51
|
Jaeger A, Sahin AW, Nyhan L, Zannini E, Arendt EK. Functional Properties of Brewer's Spent Grain Protein Isolate: The Missing Piece in the Plant Protein Portfolio. Foods 2023; 12:798. [PMID: 36832874 PMCID: PMC9955837 DOI: 10.3390/foods12040798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Plant protein sources, as a part of developing sustainable food systems, are currently of interest globally. Brewer's spent grain (BSG) is the most plentiful by-product of the brewing industry, representing ~85% of the total side streams produced. Although nutritionally dense, there are very few methods of upcycling these materials. High in protein, BSG can serve as an ideal raw material for protein isolate production. This study details the nutritional and functional characteristics of BSG protein isolate, EverPro, and compares these with the technological performance of the current gold standard plant protein isolates, pea and soy. The compositional characteristics are determined, including amino acid analysis, protein solubility, and protein profile among others. Related physical properties are determined, including foaming characteristics, emulsifying properties, zeta potential, surface hydrophobicity, and rheological properties. Regarding nutrition, EverPro meets or exceeds the requirement of each essential amino acid per g protein, with the exception of lysine, while pea and soy are deficient in methionine and cysteine. EverPro has a similar protein content to the pea and soy isolates, but far exceeds them in terms of protein solubility, with a protein solubility of ~100% compared to 22% and 52% for pea and soy isolates, respectively. This increased solubility, in turn, affects other functional properties; EverPro displays the highest foaming capacity and exhibits low sedimentation activity, while also possessing minimal gelation properties and low emulsion stabilising activity when compared to pea and soy isolates. This study outlines the functional and nutritional properties of EverPro, a brewer's spent grain protein, in comparison to commercial plant protein isolates, indicating the potential for the inclusion of new, sustainable plant-based protein sources in human nutrition, in particular dairy alternative applications.
Collapse
Affiliation(s)
- Alice Jaeger
- School of Food and Nutritional Science, University College Cork, T12K8AF Cork, Ireland
| | - Aylin W. Sahin
- School of Food and Nutritional Science, University College Cork, T12K8AF Cork, Ireland
| | - Laura Nyhan
- School of Food and Nutritional Science, University College Cork, T12K8AF Cork, Ireland
| | - Emanuele Zannini
- School of Food and Nutritional Science, University College Cork, T12K8AF Cork, Ireland
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Elke K. Arendt
- School of Food and Nutritional Science, University College Cork, T12K8AF Cork, Ireland
- APC Microbiome Institute, University College Cork, T12YT20 Cork, Ireland
| |
Collapse
|
52
|
Herneke A, Lendel C, Karkehabadi S, Lu J, Langton M. Protein Nanofibrils from Fava Bean and Its Major Storage Proteins: Formation and Ability to Generate and Stabilise Foams. Foods 2023; 12:foods12030521. [PMID: 36766050 PMCID: PMC9914446 DOI: 10.3390/foods12030521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Protein nanofibrils (PNFs) have potential for use in food applications as texture inducers. This study investigated the formation of PNFs from protein extracted from whole fava bean and from its two major storage proteins, globulin fractions 11S and 7S. PNFs were formed by heating (85 °C) the proteins under acidic conditions (pH 2) for 24 h. Thioflavin T fluorescence and atomic force microscopy techniques were used to investigate PNF formation. The foaming properties (capacity, stability, and half-life) were explored for non-fibrillated and fibrillated protein from fava bean, 11S, and 7S to investigate the texturing ability of PNFs at concentrations of 1 and 10 mg/mL and pH 7. The results showed that all three heat-incubated proteins (fava bean, 11S, and 7S) formed straight semi-flexible PNFs. Some differences in the capacity to form PNFs were observed between the two globulin fractions, with the smaller 7S protein being superior to 11S. The fibrillated protein from fava bean, 11S, and 7S generated more voluminous and more stable foams at 10 mg/mL than the corresponding non-fibrillated protein. However, this ability for fibrillated proteins to improve the foam properties seemed to be concentration-dependent, as at 1 mg/mL, the foams were less stable than those made from the non-fibrillated protein.
Collapse
Affiliation(s)
- Anja Herneke
- Department of Molecular Sciences, Swedish University of Agricultural Sciences (SLU), 750 00 Uppsala, Sweden
- Correspondence:
| | - Christofer Lendel
- Department of Chemistry, Royal Institute of Technology (KTH), 100 40 Stockholm, Sweden
| | - Saeid Karkehabadi
- Department of Molecular Sciences, Swedish University of Agricultural Sciences (SLU), 750 00 Uppsala, Sweden
| | - Jing Lu
- Department of Molecular Sciences, Swedish University of Agricultural Sciences (SLU), 750 00 Uppsala, Sweden
| | - Maud Langton
- Department of Molecular Sciences, Swedish University of Agricultural Sciences (SLU), 750 00 Uppsala, Sweden
| |
Collapse
|
53
|
Pasting and gelation of faba bean starch-protein mixtures. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
54
|
Kumar P, Sharma N, Ahmed MA, Verma AK, Umaraw P, Mehta N, Abubakar AA, Hayat MN, Kaka U, Lee SJ, Sazili AQ. Technological interventions in improving the functionality of proteins during processing of meat analogs. Front Nutr 2022; 9:1044024. [PMID: 36601080 PMCID: PMC9807037 DOI: 10.3389/fnut.2022.1044024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Meat analogs have opened a new horizon of opportunities for developing a sustainable alternative for meat and meat products. Proteins are an integral part of meat analogs and their functionalities have been extensively studied to mimic meat-like appearance and texture. Proteins have a vital role in imparting texture, nutritive value, and organoleptic attributes to meat analogs. Processing of suitable proteins from vegetable, mycoproteins, algal, and single-cell protein sources remains a challenge and several technological interventions ranging from the isolation of proteins to the processing of products are required. The present paper reviews and discusses in detail various proteins (soy proteins, wheat gluten, zein, algal proteins, mycoproteins, pulses, potato, oilseeds, pseudo-cereals, and grass) and their suitability for meat analog production. The review also discusses other associated aspects such as processing interventions that can be adapted to improve the functional and textural attributes of proteins in the processing of meat analogs (extrusion, spinning, Couette shear cell, additive manufacturing/3D printing, and freeze structuring). '.
Collapse
Affiliation(s)
- Pavan Kumar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Seri Kembangan, Malaysia
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Muideen Adewale Ahmed
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Seri Kembangan, Malaysia
| | - Akhilesh K. Verma
- Department of Livestock Products Technology, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
| | - Pramila Umaraw
- Department of Livestock Products Technology, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
| | - Nitin Mehta
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Ahmed Abubakar Abubakar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Seri Kembangan, Malaysia
| | - Muhammad Nizam Hayat
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Ubedullah Kaka
- Department of Companion Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Sung-Jin Lee
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon-si, South Korea
| | - Awis Qurni Sazili
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Seri Kembangan, Malaysia
- Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| |
Collapse
|
55
|
Toledo e Silva SH, Silva LB, Eisner P, Bader-Mittermaier S. Production of Protein Concentrates from Macauba ( Acrocomia aculeata and Acrocomia totai) Kernels by Sieve Fractionation. Foods 2022; 11:foods11223608. [PMID: 36429200 PMCID: PMC9689480 DOI: 10.3390/foods11223608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
Macauba palm fruits (Acrocomia aculeata and Acrocomia totai) are emerging as sources of high-quality oils from their pulp and kernels. The protein-rich macauba kernel meal (MKM) left after oil extraction remains undervalued, mainly due to the lack of suitable deoiling parameters and integrated protein recovery methods. Therefore, the present study aimed to produce protein concentrates from MKM using sieve fractionation. The deoiling parameters, comprising pressing, milling, and solvent extraction, were improved in terms of MKM functionality. The combination of hydraulic pressing, milling to 1 mm, and the hexane extraction of A. aculeata kernels resulted in MKM with the highest protein solubility (77.1%), emulsifying activity index (181 m2/g protein), and emulsion stability (149 min). After sieve fractionation (cut size of 62 µm), this meal yielded a protein concentrate with a protein content of 65.6%, representing a 74.1% protein enrichment compared to the initial MKM. This protein concentrate showed a reduced gelling concentration from 8 to 6%, and an increased emulsion stability from 149 to 345 min, in comparison to the MKM before sieving. Therefore, sieve fractionation after improved deoiling allows for the simple, cheap, and environmentally friendly recovery of MKM proteins, highlighting the potential of macauba kernels as a new source of protein.
Collapse
Affiliation(s)
- Sérgio Henrique Toledo e Silva
- Department of Food Process Development, Fraunhofer Institute for Process Engineering and Packaging IVV, 85354 Freising, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), 85354 Freising, Germany
- Correspondence: ; Tel.: +49-08161-4910-422
| | - Lidiane Bataglia Silva
- Department of Food Process Development, Fraunhofer Institute for Process Engineering and Packaging IVV, 85354 Freising, Germany
| | - Peter Eisner
- Department of Food Process Development, Fraunhofer Institute for Process Engineering and Packaging IVV, 85354 Freising, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), 85354 Freising, Germany
- Steinbeis Hochschule Berlin, 12489 Berlin, Germany
| | - Stephanie Bader-Mittermaier
- Department of Food Process Development, Fraunhofer Institute for Process Engineering and Packaging IVV, 85354 Freising, Germany
| |
Collapse
|
56
|
Rivera J, Siliveru K, Li Y. A comprehensive review on pulse protein fractionation and extraction: processes, functionality, and food applications. Crit Rev Food Sci Nutr 2022; 64:4179-4201. [PMID: 38708867 DOI: 10.1080/10408398.2022.2139223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The increasing world population requires the production of nutrient-rich foods. Protein is an essential macronutrient for healthy individuals. Interest in using plant proteins in foods has increased in recent years due to their sustainability and nutritional benefits. Dry and wet protein fractionation methods have been developed to increase protein yield, purity, and functional and nutritional qualities. This review explores the recent developments in pretreatments and fractionation processes used for producing pulse protein concentrates and isolates. Functionality differences between pulse proteins obtained from different fractionation methods and the use of fractionated pulse proteins in different food applications are also critically reviewed. Pretreatment methods improve the de-hulling efficiency of seeds prior to fractionation. Research on wet fractionation methods focuses on improving sustainability and functionality of proteins while studies on dry methods focus on increasing protein yield and purity. Hybrid methods produced fractionated proteins with higher yield and purity while also improving protein functionality and process sustainability. Dry and hybrid fractionated proteins have comparable or superior functionalities relative to wet fractionated proteins. Pulse protein ingredients are successfully incorporated into various food formulations with notable changes in their sensory properties. Future studies could focus on optimizing the fractionation process, improving protein concentrate palatability, and optimizing formulations using pulse proteins.
Collapse
Affiliation(s)
- Jared Rivera
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Kaliramesh Siliveru
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
57
|
Immonen M, Chandrakusuma A, Hokkanen S, Partanen R, Mäkelä-Salmi N, Myllärinen P. The effect of deamidation and lipids on the interfacial and foaming properties of ultrafiltered oat protein concentrates. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
58
|
Chemical and physicochemical features of common plant proteins and their extrudates for use in plant-based meat. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
59
|
Lappi J, Silventoinen-Veijalainen P, Vanhatalo S, Rosa-Sibakov N, Sozer N. The nutritional quality of animal-alternative processed foods based on plant or microbial proteins and the role of the food matrix. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
60
|
Physical and techno-functional properties of a common bean protein concentrate compared to commercial legume ingredients for the plant-based market. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
61
|
Variations of Nutrient and Antinutrient Components of Bambara Groundnut (Vigna subterranea (L.) Verdc.) Seeds. J FOOD QUALITY 2022. [DOI: 10.1155/2022/2772362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bambara groundnut (BGN) fits the bill when it comes to an acceptable level of nutrient and mineral composition. BGN is a balanced food that can help eradicate food and nutritional insecurity if it is incorporated into the major food system. However, there is a large degree of variation in nutrient composition and antinutritional factors among BGN accessions. Here, we show the degree of variability of nutrient and antinutrient components such as percentage ash, moisture, protein, fat, tryptophan, tannin, and phytate contents in seeds of 95 accessions of BGN. Data were subjected to analysis of variance (ANOVA), followed by correlation and principal component analysis. Clustering was done to show the relatedness between the accessions in response to the various traits. A high level of heterogeneity was observed among the accessions for the various traits studied. PC1 and PC2 show 41.2% of the total observed variations. Cluster analysis grouped accessions into four main clusters. This study was able to confirm the high level of diversity in the components of nutrients and antinutrients previously reported in BGN. The results of this study are expected to aid in identifying parent lines for improved breeding programs.
Collapse
|
62
|
Grasso N, Bot F, Roos Y, Crowley S, Arendt E, O'Mahony J. The influence of protein concentration on key quality attributes of chickpea-based alternatives to cheese. Curr Res Food Sci 2022; 5:2004-2012. [PMID: 36324865 PMCID: PMC9619148 DOI: 10.1016/j.crfs.2022.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/09/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
In response to consumer demands, plant protein ingredients are increasingly being used in the formulation of plant-based alternatives to cheese. The aim of this study was to determine the influence of protein concentration on key quality attributes of chickpea-based alternatives to cheese. Moreover, the age-induced changes in such attributes were assessed, with samples analysed after 1 month of storage. After characterisation of the ingredients, the chickpea-based formulations were prepared by blending chickpea flour and protein concentrate in different proportions to obtain four samples of increasing protein content (i.e., 8.68-21.5%). Formulations were developed at pH ∼4.5, and a moisture content of 50%, with shea butter used to obtain 15% fat content. The differential scanning calorimetry thermograms of the samples showed a main peak around 30 °C, corresponding to transition of the shea butter, and a smaller peak around 70 °C related to starch gelatinisation. Analysis of microstructure showed formation of a protein matrix with more extensive protein structure at high protein concentration. Furthermore, none of the chickpea-based samples melted under the testing conditions and all samples showed increasing values for adhesiveness, springiness and cohesiveness with increasing protein content. However, hardness was the highest for the sample with the lowest protein content, likely due to starch retrogradation. After storage, hardness increased further for all samples. This work improves our understanding of the role of chickpea protein in developing plant-based alternatives to cheese and the challenges therein.
Collapse
|
63
|
Johansson M, Johansson D, Ström A, Rydén J, Nilsson K, Karlsson J, Moriana R, Langton M. Effect of starch and fibre on faba bean protein gel characteristics. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
64
|
Targeted formulation of plant-based protein-foods: Supporting the food system’s transformation in the context of human health, environmental sustainability and consumer trends. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
65
|
Effect of industrial process conditions of fava bean (Vicia faba L.) concentrates on physico-chemical and functional properties. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
66
|
Hoehnel A, Bez J, Petersen IL, Amarowicz R, Juśkiewicz J, Zannini E, Arendt EK. Combining high-protein ingredients from pseudocereals and legumes for the development of fresh high-protein hybrid pasta: enhanced nutritional profile. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5000-5010. [PMID: 33314156 DOI: 10.1002/jsfa.11015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The fortification of wheat-based staple foods, such as pasta, with pseudocereal and legume flours has received growing research interest in recent years. While it is associated with many challenges regarding technological and sensory quality of the products, it promises a substantial improvement of the nutritional value of pasta. However, investigations of the nutritional quality of fortified pasta often focus on the carbohydrate/starch fraction, and information on changes in protein quality is relatively scarce. This study evaluates the nutritional profile of a high-protein hybrid pasta (HPHP) formulation in which a combination of three high-protein ingredients (HPIs) from buckwheat, faba bean and lupin is used to partially replace wheat semolina. The formulation's macronutrient composition, protein quality and the content of antinutritional compounds are assessed in comparison to regular wheat pasta. RESULTS The HPHP formulation represents a more favourable macronutrient profile compared to regular wheat pasta, particularly in relation to the isocaloric replacement of wheat starch by non-wheat protein. Furthermore, a more balanced amino acid profile, improved N utilisation and increased protein efficiency ratio (in vivo) were determined for HPHP, which conclusively suggests a substantially enhanced protein quality. The cooking process was shown to significantly reduce levels of vicine/convicine and trypsin inhibitor activity originating from HPIs. The small remaining levels seem not to adversely affect HPHP's nutritional quality. CONCLUSION This significant upgrade of pasta's nutritional value identifies HPHP, and similar hybrid formulations, as a healthy food choice and valuable alternative to regular wheat pasta, specifically for a protein supply of adequate quality in mostly plant-based diets. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Andrea Hoehnel
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Jürgen Bez
- Fraunhofer Institute for Process Engineering and Packaging, Freising, Germany
| | - Iben L Petersen
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| | - Jerzy Juśkiewicz
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Elke K Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
67
|
Martin A, Schmidt V, Osen R, Bez J, Ortner E, Mittermaier S. Texture, sensory properties and functionality of extruded snacks from pulses and pseudocereal proteins. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5011-5021. [PMID: 33349965 DOI: 10.1002/jsfa.11041] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The protein-rich fractions of pulses and pseudocereals exhibit a well-balanced amino acid profile, particularly when combined in different portions, and are therefore high-value ingredients for the production of extruded snacks. However, the impact of a combination of pulses and pseudocereals on the physical and sensory qualities of extruded snacks has not been investigated up to now. Native or preconditioned protein isolates and concentrates from pulses - as single ingredients or in combination with protein-rich flours of pseudocereals - were analyzed regarding their thermal and functional properties in relation to extrusion characteristics. Low moisture extrusion cooking was used to investigate the impact of protein source (lentil, lupin, faba bean), pseudocereal source (quinoa, amaranth, buckwheat) and protein content (30%, 50%, 70%) on sectional expansion, specific hardness, density and sensory properties of the snacks. RESULTS With increasing protein content from 30% to 50%, the sectional expansion decreased and the density and specific hardness of the extrudates increased, which could be counteracted by preconditioning of the protein-rich ingredients. Lupin protein-based extrudates exhibited satisfactory texture and sensory properties. Extruded mixtures of pulses and pseudocereals (70% protein) exhibited a smaller sectional expansion compared to pulses as single ingredients (30%, 50%), regardless of pseudocereal type. However, the texture and sensory properties of the extruded blends were satisfactory. CONCLUSIONS We show for the first time that protein-rich fractions of pulses and pseudocereals can be processed into expanded snacks with favorable texture and nutritional properties such as increased protein contents (70%) and balanced amino acid profiles. © 2020 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Anna Martin
- Department Food Process Development, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Verena Schmidt
- Department Food Process Development, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Raffael Osen
- Department Food Process Development, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Jürgen Bez
- Department Food Process Development, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Eva Ortner
- Department Food Process Development, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Stephanie Mittermaier
- Department Food Process Development, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| |
Collapse
|
68
|
Shanthakumar P, Klepacka J, Bains A, Chawla P, Dhull SB, Najda A. The Current Situation of Pea Protein and Its Application in the Food Industry. Molecules 2022; 27:5354. [PMID: 36014591 PMCID: PMC9412838 DOI: 10.3390/molecules27165354] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Pea (Pisum sativum) is an important source of nutritional components and is rich in protein, starch, and fiber. Pea protein is considered a high-quality protein and a functional ingredient in the global industry due to its low allergenicity, high protein content, availability, affordability, and deriving from a sustainable crop. Moreover, pea protein has excellent functional properties such as solubility, water, and oil holding capacity, emulsion ability, gelation, and viscosity. Therefore, these functional properties make pea protein a promising ingredient in the food industry. Furthermore, several extraction techniques are used to obtain pea protein isolate and concentrate, including dry fractionation, wet fractionation, salt extraction, and mild fractionation methods. Dry fractionation is chemical-free, has no loss of native functionality, no water use, and is cost-effective, but the protein purity is comparatively low compared to wet extraction. Pea protein can be used as a food emulsifier, encapsulating material, a biodegradable natural polymer, and also in cereals, bakery, dairy, and meat products. Therefore, in this review, we detail the key properties related to extraction techniques, chemistry, and structure, functional properties, and modification techniques, along with their suitable application and health attributes.
Collapse
Affiliation(s)
- Parvathy Shanthakumar
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Joanna Klepacka
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2, 10719 Olsztyn, Poland
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Science in Lublin, Doświadczalna Street 51A, 20280 Lublin, Poland
| |
Collapse
|
69
|
Tyndall SM, Maloney GR, Cole MB, Hazell NG, Augustin MA. Critical food and nutrition science challenges for plant-based meat alternative products. Crit Rev Food Sci Nutr 2022; 64:638-653. [PMID: 35972071 DOI: 10.1080/10408398.2022.2107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A reduced reliance on animal-based diets with a move towards a more plant-based diet has driven the market demand for new generation sustainable plant-based meat alternatives. This review covers science and business perspectives relating to the development of plant-based meat alternatives. A conceptual framework to help inform the innovation pathway is provided. The market opportunity, consumer perspectives, the science that underpins the development of plant-based meat alternatives and patent information relating to these products are discussed. Careful navigation through the public domain science literature and patent landscape is necessary for informing the choice of ingredients, formulations and processes for producing plant-based meat alternatives. Attention to design of ingredient systems for optimization of flavor, texture, binding, color and nutrition is necessary for development of plant-based meat alternatives with desirable consumer attributes. Recommendations for further research for developing superior formulations for consumer-acceptable plant-based meat alternative products for improving sustainability outcomes are suggested.
Collapse
Affiliation(s)
| | | | - Martin B Cole
- Wine Australia, Kent Town, South Australia, Australia
| | | | | |
Collapse
|
70
|
Papoutsis D, Rocha SDC, Herfindal AM, Kjølsrud Bøhn S, Carlsen H. Intestinal effect of faba bean fractions in WD-fed mice treated with low dose of DSS. PLoS One 2022; 17:e0272288. [PMID: 35939489 PMCID: PMC9359607 DOI: 10.1371/journal.pone.0272288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022] Open
Abstract
Rodent studies have shown that legumes can reduce chemical induced colonic inflammation, but the role of faba bean fractions for colon health has not been described. We have investigated the role of protein and fiber fractions of faba beans for colonic health and microbiota composition in a low-grade inflammation mice-model when incorporated in a Western diet (WD). The diet of sixty C57BL/6JRj male mice was standardized to a WD (41% fat, 43% carbohydrates) before were randomly assigned to four groups (n = 12) receiving either 1) WD with 30% of the protein replaced with faba-bean proteins, 2) WD with 7% of the fiber replaced with faba-bean fibers, 3) WD with protein and fiber fractions or 4) plain WD (n = 24). Low-grade inflammation was induced by 1% dextran sodium sulfate (DSS) given to mice for the last six days of the trial. Half (n = 12) in group 4) were given only water (controls). Prior to DSS, body weight, energy intake, glucose and insulin tolerance assays were performed. Inflammatory status in the colon was assessed by biomarkers of inflammation and qRT-PCR analyses of inflammatory related genes. Fecal microbiota composition was assessed by 16S rRNA gene sequencing. 1% DSS treatment increased levels in fecal lipocalin-2 and induced disease activity index score, but the presence of faba bean fractions in WD did not influence these indicators nor the expression level of inflammatory associated genes. However, the mice that had faba-bean proteins had a lower amount of Proteobacteria compared the group on plain WD. The Actinobacteria abundance was also lower in the group that had fiber fraction from faba-beans. Overall, outcomes indicated that in a low-grade inflammation model, replacement of protein and or fiber in a WD with faba bean fractions had marginal effects on inflammatory parameters and colonic microbiota.
Collapse
Affiliation(s)
- Dimitrios Papoutsis
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Sérgio Domingos Cardoso Rocha
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Anne Mari Herfindal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Siv Kjølsrud Bøhn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Harald Carlsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- * E-mail:
| |
Collapse
|
71
|
Augustin M, Cole M. Towards a sustainable food system by design using faba bean protein as an example. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
72
|
Comparative evaluation of the nutritional value of faba bean flours and protein isolates with major legumes in the market. Cereal Chem 2022. [DOI: 10.1002/cche.10575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
73
|
Nutritional quality of protein flours of fava bean (Vicia faba L.) and in vitro digestibility and bioaccesibility. Food Chem X 2022; 14:100303. [PMID: 35450143 PMCID: PMC9018142 DOI: 10.1016/j.fochx.2022.100303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
|
74
|
Nisov A, Nikinmaa M, Nordlund E, Sozer N. Effect of pH and temperature on fibrous structure formation of plant proteins during high-moisture extrusion processing. Food Res Int 2022; 156:111089. [DOI: 10.1016/j.foodres.2022.111089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 11/04/2022]
|
75
|
The effect of dehulling of yellow peas and faba beans on the distribution of carbohydrates upon dry fractionation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
76
|
Dent T, Maleky F. Pulse protein processing: The effect of processing choices and enzymatic hydrolysis on ingredient functionality. Crit Rev Food Sci Nutr 2022; 63:9914-9925. [PMID: 35622940 DOI: 10.1080/10408398.2022.2070723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Plant-based protein ingredients are an emerging solution to the environmental and health issues associated with animal-based proteins. Pulses have become a promising source of these plant-based ingredients. In order to produce functional proteins from pulse grains, extensive processing must be conducted to extract their proteins. These processing steps have consequential effects on the composition and structure of the resulting proteins which may modify their functional properties. This study reviews the most prominent options for each unit operation of pulse protein processing such as extraction, isolation, and drying. It also emphasizes the benefits and drawbacks of such methods and their effects on the pulse protein functionality. Furthermore, enzymatic hydrolysis is discussed as an optional processing step that is thought to counteract loss of functionality associated with pulse protein isolation. However, review of enzymatic hydrolysis literature reveals methodological issues in which insoluble and nonfunctional fractions of pulse protein hydrolysates are removed before analysis. This literature may draw into question the validity of the conventional wisdom that enzymatic hydrolysis is always beneficial to protein functionality.
Collapse
Affiliation(s)
- Terrence Dent
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - Farnaz Maleky
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
77
|
Sá AGA, Pacheco MTB, Moreno YMF, Carciofi BAM. Cold-pressed Sesame Seed Meal As A Protein Source: Effect of Processing on the Protein Digestibility, Amino Acid Profile, and Functional Properties. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
78
|
Kantanen K, Oksanen A, Edelmann M, Suhonen H, Sontag-Strohm T, Piironen V, Ramos Diaz JM, Jouppila K. Physical Properties of Extrudates with Fibrous Structures Made of Faba Bean Protein Ingredients Using High Moisture Extrusion. Foods 2022; 11:foods11091280. [PMID: 35564006 PMCID: PMC9101016 DOI: 10.3390/foods11091280] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/26/2022] Open
Abstract
Faba bean is a potential ingredient due to its high protein yield and its possible cultivation in colder climate regions. In this study, meat analogues made from faba bean protein isolate (FPI) and concentrate (FPC) blends were produced using high moisture extrusion. The aim of this study was to investigate the effect of the FPI content (FPIc), feed water content (FWC), and temperature of the long cooling die (LT) during extrusion on the mechanical and physicochemical properties as well as on the structure of the meat analogues. Increased FPIc resulted in higher values in hardness, gumminess, chewiness, and cutting strengths as well as in darker colour and decreased water absorption capacity. The effect of increased FWC on these properties was weaker and the opposite. Images from microtomography revealed that higher FPIc led to a less organised fibrous structure. In conclusion, fibrous structures can be achieved by utilising a mixture of faba bean protein ingredients, and a higher FPC content seemed to promote fibre formation in the meat analogue.
Collapse
Affiliation(s)
- Katja Kantanen
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, FI-00014 Helsinki, Finland; (A.O.); (M.E.); (T.S.-S.); (V.P.); (J.M.R.D.); (K.J.)
- Correspondence:
| | - Anni Oksanen
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, FI-00014 Helsinki, Finland; (A.O.); (M.E.); (T.S.-S.); (V.P.); (J.M.R.D.); (K.J.)
| | - Minnamari Edelmann
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, FI-00014 Helsinki, Finland; (A.O.); (M.E.); (T.S.-S.); (V.P.); (J.M.R.D.); (K.J.)
| | - Heikki Suhonen
- Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2, FI-00014 Helsinki, Finland;
| | - Tuula Sontag-Strohm
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, FI-00014 Helsinki, Finland; (A.O.); (M.E.); (T.S.-S.); (V.P.); (J.M.R.D.); (K.J.)
| | - Vieno Piironen
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, FI-00014 Helsinki, Finland; (A.O.); (M.E.); (T.S.-S.); (V.P.); (J.M.R.D.); (K.J.)
| | - Jose Martin Ramos Diaz
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, FI-00014 Helsinki, Finland; (A.O.); (M.E.); (T.S.-S.); (V.P.); (J.M.R.D.); (K.J.)
| | - Kirsi Jouppila
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, FI-00014 Helsinki, Finland; (A.O.); (M.E.); (T.S.-S.); (V.P.); (J.M.R.D.); (K.J.)
| |
Collapse
|
79
|
Wang Y, Tuccillo F, Lampi AM, Knaapila A, Pulkkinen M, Kariluoto S, Coda R, Edelmann M, Jouppila K, Sandell M, Piironen V, Katina K. Flavor challenges in extruded plant-based meat alternatives: A review. Compr Rev Food Sci Food Saf 2022; 21:2898-2929. [PMID: 35470959 DOI: 10.1111/1541-4337.12964] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/02/2022] [Accepted: 03/24/2022] [Indexed: 12/19/2022]
Abstract
Demand for plant-based meat alternatives has increased in recent years due to concerns about health, ethics, the environment, and animal welfare. Nevertheless, the market share of plant-based meat alternatives must increase significantly if they are to support sustainable food production and consumption. Flavor is an important limiting factor of the acceptability and marketability of plant-based meat alternatives. Undesirable chemosensory perceptions, such as a beany flavor, bitter taste, and astringency, are often associated with plant proteins and products that use them. This study reviewed 276 articles to answer the following five research questions: (1) What are the volatile and nonvolatile compounds responsible for off-flavors? (2) What are the mechanisms by which these flavor compounds are generated? (3) What is the influence of thermal extrusion cooking (the primary structuring technique to transform plant proteins into fibrous products that resemble meat in texture) on the flavor characteristics of plant proteins? (4) What techniques are used in measuring the flavor properties of plant-based proteins and products? (5) What strategies can be used to reduce off-flavors and improve the sensory appeal of plant-based meat alternatives? This article comprehensively discusses, for the first time, the flavor issues of plant-based meat alternatives and the technologies available to improve flavor and, ultimately, acceptability.
Collapse
Affiliation(s)
- Yaqin Wang
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Fabio Tuccillo
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Anna-Maija Lampi
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Antti Knaapila
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Marjo Pulkkinen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Susanna Kariluoto
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Rossana Coda
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland.,Helsinki Institute of Sustainability Science (HELSUS), Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Minnamari Edelmann
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Kirsi Jouppila
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Mari Sandell
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland.,Functional Foods Forum, University of Turku, Turku, Finland
| | - Vieno Piironen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Kati Katina
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
80
|
Bühler JM, van der Goot AJ, Bruins ME. Quantifying water distribution between starch and protein in doughs and gels from mildly refined faba bean fractions. Curr Res Food Sci 2022; 5:735-742. [PMID: 35497777 PMCID: PMC9046618 DOI: 10.1016/j.crfs.2022.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 11/03/2022] Open
Abstract
The development of novel and sustainable food products, such as cheese- and meat analogues, requires a better understanding of the use of less refined ingredients. We investigated the distribution of water between the protein and starch phase of doughs and heat-induced gels made from air-classified faba bean fractions by developing a method suited for investigation of such multi-component ingredients. The moisture contents of the protein and starch phases in the dough were determined using a method based on partial sorption isotherms of mixed doughs of protein- and starch-rich fractions at high water activity. Water content of the protein phase is higher than that of the starch phase in dough, showing that protein takes up more water than starch at room temperature. Also, the moisture content of the protein phase in the gels was calculated using a model based on the denaturation temperature of legumin. From the experiments and the modelling, it became evident that the moisture content of the protein phase in the gel is lower than the moisture content of the protein phase in the dough, showing the importance of considering moisture migration from the protein to the starch during heating. Water distribution among phases in doughs and gels is measured “in-situ”. Addition of starch increases water content of protein phase in doughs. Water migrates from protein to starch after initial starch gelatinization.
Collapse
|
81
|
Bou R, Navarro-Vozmediano P, Domínguez R, López-Gómez M, Pinent M, Ribas-Agustí A, Benedito JJ, Lorenzo JM, Terra X, García-Pérez JV, Pateiro M, Herrera-Cervera JA, Jorba-Martín R. Application of emerging technologies to obtain legume protein isolates with improved techno-functional properties and health effects. Compr Rev Food Sci Food Saf 2022; 21:2200-2232. [PMID: 35340098 DOI: 10.1111/1541-4337.12936] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/17/2021] [Accepted: 02/12/2022] [Indexed: 02/06/2023]
Abstract
Current demand of consumers for healthy and sustainable food products has led the industry to search for different sources of plant protein isolates and concentrates. Legumes represent an excellent nonanimal protein source with high-protein content. Legume species are distributed in a wide range of ecological conditions, including regions with drought conditions, making them a sustainable crop in a context of global warming. However, their use as human food is limited by the presence of antinutritional factors, such as protease inhibitors, lectins, phytates, and alkaloids, which have adverse nutritional effects. Antitechnological factors, such as fiber, tannins, and lipids, can affect the purity and protein extraction yield. Although most are removed or reduced during alkaline solubilization and isoelectric precipitation processes, some remain in the resulting protein isolates. Selection of appropriate legume genotypes and different emerging and sustainable facilitating technologies, such as high-power ultrasound, pulsed electric fields, high hydrostatic pressure, microwave, and supercritical fluids, can be applied to increase the removal of unwanted compounds. Some technologies can be used to increase protein yield. The technologies can also modify protein structure to improve digestibility, reduce allergenicity, and tune technological properties. This review summarizes recent findings regarding the use of emerging technologies to obtain high-purity protein isolates and the effects on techno-functional properties and health.
Collapse
Affiliation(s)
- Ricard Bou
- Food Safety and Functionality Program, IRTA, Monells, Spain
| | - Paola Navarro-Vozmediano
- Grupo ASPA, Departamento de Tecnología de Alimentos, Universitat Politècnica de València, València, Spain
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spain
| | - Miguel López-Gómez
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Montserrat Pinent
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | | | - José J Benedito
- Grupo ASPA, Departamento de Tecnología de Alimentos, Universitat Politècnica de València, València, Spain
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spain.,Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| | - Ximena Terra
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - José V García-Pérez
- Grupo ASPA, Departamento de Tecnología de Alimentos, Universitat Politècnica de València, València, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spain
| | - José A Herrera-Cervera
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Rosa Jorba-Martín
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| |
Collapse
|
82
|
Rivera del Rio A, Boom RM, Janssen AEM. Effect of Fractionation and Processing Conditions on the Digestibility of Plant Proteins as Food Ingredients. Foods 2022; 11:870. [PMID: 35327292 PMCID: PMC8955167 DOI: 10.3390/foods11060870] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/10/2022] Open
Abstract
Plant protein concentrates and isolates are used to produce alternatives to meat, dairy and eggs. Fractionation of ingredients and subsequent processing into food products modify the techno-functional and nutritional properties of proteins. The differences in composition and structure of plant proteins, in addition to the wide range of processing steps and conditions, can have ambivalent effects on protein digestibility. The objective of this review is to assess the current knowledge on the effect of processing of plant protein-rich ingredients on their digestibility. We obtained data on various fractionation conditions and processing after fractionation, including enzymatic hydrolysis, alkaline treatment, heating, high pressure, fermentation, complexation, extrusion, gelation, as well as oxidation and interactions with starch or fibre. We provide an overview of the effect of some processing steps for protein-rich ingredients from different crops, such as soybean, yellow pea, and lentil, among others. Some studies explored the effect of processing on the presence of antinutritional factors. A certain degree, and type, of processing can improve protein digestibility, while more extensive processing can be detrimental. We argue that processing, protein bioavailability and the digestibility of plant-based foods must be addressed in combination to truly improve the sustainability of the current food system.
Collapse
Affiliation(s)
| | | | - Anja E. M. Janssen
- Food Process Engineering, Wageningen University, 6700 AA Wageningen, The Netherlands; (A.R.d.R.); (R.M.B.)
| |
Collapse
|
83
|
De Angelis D, Pasqualone A, Manfredi L, Allegretta I, Terzano R, Summo C. Dry fractionation as a promising technology to reuse the physically defected legume‐based gluten‐free pasta. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Davide De Angelis
- Department of Soil, Plant and Food Science (DISSPA) University of Bari Aldo Moro Via Amendola, 165/A Bari 70126 Italy
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA) University of Bari Aldo Moro Via Amendola, 165/A Bari 70126 Italy
| | - Luigi Manfredi
- Andriani SPA Via Nicolò Copernico Gravina in Puglia 70024 Italy
| | - Ignazio Allegretta
- Department of Soil, Plant and Food Science (DISSPA) University of Bari Aldo Moro Via Amendola, 165/A Bari 70126 Italy
| | - Roberto Terzano
- Department of Soil, Plant and Food Science (DISSPA) University of Bari Aldo Moro Via Amendola, 165/A Bari 70126 Italy
| | - Carmine Summo
- Department of Soil, Plant and Food Science (DISSPA) University of Bari Aldo Moro Via Amendola, 165/A Bari 70126 Italy
| |
Collapse
|
84
|
Ispiryan L, Zannini E, Arendt EK. FODMAP modulation as a dietary therapy for IBS: Scientific and market perspective. Compr Rev Food Sci Food Saf 2022; 21:1491-1516. [PMID: 35122383 DOI: 10.1111/1541-4337.12903] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/09/2021] [Accepted: 12/13/2021] [Indexed: 11/28/2022]
Abstract
A diet low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs) is a promising therapeutic approach to reduce gastrointestinal symptoms associated with irritable bowel syndrome (IBS). However, a shift toward a more sustainable, healthy diet with higher inclusion of whole-grain cereals (i.e., wheat, rye, barley) and pulses, naturally rich in FODMAPs, poses a severe challenge for susceptible individuals. Dietary restriction of fermentable carbohydrates (commonly called the "low FODMAP diet") has received significant consideration. Hence, the development of functional low FODMAP products is emerging in food science and the food industry. In this review, we evaluate the most promising yet neglected (bio)-technological strategies adopted for modulating the FODMAP contents in complex food systems and the extent of their uptake in the global food market. We extensively investigated the global low FODMAP market, contrasted with the status quo in food science and discussed the key principles and concomitant challenges of targeted FODMAP reduction strategies. Powerful tools are available which are based either on the use of ingredients where FODMAPs have been physically removed (e.g., by membrane filtration) or biotechnologically reduced during the food processing, mediated by added enzymes, microbial enzymes during a fermentation process, and seed endogenous enzymes. However, <10% of the small market of functional products with a low FODMAP claim (total ∼800 products) used any of the targeted FODMAP reduction techniques. The global market is currently dominated by gluten-free products, which are naturally low in FODMAPs and characterized by inferior sensory attributes.
Collapse
Affiliation(s)
- Lilit Ispiryan
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Elke K Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland.,APC Microbiome Institute, Cork, Ireland
| |
Collapse
|
85
|
Fernando S. Pulse protein ingredient modification. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:892-897. [PMID: 34586636 DOI: 10.1002/jsfa.11548] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/09/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Increasing population and depletion of resources have paved the way to find sustainable and nutritious alternative protein sources. Pulses have been identified as a nutritious and inexpensive alternative source of protein that can meet this market demand. Pulses can be converted into protein concentrates and isolates through dry and wet separation techniques. Wet extraction results in relatively pure protein isolates but less sustainable due to higher energy requirements and high waste generation. Dry separation focuses on ingredient functionality rather than molecular level purity. These extracted pulse protein ingredients can be incorporated into different food systems to increase the nutritional value and to achieve the desired functionality. But many plant-based alternative proteins including pulses, face several formulation challenges especially in nutritional, sensory, and functional aspects. Native pulse protein ingredients can contain antinutrients, beany flavor, and undesirable functionality. Modification by biological (enzymatic, fermentation), chemical (acylation, deamidation, glycosylation, phosphorylation), and physical (cold plasma, extrusion, heat, high pressure, ultrasound) methods or a combination of these can improve pulse protein ingredients at the macro and micro level for their desired use. These modification processes will thermodynamically change the structural and conformational characteristics of proteins and expect to improve the quality. © 2021 Society of Chemical Industry.
Collapse
|
86
|
Squeo G, De Angelis D, Summo C, Pasqualone A, Caponio F, Amigo JM. Assessment of macronutrients and alpha-galactosides of texturized vegetable proteins by near infrared hyperspectral imaging. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
87
|
Boukid F. Peanut protein – an underutilised by‐product with great potential: a review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fatma Boukid
- Food safety and Functionality Programme Food Industries Institute of Agriculture and Food Research and Technology (IRTA) Finca Camps i Armet S/N Monells 17121 Spain
| |
Collapse
|
88
|
Effect of rice bran rancidity on the emulsion stability of rice bran protein and structural characteristics of interface protein. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
89
|
Dry and wet fractionation of plant proteins: How a hybrid process increases yield and impacts nutritional value of faba beans proteins. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
90
|
Ferawati F, Zahari I, Barman M, Hefni M, Ahlström C, Witthöft C, Östbring K. High-Moisture Meat Analogues Produced from Yellow Pea and Faba Bean Protein Isolates/Concentrate: Effect of Raw Material Composition and Extrusion Parameters on Texture Properties. Foods 2021; 10:843. [PMID: 33924424 PMCID: PMC8070665 DOI: 10.3390/foods10040843] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 11/16/2022] Open
Abstract
Yellow pea and faba bean are potential candidates to replace soybean-based ingredients due to their suitability for cultivation in the northern hemisphere, non-genetically modified organisms cultivation practice and low risk of allergenicity. This study examined the functionality of local yellow pea and faba bean protein isolates/concentrate as meat analogue products. The most critical factors affecting the texture properties of meat analogue were also determined. Extrusion was used to produce high-moisture meat analogues (HMMAs) from yellow pea and faba bean protein isolates/concentrates and HMMAs with fibrous layered structures was successfully produced from both imported commercial and local sources. The texture properties of the HMMA produced were mainly affected by the ash, fiber and protein content and water-holding capacity of the source protein. Three extrusion process parameters (target moisture content, extrusion temperature, screw speed), also significantly affected HMMA texture. In conclusion, functional HMMA can be produced using protein isolates derived from locally grown pulses.
Collapse
Affiliation(s)
- Ferawati Ferawati
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39231 Kalmar, Sweden; (M.H.); (C.W.)
| | - Izalin Zahari
- Department of Food Technology, Engineering and Nutrition, Lund University, 22362 Lund, Sweden; (I.Z.); (C.A.); (K.Ö.)
| | - Malin Barman
- Department of Biology and Biological Engineering, Chalmers University, 41296 Gothenburg, Sweden;
| | - Mohammed Hefni
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39231 Kalmar, Sweden; (M.H.); (C.W.)
- Food Industries Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Cecilia Ahlström
- Department of Food Technology, Engineering and Nutrition, Lund University, 22362 Lund, Sweden; (I.Z.); (C.A.); (K.Ö.)
| | - Cornelia Witthöft
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39231 Kalmar, Sweden; (M.H.); (C.W.)
| | - Karolina Östbring
- Department of Food Technology, Engineering and Nutrition, Lund University, 22362 Lund, Sweden; (I.Z.); (C.A.); (K.Ö.)
| |
Collapse
|
91
|
|
92
|
Functionality of Ingredients and Additives in Plant-Based Meat Analogues. Foods 2021; 10:foods10030600. [PMID: 33809143 PMCID: PMC7999387 DOI: 10.3390/foods10030600] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Meat analogue research and development focuses on the production of sustainable products that recreate conventional meat in its physical sensations (texture, appearance, taste, etc.) and nutritional aspects. Minced products, like burger patties and nuggets, muscle-type products, like chicken or steak-like cuts, and emulsion products, like Frankfurter and Mortadella type sausages, are the major categories of meat analogues. In this review, we discuss key ingredients for the production of these novel products, with special focus on protein sources, and underline the importance of ingredient functionality. Our observation is that structuring processes are optimized based on ingredients that were not originally designed for meat analogues applications. Therefore, mixing and blending different plant materials to obtain superior functionality is for now the common practice. We observed though that an alternative approach towards the use of ingredients such as flours, is gaining more interest. The emphasis, in this case, is on functionality towards use in meat analogues, rather than classical functionality such as purity and solubility. Another trend is the exploration of novel protein sources such as seaweed, algae and proteins produced via fermentation (cellular agriculture).
Collapse
|
93
|
Rejuvenated Brewer's Spent Grain: The impact of two BSG-derived ingredients on techno-functional and nutritional characteristics of fibre-enriched pasta. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102633] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
94
|
Substantial Depletion of Vicine, Levodopa, and Tyramine in a Fava Bean Protein-Based Nutritional Product. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:6669544. [PMID: 33564674 PMCID: PMC7867441 DOI: 10.1155/2021/6669544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/01/2021] [Accepted: 01/16/2021] [Indexed: 11/18/2022]
Abstract
A commercial fava bean protein isolate and a liquid nutritional product formulated with it were tested by validated HPLC methods for the favism-associated pyrimidine glycoside vicine, the dopamine precursor levodopa, and the biogenic amine tyramine. The vicine, levodopa, and tyramine concentrations in the protein isolate-306, 13.3, and <0.5 mg/kg, respectively-when expressed on a protein basis-34, 1.5, and <0.06 mg/100 g protein, respectively-were at least 96% lower than the vicine, levodopa, and tyramine (protein-based) concentrations reported for fava beans (≥900, ~200, and ~4 mg/100 g protein, respectively). This was also true for the vicine (13 mg/kg or 22 mg/100 g protein), levodopa (≤0.17 mg/kg or ≤0.3 mg/100 g protein), and tyramine (0.08 mg/kg or 0.14 mg/100 g protein) concentrations in the nutritional product. On the basis of these data, one serving (11 fl. oz.) of the nutritional product would deliver approximately 5 mg of vicine, <1 mg of levodopa, and <0.1 mg of tyramine.
Collapse
|
95
|
Gharibzahedi SMT, Smith B. Legume proteins are smart carriers to encapsulate hydrophilic and hydrophobic bioactive compounds and probiotic bacteria: A review. Compr Rev Food Sci Food Saf 2021; 20:1250-1279. [PMID: 33506640 DOI: 10.1111/1541-4337.12699] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/30/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022]
Abstract
Encapsulation is a promising technological process enabling the protection of bioactive compounds against harsh storage, processing, and gastrointestinal tract (GIT) conditions. Legume proteins (LPs) are unique carriers that can efficiently encapsulate these unstable and highly reactive ingredients. Stable LPs-based microcapsules loaded with active ingredients can thus develop to be embedded into processed functional foods. The recent advances in micro- and nanoencapsulation process of an extensive span of bioactive health-promoting probiotics and chemical compounds such as marine and plant fatty acid-rich oils, carotenoid pigments, vitamins, flavors, essential oils, phenolic and anthocyanin-rich extracts, iron, and phytase by LPs as single wall materials were highlighted. A technical summary of the use of single LP-based carriers in designing innovative delivery systems for natural bioactive molecules and probiotics was made. The encapsulation mechanisms, encapsulation efficiency, physicochemical and thermal stability, as well as the release and absorption behavior of bioactives were comprehensively discussed. Protein isolates and concentrates of soy and pea were the most common LPs to encapsulate nutraceuticals and probiotics. The microencapsulation of probiotics using LPs improved bacteria survivability, storage stability, and tolerance in the in vitro GIT conditions. Moreover, homogenization and high-pressure pretreatments as well as enzymatic cross-linking of LPs significantly modify their structure and functionality to better encapsulate the bioactive core materials. LPs can be attractive delivery devices for the controlled release and increased bioaccessibility of the main food-grade bioactives.
Collapse
Affiliation(s)
| | - Brennan Smith
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
96
|
Pontonio E, Rizzello CG. Milk Alternatives and Non-Dairy Fermented Products: Trends and Challenges. Foods 2021; 10:foods10020222. [PMID: 33494460 PMCID: PMC7911977 DOI: 10.3390/foods10020222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 01/14/2023] Open
Affiliation(s)
- Erica Pontonio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Giovanni Amendola 165/A, 70126 Bari, Italy
- Correspondence: ; Tel.: +39-080-5442945
| | - Carlo Giuseppe Rizzello
- Department of Environmental Biology, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
97
|
Desoky ESM, Mansour E, El-Sobky ESEA, Abdul-Hamid MI, Taha TF, Elakkad HA, Arnaout SMAI, Eid RSM, El-Tarabily KA, Yasin MAT. Physio-Biochemical and Agronomic Responses of Faba Beans to Exogenously Applied Nano-Silicon Under Drought Stress Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:637783. [PMID: 34603344 PMCID: PMC8481644 DOI: 10.3389/fpls.2021.637783] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/11/2021] [Indexed: 05/20/2023]
Abstract
Nano-silicon application is an efficient novel approach to mitigate the deleterious impacts of drought stress on field crops, which is expected to increase owing to climate change, especially in arid regions. Two-season field studies investigated the influence of foliar-applied nano-silicon (0.5, 1, and 1.5 mM) on physiological and biochemical attributes and their impacts on crop water productivity (CWP) and the agronomic traits of faba beans (Vicia faba). The plants were evaluated under two irrigation regimes: well-watered (100% ETc giving 406 mm ha-1) and drought stress (65% ETc giving 264 mm ha-1). It was found that drought stress significantly decreased gas exchange (leaf net photosynthetic rate, stomatal conductance, and rate of transpiration), water relations (relative water content and membrane stability index), nutrient uptake (N, P, K+, and Ca+2), flavonoids, and phenolic content. In contrast, drought stress significantly increased oxidative stress (H2O2 and O 2 · - ) and enzymatic and non-enzymatic antioxidant activities compared with the well-watered treatment. These influences of drought stress were negatively reflected in seed yield-related traits and CWP. However, foliar treatment with nano-silicon, particularly with 1.5 mM, limited the devastating impact of drought stress and markedly enhanced all the aforementioned parameters. Therefore, exogenously applied nano-silicon could be used to improve the CWP and seed and biological yields of faba bean plants under conditions with low water availability in arid environments.
Collapse
Affiliation(s)
- El-Sayed M. Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Elsayed Mansour
- Agronomy Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | | | - Taha F. Taha
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Hend A. Elakkad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Rania S. M. Eid
- Agricultural Botany Department, Faculty of Agriculture, Benha University, Banha, Egypt
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
- *Correspondence: Khaled A. El-Tarabily
| | - Mohamed A. T. Yasin
- Agronomy Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
98
|
Hertzler SR, Lieblein-Boff JC, Weiler M, Allgeier C. Plant Proteins: Assessing Their Nutritional Quality and Effects on Health and Physical Function. Nutrients 2020; 12:E3704. [PMID: 33266120 PMCID: PMC7760812 DOI: 10.3390/nu12123704] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/21/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Consumer demand for plant protein-based products is high and expected to grow considerably in the next decade. Factors contributing to the rise in popularity of plant proteins include: (1) potential health benefits associated with increased intake of plant-based diets; (2) consumer concerns regarding adverse health effects of consuming diets high in animal protein (e.g., increased saturated fat); (3) increased consumer recognition of the need to improve the environmental sustainability of food production; (4) ethical issues regarding the treatment of animals; and (5) general consumer view of protein as a "positive" nutrient (more is better). While there are health and physical function benefits of diets higher in plant-based protein, the nutritional quality of plant proteins may be inferior in some respects relative to animal proteins. This review highlights the nutritional quality of plant proteins and strategies for wisely using them to meet amino acid requirements. In addition, a summary of studies evaluating the potential benefits of plant proteins for both health and physical function is provided. Finally, potential safety issues associated with increased intake of plant proteins are addressed.
Collapse
Affiliation(s)
- Steven R. Hertzler
- Scientific and Medical Affairs, Abbott Nutrition, 2900 Easton Square Place, Columbus, OH 43219, USA; (J.C.L.-B.); (M.W.); (C.A.)
| | | | | | | |
Collapse
|
99
|
De Angelis D, Kaleda A, Pasqualone A, Vaikma H, Tamm M, Tammik ML, Squeo G, Summo C. Physicochemical and Sensorial Evaluation of Meat Analogues Produced from Dry-Fractionated Pea and Oat Proteins. Foods 2020; 9:foods9121754. [PMID: 33260878 PMCID: PMC7760771 DOI: 10.3390/foods9121754] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Pea protein dry-fractionated (PDF), pea protein isolated (PIs), soy protein isolated (SIs) and oat protein (OP) were combined in four mixes (PDF_OP, PIs_OP, PDF_PIs_OP, SIs_OP) and extruded to produce meat analogues. The ingredients strongly influenced the process conditions and the use of PDF required higher specific mechanical energy and screw speed to create fibrous texture compared to PIs and SIs. PDF can be conveniently used to produce meat analogues with a protein content of 55 g 100 g-1, which is exploitable in meat-alternatives formulation. PDF-based meat analogues showed lower hardness (13.55-18.33 N) than those produced from PIs and SIs (nearly 27 N), probably due to a more porous structure given by the natural presence of carbohydrates in the dry-fractionated ingredient. PDF_OP and PIs_PDF_OP showed a significantly lower water absorption capacity than PIs OP and SIs_OP, whereas pea-based extrudates showed high oil absorption capacity, which could be convenient to facilitate the inclusion of oil and fat in the final formulation. The sensory evaluation highlighted an intense odor and taste profile of PDF_OP, whereas the extrudates produced by protein isolates had more neutral sensory characteristics. Overall, the use of dry-fractionated protein supports the strategies to efficiently produce clean-labeled and sustainable plant-based meat analogues.
Collapse
Affiliation(s)
- Davide De Angelis
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy; (A.P.); (G.S.); (C.S.)
- Correspondence:
| | - Aleksei Kaleda
- Center of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia; (A.K.); (H.V.); (M.T.); (M.-L.T.)
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy; (A.P.); (G.S.); (C.S.)
| | - Helen Vaikma
- Center of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia; (A.K.); (H.V.); (M.T.); (M.-L.T.)
- School of Business and Governance, Department of Business Administration, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Martti Tamm
- Center of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia; (A.K.); (H.V.); (M.T.); (M.-L.T.)
| | - Mari-Liis Tammik
- Center of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia; (A.K.); (H.V.); (M.T.); (M.-L.T.)
- School of Science, Department of Chemistry and Biotechnology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Giacomo Squeo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy; (A.P.); (G.S.); (C.S.)
| | - Carmine Summo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy; (A.P.); (G.S.); (C.S.)
| |
Collapse
|
100
|
Leuconostoc citreum TR116 as a Microbial Cell Factory to Functionalise High-Protein Faba Bean Ingredients for Bakery Applications. Foods 2020; 9:foods9111706. [PMID: 33233728 PMCID: PMC7699874 DOI: 10.3390/foods9111706] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022] Open
Abstract
Grain legumes, such as faba beans, have been investigated as promising ingredients to enhance the nutritional value of wheat bread. However, a detrimental effect on technological bread quality was often reported. Furthermore, considerable amounts of antinutritional compounds present in faba beans are a subject of concern. Sourdough-like fermentation can positively affect baking performance and nutritional attributes of faba bean flours. The multifunctional lactic acid bacteria strain Leuconostoc citreum TR116 was employed to ferment two faba bean flours with different protein contents (dehulled flour (DF); high-protein flour (PR)). The strain’s fermentation profile (growth, acidification, carbohydrate metabolism and antifungal phenolic acids) was monitored in both substrates. The fermentates were applied in regular wheat bread by replacing 15% of wheat flour. Water absorption, gluten aggregation behaviour, bread quality characteristics and in vitro starch digestibility were compared to formulations containing unfermented DF and PR and to a control wheat bread. Similar microbial growth, carbohydrate consumption as well as production of lactic and acetic acid were observed in both faba bean ingredients. A less pronounced pH drop as well as a slightly higher amount of antifungal phenolic acids were measured in the PR fermentate. Fermentation caused a striking improvement of the ingredients’ baking performance. GlutoPeak measurements allowed for an association of this observation with an improved gluten aggregation. Given its higher potential to improve protein quality in cereal products, the PR fermentate seemed generally more promising as functional ingredient due to its positive impact on bread quality and only moderately increased starch digestibility in bread.
Collapse
|