51
|
Raj S, Sasidharan S, Tripathi T, Saudagar P. Biofunctionalized Chrysin-conjugated gold nanoparticles neutralize Leishmania parasites with high efficacy. Int J Biol Macromol 2022; 205:211-219. [PMID: 35183598 DOI: 10.1016/j.ijbiomac.2022.02.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 12/18/2022]
Abstract
Current treatments for leishmaniasis involve various drugs, including miltefosine and amphotericin B, which are associated with several side effects and high costs. Long-term use of these drugs may lead to the development of resistance, thereby reducing their efficiency. Chrysin (CHY) is a well-known, non-toxic flavonoid with antioxidant, antiviral, anti-inflammatory, anti-cancer, hepatoprotective, and neuroprotective properties. Recently we have shown that CHY targets the MAP kinase 3 enzyme of Leishmania and neutralizes the parasite rapidly. However, CHY is associated with low bioavailability, poor absorption, and rapid excretion issues, limiting its usage. In this study, we developed and tested a novel CHY-gold nanoformulation with improved efficacy against the parasites. The reducing power of CHY was utilized to reduce and conjugate with gold nanoparticles. Gold nanoparticles, which are already known for their anti-leishmanial properties, along with conjugated CHY, exhibited a decreased parasite burden in mammalian macrophages. Our findings showed that this biofunctionalized nanoformulation could be used as a potential therapeutic tool against leishmaniasis.
Collapse
Affiliation(s)
- Shweta Raj
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal 506004, India
| | - Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal 506004, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal 506004, India.
| |
Collapse
|
52
|
Salas-Huenuleo E, Hernández A, Lobos-González L, Polakovičová I, Morales-Zavala F, Araya E, Celis F, Romero C, Kogan MJ. Peptide Targeted Gold Nanoplatform Carrying miR-145 Induces Antitumoral Effects in Ovarian Cancer Cells. Pharmaceutics 2022; 14:958. [PMID: 35631544 PMCID: PMC9144804 DOI: 10.3390/pharmaceutics14050958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
One of the recent attractive therapeutic approaches for cancer treatment is restoring downregulated microRNAs. They play an essential muti-regulatory role in cellular processes such as proliferation, differentiation, survival, apoptosis, cell cycle, angiogenesis, and metastasis, among others. In this study, a gold nanoplatform (GNPF) carrying miR-145, a downregulated microRNA in many cancer types, including epithelial ovarian cancer, was designed and synthesized. For targeting purposes, the GNPF was functionalized with the FSH33 peptide, which provided selectivity for ovarian cancer, and loaded with the miR-145 to obtain the nanosystem GNPF-miR-145. The GNPF-mir-145 was selectively incorporated in A2780 and SKOV3 cells and significantly inhibited cell viability and migration and exhibited proliferative and anchor-independent growth capacities. Moreover, it diminished VEGF release and reduced the spheroid size of ovarian cancer through the damage of cell membranes, thus decreasing cell viability and possibly activating apoptosis. These results provide important advances in developing miR-based therapies using nanoparticles as selective vectors and provide approaches for in vivo evaluation.
Collapse
Affiliation(s)
- Edison Salas-Huenuleo
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile; (E.S.-H.); (F.M.-Z.)
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (L.L.-G.); (I.P.)
- Advanced Integrated Technologies (AINTECH), Chorrillo Uno, Parcela 21, Lampa, Santiago 9380000, Chile
| | - Andrea Hernández
- Laboratory of Endocrinology and Reproduction Biology, Clinical Hospital, Universidad de Chile, Santiago 7820436, Chile;
| | - Lorena Lobos-González
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (L.L.-G.); (I.P.)
- Centro de Medicina Regenerativa, Facultad de Medicina, Universidad Del Desarrollo, Santiago 7610658, Chile
| | - Iva Polakovičová
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (L.L.-G.); (I.P.)
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Francisco Morales-Zavala
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile; (E.S.-H.); (F.M.-Z.)
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (L.L.-G.); (I.P.)
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor, Temuco 4801043, Chile
| | - Eyleen Araya
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Freddy Celis
- Laboratorio de Procesos Fotónicos y Electroquímicos, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso 2360002, Chile;
| | - Carmen Romero
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (L.L.-G.); (I.P.)
- Laboratory of Endocrinology and Reproduction Biology, Clinical Hospital, Universidad de Chile, Santiago 7820436, Chile;
| | - Marcelo J. Kogan
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile; (E.S.-H.); (F.M.-Z.)
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (L.L.-G.); (I.P.)
| |
Collapse
|
53
|
Biogenic Preparation, Characterization, and Biomedical Applications of Chitosan Functionalized Iron Oxide Nanocomposite. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6050120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chitosan (CS) functionalization over nanomaterials has gained more attention in the biomedical field due to their biocompatibility, biodegradability, and enhanced properties. In the present study, CS functionalized iron (II) oxide nanocomposite (CS/FeO NC) was prepared using Sida acuta leaf extract by a facile and eco-friendly green chemistry route. Phyto-compounds of S. acuta leaf were used as a reductant to prepare CS/FeO NC. The existence of CS and FeO crystalline peaks in CS/FeO NC was confirmed by XRD. FE-SEM analysis revealed that the prepared CS/FeO NC were spherical with a 10–100 nm average size. FTIR analyzed the existence of CS and metal-oxygen bands in the prepared NC. The CS/FeO NC showed the potential bactericidal activity against E. coli, B. subtilis, and S. aureus pathogens. Further, CS/FeO NC also exhibited the dose-dependent anti-proliferative property against human lung cancer cells (A549). Thus, the obtained outcomes revealed that the prepared CS/FeO NC could be a promising candidate in the biomedical sector to inhibit the growth of bacterial pathogens and lung cancer cells.
Collapse
|
54
|
Chavda VP, Patel AB, Mistry KJ, Suthar SF, Wu ZX, Chen ZS, Hou K. Nano-Drug Delivery Systems Entrapping Natural Bioactive Compounds for Cancer: Recent Progress and Future Challenges. Front Oncol 2022; 12:867655. [PMID: 35425710 PMCID: PMC9004605 DOI: 10.3389/fonc.2022.867655] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/24/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer is a prominent cause of mortality globally, and it becomes fatal and incurable if it is delayed in diagnosis. Chemotherapy is a type of treatment that is used to eliminate, diminish, or restrict tumor progression. Chemotherapeutic medicines are available in various formulations. Some tumors require just one type of chemotherapy medication, while others may require a combination of surgery and/or radiotherapy. Treatments might last from a few minutes to many hours to several days. Each medication has potential adverse effects associated with it. Researchers have recently become interested in the use of natural bioactive compounds in anticancer therapy. Some phytochemicals have effects on cellular processes and signaling pathways with potential antitumor properties. Beneficial anticancer effects of phytochemicals were observed in both in vivo and in vitro investigations. Encapsulating natural bioactive compounds in different drug delivery methods may improve their anticancer efficacy. Greater in vivo stability and bioavailability, as well as a reduction in undesirable effects and an enhancement in target-specific activity, will increase the effectiveness of bioactive compounds. This review work focuses on a novel drug delivery system that entraps natural bioactive substances. It also provides an idea of the bioavailability of phytochemicals, challenges and limitations of standard cancer therapy. It also encompasses recent patents on nanoparticle formulations containing a natural anti-cancer molecule.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India
| | | | - Kavya J. Mistry
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad, India
| | | | - Zhuo-Xun Wu
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Kaijian Hou
- Department of Preventive Medicine,Shantou University Medical College, Shantou, China
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Afliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
55
|
Persano F, Gigli G, Leporatti S. Natural Compounds as Promising Adjuvant Agents in The Treatment of Gliomas. Int J Mol Sci 2022; 23:3360. [PMID: 35328780 PMCID: PMC8955269 DOI: 10.3390/ijms23063360] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023] Open
Abstract
In humans, glioblastoma is the most prevalent primary malignant brain tumor. Usually, glioblastoma has specific characteristics, such as aggressive cell proliferation and rapid invasion of surrounding brain tissue, leading to a poor patient prognosis. The current therapy-which provides a multidisciplinary approach with surgery followed by radiotherapy and chemotherapy with temozolomide-is not very efficient since it faces clinical challenges such as tumor heterogeneity, invasiveness, and chemoresistance. In this respect, natural substances in the diet, integral components in the lifestyle medicine approach, can be seen as potential chemotherapeutics. There are several epidemiological studies that have shown the chemopreventive role of natural dietary compounds in cancer progression and development. These heterogeneous compounds can produce anti-glioblastoma effects through upregulation of apoptosis and autophagy; allowing the promotion of cell cycle arrest; interfering with tumor metabolism; and permitting proliferation, neuroinflammation, chemoresistance, angiogenesis, and metastasis inhibition. Although these beneficial effects are promising, the efficacy of natural compounds in glioblastoma is limited due to their bioavailability and blood-brain barrier permeability. Thereby, further clinical trials are necessary to confirm the in vitro and in vivo anticancer properties of natural compounds. In this article, we overview the role of several natural substances in the treatment of glioblastoma by considering the challenges to be overcome and future prospects.
Collapse
Affiliation(s)
- Francesca Persano
- Department of Mathematics and Physics, University of Salento, Via Per Arnesano, 73100 Lecce, Italy;
- CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| | - Giuseppe Gigli
- Department of Mathematics and Physics, University of Salento, Via Per Arnesano, 73100 Lecce, Italy;
- CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| | - Stefano Leporatti
- CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
56
|
Javed S, Mangla B, Ahsan W. From propolis to nanopropolis: An exemplary journey and a paradigm shift of a resinous substance produced by bees. Phytother Res 2022; 36:2016-2041. [PMID: 35259776 DOI: 10.1002/ptr.7435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022]
Abstract
Propolis, a natural resinous mixture produced by honey bees is poised with diverse biological activities. Owing to the presence of flavonoids, phenolic acids, terpenes, and sesquiterpenes, propolis has garnered versatile applications in pharmaceutical industry. The biopharmaceutical issues associated with propolis often beset its use as being too hydrophobic in nature; it is not absorbed in the body well. To combat the problem, various nanotechnological approaches for the development of novel drug delivery systems are generally applied to improve its bioavailability. This paradigm shift and transition of conventional propolis to nanopropolis are evident from the literature wherein a multitude of studies are available on nanopropolis with improved bioavailability profile. These approaches include preparation of gold nanoparticles, silver nanoparticles, magnetic nanoparticles, liposomes, liquid crystalline formulations, solid lipid nanoparticles, mesoporous silica nanoparticles, etc. Nanopropolis has further been explored to assess the potential benefits of propolis for the development of futuristic useful products such as sunscreens, creams, mouthwashes, toothpastes, and nutritional supplements with improved solubility, bioavailability, and penetration profiles. However, more high-quality clinical studies assessing the effects of propolis either alone or in combination with synthetic drugs as well as natural products are warranted and its safety needs to be firmly established.
Collapse
Affiliation(s)
- Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Bharti Mangla
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
57
|
Diep TT, Yoo MJY, Rush E. Tamarillo Polyphenols Encapsulated-Cubosome: Formation, Characterization, Stability during Digestion and Application in Yoghurt. Antioxidants (Basel) 2022; 11:520. [PMID: 35326171 PMCID: PMC8944466 DOI: 10.3390/antiox11030520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/30/2022] Open
Abstract
Tamarillo extract is a good source of phenolic and anthocyanin compounds which are well-known for beneficial antioxidant activity, but their bioactivity maybe lost during digestion. In this study, promising prospects of tamarillo polyphenols encapsulated in cubosome nanoparticles prepared via a top-down method were explored. The prepared nanocarriers were examined for their morphology, entrapment efficiency, particle size and stability during in vitro digestion as well as potential fortification of yoghurt. Tamarillo polyphenol-loaded cubosomes showed cubic shape with a mean particle size of 322.4 ± 7.27 nm and the entrapment efficiency for most polyphenols was over 50%. The encapsulated polyphenols showed high stability during the gastric phase of in vitro digestion and were almost completely, but slowly released in the intestinal phase. Addition of encapsulated tamarillo polyphenols to yoghurt (5, 10 and 15 wt% through pre- and post-fermentation) improved the physicochemical and potential nutritional properties (polyphenols concentration, TPC) as well as antioxidant activity. The encapsulation of tamarillo polyphenols protected against pH changes and enzymatic digestion and facilitated a targeted delivery and slow release of the encapsulated compounds to the intestine. Overall, the cubosomal delivery system demonstrated the potential for encapsulation of polyphenols from tamarillo for value-added food product development with yoghurt as the vehicle.
Collapse
Affiliation(s)
- Tung Thanh Diep
- School of Science, Faculty of Health and Environment Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand;
- Riddet Institute, Centre of Research Excellence, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand;
| | - Michelle Ji Yeon Yoo
- School of Science, Faculty of Health and Environment Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand;
- Riddet Institute, Centre of Research Excellence, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand;
| | - Elaine Rush
- Riddet Institute, Centre of Research Excellence, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand;
- School of Sport and Recreation, Faculty of Health and Environment Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| |
Collapse
|
58
|
Amadou I, Lawali S. Smart Management of Malnutrition Using Local Foods: A Sustainable Initiative for Developing Countries. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.725536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Malnutrition is one of the major challenges the developing world is currently facing, whether it is caused by climate change, terrorism and conflict, or demographic shifts. Poverty is the main cause of malnutrition in this part of the world, and no progress is possible without the alleviation of poverty to reduce malnutrition. Reducing household vulnerability and increasing household resilience is the pathway to sustainable malnutrition management. Malnutrition has been a major threat to the health and development of children in developing countries, presenting as high levels of micronutrient deficiencies, stunting, and global acute malnutrition. The rates of malnutrition of all forms are above the thresholds accepted by the WHO in some regions. To this end, the resilience program on achieving nutrition in a developing country through at-home learning activities for nutritional rehabilitation and dietary promotion (known as FARN) reported, in this case, successful results from both statements from beneficiaries and non-beneficiaries on the reduction and management of malnutrition in their health centers. FARN activity encourages the consumption of locally available foods not only to eradicate malnutrition but also to protect the ecosystem and sustainable nutrition security. This is much like the saying, “Give a man a fish and you feed him for a day. Teach a man to fish and you feed him for a lifetime” to the vulnerable people; parents' knowledge of their child's nutritional status and the use of local-based foods diets showed improvement, which is proof of the impact of the resilience program. It can be concluded that the resilience program through its activities at the level of the selected community significantly affected the factors and degree of persistence of malnutrition and the level of resilience of the populations. Thus, the FARN program showed resounding success in its ability to promote sustainable malnutrition management.
Collapse
|
59
|
Applications of chitosan-based carrier as an encapsulating agent in food industry. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
60
|
Ibrahim D, Kishawy ATY, Khater SI, Khalifa E, Ismail TA, Mohammed HA, Elnahriry SS, Tolba HA, Sherief WRIA, Farag MFM, El-Hamid MIA. Interactive effects of dietary quercetin nanoparticles on growth, flesh antioxidant capacity and transcription of cytokines and Aeromonas hydrophila quorum sensing orchestrating genes in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2021; 119:478-489. [PMID: 34699975 DOI: 10.1016/j.fsi.2021.10.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Recently, the concept of incorporating natural products into nanocarriers has been intended to promote fish growth and health via modulating their stability and bioavailability. In this concern, the potential role of reformulated quercetin into nanocarriers was examined, for the first time, on Nile tilapia's performance and immunity, flesh quality and antioxidant indices and disease resistance. Five hundred fish assigned into five experimental groups with formulated diets containing quercetin nanoparticles (QT-NPs) at levels of 0, 100, 200, 300 and 400 mg/kg were challenged with Aeromonas hydrophila (A. hydrophila) after 12 weeks feeding trial. Fish final body weight gain and feed efficiency were significantly maximized in groups enriched with 300 and 400 mg/kg of QT-NPs. Significant reduction in total saturated fatty acids and an elevation in polyunsaturated fatty acids' contents were noticed in fish fed higher QT-NPs doses. The levels of Hydrogen peroxide, reactive oxygen species and malondialdehyde, the markers of meat antioxidant capacity, were reduced by higher inclusion levels of QT-NPs. Accordingly, serum activities and transcriptional levels of GSH-Px, CAT and SOD genes were increased with elevated QT-NPs levels. Immune responses mediated by upregulation of IL-10 and TGF-β and downregulation of IL-1β, IL-8 and TNF-α mRNA levels were found to be positively affected by QT-NPs. Dietary QT-NPs downregulated the expression of ahyI and ahyR quorum sensing genes conferring protection against A. hydrophila challenge. This study concluded that supplementation of quercetin in encapsulated nanoparticles could improve its efficacy making it as a compelling approach to improve fish performance and as a promising drug candidate against A. hydrophila virulence.
Collapse
Affiliation(s)
- Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt.
| | - Asmaa T Y Kishawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt
| | - Safaa I Khater
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt
| | - Eman Khalifa
- Department of Microbiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51511, Egypt
| | - Tamer Ahmed Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Haiam A Mohammed
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt
| | - Shimaa S Elnahriry
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Menofia, 32897, Egypt
| | - Heba A Tolba
- Department of Fish Health and Management, Central Laboratory of Aquaculture Research (CLAR), AboHamad, Egypt, Agriculture Research Center (ARC), Egypt
| | - Wafaa R I A Sherief
- Department of Animal Wealth Development, Animal Breeding and Production, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed F M Farag
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Marwa I Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
61
|
Gonzales CM, Dalmolin LF, da Silva KA, Slade NBL, Lopez RFV, Moreto JA, Schwarz K. New Insights of Turmeric Extract-Loaded PLGA Nanoparticles: Development, Characterization and In Vitro Evaluation of Antioxidant Activity. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:507-515. [PMID: 34716887 DOI: 10.1007/s11130-021-00929-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Here, we presented new insights of the development of poly(lactic-co-glycolic acid) nanoparticles containing turmeric compounds (turmeric-PLGA-NPs) using emulsion-solvent evaporation method. The nanoparticulate system was characterized by size, zeta potential, morphology, release profile, partition parameter, stability and encapsulation efficiency (%EE). Antioxidant activity studies were also evaluated. The Korsmeyer-Peppas model (Mt/M∞ vs. t) was used to determine the release mechanisms of the studied system. Our results demonstrated the emulsion-solvent evaporation method was shown advantageous for producing turmeric-PLGA-NPs in the range of 145 nm with high homogeneity in size distribution, zeta potential of -21.8 mV and %EE about 72%. Nanoparticles were stable over a period of one month. In vitro study showed a release of curcumin governed by diffusion and relaxation of the polymeric matrix. The partition parameter of the extract in relation to blank-PLGA-NPs was 0.111 ± 0.008 M-1, indicating a low affinity of curcumin for the polymer matrix. Antioxidant ability of the turmeric-PLGA-NPs in scavenging the radical 2,2-azinobis (3-ethylbenzothiazoline- 6-sulfonic acid) (ABTS) was inferior to free turmeric extract and showed a concentration and time-dependent profile. The study concluded that PLGA nanoparticles are potential carriers for turmeric extract delivery.
Collapse
Affiliation(s)
- Camila Maria Gonzales
- Department of Nutrition, Federal University of Triângulo Mineiro, Rua Vigário Carlos, Uberaba, Minas Gerais, 38025-350, Brazil
| | - Luciana Facco Dalmolin
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n,, Ribeirão Preto, São Paulo, 14040-900, Brazil
| | - Kátia Aparecida da Silva
- Department of Nutrition, Federal University of Triângulo Mineiro, Rua Vigário Carlos, Uberaba, Minas Gerais, 38025-350, Brazil
| | - Natália Bueno Leite Slade
- Institute of Exact and Natural Sciences and Education, Federal University of Triângulo Mineiro, Avenida Doutor Randolfo Borges Júnior, Uberaba, Minas Gerais, 38064-200, Brazil
| | - Renata Fonseca Vianna Lopez
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n,, Ribeirão Preto, São Paulo, 14040-900, Brazil
| | - Jeferson Aparecido Moreto
- Institute of Exact and Natural Sciences and Education, Federal University of Triângulo Mineiro, Avenida Doutor Randolfo Borges Júnior, Uberaba, Minas Gerais, 38064-200, Brazil
| | - Kélin Schwarz
- Department of Nutrition, Federal University of Triângulo Mineiro, Rua Vigário Carlos, Uberaba, Minas Gerais, 38025-350, Brazil.
| |
Collapse
|
62
|
de Andrades EO, da Costa JMAR, de Lima Neto FEM, de Araujo AR, de Oliveira Silva Ribeiro F, Vasconcelos AG, de Jesus Oliveira AC, Sobrinho JLS, de Almeida MP, Carvalho AP, Dias JN, Silva IGM, Albuquerque P, Pereira IS, do Amaral Rabello D, das Graças Nascimento Amorim A, de Souza de Almeida Leite JR, da Silva DA. Acetylated cashew gum and fucan for incorporation of lycopene rich extract from red guava (Psidium guajava L.) in nanostructured systems: Antioxidant and antitumor capacity. Int J Biol Macromol 2021; 191:1026-1037. [PMID: 34563578 DOI: 10.1016/j.ijbiomac.2021.09.116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 12/18/2022]
Abstract
Industrial application of lycopene is limited due to its chemical instability and low bioavailability. This study proposes the development of fucan-coated acetylated cashew gum nanoparticles (NFGa) and acetylated cashew gum nanoparticles (NGa) for incorporation of the lycopene-rich extract from red guava (LEG). Size, polydispersity, zeta potential, nanoparticles concentration, encapsulation efficiency, transmission electron microscopy (TEM) and atomic force microscopy (AFM) were used to characterize nanoparticles. The antioxidant activity was determinated and cell viability was evaluated in the human breast cancer cells (MCF-7) and human keratinocytes (HaCaT) by MTT assay. The toxic effect was evaluated by hemolysis test and by Galleria mellonella model. NFGa showed higher stability than NGa, having a size of 162.10 ± 3.21 nm, polydispersity of 0.348 ± 0.019, zeta potential -30.70 ± 0.53 mV, concentration of 6.4 × 109 nanoparticles/mL and 60% LEG encapsulation. Microscopic analysis revealed a spherical and smooth shape of NFGa. NFGa showed antioxidant capacity by ABTS method and ORAC assay. The NFGa presented significant cytotoxicity against MCF-7 from the lowest concentration tested (6.25-200 μg/mL) and did not affect the cell viability of the HaCaT. NFGa showed non-toxic effect in the in vitro and in vivo models. Therefore, NFGa may have a promising application in LEG stabilization for antioxidant and antitumor purposes.
Collapse
Affiliation(s)
- Eryka Oliveira de Andrades
- Programa de Pós-Graduação em Biotecnologia, RENORBIO, Brazil; Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | | | | | - Alyne Rodrigues de Araujo
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Fabio de Oliveira Silva Ribeiro
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Andreanne Gomes Vasconcelos
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Área de Morfologia, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, DF, Brazil
| | - Antônia Carla de Jesus Oliveira
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, UFPE, Recife, PE, Brazil
| | - José Lamartine Soares Sobrinho
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, UFPE, Recife, PE, Brazil
| | - Miguel Peixoto de Almeida
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Ana P Carvalho
- LAQV/REQUIMTE-GRAQ, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Porto, Portugal; Centro de Biotecnologia e Química Fina, CBQF, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Jhones Nascimento Dias
- Laboratório de Biologia Molecular de Fungos Patogênicos, Instituto de Biologia, Universidade de Brasília, UnB, Brasília, DF, Brazil
| | | | - Patrícia Albuquerque
- Laboratório de Biologia Molecular de Fungos Patogênicos, Instituto de Biologia, Universidade de Brasília, UnB, Brasília, DF, Brazil
| | - Ildinete Silva Pereira
- Laboratório de Biologia Molecular de Fungos Patogênicos, Instituto de Biologia, Universidade de Brasília, UnB, Brasília, DF, Brazil
| | - Doralina do Amaral Rabello
- Laboratório de Patologia Molecular do Câncer, Área de Patologia, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, DF, Brazil
| | | | - José Roberto de Souza de Almeida Leite
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil; Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Área de Morfologia, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, DF, Brazil
| | - Durcilene Alves da Silva
- Programa de Pós-Graduação em Biotecnologia, RENORBIO, Brazil; Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil.
| |
Collapse
|
63
|
Recent Advancement in Chitosan-Based Nanoparticles for Improved Oral Bioavailability and Bioactivity of Phytochemicals: Challenges and Perspectives. Polymers (Basel) 2021; 13:polym13224036. [PMID: 34833334 PMCID: PMC8617804 DOI: 10.3390/polym13224036] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
The excellent therapeutic potential of a variety of phytochemicals in different diseases has been proven by extensive studies throughout history. However, most phytochemicals are characterized by a high molecular weight, poor aqueous solubility, limited gastrointestinal permeability, extensive pre-systemic metabolism, and poor stability in the harsh gastrointestinal milieu. Therefore, loading of these phytochemicals in biodegradable and biocompatible nanoparticles (NPs) might be an effective approach to improve their bioactivity. Different nanocarrier systems have been developed in recent decades to deliver phytochemicals. Among them, NPs based on chitosan (CS) (CS-NPs), a mucoadhesive, non-toxic, and biodegradable polysaccharide, are considered the best nanoplatform for the oral delivery of phytochemicals. This review highlights the oral delivery of natural products, i.e., phytochemicals, encapsulated in NPs prepared from a natural polymer, i.e., CS, for improved bioavailability and bioactivity. The unique properties of CS for oral delivery such as its mucoadhesiveness, non-toxicity, excellent stability in the harsh environment of the GIT, good solubility in slightly acidic and alkaline conditions, and ability to enhance intestinal permeability are discussed first, and then the outcomes of various phytochemical-loaded CS-NPs after oral administration are discussed in detail. Furthermore, different challenges associated with the oral delivery of phytochemicals with CS-NPs and future directions are also discussed.
Collapse
|
64
|
Tan Y, McClements DJ. Plant-Based Colloidal Delivery Systems for Bioactives. Molecules 2021; 26:molecules26226895. [PMID: 34833987 PMCID: PMC8625429 DOI: 10.3390/molecules26226895] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022] Open
Abstract
The supplementation of plant-based foods and beverages with bioactive agents may be an important strategy for increasing human healthiness. Numerous kinds of colloidal delivery systems have been developed to encapsulate bioactives with the goal of improving their water dispersibility, chemical stability, and bioavailability. In this review, we focus on colloidal delivery systems assembled entirely from plant-based ingredients, such as lipids, proteins, polysaccharides, phospholipids, and surfactants isolated from botanical sources. In particular, the utilization of these ingredients to create plant-based nanoemulsions, nanoliposomes, nanoparticles, and microgels is covered. The utilization of these delivery systems to encapsulate, protect, and release various kinds of bioactives is highlighted, including oil-soluble vitamins (like vitamin D), ω-3 oils, carotenoids (vitamin A precursors), curcuminoids, and polyphenols. The functionality of these delivery systems can be tailored to specific applications by careful selection of ingredients and processing operations, as this enables the composition, size, shape, internal structure, surface chemistry, and electrical characteristics of the colloidal particles to be controlled. The plant-based delivery systems discussed in this article may be useful for introducing active ingredients into the next generation of plant-based foods, meat, seafood, milk, and egg analogs. Nevertheless, there is still a need to systematically compare the functional performance of different delivery systems for specific applications to establish the most appropriate one. In addition, there is a need to test their efficacy at delivering bioavailable forms of bioactives using in vivo studies.
Collapse
Affiliation(s)
- Yunbing Tan
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA;
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou 310018, China
- Correspondence:
| |
Collapse
|
65
|
Influence of rye bran heteropolysaccharides on the physicochemical and antioxidant properties of honeydew honey microcapsules. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
66
|
Pawlaczyk M, Cegłowski M, Frański R, Kurczewska J, Schroeder G. The Electrospray (ESI) and Flowing Atmosphere-Pressure Afterglow (FAPA) Mass Spectrometry Studies of Nitrophenols (Plant Growth Stimulants) Removed Using Strong Base-Functionalized Materials. MATERIALS 2021; 14:ma14216388. [PMID: 34771912 PMCID: PMC8585366 DOI: 10.3390/ma14216388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022]
Abstract
The functional silica-based materials functionalized with a strong nitrogen base TBD (SiO2-TBD) deposited via a linker or with a basic poly(amidoamine) dendrimer containing multiple terminal amine groups -NH2 (SiO2-EDA) and functional polymers containing a strong phosphazene base (Polymer-Phosphazene) or another basic poly(amidoamine) dendrimer (PMVEAMA-PAMAM) were tested as sorbents dedicated to a mixture of nitrophenols (p-nitrophenol and 2-methoxy-5-nitrophenol), which are analogs of nitrophenols used in plant growth biostimulants. The adsorptive potential of the studied materials reached 0.102, 0.089, 0.140, and 0.074 g of the nitrophenols g−1, for SiO2-TBD, SiO2-EDA, polymer-phosphazene, and PMVEAMA-PAMAM, respectively. The sorptive efficiency of the analytes, i.e., their adsorption on the functional materials, the desorption from the obtained [(sorbent)H+ − nitrophenolates–] complexes, and interactions with the used soil, were monitored using mass spectrometry (MS) technique with electrospray (ESI) and flowing atmosphere-pressure afterglow (FAPA) ionizations, for the analysis of the aqueous solutions and the solids, respectively. The results showed that the adsorption/desorption progress is determined by the structures of the terminal basic domains anchored to the materials, which are connected with the strength of the proton exchange between the sorbents and nitrophenols. Moreover, the conducted comprehensive MS analyses, performed for both solid and aqueous samples, gave a broad insight into the interactions of the biostimulants and the presented functional materials.
Collapse
|
67
|
Chakraborty S, Dutta H. Use of nature‐derived antimicrobial substances as safe disinfectants and preservatives in food processing industries: A review. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Himjyoti Dutta
- Department of Food Technology Mizoram University Aizawl India
| |
Collapse
|
68
|
Banwo K, Olojede AO, Adesulu-Dahunsi AT, Verma DK, Thakur M, Tripathy S, Singh S, Patel AR, Gupta AK, Aguilar CN, Utama GL. Functional importance of bioactive compounds of foods with Potential Health Benefits: A review on recent trends. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101320] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
69
|
Casanova F, Pereira CF, Ribeiro AB, Freixo R, Costa E, E. Pintado M, Fernandes JC, Ramos ÓL. Novel Micro- and Nanocellulose-Based Delivery Systems for Liposoluble Compounds. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2593. [PMID: 34685034 PMCID: PMC8540299 DOI: 10.3390/nano11102593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
Poor aqueous solubility of bioactive compounds is becoming a pronounced challenge in the development of bioactive formulations. Numerous liposoluble compounds have very interesting biological activities, but their low water solubility, stability, and bioavailability restrict their applications. To overcome these limitations there is a need to use enabling delivering strategies, which often demand new carrier materials. Cellulose and its micro- and nanostructures are promising carriers with unique features. In this context, this review describes the fast-growing field of micro- and nanocellulose based delivery systems with a focus on the release of liposoluble bioactive compounds. The state of research on this field is reviewed in this article, which also covers the chemistry, preparation, properties, and applications of micro- and nanocellulose based delivery systems. Although there are promising perspectives for introducing these materials into various fields, aspects of safety and toxicity must be revealed and are discussed in this review. The impact of gastrointestinal conditions on the systems and on the bioavailability of the bioactive compounds are also addressed in this review. This article helps to unveil the whole panorama of micro- and nanocellulose as delivery systems for liposoluble compounds, showing that these represent a great promise in a wide range of applications.
Collapse
Affiliation(s)
| | - Carla F. Pereira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (F.C.); (A.B.R.); (R.F.); (E.C.); (M.E.P.); (J.C.F.)
| | | | | | | | | | | | - Óscar L. Ramos
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (F.C.); (A.B.R.); (R.F.); (E.C.); (M.E.P.); (J.C.F.)
| |
Collapse
|
70
|
Bule M, Jalalimanesh N, Bayrami Z, Baeeri M, Abdollahi M. The rise of deep learning and transformations in bioactivity prediction power of molecular modeling tools. Chem Biol Drug Des 2021; 98:954-967. [PMID: 34532977 DOI: 10.1111/cbdd.13750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/21/2020] [Accepted: 06/07/2020] [Indexed: 12/18/2022]
Abstract
The search and design for the better use of bioactive compounds are used in many experiments to best mimic compounds' functions in the human body. However, finding a cost-effective and timesaving approach is a top priority in different disciplines. Nowadays, artificial intelligence (AI) and particularly deep learning (DL) methods are widely applied to improve the precision and accuracy of models used in the drug discovery process. DL approaches have been used to provide more opportunities for a faster, efficient, cost-effective, and reliable computer-aided drug discovery. Moreover, the increasing biomedical data volume in areas, like genome sequences, medical images, protein structures, etc., has made data mining algorithms very important in finding novel compounds that could be drugs, uncovering or repurposing drugs and improving the area of genetic markers-based personalized medicine. Furthermore, deep neural networks (DNNs) have been demonstrated to outperform other techniques such as random forests and SVMs for QSAR studies and ligand-based virtual screening. Despite this, in QSAR studies, the quality of different data sources and potential experimental errors has greatly affected the accuracy of QSAR predictions. Therefore, further researches are still needed to improve the accuracy, selectivity, and sensitivity of the DL approach in building the best models of drug discovery.
Collapse
Affiliation(s)
- Mohammed Bule
- Department of Pharmacy, College of Medicine and Health Sciences, Ambo University, Ambo, Ethiopia.,Department of Medicinal Chemistry, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Jalalimanesh
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Bayrami
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
71
|
Alharbi WS, Almughem FA, Almehmady AM, Jarallah SJ, Alsharif WK, Alzahrani NM, Alshehri AA. Phytosomes as an Emerging Nanotechnology Platform for the Topical Delivery of Bioactive Phytochemicals. Pharmaceutics 2021; 13:pharmaceutics13091475. [PMID: 34575551 PMCID: PMC8465302 DOI: 10.3390/pharmaceutics13091475] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
The emergence of phytosome nanotechnology has a potential impact in the field of drug delivery and could revolutionize the current state of topical bioactive phytochemicals delivery. The main challenge facing the translation of the therapeutic activity of phytochemicals to a clinical setting is the extremely low absorption rate and poor penetration across biological barriers (i.e., the skin). Phytosomes as lipid-based nanocarriers play a crucial function in the enhancement of pharmacokinetic and pharmacodynamic properties of herbal-originated polyphenolic compounds, and make this nanotechnology a promising tool for the development of new topical formulations. The implementation of this nanosized delivery system could enhance the penetration of phytochemicals across biological barriers due to their unique physiochemical characteristics, improving their bioavailability. In this review, we provide an outlook on the current knowledge of the biological barriers of phytoconstituents topical applications. The great potential of the emerging nanotechnology in the delivery of bioactive phytochemicals is reviewed, with particular focus on phytosomes as an innovative lipid-based nanocarrier. Additionally, we compared phytosomes with liposomes as the gold standard of lipid-based nanocarriers for the topical delivery of phytochemicals. Finally, the advantages of phytosomes in topical applications are discussed.
Collapse
Affiliation(s)
- Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia; (W.S.A.); (A.M.A.)
| | - Fahad A. Almughem
- National Centre for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (S.J.J.); (W.K.A.); (N.M.A.)
| | - Alshaimaa M. Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia; (W.S.A.); (A.M.A.)
| | - Somayah J. Jarallah
- National Centre for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (S.J.J.); (W.K.A.); (N.M.A.)
| | - Wijdan K. Alsharif
- National Centre for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (S.J.J.); (W.K.A.); (N.M.A.)
| | - Nouf M. Alzahrani
- National Centre for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (S.J.J.); (W.K.A.); (N.M.A.)
| | - Abdullah A. Alshehri
- National Centre for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (S.J.J.); (W.K.A.); (N.M.A.)
- Correspondence: ; Tel.: +966-509-896-863
| |
Collapse
|
72
|
Reque PM, Brandelli A. Encapsulation of probiotics and nutraceuticals: Applications in functional food industry. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
73
|
Akcicek A, Bozkurt F, Akgül C, Karasu S. Encapsulation of Olive Pomace Extract in Rocket Seed Gum and Chia Seed Gum Nanoparticles: Characterization, Antioxidant Activity and Oxidative Stability. Foods 2021; 10:foods10081735. [PMID: 34441513 PMCID: PMC8393993 DOI: 10.3390/foods10081735] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 12/30/2022] Open
Abstract
The aim of this study was to determine the potential use of rocket seed and chia seed gum as wall materials, to encapsulate and to prevent degradation of olive pomace extract (OPE) in polymeric nanoparticles, and to characterize olive pomace extract-loaded rocket seed gum nanoparticles (RSGNPs) and chia seed gum nanoparticles (CSGNPs). The phenolic profile of olive pomace extract and physicochemical properties of olive pomace, rocket seed gum (RSG), and chia seed gum (CSG) were determined. The characterization of the nanoparticles was performed using particle size and zeta potential measurement, differential scanning calorimeter (DSC), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), encapsulation efficiency (EE%), in vitro release, and antioxidant activity analyses. Nanoparticles were used to form oil in water Pickering emulsions and were evaluated by oxitest. The RSGNPs and CSGNPs showed spherical shape in irregular form, had an average size 318 ± 3.11 nm and 490 ± 8.67 nm, and zeta potential values of −22.6 ± 1.23 and −29.9 ± 2.57, 25 respectively. The encapsulation efficiency of the RSGNPs and CSGNPs were found to be 67.01 ± 4.29% and 82.86 ± 4.13%, respectively. The OPE-RSGNP and OPE-CSGNP presented peaks at the 1248 cm−1 and 1350 cm−1 which represented that C-O groups and deformation of OH, respectively, shifted compared to the OPE (1252.53 cm−1 and 1394.69 cm−1). The shift in wave numbers showed interactions of a phenolic compound of OPE within the RSG and CSG, respectively. In vitro release study showed that the encapsulation of OPE in RSGNPs and CSGNPs led to a delay of the OPE released in physiological pH. The total phenolic content and antioxidant capacity of RSGNPs and CSGNPs increased when the OPE-loaded RSGNPs and CSGNPs were formed. The encapsulation of OPE in RSGNPs and CSGNPs and the IP values of the oil in water Pickering emulsions containing OPE-RSGNPs and OPE-CSGNPs were higher than OPE, proving that OPE-loaded RSGNPs and CSGNPs significantly increased oxidative stability of Pickering emulsions. These results suggest that the RSG and CSG could have the potential to be utilized as wall materials for nanoencapsulation and prevent degradation of cold-pressed olive pomace phenolic extract.
Collapse
Affiliation(s)
- Alican Akcicek
- Department of Food Engineering, Davutpasa Campus, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey; (A.A.); (F.B.); (C.A.)
- Department of Gastronomy and Culinary Arts, Faculty of Tourism, Kocaeli University, Kocaeli 41080, Turkey
| | - Fatih Bozkurt
- Department of Food Engineering, Davutpasa Campus, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey; (A.A.); (F.B.); (C.A.)
- Department of Food Engineering, Engineering and Architecture Faculty, Muş Alparslan University, Muş 49250, Turkey
| | - Cansu Akgül
- Department of Food Engineering, Davutpasa Campus, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey; (A.A.); (F.B.); (C.A.)
- Food Quality Control and Analysis Program, Anadolu BİL Vocational High School, Istanbul Aydın University, Istanbul 34295, Turkey
| | - Salih Karasu
- Department of Food Engineering, Davutpasa Campus, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey; (A.A.); (F.B.); (C.A.)
- Correspondence: ; Tel.: +90-212-383-46-23
| |
Collapse
|
74
|
Alfei S, Schito AM, Zuccari G. Nanotechnological Manipulation of Nutraceuticals and Phytochemicals for Healthy Purposes: Established Advantages vs. Still Undefined Risks. Polymers (Basel) 2021; 13:2262. [PMID: 34301020 PMCID: PMC8309409 DOI: 10.3390/polym13142262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Numerous foods, plants, and their bioactive constituents (BACs), named nutraceuticals and phytochemicals by experts, have shown many beneficial effects including antifungal, antiviral, anti-inflammatory, antibacterial, antiulcer, anti-cholesterol, hypoglycemic, immunomodulatory, and antioxidant activities. Producers, consumers, and the market of food- and plant-related compounds are increasingly attracted by health-promoting foods and plants, thus requiring a wider and more fruitful exploitation of the healthy properties of their BACs. The demand for new BACs and for the development of novel functional foods and BACs-based food additives is pressing from various sectors. Unfortunately, low stability, poor water solubility, opsonization, and fast metabolism in vivo hinder the effective exploitation of the potential of BACs. To overcome these issues, researchers have engineered nanomaterials, obtaining food-grade delivery systems, and edible food- and plant-related nanoparticles (NPs) acting as color, flavor, and preservative additives and natural therapeutics. Here, we have reviewed the nanotechnological transformations of several BACs implemented to increase their bioavailability, to mask any unpleasant taste and flavors, to be included as active ingredients in food or food packaging, to improve food appearance, quality, and resistance to deterioration due to storage. The pending issue regarding the possible toxic effect of NPs, whose knowledge is still limited, has also been discussed.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy;
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV 6, I-16132 Genoa, Italy;
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy;
| |
Collapse
|
75
|
Vilas-Boas AA, Pintado M, Oliveira ALS. Natural Bioactive Compounds from Food Waste: Toxicity and Safety Concerns. Foods 2021; 10:1564. [PMID: 34359434 PMCID: PMC8304211 DOI: 10.3390/foods10071564] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Although synthetic bioactive compounds are approved in many countries for food applications, they are becoming less and less welcome by consumers. Therefore, there has been an increasing interest in replacing these synthetic compounds by natural bioactive compounds. These natural compounds can be used as food additives to maintain the food quality, food safety and appeal, and as food supplements or nutraceuticals to correct nutritional deficiencies, maintain a suitable intake of nutrients, or to support physiological functions, respectively. Recent studies reveal that numerous food wastes, particularly fruit and vegetables byproducts, are a good source of bioactive compounds that can be extracted and reintroduced into the food chain as natural food additives or in food matrices for obtaining nutraceuticals and functional foods. This review addresses general questions concerning the use of fruit and vegetables byproducts as new sources of natural bioactive compounds that are being addressed to foods as natural additives and supplements. Those bioactive compounds must follow the legal requirements and evaluations to assess the risks for human health and their toxicity must be considered before being launched into the market. To overcome the potential health risk while increasing the biological activity, stability and biodistribution of the supplements' technological alternatives have been studied such as encapsulation of bioactive compounds into micro or nanoparticles or nanoemulsions. This will allow enhancing the stability and release along the gastrointestinal tract in a controlled manner into the specific tissues. This review summarizes the valorization path that a bioactive compound recovered from an agro-food waste can face from the moment their potentialities are exhibited until it reaches the final consumer and the safety and toxicity challenges, they may overcome.
Collapse
Affiliation(s)
| | | | - Ana L. S. Oliveira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal; (A.A.V.-B.); (M.P.)
| |
Collapse
|
76
|
Rohani Shirvan A, Hemmatinejad N, Bahrami SH, Bashari A. Fabrication of multifunctional mucoadhesive buccal patch for drug delivery applications. J Biomed Mater Res A 2021; 109:2640-2656. [PMID: 34190400 DOI: 10.1002/jbm.a.37257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/08/2021] [Accepted: 06/17/2021] [Indexed: 01/20/2023]
Abstract
Mucoadhesive buccal patch is a promising dosage form for a successful oral drug delivery, which provides unique advantages for various applications such as treatment of periodontal disease and postdental surgery disorders. The aim of this study is to synthesize a novel multifunctional mucoadhesive buccal patch in a multilayer reservoir design for therapeutic applications. The patches were fabricated through simultaneous electrospinning of chitosan/poly(vinylalcohol) (PVA)/ibuprofen and electrospraying of phenylalanine amino acid nanotubes (PhNTs) containing metronidazole into the electrospun mats through a layer-by-layer process. An electrospun poly(caprolactone) (PCL) was used as an impermeable backing layer to protect the mucoadhesive component from tongue movement and drug loss. Buccal patches were characterized using scanning electron microscopy (SEM) and field emission scanning electron microscopy (FESEM) and also evaluated in terms of physicomechanical parameters such as pH, weight, thickness, tensile strength, folding endurance, and mucoadhesive properties. The swelling index of the patches was examined with respect to the PVA/chitosan ratio. The effect of genipin addition to the electrospinning solution was also studied on mucoadhesive and swelling properties. The cell viability of buccal patches was assessed by methylthiazolydiphenyl-tetrazolium bromide test on L929 fibroblast cell line. The patch with an optimal amount of mucoadhesive polymers (PVA/chitosan 80:20) and crosslinking agent (0.05 g) indicated an ideal hemostatic activity along with antibacterial properties against Streptococcus mutans bacteria. The synthesized multifunctional mucoadhesive patch with a novel composition and design has a great potential for oral therapeutic applications.
Collapse
Affiliation(s)
| | - Nahid Hemmatinejad
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - S Hajir Bahrami
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Azadeh Bashari
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
77
|
Singh A, Tiwari S, Pandey J, Lata C, Singh IK. Role of nanoparticles in crop improvement and abiotic stress management. J Biotechnol 2021; 337:57-70. [PMID: 34175328 DOI: 10.1016/j.jbiotec.2021.06.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022]
Abstract
Nanoparticles (NPs) possess specific physical and chemical features and they are capable enough to cross cellular barriers and show their effect on living organisms. Their capability to cross cellular barriers have been noticed for their application not only in medicine, electronics, chemical and physical sciences, but also in agriculture. In agriculture, nanotechnology can help to improve the growth and crop productivity by the use of various nanoscale products such as nanofertilizers, nanoherbicides, nanofungicides, nanopesticides etc. An optimized concentration of NPs can be administered by incubation of seeds, roots, pollen, isolated cells and protoplast, foliar spraying, irrigation with NPs, direct injection, hydroponic treatment and delivery by biolistics. Once NPs come in contact with plant cells, they are uptaken by plasmodesmatal or endocytosed pathways and translocated via apoplastic and / symplastic routes. Once beneficial NPs reach different parts of plants, they boost photosynthetic rate, biomass measure, chlorophyll content, sugar level, buildup of osmolytes and antioxidants. NPs also improve nitrogen metabolism, enhance chlorophyll as well as protein content and upregulate the expression of abiotic- and biotic stress-related genes. Herein, we review the state of art of different modes of application, uptake, transport and prospective beneficial role of NPs in stress management and crop improvement.
Collapse
Affiliation(s)
- Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India
| | - Shalini Tiwari
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Jyotsna Pandey
- Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India
| | - Charu Lata
- CSIR-National Institute of Science Communication and Information Resources, 14 Satsang Vihar Marg, New Delhi, 110067, India.
| | - Indrakant K Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India; i4 Centre, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India.
| |
Collapse
|
78
|
Kyriakoudi A, Spanidi E, Mourtzinos I, Gardikis K. Innovative Delivery Systems Loaded with Plant Bioactive Ingredients: Formulation Approaches and Applications. PLANTS (BASEL, SWITZERLAND) 2021; 10:1238. [PMID: 34207139 PMCID: PMC8234206 DOI: 10.3390/plants10061238] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
Plants constitute a rich source of diverse classes of valuable phytochemicals (e.g., phenolic acids, flavonoids, carotenoids, alkaloids) with proven biological activity (e.g., antioxidant, anti-inflammatory, antimicrobial, etc.). However, factors such as low stability, poor solubility and bioavailability limit their food, cosmetics and pharmaceutical applications. In this regard, a wide range of delivery systems have been developed to increase the stability of plant-derived bioactive compounds upon processing, storage or under gastrointestinal digestion conditions, to enhance their solubility, to mask undesirable flavors as well as to efficiently deliver them to the target tissues where they can exert their biological activity and promote human health. In the present review, the latest advances regarding the design of innovative delivery systems for pure plant bioactive compounds, extracts or essential oils, in order to overcome the above-mentioned challenges, are presented. Moreover, a broad spectrum of applications along with future trends are critically discussed.
Collapse
Affiliation(s)
- Anastasia Kyriakoudi
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.M.)
| | - Eleni Spanidi
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece;
| | - Ioannis Mourtzinos
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.M.)
| | | |
Collapse
|
79
|
Miyazawa T, Itaya M, Burdeos GC, Nakagawa K, Miyazawa T. A Critical Review of the Use of Surfactant-Coated Nanoparticles in Nanomedicine and Food Nanotechnology. Int J Nanomedicine 2021; 16:3937-3999. [PMID: 34140768 PMCID: PMC8203100 DOI: 10.2147/ijn.s298606] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Surfactants, whose existence has been recognized as early as 2800 BC, have had a long history with the development of human civilization. With the rapid development of nanotechnology in the latter half of the 20th century, breakthroughs in nanomedicine and food nanotechnology using nanoparticles have been remarkable, and new applications have been developed. The technology of surfactant-coated nanoparticles, which provides new functions to nanoparticles for use in the fields of nanomedicine and food nanotechnology, is attracting a lot of attention in the fields of basic research and industry. This review systematically describes these "surfactant-coated nanoparticles" through various sections in order: 1) surfactants, 2) surfactant-coated nanoparticles, application of surfactant-coated nanoparticles to 3) nanomedicine, and 4) food nanotechnology. Furthermore, current progress and problems of the technology using surfactant-coated nanoparticles through recent research reports have been discussed.
Collapse
Affiliation(s)
- Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| | - Mayuko Itaya
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Gregor C Burdeos
- Institute for Animal Nutrition and Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
80
|
Kaur R, Kaur L. Encapsulated natural antimicrobials: A promising way to reduce microbial growth in different food systems. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107678] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
81
|
Sezgin-Bayindir Z, Losada-Barreiro S, Bravo-Díaz C, Sova M, Kristl J, Saso L. Nanotechnology-Based Drug Delivery to Improve the Therapeutic Benefits of NRF2 Modulators in Cancer Therapy. Antioxidants (Basel) 2021; 10:685. [PMID: 33925605 PMCID: PMC8145905 DOI: 10.3390/antiox10050685] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
The disadvantages of conventional anticancer drugs, such as their low bioavailability, poor targeting efficacy, and serious side effects, have led to the discovery of new therapeutic agents and potential drug delivery systems. In particular, the introduction of nano-sized drug delivery systems (NDDSs) has opened new horizons for effective cancer treatment. These are considered potential systems that provide deep tissue penetration and specific drug targeting. On the other hand, nuclear factor erythroid 2-related factor 2 (NRF2)-based anticancer treatment approaches have attracted tremendous attention and produced encouraging results. However, the lack of effective formulation strategies is one of the factors that hinder the clinical application of NRF2 modulators. In this review, we initially focus on the critical role of NRF2 in cancer cells and NRF2-based anticancer treatment. Subsequently, we review the preparation and characterization of NDDSs encapsulating NRF2 modulators and discuss their potential for cancer therapy.
Collapse
Affiliation(s)
- Zerrin Sezgin-Bayindir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
| | - Sonia Losada-Barreiro
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
- Department of Physical Chemistry, Faculty of Chemistry, University of Vigo, 36200 Vigo, Spain;
| | - Carlos Bravo-Díaz
- Department of Physical Chemistry, Faculty of Chemistry, University of Vigo, 36200 Vigo, Spain;
| | - Matej Sova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| | - Julijana Kristl
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
82
|
Ramli N, Ali N, Hamzah S, Yatim N. Physicochemical characteristics of liposome encapsulation of stingless bees' propolis. Heliyon 2021; 7:e06649. [PMID: 33898810 PMCID: PMC8060604 DOI: 10.1016/j.heliyon.2021.e06649] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/02/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Nutraceuticals from natural sources have shown potential new leads in functional food products. Despite a broad range of health-promoting effects, these compounds are easily oxidized and unstable, making their utilization as nutraceutical ingredients limited. In this study, the encapsulated stingless bees' propolis in liposome was prepared using soy phosphatidylcholine and cholesterol by thin-film hydration technique. Three different formulations of phosphatidylcholine composition and cholesterol prepared by weight ratio was conducted to extract high propolis encapsulation. Physicochemical changes in the result of the encapsulation process are briefly discussed using scanning electron microscopy and Fourier Transform Infrared Spectroscopy. A dynamic light-scattering instrument was used to measure the hydrodynamic diameter, polydispersity index, and zeta potential. The increment of the liposomal size was observed when the concentration of extract loaded increased. In comparing three formulations, F2 (8:1 w/w) presented the best formulation as it yielded small nanoparticles of 275.9 nm with high encapsulation efficiency (66.9%). F1 (6:1 w/w) formed large particles of liposomes with 422.8 nm, while F3 (10:1 w/w) showed low encapsulation efficiency with (by) 38.7%. The liposome encapsulation will provide an effective nanocarrier system to protect and deliver the flavonoids extracted from stingless bees' propolis.
Collapse
Affiliation(s)
- N.A. Ramli
- Faculty of Chemical & Process Engineering Technology, Universiti Malaysia Pahang, 26300, Kuantan, Pahang, Malaysia
| | - N. Ali
- Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - S. Hamzah
- Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - N.I. Yatim
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
83
|
Razavi R, Kenari RE, Farmani J, Jahanshahi M. Preparation of double-layer nanoemulsions with controlled release of glucose as prevention of hypoglycemia in diabetic patients. Biomed Pharmacother 2021; 138:111464. [PMID: 33725590 DOI: 10.1016/j.biopha.2021.111464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 11/24/2022] Open
Abstract
Encapsulation systems promote targeted delivery to the gastrointestinal tract. An oil-in-water (O/W) nanoemulsion was covered using new delivery system composition based on zein and sodium alginate. The impact of aqueous phase (distilled water and cooked pumpkin puree), pH (2-4), and zein-alginate concentration solution (0.05-0.20% w/v) was investigated on particle size, zeta potential, incorporation efficiency (IE), stability, viscosity, and glucose release from single-layer (SLN) and double-layer nanoemulsion (DLN). DLNs showed a larger droplet size and zeta potential. The slow gradual release of glucose proved effective application of zein/alginate as delivery system for nanoemulsion. Moreover, cooked pumpkin and 0.12% of zein exhibited more delayed release of glucose than distilled water as an aqueous phase of DLN and as a delivery system respectively. Up-to-49% IE, up-to-50% stability in a period of 7-day storage, and controlled-release glucose for 240 min under in vitro gastrointestinal conditions were obtained in DLN. The results of the current study revealed that SLN covered by zein at 0.12% of concentration can be an ideal delivery system composition for patients with hypoglycemia and clinical problems.
Collapse
Affiliation(s)
- Razie Razavi
- Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Sari, Mazandaran 48181-68984, Iran.
| | - Reza Esmaeilzadeh Kenari
- Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Sari, Mazandaran 48181-68984, Iran.
| | - Jamshid Farmani
- Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Sari, Mazandaran 48181-68984, Iran.
| | - Mohsen Jahanshahi
- Department of Biotechnology, Babol Noshirvani University of Technology, Babol, Mazandaran 47148-71167, Iran.
| |
Collapse
|
84
|
Darmadi J, Batubara RR, Himawan S, Azizah NN, Audah HK, Arsianti A, Kurniawaty E, Ismail IS, Batubara I, Audah KA. Evaluation of Indonesian mangrove Xylocarpus granatum leaves ethyl acetate extract as potential anticancer drug. Sci Rep 2021; 11:6080. [PMID: 33727582 PMCID: PMC7971038 DOI: 10.1038/s41598-021-85383-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/26/2021] [Indexed: 02/08/2023] Open
Abstract
Local Xylocarpus granatum leaves were extracted by ethyl acetate solvent and characterized by TLC fingerprinting and 2D 1H NMR spectroscopy to contain phenolic compounds as well as several organic and amino acids as metabolic byproducts, such as succinic acid and acetic acid. Traces of flavonoids and other non-categorized phenolic compounds exhibited intermediate antioxidant activity (antioxidant IC50 84.93 ppm) as well as anticancer activity against HeLa, T47D, and HT-29 cell lines; which the latter being most effective against HT-29 with Fraction 5 contained the strongest activity (anticancer IC50 23.12 ppm). Extracts also behaved as a natural growth factor and nonlethal towards brine shrimps as well as human adipose-derived stem cell hADSC due to antioxidative properties. A stability test was performed to examine how storage conditions factored in bioactivity and phytochemical structure. Extracts were compared with several studies about X. granatum leaves extracts to evaluate how ethnogeography and ecosystem factored on biologically active compounds. Further research on anticancer or antioxidant mechanism on cancer cells is needed to determine whether the extract is suitable as a candidate for an anticancer drug.
Collapse
Affiliation(s)
- Jason Darmadi
- Department of Biomedical Engineering, Swiss German University, 15143, Tangerang, Indonesia
| | | | - Sandiego Himawan
- Department of Biomedical Engineering, Swiss German University, 15143, Tangerang, Indonesia
| | - Norma Nur Azizah
- Drug Development Research Center, IMERI, University of Indonesia, 10430, Jakarta, Indonesia
| | | | - Ade Arsianti
- Drug Development Research Center, IMERI, University of Indonesia, 10430, Jakarta, Indonesia
- Department of Medical Chemistry, University of Indonesia, 10430, Jakarta, Indonesia
| | - Evi Kurniawaty
- Faculty of Medicine, University of Lampung, 35145, Bandar Lampung, Indonesia
| | | | - Irmanida Batubara
- Biopharmaca Tropica Research Center, IPB University, 16680, Bogor, Indonesia
- Department of Chemistry, IPB University, 16680, Bogor, Indonesia
| | - Kholis Abdurachim Audah
- Department of Biomedical Engineering, Swiss German University, 15143, Tangerang, Indonesia.
- Directorate of Academic Research and Community Service, Swiss German University, 15143, Tangerang, Indonesia.
| |
Collapse
|
85
|
Curcumin-Polyallyhydrocarbon Nanocapsules Potently Suppress 1,2-Dimethylhydrazine-Induced Colorectal Cancer in Mice by Inhibiting Wnt/β-Catenin Pathway. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00842-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
86
|
Making Concentrated Pterostilbene Highly Bioavailable in Pressure Processed Phospholipid Nanoemulsion. Processes (Basel) 2021. [DOI: 10.3390/pr9020294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Pterostilbene, a dimethylether analog of resveratrol, has been found to have potent biological activity. However, the bioavailability of pterostilbene in the biological system is limited due to its poor solubility in an aqueous environment. A nanoemulsion system was designed for this purpose. Lecithin-based nanoemulsion was formed after 3 cycles through a high-pressure homogenizer at 500 psi. The rheological properties and particle size were measured using dynamic light scattering and a viscometer. The storage stabilities of the prepared formulation were determined based on its ability to maintain its particle size and loading concentration. According to the experimental results, the lecithin-based nanoemulsion system contained approximately 9.5% of pterostilbene. Over the 28-day stability test, the particle size, zeta potential, and encapsulation of pterostilbene in the nanoemulsion did not change significantly, indicating good storage stability. The positive effect of the prepared nanoemulsion system on bioavailability was studied and confirmed using in vitro lipolysis and a caco-2 monolayer model.
Collapse
|
87
|
Bioactive potential of yak's milk and its products; pathophysiological and molecular role as an immune booster in antibiotic resistance. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
88
|
Characterization and Inhibitory Effects of Magnetic Iron Oxide Nanoparticles Synthesized from Plant Extracts on HeLa Cells. Int J Biomater 2021; 2020:2630735. [PMID: 33488718 PMCID: PMC7787869 DOI: 10.1155/2020/2630735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/17/2020] [Accepted: 11/26/2020] [Indexed: 11/17/2022] Open
Abstract
Magnetic Fe3O4 nanoparticles were synthesized from maize leaves and plantain peels extract mediators. Particles were characterized, and the inhibitory effects were studied on HeLa cells in vitro using cyclic voltammetry (CV). Voltammograms from the CV show that Fe3O4 NPs interaction with HeLa cells affected their electrochemical behavior. The nanoparticles formed with higher Fe3+/Fe2+ molar ratio (2.8 : 1) resulted in smaller crystallite sizes compared to those formed with lower Fe3+/Fe2+ molar ratio (1.4 : 1). The particles with the smallest crystallite size showed higher anodic peak currents, whereas the larger crystallite sizes resulted in lower anodic peak currents. The peak currents relate to cell inhibition and are confirmed by the half-maximum inhibitory concentration (IC50). The findings show that the particles have a different inhibitory mechanism on HeLa cells ion transfer and are promising to be further exploited for cancer treatment.
Collapse
|
89
|
Ahmad R, Srivastava S, Ghosh S, Khare SK. Phytochemical delivery through nanocarriers: a review. Colloids Surf B Biointerfaces 2021; 197:111389. [PMID: 33075659 DOI: 10.1016/j.colsurfb.2020.111389] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/17/2020] [Accepted: 09/24/2020] [Indexed: 01/18/2023]
Abstract
In recent times, phytochemicals encapsulated or conjugated with nanocarriers for delivery to the specific sites have gained considerable research interest. Phytochemicals are mostly plant secondary metabolites which reported to be beneficial for human health and in disease theraphy. However, these compound are large size and polar nature of these compounds, make it difficult to cross the blood-brain barrier (BBB), endothelial lining of blood vessels, gastrointestinal tract and mucosa. Moreover, they are enzymatically degraded in the gastrointestinal tract. Therefore, encapsulation or conjugation of these compounds with nanocrriers could be an alternate way to enhance their bioefficacy by influencing their gastrointestinal stability, rate of absorption and dispersion. This review presents an overview of nanocarriers alternatives which improves therapeutic value and avoid toxicity, by releasing bioactive compounds specifically at target tissues with enhanced stability and bioavailability. Future investigations may emphasize on deciphering the structural changes in nanocarriers during digestion and absorption, the difference between in-vitro and in-vivo digestion simulations, and impact of nanocarriers on the metabolism of phytochemicals.
Collapse
Affiliation(s)
- Razi Ahmad
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sukriti Srivastava
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Shubhrima Ghosh
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
90
|
Ibrahim EA, Moawed FSM, Moustafa EM. Suppression of inflammatory cascades via novel cinnamic acid nanoparticles in acute hepatitis rat model. Arch Biochem Biophys 2020; 696:108658. [PMID: 33144082 DOI: 10.1016/j.abb.2020.108658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/10/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022]
Abstract
Hepatitis was characterized by extreme inflammation and hepatocellular damage. Therefore, the current study aimed to gain insights into the modulation role of Cinnamic acid nanoparticles (CANPs) against acute hepatitis induced by d-Galactosamine and gamma radiation exposure (D-Gal/radiation) in the rat model and to suggest the implied molecular mechanism of CANPs. Acute hepatitis seriousness and the serum enzyme activities of ALT, AST, and ALP have been diminished upon oral administration of CANPs. Besides, the hepatic tissue levels of malondialdehyde (MDA) and nitric oxide (NO) have been significantly decreased, and the total antioxidant activity (TAO) depletion was extremely restored. Furthermore, the reduction of hepatic damage caused by pretreatment with CANPs was accompanied by significant suppression in the levels of hepatic proinflammatory cytokines (TNF-α, IL-1β, and IL-18), NF-κB, NLRP3, caspase-1 and proapoptotic protein BAX whereas anti-apoptotic protein Bcl-2 level significantly elevated as compared with D-Gal/radiation-induced acute hepatitis (AH) group. Also, CANPs suppress the D-Gal/radiation-induced IL-1β, IL-18, and ASK1 mRNA gene expression and the protein expression of TLR4 and MyD88 in the hepatic tissue. These biochemical parameters are confirmed by histological examination of the liver tissues. The present results indicated that CANPs can protect the hepatic cells from damage by both its anti-inflammatory and antioxidant influence as well as by modulating oxidation cellular pathways that have contributed to the acute severity of hepatitis. Also, CANPs is capable of suppressing apoptosis. Consequently, Nanoparticles of Cinnamic acid have the medicinal ability to protect the liver from acute hepatitis.
Collapse
Affiliation(s)
- Ehab A Ibrahim
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Fatma S M Moawed
- Health Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Enas M Moustafa
- Radiation Biology, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
91
|
Bioavailability and Bioactivities of Polyphenols Eco Extracts from Coffee Grounds after In Vitro Digestion. Foods 2020; 9:foods9091281. [PMID: 32932599 PMCID: PMC7555697 DOI: 10.3390/foods9091281] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Coffee grounds are a valuable source of bioactive compounds. In Romania, most of the amount obtained is lost through non-recovery; the rest is occasionally used as organic fertilizer. The coffee grounds were selected according to the roasting degree: blonde roasted (BR), medium roasted (MR), and dark roasted (DR). The study aimed to evaluate three extracts, obtained with a mixture of ethanol/water/acetic acid (50/49.5/0.5), depending on the roasting degree. The majority phenolic component, the antioxidant, and anti-inflammatory effect, as well as the role that gastrointestinal transit had on the bioavailability of bioactive compounds were determined. Chlorogenic acid was inversely proportional to the roasting degree. BR showed the best correlation between antioxidant and anti-inflammatory activities in vitro/in vivo. The antiproliferative capacity of the extracts determined an inhibitory effect on the tumor cells. Antimicrobial activities, relevant in the control of type 2 diabetes, were exerted through the inhibition of microbial strains (Escherichia coli). Following gastric digestion, BR demonstrated a maximum loss of 20% in the stomach. The recovery of coffee grounds depended on the pattern of functional compounds and the bioavailability of the main component, chlorogenic acid.
Collapse
|
92
|
Tabassam Q, Mehmood T, Raza AR, Ullah A, Saeed F, Anjum FM. Synthesis, Characterization and Anti-Cancer Therapeutic Potential of Withanolide-A with 20nm sAuNPs Conjugates Against SKBR3 Breast Cancer Cell Line. Int J Nanomedicine 2020; 15:6649-6658. [PMID: 32982224 PMCID: PMC7498930 DOI: 10.2147/ijn.s258528] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Background Nanotechnology is gaining emerging interest in advanced drug discovery therapeutics due to their tremendous properties including enhanced delivery of therapeutic payload, extensive surface to volume ratio, high permeability, retention behaviors, etc. The gold nanoparticles (AuNPs) are favored due to their advanced features, such as biogenic, tunable physiochemical response, ease in synthesis, and wide range of biomedical applications. The phytochemicals have been focused to design Au nano-carrier-based conjugation for active-targeting drug delivery due to their nano conjugation ability. Aim The present study describes the facile synthesis of 20nm spherical AuNPs and their conjugation with reported anti-cancer phytocompound Withanolide-A (1). Methods The 20nm sAuNPs were synthesized chemically and characterized their phytochemical gold nanoconjugates through UV-visible spectroscopy, dynamic light scattering (DLS) and transmission electron microscopy (TEM) imaging techniques. The anti-cancer therapeutic potentials were tested with both nanoconjugates and pure WithanolideA (1) by using SKBR3 breast cancer cells line. Results The synthesized sAuNPs showed significant conjugation with Withanolide-A and showed stability. Furthermore, these Au nanoconjugates with Withanolide-A (1) significantly induce blockage of SKBR3 cell growth at half maximal active concentration that compared to pure Withanolide-A (1). Conclusion Our findings provide a foundation to further progress how they can overcome cancer drug resistance by conjugating active drugs in combination with AuNPs through optimizing the effective drug concentration and removing the surface barrier.
Collapse
Affiliation(s)
- Qudsia Tabassam
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Tahir Mehmood
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan.,Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences-UVAS, Lahore, Pakistan
| | - Abdul Rauf Raza
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Azmat Ullah
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Sciences-UVAS, Lahore, Pakistan
| | - Farhan Saeed
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | | |
Collapse
|
93
|
Manca ML, Casula E, Marongiu F, Bacchetta G, Sarais G, Zaru M, Escribano-Ferrer E, Peris JE, Usach I, Fais S, Scano A, Orrù G, Maroun RG, Fadda AM, Manconi M. From waste to health: sustainable exploitation of grape pomace seed extract to manufacture antioxidant, regenerative and prebiotic nanovesicles within circular economy. Sci Rep 2020; 10:14184. [PMID: 32843707 PMCID: PMC7447760 DOI: 10.1038/s41598-020-71191-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023] Open
Abstract
Pomace seed extract loaded vesicles were prepared as promising technological and green solution to exploit agri-food wastes and by-products, and develop high value-added products for human health. An antioxidant extract rich in bioactive compounds (epicatechins, catechin, gallic acid, quercetin and procynidins) was obtained from the seeds isolated from the pomace of Cannonau red grape cultivar. The extract was incorporated into phospholipid vesicles ad hoc formulated for intestinal delivery, by combining them, for the first time, whit a maltodextrin (Glucidex). Glucidex-transfersomes, glucidex-hyalurosomes and glucidex-hyalutransferomes were prepared, characterized and tested. Glucidex-liposomes were used as reference. All vesicles were small in size (~ 150 nm), homogeneously dispersed and negatively charged. Glucidex-transfersomes and especially glucidex-hyalutransfersomes disclosed an unexpected resistance to acidic pH and high ionic strength, as they maintained their physico-chemical properties (size and size distribution) after dilution at pH 1.2 simulating the harsh gastric conditions. Vesicles were highly biocompatible and able to counteract the oxidative damages induced in Caco-2 cells by using hydrogen peroxide. Moreover, they promoted the formation of Lactobacillus reuteri biofilm acting as prebiotic formulation. Overall results suggest the potential of glucidex-hyalutransfersomes as food supplements for the treatment of intestinal disorders.
Collapse
Affiliation(s)
- Maria Letizia Manca
- Section of Pharmaceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy.
| | - Eleonora Casula
- Section of Pharmaceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | - Francesca Marongiu
- Section of Pharmaceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | - Gianluigi Bacchetta
- Section of Pharmaceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | - Giorgia Sarais
- Section of Pharmaceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | - Marco Zaru
- Icnoderm Srl, Sardegna Ricerche Ed. 5, Pula, 09010, Cagliari, Italy
| | - Elvira Escribano-Ferrer
- Biopharmaceutics and Pharmacokinetics Unit, Institute for Nanoscience and Nanotechnology, University of Barcelona, Barcelona, Spain
| | - José Esteban Peris
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, 46100, Valencia, Spain
| | - Iris Usach
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, 46100, Valencia, Spain
| | - Sara Fais
- Department of Surgical Science, Molecular Biology Service Lab (MBS), University of Cagliari, Via Ospedale 40, 09124, Cagliari, Italy
| | - Alessandra Scano
- Department of Surgical Science, Molecular Biology Service Lab (MBS), University of Cagliari, Via Ospedale 40, 09124, Cagliari, Italy
| | - Germano Orrù
- Department of Surgical Science, Molecular Biology Service Lab (MBS), University of Cagliari, Via Ospedale 40, 09124, Cagliari, Italy
| | - Richard G Maroun
- Centre d'Analyses et de Recherche, UR GPF, Laboratoire CTA, Faculté Des Sciences, Université Saint-Joseph, B.P. 11-514 Riad El Solh, Beirut, 1107 2050, Lebanon
| | - Anna Maria Fadda
- Section of Pharmaceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | - Maria Manconi
- Section of Pharmaceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| |
Collapse
|
94
|
Witika BA, Makoni PA, Matafwali SK, Chabalenge B, Mwila C, Kalungia AC, Nkanga CI, Bapolisi AM, Walker RB. Biocompatibility of Biomaterials for Nanoencapsulation: Current Approaches. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1649. [PMID: 32842562 PMCID: PMC7557593 DOI: 10.3390/nano10091649] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/05/2020] [Accepted: 08/09/2020] [Indexed: 12/12/2022]
Abstract
Nanoencapsulation is an approach to circumvent shortcomings such as reduced bioavailability, undesirable side effects, frequent dosing and unpleasant organoleptic properties of conventional drug delivery systems. The process of nanoencapsulation involves the use of biomaterials such as surfactants and/or polymers, often in combination with charge inducers and/or ligands for targeting. The biomaterials selected for nanoencapsulation processes must be as biocompatible as possible. The type(s) of biomaterials used for different nanoencapsulation approaches are highlighted and their use and applicability with regard to haemo- and, histocompatibility, cytotoxicity, genotoxicity and carcinogenesis are discussed.
Collapse
Affiliation(s)
- Bwalya A. Witika
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (B.A.W.); (P.A.M.)
| | - Pedzisai A. Makoni
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (B.A.W.); (P.A.M.)
| | - Scott K. Matafwali
- Department of Basic Sciences, School of Medicine, Copperbelt University, Ndola 10101, Zambia;
| | - Billy Chabalenge
- Department of Market Authorization, Zambia Medicines Regulatory Authority, Lusaka 10101, Zambia;
| | - Chiluba Mwila
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia; (C.M.); (A.C.K.)
| | - Aubrey C. Kalungia
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia; (C.M.); (A.C.K.)
| | - Christian I. Nkanga
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, P.O. Box 212, Kinshasa XI, Democratic Republic of the Congo;
| | - Alain M. Bapolisi
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda 6140, South Africa;
| | - Roderick B. Walker
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (B.A.W.); (P.A.M.)
| |
Collapse
|
95
|
Ninfali P, Antonelli A, Magnani M, Scarpa ES. Antiviral Properties of Flavonoids and Delivery Strategies. Nutrients 2020; 12:nu12092534. [PMID: 32825564 PMCID: PMC7551920 DOI: 10.3390/nu12092534] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022] Open
Abstract
This review summarizes the latest advancements in phytochemicals as functional antiviral agents. We focused on flavonoids, like apigenin, vitexin, quercetin, rutin and naringenin, which have shown a wide range of biological effects including antiviral activities. The molecular mechanisms of their antiviral effects mainly consist in the inhibition of viral neuraminidase, proteases and DNA/RNA polymerases, as well as in the modification of various viral proteins. Mixtures of different flavonoids or combination of flavonoids with antiviral synthetic drugs provide an enhancement of their antiviral effects. Recent strategies in drug delivery significantly contribute to overcoming the low bioavailability of flavonoids. Frequent viral infections worldwide have led to the need for new effective antiviral agents, which can be identified among the various phytochemicals. In this light, screening the antiviral activities of a cocktail of flavonoids would be advantageous in order to prevent viral infections and improve current antiviral therapies.
Collapse
Affiliation(s)
| | | | - Mauro Magnani
- Correspondence: (M.M.); (E.S.S.); Tel.: +39-0722-305-211 (M.M.); +39-0722-305-252 (E.S.S.)
| | | |
Collapse
|
96
|
Noordin MAM, Noor MM, Aizat WM. The Impact of Plant Bioactive Compounds on Aging and Fertility of Diverse Organisms: A Review. Mini Rev Med Chem 2020; 20:1287-1299. [DOI: 10.2174/1389557520666200429101942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 11/22/2022]
Abstract
It is expected that in 2050, there will be more than 20% of senior citizens aged over 60 years
worldwide. Such alarming statistics require immediate attention to improve the health of the aging
population. Since aging is closely related to the loss of antioxidant defense mechanisms, this situation
eventually leads to numerous health problems, including fertility reduction. Furthermore, plant extracts
have been used in traditional medicine as potent antioxidant sources. Although many experiments had
reported the impact of various bioactive compounds on aging or fertility, there is a lack of review papers
that combine both subjects. In this review, we have collected and discussed various bioactive
compounds from 26 different plant species known to affect both longevity and fertility. These compounds,
including phenolics and terpenes, are mostly involved in the antioxidant defense mechanisms
of diverse organisms such as rats, mites, fruit flies, roundworms, and even roosters. A human clinical
trial should be considered in the future to measure the effects of these bioactive compounds on human
health and longevity. Ultimately, these plant-derived compounds could be developed into health supplements
or potential medical drugs to ensure a healthy aging population.
Collapse
Affiliation(s)
- Muhammad Akram Mohd Noordin
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
| | - Mahanem Mat Noor
- Centre for Biotechnology and Functional Food, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
| | - Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
| |
Collapse
|
97
|
Donsì F, Ferrari G. Changing the Vision in Smart Food Design Utilizing the Next Generation of Nanometric Delivery Systems for Bioactive Compounds. Foods 2020; 9:E1100. [PMID: 32806512 PMCID: PMC7465260 DOI: 10.3390/foods9081100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/21/2020] [Accepted: 08/10/2020] [Indexed: 12/23/2022] Open
Abstract
In modern foods, the delivery systems for bioactive compounds play a fundamental role in health promotion, wellbeing, and disease prevention through diet. Nanotechnology has secured a fundamental role in the fabrication of delivery systems with the capability of modulating the in-product and in-body behavior for augmenting bioavailability and activity of bioactive compounds. Structured nanoemulsions and nanoparticles, liposomes, and niosomes can be designed to improve bioactives preservation after ingestion, mucoadhesion, as well as of their release and pathophysiological relevance. In the future, it is expected that the delivery systems will also contribute to augment the efficacy of the bioactive compounds, for example by improving the intestinal absorption and delivery in the bloodstream, as well as promoting the formation of additional bioactive metabolites by regulating the transformations taking place during digestion and the interaction with the intestinal microbiota.
Collapse
Affiliation(s)
- Francesco Donsì
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
- ProdAl Scarl, via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
98
|
Behuria HG, Biswal BK, Sahu SK. Electroformation of liposomes and phytosomes using copper electrode. J Liposome Res 2020; 31:255-266. [PMID: 32703044 DOI: 10.1080/08982104.2020.1800729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A novel method for electroformation of liposomes and phytosomes using copper electrode is described. Liposomes made at 2 V and 10 Hz AC field from L-α-egg-phosphatidylcholine (egg-PC), K. pneumoniae phosphatidylethanolamine, K. pneumoniae polar lipids and E. coli polar lipids on copper electrode were (777.9 ± 118.4), (370.2 ± 100.5), (825.3 ± 21.54), and (281.3 ± 42.3) nm in diameter, respectively. Giant vesicles were formed at 30 V and 10 Hz AC field from polar lipids of K. pneumoniae and E. coli were (106 ± 29.7) and (86 ± 24.3) µm in diameter, respectively. All liposomes were unilamellar as indicated by their unilamellar indices of 50 ± 2, had surface charge comparable to vesicles made from lipid(s) with similar composition and exhibited only 1-2 mol% of oxidized lipids. Cu concentration in the liposomal samples was <1.5 ppm for large unilamellar vesicles (LUVs) and ˂5 ppm for giant unilamellar vesicles (GUVs). The vesicles were stable for >15 d without loss of their size, charge, or unilamellarity. The method was successfully applied to prepare phytosomes from egg-PC and a phytochemical fraction of Dimorphocalyx glabellus, a medicinal plant with anti-diuretic properties. Phytosomes formed were 1000-1500 nm in diameter and exhibited altered fluorescence and absorbance properties compared to the unencapsulated phytochemical. Phytosomes with phytochemical: egg-PC ratio from 0.15 to 1.5 had encapsulation efficiency ranging 90-30%, respectively, and was stable for 1 month. Our method is easy, inexpensive and convenient that will prove to be useful for preparation of liposomes and phytosomes.
Collapse
Affiliation(s)
- Himadri Gourav Behuria
- Department of Biotechnology, Laboratory of Molecular Membrane Biology, North Orissa University, Baripada, India
| | - Bijesh Kumar Biswal
- Department of Life Science, National Institute of Technology, Rourkela, India
| | - Santosh Kumar Sahu
- Department of Biotechnology, Laboratory of Molecular Membrane Biology, North Orissa University, Baripada, India
| |
Collapse
|
99
|
Engineering oral delivery of hydrophobic bioactives in real-world scenarios. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
100
|
Lipan L, Collado-González J, Domínguez-Perles R, Corell M, Bultel-Poncé V, Galano JM, Durand T, Medina S, Gil-Izquierdo Á, Carbonell-Barrachina Á. Phytoprostanes and Phytofurans-Oxidative Stress and Bioactive Compounds-in Almonds are Affected by Deficit Irrigation in Almond Trees. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7214-7225. [PMID: 32520540 DOI: 10.1021/acs.jafc.0c02268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Almonds have gained consumers' attention due to their health benefits (they are rich in bioactive compounds) and sensory properties. Nevertheless, information about phytoprostanes (PhytoPs) and phytofurans (PhytoFs) (new plant markers of oxidative stress and compounds with biological properties for human health) in almonds under deficit irrigation is scarce or does not exist. These compounds are plant oxylipins synthesized by the oxidation of α-linolenic acid (ALA). Besides, they are biomarkers of plant oxidative degradation and biologically active molecules involved in several plant defense mechanisms. hydroSOStainable or hydroSOS mean plant foods made from from plants under controlled water stress. Almonds are a good source of polyunsaturated fatty (PUFAs) acids, including a high content of ALA. This paper aimed to describe the influence of diverse irrigation treatments on in vitro anti-oxidant activity (AAc) and total phenolic content (TPC), as well as on the level of ALA, PhytoP, and PhytoF in "Vairo" almonds. The AAc and TPC were not affected by the irrigation strategy, while the in vivo oxidative stress makers, PhytoPs and PhytoFs, exhibited significant differences in response to water shortage. The total PhytoP and PhytoF contents ranged from 4551 to 8151 ng/100 g dry weight (dw) and from 33 to 56 ng/100 g dw, respectively. The PhytoP and PhytoF profiles identified in almonds showed significant differences among treatments. Individual PhytoPs and PhytoFs were present above the limit of detection only in almonds obtained from trees maintained under deficit irrigation (DI) conditions (regulated deficit irrigation, RDI, and sustained deficit irrigation, SDI) but not in control almonds obtained from fully irrigated trees. Therefore, these results confirm PhytoPs and PhytoFs as valuable biomarkers to detect whether an almond-based product is hydroSOStainable. As a final conclusion, it can be stated that almond quality and functionality can be improved and water irrigation consumption can be reduced if controlled DI strategies are applied in almond orchards.
Collapse
Affiliation(s)
- Leontina Lipan
- Department of Agro-Food Technology, Research Group "Food Quality and Safety", Universidad Miguel Hernández de Elche (UMH), Escuela Politécnica Superior de Orihuela (EPSO), Carretera de Beniel, Km 3.2, 03312 Orihuela, Alicante, Spain
| | - Jacinta Collado-González
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Departamento de Ciencia y Tecnología de Alimentos (CEBAS-CSIC), Campus de Espinardo-25, 30100 Murcia, Spain
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Departamento de Ciencia y Tecnología de Alimentos (CEBAS-CSIC), Campus de Espinardo-25, 30100 Murcia, Spain
| | - Mireia Corell
- Departamento Ciencias Agroforestales, Escuela Técnica Superior de Ingeniería Agronómica, Universty of Sevilla, Carretera de Utrera, Km 1, 41013, Sevilla, Spain
- Associated Unity to CSIC: Uso Sostenible del Suelo y el Agua en la Agricultura (Universidad de Sevilla-Instituto de Recursos Naturales y Agrobiología de Sevilla), Carretera de Utrera Km 1, 41013 Sevilla, Spain
| | - Valérie Bultel-Poncé
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Montpellier, 34093, France
| | - Jean-Marie Galano
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Montpellier, 34093, France
| | - Thierry Durand
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Montpellier, 34093, France
| | - Sonia Medina
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Departamento de Ciencia y Tecnología de Alimentos (CEBAS-CSIC), Campus de Espinardo-25, 30100 Murcia, Spain
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Departamento de Ciencia y Tecnología de Alimentos (CEBAS-CSIC), Campus de Espinardo-25, 30100 Murcia, Spain
| | - Ángel Carbonell-Barrachina
- Department of Agro-Food Technology, Research Group "Food Quality and Safety", Universidad Miguel Hernández de Elche (UMH), Escuela Politécnica Superior de Orihuela (EPSO), Carretera de Beniel, Km 3.2, 03312 Orihuela, Alicante, Spain
| |
Collapse
|