|
Lee BE, Kang T, Jenkins D, Li Y, Wall MM, Jun S. A single-walled carbon nanotubes-based electrochemical impedance immunosensor for on-site detection of Listeria monocytogenes. J Food Sci 2021; 87:280-288. [PMID: 34935132 DOI: 10.1111/1750-3841.15996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 11/27/2022]
Abstract
Real-time and sensitive detection of pathogenic bacteria in food is in high demand to ensure food safety. In this study, a single-walled carbon nanotubes (SWCNTs)-based electrochemical impedance immunosensor for on-site detection of Listeria monocytogenes (L. monocytogenes) was developed. A gold-plated wire was functionalized using polyethylenimine (PEI), SWCNTs, streptavidin, biotinylated L. monocytogenes antibodies, and bovine serum albumin (BSA). A linear relationship (R2 = 0.982) between the electron transfer resistance measurements and concentrations of L. monocytogenes within the range of 103 -108 CFU/ml was observed. In addition, the sensor demonstrated high selectivity towards the target in the presence of other bacterial cells such as Salmonella Typhimurium and Escherichia coli O157:H7. To facilitate the demand for on-site detection, the sensor was integrated into a smartphone-controlled biosensor platform, consisting of a compact potentiostat device and a smartphone. The signals from the proposed platform were compared with a conventional potentiostat using the immunosensor interacted with L. monocytogenes (103 -105 CFU/ml). The signals obtained with both instruments showed high consistency. Recovery percentages of lettuce homogenate spiked with 103 , 104 , and 105 CFU/ml of L. monocytogenes obtained with the portable platform were 90.21, 90.44, and 93.69, respectively. The presented on-site applicable SWCNT-based immunosensor platform was shown to have a high potential to be used in field settings for food and agricultural applications. PRACTICAL APPLICATION: The developed immunosensor was developed for on-site detection of L. monocytogenes. The limit of detection of the sensor was 103 CFU/ml with a detection time of 10 min. In order to facilitate the requirements for effective on-site screening for food safety, the sensor was integrated into a smartphone-controlled platform, so that the bio-molecular interactions were converted into impedance signals and transmitted wirelessly to a smartphone by a hand-held EIS transducer.
Collapse
Affiliation(s)
- Bog Eum Lee
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii, Honolulu, Hawaii, USA
| | - Taiyoung Kang
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, Hawaii, USA
| | - Daniel Jenkins
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, Hawaii, USA
| | - Yong Li
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii, Honolulu, Hawaii, USA
| | - Marisa M Wall
- USDA-ARS Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, Hawaii, USA
| | - Soojin Jun
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii, Honolulu, Hawaii, USA
| |
Collapse
|
88
|
Gu T, Meesrisom A, Luo Y, Dinh QN, Lin S, Yang M, Sharma A, Tang R, Zhang J, Jia Z, Millner PD, Pearlstein AJ, Zhang B. Listeria monocytogenes biofilm formation as affected by stainless steel surface topography and coating composition. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
89
|
Exploring thermosonication as non-chemical disinfection technology for strawberries. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03913-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractThe scope of this work was to study the efficacy of the combination of sonication at 35 or 130 kHz with three temperature treatments: 20, 50 and 55 ºC, on the population of artificially inoculated Listeria innocua in strawberries, and on their overall quality. Prior in vitro results showed that temperature was the main factor in decreasing L. innocua population: a maximum of 3.8 log reductions was obtained with sonication at 130 kHz and 55 ºC for 15 min Treatments combining—or not—sonication at 130 kHz with mild temperatures (50 and 55 ºC) for 5 or 10 min were able to decrease about 3 log units of artificially inoculated L. innocua in strawberries and about 2 log units of total aerobic mesophilic and yeasts and molds populations naturally occurring in strawberries. Thermosonication treatments did not exert a detrimental impact on fruit quality, except for those at the higher temperatures and times, which caused a change in color to more purplish and a little softening of the strawberries, which were proposed to be assessed for further processing other than fresh commercialization. Overall, the impact of sonication in fresh strawberries needs to be further investigated to find the adequate conditions to enhance the effects of temperature itself.
Collapse
|
90
|
Li S, Xu X, Wei L, Wang L, Lv Q. Acacetin Alleviates Listeria monocytogenes Virulence Both In Vitro and In Vivo via the Inhibition of Listeriolysin O. Foodborne Pathog Dis 2021; 19:115-125. [PMID: 34809484 DOI: 10.1089/fpd.2021.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous Gram-positive foodborne pathogen that is responsible for listeriosis in both humans and several animal species. The bacterium secretes a pore-forming cholesterol-dependent cytolysin, listeriolysin O (LLO), a major virulence factor involved in the activation of cellular processes. The ability of LLO to lyse erythrocytes is a measure of LLO activity. We used hemolytic activity assay to screen the LLO inhibitors. Acacetin was found to be an LLO inhibitor, which is a di-hydroxy and mono-methoxy flavone present in various plants, including Black locust, Damiana, and Silver birch. As the features of acacetin are of low toxicity and have less acquired resistance, it comes to a hotspot in drug development. In our study, we report that acacetin antagonized the hemolytic activity of L. monocytogenes culture supernatants and purified LLO by directly interfering with the formation of oligomers without inhibiting the bacterial growth and the expression of LLO. Acacetin also relieved the injury of alveolar epithelial cells by inhibiting LLO activity. Further, acacetin significantly promoted the clearance of L. monocytogenes and alleviated the histopathological damage, thereby raising survival rate, which conferred mice with effective protection against L. monocytogenes infection. Using molecular docking and dynamics simulation, we further proved the mechanism of acacetin antagonizing LLO pore-forming activity by direct binding to the second membrane-inserting helix bundle (HB2) of LLO domain 3. These data suggested that acacetin recedes the virulence of L. monocytogenes both in vivo and in vitro, and this study provided a promising candidate and potential alternative for the prevention and treatment of L. monocytogenes infections.
Collapse
Affiliation(s)
- Shufang Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiangzhu Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lijuan Wei
- Laigang Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qianghua Lv
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
91
|
Rhizobacteria Impact Colonization of Listeria monocytogenes on Arabidopsis thaliana Roots. Appl Environ Microbiol 2021; 87:e0141121. [PMID: 34550783 PMCID: PMC8579980 DOI: 10.1128/aem.01411-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In spite of its relevance as a foodborne pathogen, we have limited knowledge about Listeria monocytogenes in the environment. L. monocytogenes outbreaks have been linked to fruits and vegetables; thus, a better understanding of the factors influencing its ability to colonize plants is important. We tested how environmental factors and other soil- and plant-associated bacteria influenced L. monocytogenes' ability to colonize plant roots using Arabidopsis thaliana seedlings in a hydroponic growth system. We determined that the successful root colonization of L. monocytogenes 10403S was modestly but significantly enhanced by the bacterium being pregrown at higher temperatures, and this effect was independent of the biofilm and virulence regulator PrfA. We tested 14 rhizosphere-derived bacteria for their impact on L. monocytogenes 10403S, identifying one that enhanced and 10 that inhibited the association of 10403S with plant roots. We also characterized the outcomes of these interactions under both coinoculation and invasion conditions. We characterized the physical requirements of five of these rhizobacteria to impact the association of L. monocytogenes 10403S with roots, visualizing one of these interactions by microscopy. Furthermore, we determined that two rhizobacteria (one an inhibitor, the other an enhancer of 10403S root association) were able to similarly impact 10 different L. monocytogenes strains, indicating that the effects of these rhizobacteria on L. monocytogenes are not strain specific. Taken together, our results advance our understanding of the parameters that affect L. monocytogenes plant root colonization, knowledge that may enable us to deter its association with and, thus, downstream contamination of, food crops. IMPORTANCE Listeria monocytogenes is ubiquitous in the environment, being found in or on soil, water, plants, and wildlife. However, little is known about the requirements for L. monocytogenes' existence in these settings. Recent L. monocytogenes outbreaks have been associated with contaminated produce; thus, we used a plant colonization model to investigate factors that alter L. monocytogenes' ability to colonize plant roots. We show that L. monocytogenes colonization of roots was enhanced when grown at higher temperatures prior to inoculation but did not require a known regulator of virulence and biofilm formation. Additionally, we identified several rhizobacteria that altered the ability of 11 different strains of L. monocytogenes to colonize plant roots. Understanding the factors that impact L. monocytogenes physiology and growth will be crucial for finding mechanisms (whether chemical or microbial) that enable its removal from plant surfaces to reduce L. monocytogenes contamination of produce and eliminate foodborne illness.
Collapse
|
92
|
Magdovitz BF, Gummalla S, Garren D, Thippareddi H, Berrang ME, Harrison MA. Prevalence of Listeria Species and Listeria monocytogenes on Raw Produce Arriving at Frozen Food Manufacturing Facilities. J Food Prot 2021; 84:1898-1903. [PMID: 34143180 DOI: 10.4315/jfp-21-064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/17/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT The ubiquity of Listeria monocytogenes in the environment affects the food industry and presents concerns for frozen food facilities. This study determined the prevalence and numbers of Listeria species and L. monocytogenes on raw produce arriving at frozen food facilities. Raw produce was collected using multilevel blinding protocols to ensure anonymity of participants and avoid traceback. Five raw vegetables were selected: corn, carrots, green beans, peas, and spinach. Raw products were collected after arrival at the facilities but before cleaning or other preprocessing steps that are typically performed inside the facility. The U.S. Food and Drug Administration's Bacteriological Analytical Manual method for detection of Listeria spp. and L. monocytogenes was followed, with PCR screening followed by selective plating methods. Listeria numbers were estimated from positive samples using the most-probable-number (MPN) methodology. A total of 290 samples were collected, with 96 and 17 samples positive for Listeria spp. (33.1%) and L. monocytogenes (5.9%), respectively. Enumeration data for the 96 Listeria spp. samples indicated 82 samples had greater than 100 MPN of Listeria spp. per g and 14 samples had less than 100 MPN Listeria spp. per g. The prevalence of Listeria spp. varied by commodity: spinach (66.7%), peas (50%), corn (32.2%), green beans (22.2%), and carrots (13%). L. monocytogenes prevalence was determined in corn (13.6%), peas (6.3%), and green beans (4.2%) arriving at processing facilities. Such data were previously unavailable to frozen vegetable processors and are valuable in implementing process control standards. The prevalence and pathogen concentration data from raw commodities found in this study can provide the industry with information to conduct more accurate quantitative risk assessments and a baseline to model and target appropriate pathogen reduction steps during processing. HIGHLIGHTS
Collapse
Affiliation(s)
- Brittany F Magdovitz
- Department of Food Science and Technology, 1210 South Glebe Road, Arlington, Virginia 22204.,Center for Food Safety, 1210 South Glebe Road, Arlington, Virginia 22204
| | - Sanjay Gummalla
- American Frozen Food Institute, 1210 South Glebe Road, Arlington, Virginia 22204
| | - Donna Garren
- American Frozen Food Institute, 1210 South Glebe Road, Arlington, Virginia 22204
| | - Harshavardhan Thippareddi
- Center for Food Safety, 1210 South Glebe Road, Arlington, Virginia 22204.,Department of Poultry Science, University of Georgia, Athens, Georgia 30602
| | - Mark E Berrang
- U.S. Department of Agriculture, Agricultural Research Service, 950 College Station Road, Athens, Georgia 30605, USA
| | - Mark A Harrison
- Department of Food Science and Technology, 1210 South Glebe Road, Arlington, Virginia 22204.,Center for Food Safety, 1210 South Glebe Road, Arlington, Virginia 22204
| |
Collapse
|
93
|
Barbuddhe SB, Rawool DB, Doijad SP, Vergis J, Malik SS, Chakraborty T. Ecology of Listeria monocytogenes and Listeria species in India: the occurrence, resistance to biocides, genomic landscape and biocontrol. Environ Microbiol 2021; 24:2759-2780. [PMID: 34693631 DOI: 10.1111/1462-2920.15819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/28/2022]
Abstract
Listeria monocytogenes, the causative agent of listeriosis, has been implicated in increasing foodborne outbreaks worldwide. The disease is manifested in various forms ranging from severe sepsis in immune-compromised individuals, febrile gastroenteritis, still birth, abortions and meningoencephalitis. In India, data from studies on the detection and molecular epidemiological analysis of L. monocytogenes are only recently emerging. The presence of Listeria in different ecological niches has been recorded from India, including foods, soil, vegetables, mangrove swamps, seafood, freshwater fishes, clinical cases, and also insects. The organism has also been isolated from women with spontaneous abortions, miscarriage or recurrent obstetric history, aborted foetuses, animal clinical cases and wildlife samples. A novel species of Listeria has also been characterized. Listeria monocytogenes strains isolated from clinical, environmental, and foods showed biofilm-forming abilities. Listeria monocytogenes serotype 4b isolates of ST328, a predominant and unique ST observed in India, was repeatedly isolated from different sources, times, and geographical locations. Here, we reviewed the occurrence of Listeria in different sources in India, its resistance to biocides, and provide epidemiological analysis on its genomic landscape.
Collapse
Affiliation(s)
| | - Deepak Bhiwa Rawool
- ICAR- National Research Centre on Meat, Chengicherla, Hyderabad, Telangana, 500092, India
| | - Swapnil Prakash Doijad
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, 35392, Germany.,German Center for Infection Research (DZIF), Giessen, 35392, Germany
| | - Jess Vergis
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Wayanad, Kerala, 673576, India
| | - Satyaveer Singh Malik
- Division of Veterinary Public Health, ICAR- Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 243122, India
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, 35392, Germany.,German Center for Infection Research (DZIF), Giessen, 35392, Germany
| |
Collapse
|
94
|
Ramos TDM, Jay-Russell MT, Millner PD, Baron JN, Stover J, Pagliari P, Hutchinson M, Lilley J, Rowley N, Haghani V, Aminabadi P, Kenney A, Hashem F, Martínez-López B, Bihn EA, Clements DP, Shade JB, Sciligo AR, Pires AFA. Survival and Persistence of Foodborne Pathogens in Manure-Amended Soils and Prevalence on Fresh Produce in Certified Organic Farms: A Multi-Regional Baseline Analysis. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.674767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biological soil amendments of animal origin (BSAAOs), including untreated (e.g., raw or aged manure, or incompletely composted manure) and treated animal products (e.g., compost), are used for crop production and as part of soil health management. Application of BSAAO's must be done cautiously, as raw manure commonly contains enteric foodborne pathogens that can potentially contaminate edible produce that may be consumed without cooking. USDA National Organic Program (NOP) certified production systems follow the 90-or 120-day interval standards between applications of untreated BSAAOs and crop harvest, depending on whether the edible portions of the crops are in indirect or direct contact with the soil, respectively. This study was conducted to evaluate the survival of four foodborne pathogens in soils amended with BSAAOs and to examine the potential for bacterial transfer to fresh produce harvested from USDA NOP certified organic farms (19) from four states. Only 0.4% (2/527) of produce samples were positive for L. monocytogenes. Among the untreated manure and compost samples, 18.0% (42/233) were positive for at least one of the tested and culturable bacterial foodborne pathogens. The prevalence of non-O157 STEC and Salmonella in untreated manure was substantially > that of E. coli O157:H7 and L. monocytogenes. Of the 2,461 soil samples analyzed in this study, 12.9% (318) were positive for at least one pathogen. In soil amended with untreated manure, the prevalence of non-O157 STEC [7.7% (190) and L. monocytogenes (5.0% (122), was > that of Salmonella (1.1% (26)] or E. coli O157 [0.04% (1)]. Foodborne pathogen prevalence in the soil peaked after manure application and decreased significantly 30 days post-application (dpa). However, non-O157 STEC and L. monocytogenes were recovered from soil samples after 90 and 120 dpa. Results indicate that produce contamination by tested foodborne pathogens was infrequent, but these data should not be generalized outside of the specific wait-time regulations for organic crop production and the farms studied. Moreover, other sources of contamination, e.g., irrigation, wildlife, environmental conditions, cropping and management practices, should be considered. This study also provides multi-regional baseline data relating to current NOP application intervals and development of potential risk mitigation strategies to reduce pathogen persistence in soils amended with BSAAOs. These findings contribute to filling critical data gaps concerning occurrence of fecal pathogens in NOP-certified farming systems used for production of fresh produce in different US regions.
Collapse
|
95
|
Bland RN, Johnson JD, Waite-Cusic JG, Weisberg AJ, Riutta ER, Chang JH, Kovacevic J. Application of Whole Genome Sequencing to Understand Diversity and Presence of Genes Associated with Sanitizer Tolerance in Listeria monocytogenes from Produce Handling Sources. Foods 2021; 10:2454. [PMID: 34681501 PMCID: PMC8536156 DOI: 10.3390/foods10102454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Recent listeriosis outbreaks linked to fresh produce suggest the need to better understand and mitigate L. monocytogenes contamination in packing and processing environments. Using whole genome sequencing (WGS) and phenotype screening assays for sanitizer tolerance, we characterized 48 L. monocytogenes isolates previously recovered from environmental samples in five produce handling facilities. Within the studied population there were 10 sequence types (STs) and 16 cgMLST types (CTs). Pairwise single nucleotide polymorphisms (SNPs) ranged from 0 to 3047 SNPs within a CT, revealing closely and distantly related isolates indicative of both sporadic and continuous contamination events within the facility. Within Facility 1, we identified a closely related cluster (0-2 SNPs) of isolates belonging to clonal complex 37 (CC37; CT9492), with isolates recovered during sampling events 1-year apart and in various locations inside and outside the facility. The accessory genome of these CC37 isolates varied from 94 to 210 genes. Notable genetic elements and mutations amongst the isolates included the bcrABC cassette (2/48), associated with QAC tolerance; mutations in the actA gene on the Listeria pathogenicity island (LIPI) 1 (20/48); presence of LIPI-3 (21/48) and LIPI-4 (23/48). This work highlights the potential use of WGS in tracing the pathogen within a facility and understanding properties of L. monocytogenes in produce settings.
Collapse
Affiliation(s)
- Rebecca N. Bland
- Food Innovation Center, Oregon State University, Portland, OR 97209, USA;
| | - Jared D. Johnson
- Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA; (J.D.J.); (J.G.W.-C.)
| | - Joy G. Waite-Cusic
- Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA; (J.D.J.); (J.G.W.-C.)
| | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (A.J.W.); (E.R.R.); (J.H.C.)
| | - Elizabeth R. Riutta
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (A.J.W.); (E.R.R.); (J.H.C.)
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (A.J.W.); (E.R.R.); (J.H.C.)
| | - Jovana Kovacevic
- Food Innovation Center, Oregon State University, Portland, OR 97209, USA;
| |
Collapse
|
96
|
Akomea-Frempong S, Skonberg DI, Camire ME, Perry JJ. Impact of Blanching, Freezing, and Fermentation on Physicochemical, Microbial, and Sensory Quality of Sugar Kelp ( Saccharina latissima). Foods 2021; 10:foods10102258. [PMID: 34681308 PMCID: PMC8535061 DOI: 10.3390/foods10102258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 11/16/2022] Open
Abstract
Low seaweed consumption in the West is due to lack of availability and consumer familiarity. In this study, the effects of preservation processes on quality aspects of Saccharina latissima products were assessed. First, a blanching (100 °C for 1 or 3 min) treatment was used to produce seaweed salad. In a second study, effects of blanching, freezing, and fermentation on kelp quality were assessed and processed kelp was used to produce sauerkraut. Blanching significantly decreased (p ≤ 0.05) the instrumental kelp a* value and firmness. The a* value negatively correlated with overall liking of salads. To prepare sauerkraut, raw, raw/frozen (-20 °C), blanched (100 °C, 1 min), or blanched/frozen kelp were mixed with cabbage, salted, inoculated with starter cultures and fermented. Inconsistent trends in L* values, firmness, and fungi enumeration were observed after fermentation. Consumers evaluated kelp salad (n = 100) and sauerkraut (n = 80) for acceptability. Blanched kelp salad had higher hedonic scores than raw kelp salad. A 100% cabbage sauerkraut control and blanched kelp/cabbage blends were compared; kelp blends were similar to control for appearance, color, and texture but were lower for overall acceptability. Results suggest improved quality and enhanced consumer acceptability of seaweed products with use of minimal processing.
Collapse
|
97
|
Survival of Escherichia coli and Listeria innocua on Lettuce after Irrigation with Contaminated Water in a Temperate Climate. Foods 2021; 10:foods10092072. [PMID: 34574181 PMCID: PMC8468451 DOI: 10.3390/foods10092072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/20/2022] Open
Abstract
Microbial disease outbreaks related to fresh produce consumption, including leafy green vegetables, have increased in recent years. Where contamination occurs, pathogen persistence may represent a risk for consumers' health. This study analysed the survival of E. coli and L. innocua on lettuce plants watered with contaminated irrigation water via a single irrigation event and within stored irrigation water. Separate lettuce plants (Lactuca sativa var. capitata) were irrigated with water spiked with Log10 7 cfu/mL of each of the two strains and survival assessed via direct enumeration, enrichment and qPCR. In parallel, individual 20 L water microcosms were spiked with Log10 7 cfu/mL of the individual strains and sampled at similar time points. Both strains were observed to survive on lettuce plants up to 28 days after inoculation. Direct quantification by culture methods showed a Log10 4 decrease in the concentration of E. coli 14 days after inoculation, and a Log10 3 decrease in the concentration of L. innocua 10 days after inoculation. E. coli was detected in water samples up to 7 days after inoculation and L. innocua was detected up to 28 days by direct enumeration. Both strains were recovered from enriched samples up to 28 days after inoculation. These results demonstrate that E. coli and L. innocua strains are able to persist on lettuce after a single contamination event up until the plants reach a harvestable state. Furthermore, the persistence of E. coli and L. innocua in water for up to 28 days after inoculation illustrates the potential for multiple plant contamination events from stored irrigation water, emphasising the importance of ensuring that irrigation water is of a high quality.
Collapse
|
98
|
Gomez CB, Ryser ET, Marks BP. Kitchen-Scale Treatments for Reduction of Listeria monocytogenes in Prepared Produce. J Food Prot 2021; 84:1603-1609. [PMID: 34047798 DOI: 10.4315/jfp-21-019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/20/2021] [Indexed: 12/31/2022]
Abstract
ABSTRACT Listeriosis, a foodborne illness caused by Listeria monocytogenes, has relatively low incidence, but a substantial mortality rate, particularly in immunocompromised populations. Because of the known risk of L. monocytogenes and other pathogens in produce, immunocompromised individuals are often placed on neutropenic diets that exclude fresh produce. Therefore, this study aimed to evaluate several kitchen-scale treatments as potential interventions to reduce L. monocytogenes in prepared produce. Cucumbers, apples, and celery were dip inoculated with a three-strain cocktail of L. monocytogenes and dried for 24 h. Inoculated products were subjected to the following treatments as applicable: commercial sanitizer soak (90 s, with agitation), tap water rinse (15 s), tap water soak (90 s, with agitation), surface blanching (25 s), tap water rinse (15 s) followed by peeling, and surface blanching (25 s) followed by peeling. In addition, inoculum uptake in celery and the impact of two types of peelers (mechanical crank and manual) were assessed. Treated samples were plated on differential media and incubated for 48 h at 37°C. L. monocytogenes populations were then enumerated and compared with the untreated control (in log CFUs per gram). All treatments lacked efficacy for celery, with reductions significantly less (P < 0.05) than in other products, likely because of inoculum internalization. The sanitizer soak, tap water rinse, and tap water soak did not differ in efficacy (P > 0.05), which was low for cucumbers (<1.5 log CFU/g), apples (<1.3 log CFU/g), and celery (<0.7 log CFU/g). The two types of apple peelers did not differ in efficacy (P > 0.05). Surface blanching and surface blanching followed by peeling were the most effective treatments for both cucumbers and apples (P < 0.05), with average reductions of 4.2 to 5.1 and 3.5 to 5.9 log CFU/g, respectively. HIGHLIGHTS
Collapse
Affiliation(s)
- Carly B Gomez
- Department of Biosystems and Agricultural Engineering, Michigan State University, 524 South Shaw Lane, East Lansing, Michigan 48824
| | - Elliot T Ryser
- Department of Food Science and Human Nutrition, Michigan State University, 469 Wilson Road #204, East Lansing, Michigan 48824, USA
| | - Bradley P Marks
- Department of Biosystems and Agricultural Engineering, Michigan State University, 524 South Shaw Lane, East Lansing, Michigan 48824
| |
Collapse
|
99
|
Listeria monocytogenes Survival on Peaches and Nectarines under Conditions Simulating Commercial Stone-Fruit Packinghouse Operations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179174. [PMID: 34501764 PMCID: PMC8431221 DOI: 10.3390/ijerph18179174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022]
Abstract
Recent recalls of stone fruit due to potential Listeria contamination and associated foodborne outbreaks highlight the risk for pathogen transmission through stone-fruit consumption. Particularly, surface contamination of fruits increases the risk for cross-contamination of produce during processing and storage. This highlights the need for quality control in stone fruits intended for consumption. To develop effective food safety practices, it is essential to determine the critical factors during stone-fruit processing that influence Listeria survival. Therefore, this study evaluated the ability of Listeria to survive on peaches and nectarines under simulated stone-fruit loading and staging, waxing and fungicide application and storage conditions. The results of our study indicate that current stone-fruit handling conditions do not favor Listeria growth. However, once fruit is contaminated, Listeria can survive on the fruit surface in significant numbers under current processing conditions. Therefore, there is a need to develop and implement preventive controls at the stone-fruit packinghouse to prevent Listeria contamination and deter pathogen persistence.
Collapse
|
100
|
Chang Y, Bai J, Yu H, Chang PS, Nitin N. Synergistic Inactivation of Bacteria Using a Combination of Erythorbyl Laurate and UV Type-A Light Treatment. Front Microbiol 2021; 12:682900. [PMID: 34335506 PMCID: PMC8322444 DOI: 10.3389/fmicb.2021.682900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
This study evaluated the synergistic antimicrobial activity of erythorbyl laurate (EL) and UV type-A (UVA). To investigate the mode of synergism, changes in gene expression and bacterial inactivation activity were examined. Individual treatments with EL (10 mM) or UVA caused a 1.9- or 0.5-log CFU/ml reduction respectively, whereas EL/UVA co-treatment resulted in a 5.5-log CFU/ml reduction in Escherichia coli viable cell numbers. Similarly, treatment with either EL (2 mM) or UVA for 30 min resulted in a 2.8- or 0.1-log CFU/ml reduction in Listeria innocua, respectively, whereas combined treatment with both EL and UVA resulted in a 5.4-log CFU/ml reduction. Measurements of gene expression levels showed that EL and UVA treatment synergistically altered the gene expression of genes related to bacterial membrane synthesis/stress response. However, addition of 10–50-fold excess concentration of exogenous antioxidant compared to EL reduced the synergistic effect of EL and UVA by approximately 1 log. In summary, the results illustrate that synergistic combination of EL and UVA enhanced membrane damage independent of the oxidative stress damage induced by UVA and thus illustrate a novel photo-activated synergistic antimicrobial approach for the inactivation of both the Gram-positive and Gram-negative bacteria. Overall, this study illustrates mechanistic evaluation of a novel photochemical approach for food and environmental applications.
Collapse
Affiliation(s)
- Yoonjee Chang
- Department of Food and Nutrition, Kookmin University, Seoul, South Korea.,Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Jaewoo Bai
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States.,Division of Applied Food System, Major in Food Science & Technology, Seoul Women's University, Seoul, South Korea
| | - Hyunjong Yu
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea.,Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Nitin Nitin
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States.,Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA, United States
| |
Collapse
|