51
|
Screening and characterization of phenolic compounds by LC-ESI-QTOF-MS/MS and their antioxidant potentials in papaya fruit and their by-products activities. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
52
|
Corrêa PG, Moura LGS, Amaral ACF, Almeida MMHD, Souza FDCDA, Aguiar JPL, Aleluia RL, Silva JRDA. Evaluation of the Amazonian fruit Ambelania acida: Chemical and nutritional studies. J Food Sci 2023; 88:757-771. [PMID: 36633002 DOI: 10.1111/1750-3841.16455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023]
Abstract
Ambelania acida is native to the Amazon region, with few published studies of its fruits. We examined the proximate composition of its fruits, including minerals, fatty acids, volatile organic compounds (VOCs), as well as its antioxidant capacity. The protein contents (2.61%) of the pulp and seeds (13.6%) were higher than observed in other taxa of the family or in other tropical fruits. Peel and pulp showed high contents of potassium, calcium, and magnesium, and the potassium content in the pulp was 1125 mg/100 g. The peel had higher contents of total phenolics, tannins, and ortho-diphenols than the pulp, as well as better antioxidant activity as evidenced by 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 1,1-diphenyl-2-picrylhydrazyl (DPPH), Ferric Reducing Antioxidant Power (FRAP), and Fe2+ chelating activity assays. GC-MS analyses identified 42 VOCs in the peel and pulp, with more than 90% being classified as terpenes. Eleven types of fatty acids were identified in the lipid fractions of the peel, pulp, and seeds. Linoleic acid, an essential fatty acid for humans, was the principal fatty acid in the edible portion of the fruit, therefore, evidencing its nutritionally significant profile for the fruits when considering the relationship among polyunsaturated, saturated, and monounsaturated fatty acids. The information gathered here indicates that this native fruit is a healthy food source and its cultivation and consumption should be stimulated.
Collapse
Affiliation(s)
- Pollyane Gomes Corrêa
- Chromatography Laboratory, Chemistry Department, Federal University of Amazonas, Manaus, Amazonas, Brazil
| | | | - Ana Claudia Fernandes Amaral
- Laboratory of Medicinal Plants and Derivatives, Department of Chemistry of Natural Products, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maíra Martins H de Almeida
- Laboratory of Medicinal Plants and Derivatives, Department of Chemistry of Natural Products, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Francisca das Chagas do Amaral Souza
- Brazilian National Institute for Research in the Amazon, Coordination Society of Environment and Health (COSAS) and Laboratory of Physical Chemistry of Food (LFQA), Manaus, Amazonas, Brazil
| | - Jaime Paiva Lopes Aguiar
- Brazilian National Institute for Research in the Amazon, Coordination Society of Environment and Health (COSAS) and Laboratory of Physical Chemistry of Food (LFQA), Manaus, Amazonas, Brazil
| | - Renê Lemos Aleluia
- Laboratory of Plant Genetics and Toxicology, Department of Biological Sciences Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| | | |
Collapse
|
53
|
Li K, Duan X, Zhou L, Hill DRA, Martin GJO, Suleria HAR. Bioaccessibility and bioactivities of phenolic compounds from microalgae during in vitro digestion and colonic fermentation. Food Funct 2023; 14:899-910. [PMID: 36537586 DOI: 10.1039/d2fo02980d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microalgae are a developing novel source of carbohydrates, phenolic compounds, carotenoids and proteins. In this study, in vitro digestion and colonic fermentation were conducted to examine the total phenolic content and potential antioxidant activity of four microalgal species (Chlorella sp., Spirulina sp., Dunaliella sp., and Isochrysis sp.). The bioaccessibility of targeted phenolic compounds and the short-chain fatty acid (SCFA) production were also estimated. Particularly, Spirulina sp. exhibited the highest total phenolic content (TPC) and free radical scavenging (2,2'-diphenyl-1-picrylhydrazyl, DPPH) capacity after gastrointestinal digestion of 7.93 mg gallic acid equivalents (GAE) per g and 2.35 mg Trolox equivalents (TE) per g. Meanwhile, it had the highest total flavonoid content (TFC) of 1.07 quercetin equivalents (QE) per g after 8 h of colonic fermentation. Dunaliella sp. and Isochrysis sp. showed comparable ferric reducing antioxidant power (FRAP) of 4.96 and 4.45 mg QE per g after 4 h of faecal reaction, respectively. p-hydroxybenzoic and caffeic acid almost completely decomposed after the intestine and fermented in the colon with the gut microflora. In Dunaliella sp. and Isochrysis sp., these phenolic acids were found in the colonic fermented residual, probably due to the presence of dietary fibre and the interactions with other components. All four species reached the highest values of SCFA production after 16 h, except Spirulina sp., which displayed the most increased total SCFA production after 8 h of fermentation. It is proposed that Spirulina sp. could be more beneficial to gut health.
Collapse
Affiliation(s)
- Kunning Li
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia.
| | - Xinyu Duan
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia.
| | - Linhui Zhou
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia.
| | - David R A Hill
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Gregory J O Martin
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Hafiz A R Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia.
| |
Collapse
|
54
|
Song J, Jeong J, Kim EH, Hong YS. A strategy for healthy eating habits of daily fruits revisited: A metabolomics study. Curr Res Food Sci 2023; 6:100440. [PMID: 36699116 PMCID: PMC9868340 DOI: 10.1016/j.crfs.2023.100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/08/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Many people peel fruits, commonly persimmon, grape, apple, and peach, before eating as table fruits. Differences of bioactive compounds between peels and pulps of daily fruits are widely known but limited to individual compound because understanding of differences in their global metabolites is lack. We employed 1H NMR-based metabolomics to explore the global metabolite differences between their peels and pulps from the fruits, which included changes of diverse metabolites in persimmon after harvest ripening. Of diverse metabolites observed among the fruits tested, various health-beneficial metabolites were present in the peels rather than the pulps and their classes were dependent on the type of fruit: gallocatechin, epicatechin and epigallocatehin only in persimmon, apple, and peach, respectively; quercetin only in persimmon and apple; kaempferol only in persimmon; chlorogenic acid only in grape and peach; neochlorogenic acid only in apple and peach; p-coumaric acid only in grape; phloridzin and catechin only in apple. These metabolites in the peels of each fruits were strongly correlated with free radical-scavenging activity and delay of carbohydrate digestion. Therefore, intake of whole fruits, rather than removal of their peels, were recommended for potential improvement of healthy lifespan and human wellness. This study highlights the critical role of metabolomic studies in simultaneous determinations of diverse and intrinsic metabolites in different types of fruits and thus providing a strategy for healthy eating habits of daily fruits.
Collapse
Affiliation(s)
- June Song
- Division of Food and Nutrition, Chonnam National University, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Jaesik Jeong
- Department of Statistics, Chonnam National University, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Eun-Hee Kim
- Center for Research Equipment, Korea Basic Science Institute, Cheongwon-gu, Cheongju-si, Chungbuk, 28119, Republic of Korea
| | - Young-Shick Hong
- Division of Food and Nutrition, Chonnam National University, Buk-gu, Gwangju, 61186, Republic of Korea,Corresponding author.
| |
Collapse
|
55
|
Lyu X, Agar OT, Barrow CJ, Dunshea FR, Suleria HAR. Phenolic Compounds Profiling and Their Antioxidant Capacity in the Peel, Pulp, and Seed of Australian Grown Avocado. Antioxidants (Basel) 2023; 12:antiox12010185. [PMID: 36671046 PMCID: PMC9855119 DOI: 10.3390/antiox12010185] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Avocados (Persea americana M.) are highly valued fruits consumed worldwide, and there are numerous commercially available varieties on the market. However, the high demand for fruit also results in increased food waste. Thus, this study was conducted for comprehensive profiling of polyphenols of Hass, Reed, and Wurtz avocados obtained from the Australian local market. Ripe Hass peel recorded the highest TPC (77.85 mg GAE/g), TTC (148.98 mg CE/g), DPPH (71.03 mg AAE/g), FRAP (3.05 mg AAE/g), RPA (24.45 mg AAE/g), and ABTS (75.77 mg AAE/g) values; unripe Hass peel recorded the highest TFC (3.44 mg QE/g); and Wurtz peel recorded the highest TAC (35.02 mg AAE/g). Correlation analysis revealed that TPC and TTC were significantly correlated with the antioxidant capacity of the extracts. A total of 348 polyphenols were screened in the peel. A total of 134 compounds including 36 phenolic acids, 70 flavonoids, 11 lignans, 2 stilbenes, and another 15 polyphenols, were characterised through LC-ESI-QTOF-MS/MS, where the majority were from peels and seeds of samples extract. Overall, the hierarchical heat map revealed that there were a significant amount of polyphenols in peels and seeds. Epicatechin, kaempferol, and protocatechuic acid showed higher concentrations in Reed pulp. Wurtz peel contains a higher concentration of hydroxybenzoic acid. Our results showed that avocado wastes have a considerable amount of polyphenols, exhibiting antioxidant activities. Each sample has its unique value proposition based on its phenolic profile. This study may increase confidence in utilising by-products and encourage further investigation into avocado by-products as nutraceuticals.
Collapse
Affiliation(s)
- Xiaoyan Lyu
- Faculty of Science, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Osman Tuncay Agar
- Faculty of Science, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia
| | - Frank R. Dunshea
- Faculty of Science, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| | - Hafiz A. R. Suleria
- Faculty of Science, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia
- Correspondence: ; Tel.: +61-4-7043-9670
| |
Collapse
|
56
|
Martínez-Inda B, Esparza I, Moler JA, Jiménez-Moreno N, Ancín-Azpilicueta C. Valorization of agri-food waste through the extraction of bioactive molecules. Prediction of their sunscreen action. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116460. [PMID: 36283169 DOI: 10.1016/j.jenvman.2022.116460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The aim of this work was to identify the phenolic composition of 18 different vegetable residues and to determine the relationship between their phenolic compounds, antioxidant capacity and sun protection factor. For this purpose, samples of agri-food residues were analyzed to quantify their antioxidant capacity, total polyphenol and flavonoid content, sun protection factor and individual phenolic compounds through HPLC-DAD-FLD. Among the different phenolic compounds found in the extracts, the phenolic acids, especially caffeic acid, chlorogenic acid, p-coumaric acid and protocatechuic acid were the ones that have been most frequently identified, and, therefore, are present in a wide range of extracts. Black chai tea, lemon ginger tea and peanut extracts were the most antioxidant and photoprotective extracts. Phenolic compounds in the extracts have been found to contribute to their antioxidant activity and are closely correlated to their photoprotective capacity. A regression model that allows predicting the photoprotective capacity of any extract based on its total phenol content has been developed as a tool to determine the most suitable industrial application for each vegetable extract.
Collapse
Affiliation(s)
- Blanca Martínez-Inda
- Department of Sciences, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain; Institute for Advanced Materials (INAMAT(2)), Universidad Pública de Navarra, 31006, Pamplona, Spain
| | - Irene Esparza
- Department of Sciences, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain; Institute for Advanced Materials (INAMAT(2)), Universidad Pública de Navarra, 31006, Pamplona, Spain
| | - José Antonio Moler
- Department of Statistics and Operational Research, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain
| | - Nerea Jiménez-Moreno
- Department of Sciences, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain; Institute for Advanced Materials (INAMAT(2)), Universidad Pública de Navarra, 31006, Pamplona, Spain
| | - Carmen Ancín-Azpilicueta
- Department of Sciences, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain; Institute for Advanced Materials (INAMAT(2)), Universidad Pública de Navarra, 31006, Pamplona, Spain.
| |
Collapse
|
57
|
Corrêa PG, Moura LGS, Amaral ACF, do Amaral Souza FDC, Aguiar JPL, Aleluia RL, de Andrade Silva JR. Chemical and nutritional characterization of Ambelania duckei (Apocynaceae) an unexplored fruit from the Amazon region. Food Res Int 2023; 163:112290. [PMID: 36596195 DOI: 10.1016/j.foodres.2022.112290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Ambelania duckei Markgr is a species of the Apocynaceae family, native to the Amazon region that is unexplored from a nutritional point of view and studied in relation to its chemical constituents. This work presents an unprecedented study of the proximate composition, lipid profile, a chromatographic analysis, and the antioxidant activity of extracts obtained from the pulp, peel and seeds of the fruit. The results showed that potassium, calcium, and magnesium stood out as the most abundant key minerals in the fruit peel and pulp, with an emphasis on the potassium present in the fruit pulp at 1750.0 mg/100 g. The peel had the highest content of total phenolics (374.86 mg/g), flavonoids (15.54 mg/g), tannins (27.45 mg/g) and O-diphenols (379.36 mg/g; 645.71 mg/g). The antioxidant activity (AA) was highest in the peel compared to the pulp in the DPPH, ABTS, and ORAC tests showing: IC50 of 29.82; 43.67; and 407.13 µg/mL, respectively but a lower activity for the Fe2+ chelator. The analysis of the lipid fractions from the peel, pulp, and seeds of the A. duckei fruit resulted in 14 types of fatty acids. The major fatty acids found in the three parts of the fruit were oleic acid (peel, 22.52 %), palmitic acid (pulp, 17.34 %), and linoleic acid (seeds, 47.99 %). The lipid profile and nutritional aspects had a PUFA/SFA ratio (0.4-1.8) in the different parts of the A. duckei fruit; the atherogenic and thrombogenic indexes were higher in the peel (1.23) and pulp (0.62), respectively. The ratio between the hypocholesterolemic and hypercholesterolemic fatty acids (0.5 - 3.8) calculated for the fruit are within the desirable range for a nutritious food. The chromatographic analysis of the volatile organic compounds (VOCs) from the peel and pulp of the fruit, identified 74 VOCs, of which 60.9 % are related to terpenes, and emit notes such as cucumber, green, fatty, floral, and mint, due to the presence of substances with OAVs > 10, especially α-ionone, 1,8-cineole, 2,4-decadienal, and dodecanal. The analysis of the MS and MS/MS spectra of the chromatograms obtained by LC- QTOF-HRMS led to the identification of 26 compounds in the peel, seeds and pulp of A. duckei, such as fatty acids, phenolic acid, flavonoids, proanthocyanidins, alkaloids, and terpenoids. The results show that the pulp of A. duckei has potential as nourishing food and the nutritional and chemical aspects of the peel can be applied to commercial applications.
Collapse
Affiliation(s)
- Pollyane Gomes Corrêa
- Chromatography Laboratory, Chemistry Department, Federal University of Amazonas, Manaus, AM, Brazil
| | | | - Ana Claudia Fernandes Amaral
- Laboratory of Medicinal Plants and Derivatives, Department of Chemistry of Natural Products, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Francisca das Chagas do Amaral Souza
- Brazilian National Institute for Research in the Amazon, Coordination Society of Environment and Health (COSAS) and Laboratory of Physical Chemistry of Food (LFQA), Manaus, AM, Brazil
| | - Jaime Paiva Lopes Aguiar
- Brazilian National Institute for Research in the Amazon, Coordination Society of Environment and Health (COSAS) and Laboratory of Physical Chemistry of Food (LFQA), Manaus, AM, Brazil
| | - Renê Lemos Aleluia
- Laboratory of Plant Genetics and Toxicology, Department of Biological Sciences Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| | | |
Collapse
|
58
|
Zhu J, Shi Q, Sun C, Hu J, Zhou N, Wei H, He H, Zhou D, Zhang H, Xiong Q. Processing affects (decreases or increases) metabolites, flavonoids, black rice pigment, and total antioxidant capacity of purple glutinous rice grains. Food Chem X 2022; 16:100492. [PMID: 36519085 PMCID: PMC9743149 DOI: 10.1016/j.fochx.2022.100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
The objective of this study was to understand the effects of processing on metabolites, flavonoids, black rice pigments and total antioxidant capacity of purple grains. The biochemical indicators and metabolites were determined before and after processing of purple grains. The results showed that the total antioxidant capacity, total phenol (TP), flavonoid (PD), oligomeric proanthocyanidin (OPC), ascorbic acid (AsA), cyanidin-3-O-glucoside (C3OG), peonidin 3-glucoside (P3G) contents of purple grains were greatly decreased after brown rice grains were processed into polished rice grains. The TP, PD, OPC, AsA, C3OG, and P3G of Yangzinuo No.1 brown rice (YZN1_B) or polished rice grains (YZN1_H) were higher than those of Yangzinuo No.2 brown rice (YZN2_B) or polished rice grains (YZN2_H). 154 differential metabolites (DMs) were identified between YZN1_B and YZN1_H. 52 DMs were identified between YZN2_B and YZN2_H. Citric acid and isocyanate are key metabolites affected during processing and have good correlations with various biochemical indicators.
Collapse
Affiliation(s)
- Jinyan Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Qiang Shi
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Changhui Sun
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Jinlong Hu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Nianbing Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Haiyan Wei
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Haohua He
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dahu Zhou
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hongcheng Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Qiangqiang Xiong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Jiangxi Irrigation Experiment Central Station, Nanchang 330201, China
| |
Collapse
|
59
|
Adil S, Jana AH, Mehta BM, Darji VB. Value addition to frozen yoghurt through the use of orange peel solids as flavour adjunct. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shaikh Adil
- Dairy Technology Department Parul Institute of Technology, Parul University 391 760 Gujarat Vadodara India
| | - Atanu H Jana
- Principal, SMC College of Dairy Science Kamdhenu University 388 110 Gujarat Anand India
| | - Bhavbhuti M Mehta
- Dairy Chemistry Department, SMC College of Dairy Science Kamdhenu University 388 110 Gujarat Anand India
| | - V B Darji
- Department of Agriculture Science, College of AIT Anand Agricultural University 388 110 Gujarat Anand India
| |
Collapse
|
60
|
Ali A, Kiloni SM, Cáceres-Vélez PR, Jusuf PR, Cottrell JJ, Dunshea FR. Phytochemicals, Antioxidant Activities, and Toxicological Screening of Native Australian Fruits Using Zebrafish Embryonic Model. Foods 2022; 11:foods11244038. [PMID: 36553779 PMCID: PMC9777714 DOI: 10.3390/foods11244038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/27/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Phytochemicals play a pivotal role in human health and drug discovery. The safety evaluation of plant extracts is a prerequisite to ensure that all phytochemicals are safe before translational development and human exposure. As phytochemicals are natural, they are generally considered safe, although this is not always true. The objective of this study was to investigate and compare the phytochemical composition, antioxidant potential, and safety evaluation of native Australian Muntries (Kunzea pomifera), Kakadu plum (Terminalia ferdinandiana), Davidson plum (Davidsonia) and Quandong peach (Santalum acuminatum) through the in vivo vertebrate zebrafish embryonic model. The highest total phenolic content (TPC; 793.89 ± 22.27 μg GAE/mg) was quantified in Kakadu plum, while the lowest TPC (614.44 ± 31.80 μg GAE/mg) was quantified in Muntries. Developmental alterations, mortality, and morbidity were assessed for toxicological screening of these selected native Australian fruit extracts. In this study, muntries were quantified as having the least LC50 value (169 mg/L) compared to Davidson plum (376 mg/L), Kakadu plum (>480 mg/L), and Quandong peach (>480 mg/L), which indicates that muntries extract was more toxic than other fruit extracts. Importantly, we found that adverse effects were not correlated to the total phenolic content and antioxidant potential of these native Australian fruits and cannot simply be predicted from the in vitro analysis. Conclusively, these selected native Australian fruit extracts are categorized as safe. This study could explore the use of these native Australian fruits in cosmetics, pharmaceuticals, and drug discovery.
Collapse
Affiliation(s)
- Akhtar Ali
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sarah M. Kiloni
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Patricia R. Jusuf
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jeremy J. Cottrell
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Frank R. Dunshea
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
- Correspondence:
| |
Collapse
|
61
|
Chakraborty M, Budhwar S, Kumar S. Evaluation of nutrients and organoleptic value of novel value added multibran cookies using multivariate approach. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4748-4760. [PMID: 36276522 PMCID: PMC9579263 DOI: 10.1007/s13197-022-05559-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/07/2022] [Accepted: 07/05/2022] [Indexed: 06/16/2023]
Abstract
Cereal and legume flours are intensively being used by food experts to formulate cookies. But their byproducts are discarded in spite of being nutrient rich. The study was conducted to determine nutrients, organoleptic properties and shelf-life of highly nutritive multibran cookies formulated with partial replacement of wheat flour along with the milling byproducts i.e., chickpea husk, moong bean husk, rice bran, broken rice, and wheat bran. The percentages of the byproduct flour, taken for the formulation of the product, was determined using central composite design of response surface methodology. According to the obtained data, Multi-bran cookies (MBC) possessed rich nutrient composition in comparison with the control sample i.e., the wheat flour cookies (WFC). MBC showed 18% crude protein, 5% crude fiber, higher than the crude protein (7.78%) and crude fiber (2%) of WFC. However, total sugar concentrations of MBC (3.08 g/100 g) was lower than WFC (4.89 g/100 g). Calcium and phosphorus present in MBC were 115.06 mg/100 g and 195.88 mg/100 g respectively, significantly higher (p < 0.05) than WFC. The overall acceptability of MBC as indicated by 9-point hedonic scale (8.13) was satisfactory. On the basis of the obtained data it can be said that the selected milling byproducts can be used as potential plant-based sources to develop significant functional products like cookies without affecting its sensory quality and to improve nutritional status of consumer. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05559-1.
Collapse
Affiliation(s)
- Manali Chakraborty
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Jant-Pali, Haryana 123029 India
| | - Savita Budhwar
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Jant-Pali, Haryana 123029 India
| | - Suneel Kumar
- Department of Physics and Astrophysics, Central University of Haryana, Mahendergarh, Jant-Pali, Haryana 123029 India
| |
Collapse
|
62
|
LC-ESI-QTOF-MS/MS profiling of phenolic compounds in Australian native plums and their potential antioxidant activities. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
63
|
Li M, Bai Q, Zhou J, de Souza TSP, Suleria HAR. In Vitro Gastrointestinal Bioaccessibility, Bioactivities and Colonic Fermentation of Phenolic Compounds in Different Vigna Beans. Foods 2022; 11:foods11233884. [PMID: 36496693 PMCID: PMC9736425 DOI: 10.3390/foods11233884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Beans are widely consumed throughout the world, rich in non-nutrient phenolic compounds and other bioactive constituents, including alkaloids, lectins, and others. However, research about in vitro digestion impacts on the changes of bioactive compounds' release and related antioxidant potential in different Vigna beans is limited. This research aimed to assess the modifications that occur in the content and bioaccessibility of phenolic compounds in four Vigna samples (adzuki bean, black urid whole, black eye bean, and mung bean), their antioxidant properties, and short chain fatty acids (SCFAs) production through static in vitro gastrointestinal digestion and colonic fermentation. Adzuki bean exhibited relatively higher total phenolic content (TPC; 4.76 mg GAE/g) and antioxidant activities after in vitro digestion. The black eye beans' total flavonoid content (0.74 mg QE/g) and total condensed tannins (10.43 mg CE/g) displayed higher tendencies. For colonic fermentation, the greatest TPC value of entire samples was detected through a 2-h reaction. In most selected beans, phenolic compounds were comparably more bioaccessible during the oral phase. Acetic acid showed the highest level through SCFAs production, and the total SCFAs in adzuki beans was the greatest (0.021 mmol/L) after 16-h fermentation. Adzuki beans may be more beneficial to gut health and possess a stronger antioxidant potential after consumption.
Collapse
|
64
|
Lv Z, Zhou D, Shi X, Ren J, Zhang H, Zhong C, Kang S, Zhao X, Yu H, Wang C. Comparative Multi-Omics Analysis Reveals Lignin Accumulation Affects Peanut Pod Size. Int J Mol Sci 2022; 23:13533. [PMID: 36362327 PMCID: PMC9658497 DOI: 10.3390/ijms232113533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 02/07/2025] Open
Abstract
Pod size is one of the important factors affecting peanut yield. However, the metabolites relating to pod size and their biosynthesis regulatory mechanisms are still unclear. In the present study, two peanut varieties (Tif and Lps) with contrasting pod sizes were used for a comparative metabolome and transcriptome analysis. Developing peanut pods were sampled at 10, 20 and 30 days after pegging (DAP). A total of 720 metabolites were detected, most of which were lipids (20.3%), followed by phenolic acids (17.8%). There were 43, 64 and 99 metabolites identified as differentially accumulated metabolites (DAMs) at 10, 20 and 30 DAP, respectively, and flavonoids were the major DAMs between Tif and Lps at all three growth stages. Multi-omics analysis revealed that DAMs and DEGs (differentially expressed genes) were significantly enriched in the phenylpropanoid biosynthesis (ko00940) pathway, the main pathway of lignin biosynthesis, in each comparison group. The comparisons of the metabolites in the phenylpropanoid biosynthesis pathway accumulating in Tif and Lps at different growth stages revealed that the accumulation of p-coumaryl alcohol (H-monolignol) in Tif was significantly greater than that in Lps at 30 DAP. The differential expression of gene-LOC112771695, which is highly correlated with p-coumaryl alcohol and involved in the biosynthesis of monolignols, between Tif and Lps might explain the differential accumulation of p-coumaryl alcohol. The content of H-lignin in genetically diverse peanut varieties demonstrated that H-lignin content affected peanut pod size. Our findings would provide insights into the metabolic factors influencing peanut pod size and guidance for the genetic improvement of the peanut.
Collapse
Affiliation(s)
- Zhenghao Lv
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110000, China
| | - Dongying Zhou
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110000, China
| | - Xiaolong Shi
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110000, China
| | - Jingyao Ren
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110000, China
| | - He Zhang
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110000, China
| | - Chao Zhong
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110000, China
| | - Shuli Kang
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110000, China
| | - Xinhua Zhao
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110000, China
| | - Haiqiu Yu
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110000, China
| | - Chuantang Wang
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110000, China
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao 266000, China
| |
Collapse
|
65
|
Ali A, Cottrell JJ, Dunshea FR. LC-MS/MS Characterization of Phenolic Metabolites and Their Antioxidant Activities from Australian Native Plants. Metabolites 2022; 12:1016. [PMID: 36355099 PMCID: PMC9698446 DOI: 10.3390/metabo12111016] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 09/29/2023] Open
Abstract
Polyphenols are considered vital bioactive compounds beneficial for human health. The Australian flora is enriched with polyphenols which are not fully characterized yet. Thus, the main objective of this study was to identify and characterize the Australian native sandalwood nuts, wattle seeds, lemongrass, and old man saltbush for phenolic compounds and their antioxidant activities. In this study, we tentatively identified a total of 155 phenolic compounds including 25 phenolic acids, 55 flavonoids, 22 isoflavonoids, 22 tannins, 22 lignans, 33 stilbenes, 33 coumarins and derivatives, 12 tyrosols and derivatives, and 6 phenolic terpenes. The highest total phenolic content (TPC) (15.09 ± 0.88 mg GAE/g) was quantified in lemongrass, while the lowest TPC (4.17 ± 0.33 mg GAE/g) was measured in wattle seeds. The highest total flavonoid content (TFC) and total condensed tannins (TCT) were measured in lemongrass and wattle seeds, respectively. A total of 18 phenolic metabolites were quantified/semi-quantified in this experiment. Lemongrass contains a vast number of phenolic metabolites.
Collapse
Affiliation(s)
- Akhtar Ali
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jeremy J. Cottrell
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Frank R. Dunshea
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
- The Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
66
|
Effects of Pineapple Peel Ethanolic Extract on the Physicochemical and Textural Properties of Surimi Prepared from Silver Carp ( Hypophthalmichthys molitrix). Foods 2022. [PMCID: PMC9601345 DOI: 10.3390/foods11203223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The effects of ethanolic pineapple peel extract (PPE) powder at various concentrations (0–1.50%, w/w) on the gelling properties of silver carp surimi were investigated. The pineapple peel extract produced with 0–100% ethanol, revealed that 100% ethanol had the highest bioactive properties. Surimi gels with added PPE powder demonstrated improved gel strength (504.13 ± 11.78 g.cm) and breaking force (511.64 ± 11.80 g) up to 1% PPE addition; however, as PPE concentration increased beyond 1%, the gel strength decreased. Similarly, with the addition of 1% PPE powder, more hydrophobic bonds and fewer sulfhydryl groups and free amino groups were seen. However, the gels with PPE powder added showed a slight reduction in the whiteness of the surimi gels. FTIR analysis indicated that the fortification with PPE powder brought about the secondary structure of myofibrillar proteins; peaks shifted to the β-sheet region (PPE gels) from the α-helix region (control). SEM analysis indicated that the gel with 1% PPE powder had a relatively organized, finer and denser gel architecture. Overall results suggested that the addition of PPE powder up to 1% to the surimi gels enhanced the gelling properties as well as the microstructure of the surimi.
Collapse
|
67
|
Rodríguez-Martínez B, Ferreira-Santos P, Alfonso IM, Martínez S, Genisheva Z, Gullón B. Deep Eutectic Solvents as a Green Tool for the Extraction of Bioactive Phenolic Compounds from Avocado Peels. Molecules 2022; 27:molecules27196646. [PMID: 36235183 PMCID: PMC9572341 DOI: 10.3390/molecules27196646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Avocado peels are the main agro-industrial residue generated during the avocado processing, being a rich source of bioactive compounds like phenolic compounds. The growing demand for more sustainable processes requires the development of new and effective methods for extracting bioactive compounds from industrial waste. Deep eutectic solvents (DESs) are a new sustainable alternative to toxic organic solvents due to their non-toxicity and biocompatibility. In this study, five selected DESs were applied for the extraction of bioactive phenolic compounds from avocado peels. The extraction efficiency was evaluated by measuring the total phenolics and flavonoids content. The best extraction results were obtained with choline chloride-acetic acid and -lactic acid (92.03 ± 2.11 mg GAE/g DAP in TPC and 186.01 ± 3.27 mg RE/g DAP); however, all tested DESs show better extraction efficiency than ethanol. All the obtained NADES extracts have high antioxidant activity (FRAP: 72.5-121.1 mg TE/g; TAC: 90.0-126.1 mg AAE/g). The synthesized DESs and avocado peels DES extracts had activity against all tested bacteria (Staphylococcus aureus, Streptococcus dysgalactiae, Escherichia coli and Pseudomonas putida), and the extracts prepared with choline chloride-acetic acid and -lactic acid have the highest antibacterial activity against all microorganisms. These results, coupled with the non-toxic, biodegradable, low-cost, and environmentally friendly characteristics of DESs, provide strong evidence that DESs represent an effective alternative to organic solvents for the recovery of phenolic bioactive compounds from agro-industrial wastes.
Collapse
Affiliation(s)
- Beatriz Rodríguez-Martínez
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain
| | - Pedro Ferreira-Santos
- Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence:
| | - Irene Méndez Alfonso
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain
| | - Sidonia Martínez
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain
| | - Zlatina Genisheva
- Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain
| |
Collapse
|
68
|
Yang Z, Shi L, Qi Y, Xie C, Zhao W, Barrow CJ, Dunshea FR, Suleria HA. Effect of processing on polyphenols in butternut pumpkin (Cucurbita moschata). FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
69
|
Selahvarzi A, Ramezan Y, Sanjabi MR, Namdar B, Akbarmivehie M, Mirsaeedghazi H, Azarikia F. Optimization of ultrasonic-assisted extraction of phenolic compounds from pomegranate and orange peels and their antioxidant activity in a functional drink. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
70
|
Trendafilova A, Ivanova V, Trusheva B, Kamenova-Nacheva M, Tabakov S, Simova S. Chemical Composition and Antioxidant Capacity of the Fruits of European Plum Cultivar “Čačanska Lepotica” Influenced by Different Rootstocks. Foods 2022; 11:foods11182844. [PMID: 36140977 PMCID: PMC9498388 DOI: 10.3390/foods11182844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
We investigated the influence of different rootstocks on the content of sugars, organic acids, and antioxidant phenolic compounds in the whole fruit and fruit skin of the European plum cultivar “Čačanska Lepotica”. 1H NMR of the fruit extracts allowed for the identification of sucrose, α- and β-glucose, sorbitol, fructose, and malic and quinic acids, while LC–DAD–ESIMS showed the presence of neochlorogenic and chlorogenic acids, cyanidin-3-O-glucoside, cyanidin-3-O-rutinoside, peonidin-3-O-glucoside, peonidin-3-O-rutinoside, hyperoside, isoquercitrin, rutin, and unidentified quercetin-3-diglycoside. The quantitation of the sugars, malic and quinic acids by 1H NMR and phenolic compounds by HPLC–DAD revealed that the rootstock significantly influenced the content of the individual compounds in the fruit skin and fruit. The fruit grafted on “Wavit” rootstock was characterized by significant amounts of neochlorogenic acid, peonidin-3-O-rutinoside, cyanidin-3-O-rutinoside, and sucrose, while the fruit on “GXN-15” was characterized by high levels of sugars, cyanidin-3-O-glucoside, and malic and chlorogenic acids. The fruit skins of plums grafted on “Wavit” were the richest in sugars, organic acids, and phenolic compounds. A good correlation was observed between the content of total phenolics (TPC), flavonoids (TFC), anthocyanins (TAC), and individual phenolic compounds in the extracts of the fruit and the fruit skins and their antioxidant capacity (DPPH, ABTS, and FRAP).
Collapse
Affiliation(s)
- Antoaneta Trendafilova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria
- Correspondence:
| | - Viktoria Ivanova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria
| | - Boryana Trusheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria
| | - Mariana Kamenova-Nacheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria
- Research and Development and Innovation Consortium, Sofia Tech Park JSC, 111 Tsarigradsko Shosse Blvd., 1784 Sofia, Bulgaria
| | - Sava Tabakov
- Department of Fruit Growing, Agricultural University, Mendeleev Blvd., 12, 4000 Plovdiv, Bulgaria
| | - Svetlana Simova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria
| |
Collapse
|
71
|
Li R, Ru Y, Feng L, Wang Z, He X, Zhang X. A comparative study of nutrient composition, bioactive properties and phytochemical characteristics of Stauntonia obovatifoliola flesh and pericarp. Front Nutr 2022; 9:1013971. [PMID: 36159481 PMCID: PMC9501892 DOI: 10.3389/fnut.2022.1013971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
A comparative study was conducted among the flesh (SOF) and pericarp (SOP) of Stauntonia obovatifoliola, a wild edible fruit in China. The nutrient composition of both these tissues was firstly quantified, and liquid-liquid extraction was then used to separate their methanolic extracts to get petroleum ether, chloroform, ethyl acetate, n-butanol, and residual aqueous fractions, which were evaluated for their total phenol content (TPC), total flavonoid content (TFC), antioxidant capacities, and α-glucosidase and acetylcholinesterase inhibition abilities. Finally, high-performance liquid chromatography (HPLC) was used to analyze their phytochemical composition. The results revealed the excellent nutritional properties of both SOF and SOP, especially SOP (total dietary fiber, 15.50 g/100 g; total amino acids, 0.80 g/100 g; vitamin C, 18.00 mg/100 g; Ca, 272.00 mg/kg; K, 402.00 mg/100 g). For both tissues, their ethyl acetate fractions showed the highest TPC (355.12 and 390.99 mg GAE/g DE) and TFC (306.58 and 298.48 mg RE/g DE). Surprisingly, the ethyl acetate fraction of SOP exhibited the strongest DPPH and ABTS radical scavenging capacity with 1046.94 and 1298.64 mg Trolox/g, respectively, which were higher than that of controls Vc and BHT. In contrast, their chloroform fractions exhibited the strongest ferric reducing antioxidant power (1903.05 and 1407.11 mg FeSO4/g DE) and oxygen radical absorbance capacity (951.12 and 1510.21 mg Trolox/g DE). In addition, the ethyl acetate fraction of SOF displayed superior α-glucosidase inhibition ability with the IC50 value of 0.19 mg/mL, which was comparable to control acarbose. In comparison, the ethyl acetate fraction of SOP had the best acetylcholinesterase inhibition ability with the IC50 value of 0.47 mg/mL. The HPLC analysis results demonstrated that the ethyl acetate fraction of SOP showed significantly higher phenolic content, particularly for phenolic acids (p-hydroxybenzoic acid, 8.00 ± 0.65 mg/g) and flavonoids (epicatechin, 28.63 ± 1.26 mg/g), as compared to other samples. The above results suggest that Stauntonia obovatifoliola, especially its pericarp, had excellent nutrient compositions, bioactive properties and phytochemical characteristics, and had the potential to be developed as natural functional food.
Collapse
Affiliation(s)
- Rurui Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Yuerong Ru
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Ling Feng
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Zhenxing Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Xiahong He
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
- College of Horticulture and Landscape, Southwest Forestry University, Kunming, China
- *Correspondence: Xiahong He
| | - Xuechun Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
- College of Life Science, Southwest Forestry University, Kunming, China
- Xuechun Zhang
| |
Collapse
|
72
|
Antioxidative Properties and Phenolic Profile of the Core, Pulp and Peel of Commercialized Kiwifruit by LC-ESI-QTOF-MS/MS. Processes (Basel) 2022. [DOI: 10.3390/pr10091811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The kiwifruit is cultivated globally due to its diversity of phytochemicals, especially phenolic compounds, which have antioxidant, anti-inflammatory and anti-cancer medical effects. However, only the pulp of the kiwifruit is consumed, while the peels and cores—which are also rich in phytochemicals—are usually wasted. Meanwhile, detailed information on the comparison among the three parts is still limited. In this study, the antioxidant potentials in the core, pulp, and peel of the three most commercialized kiwifruit cultivars (Australian-grown Hayward kiwifruit, New Zealand-grown Zesy002 kiwifruit, and New Zealand-grown organic Hayward kiwifruit) were selected. Their antioxidant capacities were tested, and their phenolic profiles were identified and characterized by liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS). The antioxidant results showed that the peel of New Zealand-grown organic Hayward kiwifruit contained the highest total phenolic content (9.65 mg gallic acid equivalent (GAE) mg/g) and total antioxidant capacity (4.43 mg ascorbic acid equivalent (AAE) mg/g), respectively. In addition, the antioxidant capacity of the peel is generally higher than that of the pulp and cores in all species, especially ABTS (2,2-Azino-bis-3ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging ability), ranging from 13.25 mg AAE/g to 18.31 mg AAE/g. The LC-ESI-QTOF-MS/MS tentatively identified the phenolic compounds present in the three kiwifruit species, including 118 unique compounds in kiwifruit peel, 12 unique compounds in the kiwifruit cores, and three unique compounds in kiwifruit pulp. The comprehensive characterization of the phenolics in the kiwifruits’ parts indicates the importance of their waste part as a promising source of phenolics with antioxidant properties. Therefore, this study can guide the industry with meaningful information on kiwifruit waste, and can provide it with the utilization of food and pharmacological aspects.
Collapse
|
73
|
Screening of Phenolic Compounds in Rejected Avocado and Determination of Their Antioxidant Potential. Processes (Basel) 2022. [DOI: 10.3390/pr10091747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Avocados are one of the important fruits in our diet, showing many health benefits. However, a significant amount of avocados become defective as they are transported throughout the supply chain and are refused by consumers, ending up at animal or pet feed manufacturers. Indeed, some previous evidence suggests that rejected avocados still present high phenolic content that can be reused in the drug or pharmacological industry. Therefore, in the present work, we measured the phenolic content from rejected avocado pulp and evaluated the antioxidant potential, followed by characterization and quantification using LC-ESI-QTOF-MS/MS and HPLC-PDA. Reed avocado pulp was highest in TPC (0.21 mg GAE/g f.w.) and TFC (0.05 mg QE/g f.w.), whereas in TCT assay, low traces of tannins were exhibited in Wurtz and Reed avocado pulp. Hass avocado pulp had the highest antioxidant potential in DPPH (0.32 AAE/g f.w.), FRAP (0.13 AAE/g f.w.), ABTS (0.32 AAE/g f.w.), •OH-RSA (0.51 AAE/g f.w.) and FICA (0.47 mg EDTA/g) assays. Wurtz avocado pulp had higher antioxidant potential in RPA (0.07 mg AAE/g) and PMA (0.27 AAE/g f.w.). A total of 64 phenolic compounds were characterized in avocado pulp, including 10 in Hass avocado pulp, 31 in Wurtz avocado pulp and 45 in Reed avocado pulp. In HPLC-PDA quantification, chlorogenic acid (21.36 mg/g f.w.), epicatechin (14.24 mg/g f.w.) and quercetin (21.47 mg/g f.w.) were detected to be the highest in Hass, Wurtz and Reed avocado pulp, respectively. Our study showed the presence of phenolic compounds in rejected avocado pulp and hence can be utilized in food and pharmaceutical industries.
Collapse
|
74
|
Valorization of Agro-Industrial Wastes by Ultrasound-Assisted Extraction as a Source of Proteins, Antioxidants and Cutin: A Cascade Approach. Antioxidants (Basel) 2022; 11:antiox11091739. [PMID: 36139813 PMCID: PMC9495669 DOI: 10.3390/antiox11091739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/19/2022] [Accepted: 08/28/2022] [Indexed: 11/30/2022] Open
Abstract
The use of agro-industrial wastes to obtain compounds with a high added-value is increasing in the last few years in accordance with the circular economy concept. In this work, a cascade extraction approach was developed based on ultrasound-assisted extraction (UAE) for tomato, watermelon, and apple peel wastes. The protein and antioxidant compounds were obtained during the first extraction step (NaOH 3 wt.%, 98.6 W, 100% amplitude, 6.48 W/cm2, 6 min). The watermelon peels (WP) showed higher proteins and total phenolic contents (857 ± 1 mg BSA/g extract and 107.2 ± 0.2 mg GAE/100 g dm, respectively), whereas the highest antioxidant activity was obtained for apple peels (1559 ± 20 µmol TE/100 g dm, 1767 ± 5 µmol TE/100 g dm, and 902 ± 16 µmol TE/100 g dm for ABTS, FRAP and DPPH assays, respectively). The remaining residue obtained from the first extraction was subsequently extracted to obtain cutin (ethanol 40 wt.%, 58 W, 100% amplitude, 2 W/cm2, 17 min, 1/80 g/mL, pH 2.5). The morphological studies confirmed the great efficiency of UAE in damaging the vegetal cell walls. WP showed a higher non-hydrolysable cutin content (55 wt.% of the initial cutin). A different monomers’ profile was obtained for the cutin composition by GC-MS, with the cutin from tomato and apple peels being rich in polyhydroxy fatty acids whereas the cutin extracted from WP was mainly based on unsaturated fatty acids. All of the cutin samples showed an initial degradation temperature higher than 200 °C, presenting an excellent thermal stability. The strategy followed in this work has proved to be an effective valorization methodology with a high scaling-up potential for applications in the food, pharmaceutical, nutraceutical, cosmetics and biopolymer sectors.
Collapse
|
75
|
Identification and characterization of anthocyanins and non-anthocyanin phenolics from Australian native fruits and their antioxidant, antidiabetic, and anti-Alzheimer potential. Food Res Int 2022; 162:111951. [DOI: 10.1016/j.foodres.2022.111951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/03/2022] [Accepted: 09/14/2022] [Indexed: 11/20/2022]
|
76
|
Leong YK, Chang JS. Valorization of fruit wastes for circular bioeconomy: Current advances, challenges, and opportunities. BIORESOURCE TECHNOLOGY 2022; 359:127459. [PMID: 35700899 DOI: 10.1016/j.biortech.2022.127459] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The demands for fruits and processed products have significantly increased following the surging human population growth and rising health awareness. However, an enormous amount of fruit waste is generated during their production life-cycle due to the inedible portion and perishable nature, which become a considerable burden to the environment. Embracing the concept of "circular economy", these fruit wastes represent sustainable and renewable resources and can be integrated into biorefinery platforms for valorization into a wide range of high-value products. To fully realize the potential of fruit waste in circular bioeconomy and provide insights on future commercial-scale applications, this review presented the recycling and utilization of fruit wastes in various applications, particularly focusing on pollutant bioremediation, renewable energy and biofuel production, biosynthesis of bioactive compounds and low-cost microbial growth media. Furthermore, the challenges of efficient valorization of fruit wastes were discussed and future prospects were proposed.
Collapse
Affiliation(s)
- Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
77
|
Wu H, Liu Z, Lu P, Barrow C, Dunshea FR, Suleria HAR. Bioaccessibility and bioactivities of phenolic compounds from roasted coffee beans during in vitro digestion and colonic fermentation. Food Chem 2022; 386:132794. [PMID: 35349898 DOI: 10.1016/j.foodchem.2022.132794] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 12/28/2022]
Abstract
Bioaccessibility and bioactivity of phenolic compounds in coffee beans relate to roasting and digestion process. This study aimed to estimate phenolic content, antioxidant potential, bioaccessibility, and changes in short chain fatty acids (SCFAs) production during in vitro digestion and colonic fermentation of commercial roasted (light, medium and dark) coffee beans. There was no significant difference found among all three different roasting levels. TPC and DPPH were enhanced 15 mg GAE/g and 60 mg TE/g during gastrointestinal digestion, respectively. For colonic fermentation, the highest TPC and FRAP of all coffee beans was found at 2 and 4 h, respectively. The gastric bioaccessibility of most of the phenolic compounds were relatively higher due to thermal phenolic degradation. Total SCFAs production was only up to 0.02 mM because of thermal polysaccharide decomposition. Light roasted beans exhibited relatively higher phenolic bioaccessibility, antioxidant activities and SCFAs production, which would be more beneficial to gut health.
Collapse
Affiliation(s)
- Hanjing Wu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Ziyao Liu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Peiyao Lu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Colin Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia
| | - Frank R Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia; Faculty of Biological Sciences, The University of Leeds, Leeds, UK
| | - Hafiz A R Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia; Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia.
| |
Collapse
|
78
|
Jimenez-Garcia SN, Garcia-Mier L, Ramirez-Gomez XS, Aguirre-Becerra H, Escobar-Ortiz A, Contreras-Medina LM, Garcia-Trejo JF, Feregrino-Perez AA. Pitahaya Peel: A By-Product with Great Phytochemical Potential, Biological Activity, and Functional Application. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165339. [PMID: 36014575 PMCID: PMC9415145 DOI: 10.3390/molecules27165339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022]
Abstract
Hylocereus spp. present two varieties of commercial interest due to their color, organoleptic characteristics, and nutritional contribution, such as Hylocerous polyrhizus and Selenicerus undatus. The fruit recognized as dragon fruit or Pitahaya is an exotic fruit whose pulp is consumed, while the peel is discarded during the process. Studies indicate that the pulp has vitamin C and betalains, and seeds are rich in essential fatty acids, compounds that can contribute to the prevention of chronic non-communicable diseases (cancer, hypertension, and diabetes). In the present study, polyphenolic compounds, biological activity, and fatty acids present in the peel of the two varieties of pitahaya peel were evaluated, showing as a result that the variety S. undatus had higher antioxidant activity with 51% related to the presence of flavonoids 357 mgRE/g sample and fatty acids (hexadecanoic acid and linoleate) with 0.310 and 0.248 mg AG/g sample, respectively. On the other hand, H. polyrhizuun showed a significant difference in the inhibitory activity of amylase and glucosidase enzymes with 68% and 67%, respectively. We conclude that pitahaya peel has potential health effects and demonstrate that methylated fatty acids could be precursors to betalain formation, as well as showing effects against senescence and as a biological control against insects; in the same way, the peel can be reused as a by-product for the extraction of important enzymes in the pharmaceutical and food industry.
Collapse
Affiliation(s)
- Sandra N. Jimenez-Garcia
- División de Ciencias de la Salud e Ingeniería, Campus Celaya-Salvatierra, C.A. Enfermedades no Transmisibles, Universidad de Guanajuato, Av. Ing. Javier Barros Sierra No. 201 Esq. Baja California, Ejido de Santa Maria del Refugio Celaya, Guanajuato 38140, Mexico
| | - Lina Garcia-Mier
- Departamento de Ciencias de la Salud, Universidad del Valle de México, Campus Querétaro, Blvd, Juriquilla No. 1000 A, Delegación Santa Rosa Jáuregui, Santiago de Querétaro 76230, Mexico
| | - Xóchitl S. Ramirez-Gomez
- División de Ciencias de la Salud e Ingeniería, Campus Celaya-Salvatierra, C.A. Enfermedades no Transmisibles, Universidad de Guanajuato, Av. Ing. Javier Barros Sierra No. 201 Esq. Baja California, Ejido de Santa Maria del Refugio Celaya, Guanajuato 38140, Mexico
| | - Humberto Aguirre-Becerra
- División de Estudios de Posgrado, C.A. Bioingeniería Básica y Aplicada, Facultad de Ingeniería, Universidad Autónoma de Querétaro, C.U. Cerro de las Campanas S/N, Colonia Las Campanas, Santiago de Querétaro 76010, Mexico
| | - Alexandro Escobar-Ortiz
- Facultad de Química, Universidad Autónoma de Querétaro, C.U. Cerro de las Campanas S/N, Colonia Las Campanas, Santiago de Querétaro 76010, Mexico
| | - Luis M. Contreras-Medina
- División de Estudios de Posgrado, C.A. Bioingeniería Básica y Aplicada, Facultad de Ingeniería, Universidad Autónoma de Querétaro, C.U. Cerro de las Campanas S/N, Colonia Las Campanas, Santiago de Querétaro 76010, Mexico
| | - Juan F. Garcia-Trejo
- División de Estudios de Posgrado, C.A. Bioingeniería Básica y Aplicada, Facultad de Ingeniería, Universidad Autónoma de Querétaro, C.U. Cerro de las Campanas S/N, Colonia Las Campanas, Santiago de Querétaro 76010, Mexico
| | - Ana A. Feregrino-Perez
- División de Estudios de Posgrado, C.A. Bioingeniería Básica y Aplicada, Facultad de Ingeniería, Universidad Autónoma de Querétaro, C.U. Cerro de las Campanas S/N, Colonia Las Campanas, Santiago de Querétaro 76010, Mexico
- Correspondence: ; Tel.: +442-192-12-11 (Ext. 6016)
| |
Collapse
|
79
|
Parekh P, Serra M, Allaw M, Perra M, Marongiu J, Tolle G, Pinna A, Casu MA, Manconi M, Caboni P, Manzoni OJJ, Morelli M. Characterization of Nasco grape pomace-loaded nutriosomes and their neuroprotective effects in the MPTP mouse model of Parkinson’s disease. Front Pharmacol 2022; 13:935784. [PMID: 36059998 PMCID: PMC9428270 DOI: 10.3389/fphar.2022.935784] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Grape pomaces have recently received great attention for their richness in polyphenols, compounds known to exert anti-inflammatory and antioxidant effects. These pomaces, however, have low brain bioavailability when administered orally due to their extensive degradation in the gastrointestinal tract. To overcome this problem, Nasco pomace extract was incorporated into a novel nanovesicle system called nutriosomes, composed of phospholipids (S75) and water-soluble maltodextrin (Nutriose® FM06). Nutriosomes were small, homogeneously dispersed, had negative zeta potential, and were biocompatible with intestinal epithelial cells (Caco-2). Nasco pomace extract resulted rich in antioxidant polyphenols (gallic acid, catechin, epicatechin, procyanidin B2, and quercetin). To investigate the neuroprotective effect of Nasco pomace in the subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease (PD), Nasco nutriosomes or Nasco suspension was administered intragastrically and their neuroprotective effects were evaluated. Degeneration of nigro-striatal dopaminergic neurons induced by subacute MPTP treatment, the pathological hallmark of PD, was assessed through immunohistochemical evaluation of tyrosine hydroxylase (TH) in the caudate-putamen (CPu) and substantia nigra pars compacta (SNc), and the dopamine transporter (DAT) in CPu. Immunohistochemical analysis revealed that Nasco nutriosomes significantly prevented the reduction in TH- and DAT-positive fibres in CPu, and the number of TH-positive cells in SNc following subacute MPTP treatment, while Nasco suspension counteracted MPTP toxicity exclusively in SNc. Overall, these results highlight the therapeutic effects of Nasco pomace extract when administered in a nutriosome formulation in the subacute MPTP mouse model of PD and validate the effectiveness of the nutriosome preparation over suspension as an innovative nano-drug delivery system for in vivo administration.
Collapse
Affiliation(s)
- Pathik Parekh
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
- *Correspondence: Marcello Serra,
| | - Mohamad Allaw
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Matteo Perra
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Jacopo Marongiu
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Giulia Tolle
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Annalisa Pinna
- National Research Council of Italy, Institute of Neuroscience, Cagliari, Italy
| | | | - Maria Manconi
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | | | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
- National Research Council of Italy, Institute of Neuroscience, Cagliari, Italy
| |
Collapse
|
80
|
Lopes de Oliveira F, Yanka Portes Arruda T, Caldeira Morzelle M, Paula Aparecida Pereira A, Neves Casarotti S. Fruit by-products as potential prebiotics and promising functional ingredients to produce fermented milk. Food Res Int 2022; 161:111841. [PMID: 36192971 DOI: 10.1016/j.foodres.2022.111841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/04/2022]
|
81
|
Bhardwaj K, Najda A, Sharma R, Nurzyńska-Wierdak R, Dhanjal DS, Sharma R, Manickam S, Kabra A, Kuča K, Bhardwaj P. Fruit and Vegetable Peel-Enriched Functional Foods: Potential Avenues and Health Perspectives. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8543881. [PMID: 35832524 PMCID: PMC9273365 DOI: 10.1155/2022/8543881] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/16/2022] [Indexed: 12/29/2022]
Abstract
Fresh fruit and vegetables are highly utilized commodities by health-conscious consumers and represent a prominent segment in the functional and nutritional food sector. However, food processing is causing significant loss of nutritional components, and the generation of waste is creating serious economic and environmental problems. Fruit and vegetables encompass husk, peels, pods, pomace, seeds, and stems, which are usually discarded, despite being known to contain potentially beneficial compounds, such as carotenoids, dietary fibers, enzymes, and polyphenols. The emerging interest in the food industry in the nutritional and biofunctional constituents of polyphenols has prompted the utilization of fruit and vegetable waste for developing enriched and functional foods, with applications in the pharmaceutical industry. Moreover, the utilization of waste for developing diverse and crucial bioactive commodities is a fundamental step in sustainable development. Furthermore, it provides evidence regarding the applicability of fruit and vegetable waste in different food formulations especially bakery, jam, and meat based products.
Collapse
Affiliation(s)
- Kanchan Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland
| | - Ruchi Sharma
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Renata Nurzyńska-Wierdak
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali 140413, India
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Prerna Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| |
Collapse
|
82
|
Wu H, Lu P, Liu Z, Sharifi‐Rad J, Suleria HAR. Impact of roasting on the phenolic and volatile compounds in coffee beans. Food Sci Nutr 2022; 10:2408-2425. [PMID: 35844912 PMCID: PMC9281936 DOI: 10.1002/fsn3.2849] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 01/10/2023] Open
Abstract
Phenolic compounds present in coffee beans could generate flavor and bring benefits to health. This study aimed to evaluate the impacts of commercial roasting levels (light, medium, and dark) on phenolic content and antioxidant potential of Arabica coffee beans (Coffea arabica) comprehensively via antioxidant assays. The phenolic compounds in roasted samples were characterized via liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS). Furthermore, the coffee volatile compounds were identified and semi-quantified by headspace/gas chromatography-mass spectrometry (HS-SPME-GC-MS). Generally, for phenolic and antioxidant potential estimation, light roasted samples exhibited the highest TPC (free: 23.97 ± 0.60 mg GAE/g; bound: 19.32 ± 1.29 mg GAE/g), DPPH, and FRAP. The medium roasted beans performed the second high in all assays but the highest ABTS+ radicals scavenging capacity (free: 102.37 ± 8.10 mg TE/g; bound: 69.51 ± 4.20 mg TE/g). Totally, 23 phenolic compounds were tentatively characterized through LC-ESI-QTOF-MS/MS, which is mainly adopted by 15 phenolic acid and 5 other polyphenols. The majority of phenolic compounds were detected in the medium roasted samples, followed by the light. Regarding GC-MS, a total of 20 volatile compounds were identified and semi-quantified which exhibited the highest in the dark followed by the medium. Overall, this study confirmed that phenolic compounds in coffee beans would be reduced with intensive roasting, whereas their antioxidant capacity could be maintained or improved. Commercial medium roasted coffee beans exhibit relatively better nutritional value and organoleptic properties. Our results could narrow down previous conflicts and be practical evidence for coffee manufacturing in food industries.
Collapse
Affiliation(s)
- Hanjing Wu
- School of Agriculture and FoodFaculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Peiyao Lu
- School of Agriculture and FoodFaculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Ziyao Liu
- School of Agriculture and FoodFaculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
| | | | - Hafiz A. R. Suleria
- School of Agriculture and FoodFaculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
83
|
Yaraki MT, Zahed Nasab S, Zare I, Dahri M, Moein Sadeghi M, Koohi M, Tan YN. Biomimetic Metallic Nanostructures for Biomedical Applications, Catalysis, and Beyond. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Shima Zahed Nasab
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | - Mohammad Dahri
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Mohammad Moein Sadeghi
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Maedeh Koohi
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Islamic Republic of Iran
| | - Yen Nee Tan
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
- Newcastle Research and Innovation Institute, Newcastle University in Singapore, 80 Jurong East Street 21, No. 05-04, 609607, Singapore
| |
Collapse
|
84
|
Abdallah HM, Kashegari AT, Shalabi AA, Darwish KM, El-Halawany AM, Algandaby MM, Ibrahim SRM, Mohamed GA, Abdel-Naim AB, Koshak AE, Proksch P, Elhady SS. Phenolics from Chrozophora oblongifolia Aerial Parts as Inhibitors of α-Glucosidases and Advanced Glycation End Products: In-Vitro Assessment, Molecular Docking and Dynamics Studies. BIOLOGY 2022; 11:biology11050762. [PMID: 35625490 PMCID: PMC9139161 DOI: 10.3390/biology11050762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 11/23/2022]
Abstract
Simple Summary The chemical investigation of Chrozophora oblongifolia aerial parts resulted in the isolation of five phenolic compounds. The isolated metabolites were tested for their antioxidant and advanced glycation end-products (AGEs) formation, α-glucosidase, and lipase inhibitory activities. 1,3,6-Trigalloyl glucose exhibited the highest activity as an antioxidant and AGEs inhibitor as well as an α-glucosidase inhibitor. It showed promising binding affinity and stability towards the human intestinal maltase-glucoamylase α-glucosidases, as revealed through coupled molecular docking and dynamics studies that could encourage the utilization of this compound in the management of diabetes and its complications. Abstract Modern life is associated with low physical activity that leads to the accumulation of fats, gaining more weight, and obesity. Accumulation of fat in the abdomen region contributes to diabetes via insulin resistance and hyperglycemia. Polyphenols are major plant constituents that exert antidiabetic activity through different mechanisms, including radicle scavenging activity, regulation of glucose uptake, and inhibition of fat and polysaccharide hydrolysis in addition to their inhibitory role regarding the formation of advanced glycation end products (AGEs). Chemical investigation of C. oblongifolia aerial parts resulted in the isolation of five major compounds: apeginin-7-O-β-D-glucoside (1), quercetin-3-O-β-D-glucuronic acid (2), quercetin-3-O-β-D-galacturonic acid (3), rutin (4), and 1,3,6-trigalloyl glucose (5). The isolated compounds were tested for their antioxidant and AGEs formation, α-glucosidase, and lipase inhibitory activities. Compound 5 revealed the highest antioxidant and AGEs inhibitory activity in bovine serum albumin (BSA)-methylglyoxal, BSA-fructose, and arginine-methylglyoxal models. Moreover, it exhibited a potent inhibitory profile on Saccharomyces cerevisiae α-glucosidases compared to the positive control, acarbose. Compound (5) further depicted promising binding affinity and stability towards the human intestinal maltase-glucoamylase α-glucosidases, which is a diabetes-related therapeutic target, through coupled molecular docking and dynamics studies. The obtained results encourage the usage of 1,3,6-trigalloyl glucose in the management of diabetes and its complications. However, detailed in-vivo studies for this compound should be performed.
Collapse
Affiliation(s)
- Hossam M. Abdallah
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.T.K.); (G.A.M.); (A.E.K.); (S.S.E.)
- Correspondence:
| | - Albraa T. Kashegari
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.T.K.); (G.A.M.); (A.E.K.); (S.S.E.)
| | - Akram A. Shalabi
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt; (A.A.S.); (A.M.E.-H.)
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Ali M. El-Halawany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt; (A.A.S.); (A.M.E.-H.)
| | - Mardi M. Algandaby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sabrin R. M. Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Gamal A. Mohamed
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.T.K.); (G.A.M.); (A.E.K.); (S.S.E.)
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Abdulrahman E. Koshak
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.T.K.); (G.A.M.); (A.E.K.); (S.S.E.)
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany;
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.T.K.); (G.A.M.); (A.E.K.); (S.S.E.)
| |
Collapse
|
85
|
Assessment of Antioxidant and Antimicrobial Property of Polyphenol-Rich Chitosan-Pineapple Peel Film. J FOOD QUALITY 2022. [DOI: 10.1155/2022/8064114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
This work aimed to evaluate the antioxidant and antimicrobial capacities of pineapple peel extract-incorporated chitosan films to establish its utility as an active food packaging film. Total phenol and total flavonoids in ethanolic pineapple peel extract (11.1 ± 0.82 mg GAE/g sample, 3.86 ± 0.4 mg Quercetin/g sample) were determined to be higher than those in methanolic pineapple peel extract (7.98 ± 0.55 mg GAE/g sample, 2.37 ± 0.13 mg quercetin/g sample) and higher antioxidant activity was observed for pineapple peel ethanolic extract (PEE). Similarly, PEE-enriched chitosan film also reported greater antioxidant activity compared to pineapple peel methanolic extract (PME)-incorporated chitosan film. The total phenols, flavonoids, and significant antioxidant activity were accounted due to the contents of ferulic acids, quercetin, and kaempferol in both PEE and PME quantified via triple quadrupole LC/MS/MS system. These alcoholic extracts exhibited significant inhibitory zones against both Gram-positive (Bacillus cereus, Staphylococcus aureus) and Gram-negative (Escherichia coli, Salmonella typhimurium) food-borne bacterial strains. PME exhibited the lowest minimum inhibitory concentration and minimum bactericidal concentration (0.625 mg/ml) against B. cereus. Pure chitosan films at ≥7 log CFU/ml after 24 h showed lower log reduction for all the bacterial organisms, whereas the chitosan-PEE (at ≤5 logs CFU/ml) and chitosan-PME (at ≤6 log CFU/ml) films expressed higher log reduction for all the four bacterial isolates. Thus, this work led to the utilization of the pineapple peel waste as well as provided an alternative to nonbiodegradable packaging films.
Collapse
|
86
|
Zhu Z, Zhong B, Yang Z, Zhao W, Shi L, Aziz A, Rauf A, Aljohani AS, Alhumaydhi FA, Suleria HAR. LC-ESI-QTOF-MS/MS Characterization and Estimation of the Antioxidant Potential of Phenolic Compounds from Different Parts of the Lotus ( Nelumbo nucifera) Seed and Rhizome. ACS OMEGA 2022; 7:14630-14642. [PMID: 35557671 PMCID: PMC9088796 DOI: 10.1021/acsomega.1c07018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/08/2022] [Indexed: 06/01/2023]
Abstract
Edible lotus (Nelumbo nucifera G.) is widely consumed in Asian countries and treated as a functional food and traditional medicinal herb due to its abundant bioactive compounds. Lotus rhizome peels, rhizome knots, and seed embryos are important byproducts and processing waste of edible lotus (Nelumbo nucifera G.) with commercial significance. Nevertheless, the comprehensive phenolic profiling of different parts of lotus is still scarce. Thus, this study aimed to review the phenolic contents and antioxidant potential in lotus seeds (embryo and cotyledon) and rhizomes (peel, knot, and pulp) grown in Australia. In the phenolic content and antioxidant potential estimation assays by comparing to the corresponding reference standards, the lotus seed embryo exhibited the highest total phenolic content (10.77 ± 0.66 mg GAE/gf.w.), total flavonoid content (1.61 ± 0.03 mg QE/gf.w.), 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity (9.66 ± 0.10 mg AAE/gf.w.), 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) scavenging activity (14.35 ± 0.20 mg AAE/gf.w.), and total antioxidant capacity (6.46 ± 0.30 mg AAE/g), while the highest value of ferric ion reducing antioxidant power (FRAP) activity and total tannin content was present in the lotus rhizome knot (2.30 ± 0.13 mg AAE/gf.w.). A total of 86 phenolic compounds were identified in five parts of lotus by liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS), including phenolic acids (20), flavonoids (51), lignans (3), stilbenes (2), and other polyphenols (10). The most phenolic compounds, reaching up to 68%, were present in the lotus seed embryo (59). Furthermore, the lotus rhizome peel and lotus seed embryo exhibit significantly higher contents of selected polyphenols than other lotus parts according to high-performance liquid chromatography (HPLC) quantification analysis. The results highlighted that byproducts and processing waste of edible lotus are rich sources of phenolic compounds, which may be good candidates for further exploitation and utilization in food, animal feeding, and pharmaceutical industries.
Collapse
Affiliation(s)
- Zihan Zhu
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Biming Zhong
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- CAS
Key Laboratory of Quantitative Engineering Biology, Synthetic Biochemistry
Center, Shenzhen Institute of Synthetic
Biology, Shenzhen Institute of Advanced Technology, Chinese Academy
of Sciences, Shenzhen 518055, China
| | - Zihong Yang
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Wanrong Zhao
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Linghong Shi
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ahsan Aziz
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Abdur Rauf
- Department
of Chemistry, University of Swabi, Swabi, Anbar-23561 KPK, Pakistan
| | - Abdullah S.M. Aljohani
- Department
of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department
of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Hafiz Ansar Rasul Suleria
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
87
|
Hussain H, Mamadalieva NZ, Hussain A, Hassan U, Rabnawaz A, Ahmed I, Green IR. Fruit Peels: Food Waste as a Valuable Source of Bioactive Natural Products for Drug Discovery. Curr Issues Mol Biol 2022; 44:1960-1994. [PMID: 35678663 PMCID: PMC9164088 DOI: 10.3390/cimb44050134] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/31/2022] Open
Abstract
Fruits along with vegetables are crucial for a balanced diet. These not only have delicious flavors but are also reported to decrease the risk of contracting various chronic diseases. Fruit by-products are produced in huge quantity during industrial processing and constitute a serious issue because they may pose a harmful risk to the environment. The proposal of employing fruit by-products, particularly fruit peels, has gradually attained popularity because scientists found that in many instances peels displayed better biological and pharmacological applications than other sections of the fruit. The aim of this review is to highlight the importance of fruit peel extracts and natural products obtained in food industries along with their other potential biological applications.
Collapse
Affiliation(s)
- Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Nilufar Z. Mamadalieva
- Institute of the Chemistry of Plant Substances of the Academy Sciences of Uzbekistan, Tashkent 100170, Uzbekistan;
| | - Amjad Hussain
- Department of Chemistry, University of Okara, Okara 56130, Pakistan;
| | - Uzma Hassan
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan;
| | - Aisha Rabnawaz
- Department of Chemistry, University of Okara, Okara 56130, Pakistan;
| | - Ishtiaq Ahmed
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK;
| | - Ivan R. Green
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch 7600, South Africa;
| |
Collapse
|
88
|
Luo J, Li M, Wu H, Liu Z, Barrow C, Dunshea F, Suleria HAR. Bioaccessibility of phenolic compounds from sesame seeds (
Sesamum indicum
L.) during in vitro gastrointestinal digestion and colonic fermentation. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jiani Luo
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne Parkville Victoria Australia
| | - Minhao Li
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne Parkville Victoria Australia
| | - Hanjing Wu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne Parkville Victoria Australia
| | - Ziyao Liu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne Parkville Victoria Australia
| | - Colin Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria Australia
| | - Frank Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne Parkville Victoria Australia
- Faculty of Biological Sciences The University of Leeds Leeds UK
| | - Hafiz A. R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne Parkville Victoria Australia
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria Australia
| |
Collapse
|
89
|
Phenolic Profiling of Berries Waste and Determination of Their Antioxidant Potential. J FOOD QUALITY 2022. [DOI: 10.1155/2022/5605739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Berries waste is a major issue in Australia’s annual food wastage, which can reach 7.3 million tonnes. This study assessed the phenolic content and antioxidant potential of four fruit berry wastes, including blueberries (Vaccinium corymbosum), blackberries (Rubus spp.), raspberries (Rubus idaeus), and strawberries (Fragaria spp.), followed by their characterization and quantification. Blueberry wastes were high in phenolic content (total phenolic content: 1.97 ± 0.16 mg GAE/gF.W; total flavonoid content: 220.43 ± 13.15 μg QE/gF.W; total tannins content: 16.47 ± 0.98 μg CE/gF.W), and antioxidant potentials are 2,2′-diphenyl-1-picrylhydrazyl: 2.23 ± 0.17 mg AAE/gF.W; 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid): 1.79 ± 0.09 mg AAE/gF.W; ferric reducing antioxidant power: 68.71 ± 11.11 μg AAE/gF.W (total antioxidant capacity: 1.22 ± 0.03 mg AAE/gF.W). The LC-ESI-QTOF-MS/MS analysis identified 87 compounds from blueberry (57), strawberry (40), raspberry (47), and blackberry wastes (27). Indicated by HPLC quantification, blueberry wastes had higher levels of phenolic acid (syringic acid and coumaric acid) and flavonoid (kaempferol and kaempfero l-3-glucoside). Our study reported that phenolics from berry wastes could be utilized in different food, feed, pharmaceutical, and nutraceutical industries.
Collapse
|
90
|
Optimization of Naringin and Naringenin Extraction from Citrus × paradisi L. Using Hydrolysis and Excipients as Adsorbent. Pharmaceutics 2022; 14:pharmaceutics14050890. [PMID: 35631476 PMCID: PMC9144392 DOI: 10.3390/pharmaceutics14050890] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
While flavanones exist in a variety of chemical forms, their favorable health effects are most prominent in their free form—aglycones. Their concentrations in grapefruit (Citrus × paradisi L.) extracts vary according to the extraction and hydrolysis methods used. The primary aim of this work was to maximize the yields of naringin and naringenin from various parts of fresh grapefruit fruits (flavedo, albedo, and segmental) using different extraction and hydrolysis methods. In addition, we aimed to evaluate the excipient—magnesium aluminometasilicate—and determine its influence on the qualitative composition of grapefruit extracts. Extracts were obtained by heat reflux extraction (HRE), ultrasound-assisted extraction with an ultrasonic homogenizer (UAE*), and ultrasound-assisted extraction with a bath (UAE). Ultrasound-assisted extraction using a bath (UAE) was modulated using acidic, thermal, and alkaline hydrolysis. The highest yield of naringin 8A (17.45 ± 0.872 mg/g) was obtained from an albedo sample under optimal conditions using ultrasound-assisted extraction; a high yield of naringenin 23-SHR (35.80 ± 1.79 µg/g) was produced using the heat reflux method from the segmental part. Meanwhile, ultrasonic combined with thermal hydrolysis significantly increased flavanone extraction from the albedo and segmental parts: naringin from sample 9-A (from 17.45 ± 0.872 mg/g to 25.05 ± 1.25 mg/g) and naringenin from sample 15-S (from 0 to 4.21 ± 0.55 µg/g). Additionally, magnesium aluminometasilicate demonstrated significant increases of naringenin from all treated grapefruit parts. To our knowledge, this is the first report of magnesium aluminometasilicate used as an adsorbent in flavanone extractions.
Collapse
|
91
|
Phenolic Compound Profile by UPLC-MS/MS and Encapsulation with Chitosan of Spondias mombin L. Fruit Peel Extract from Cerrado Hotspot-Brazil. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082382. [PMID: 35458580 PMCID: PMC9028924 DOI: 10.3390/molecules27082382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/18/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022]
Abstract
Taperebá (Spondias mombin L.) is a native species of the Brazilian Cerrado that has shown important characteristics such as a significant phenolic compound content and biological activities. The present study aimed to characterize the phenolic compound profile and antioxidant activity in taperebá peel extract, as well as microencapsulating the extract with chitosan and evaluating the stability of the microparticles. The evaluation of the profile of phenolic compounds was carried out by UPLC-MS/MS. The in vitro antioxidant activity was evaluated by DPPH and ABTS methods. The microparticles were obtained by spray drying and were submitted to a stability study under different temperatures. In general, the results showed a significant content of polyphenols and antioxidant activity. The results of UPLC-MS/MS demonstrated a significant content of polyphenols in taperebá peel, highlighting the high content of ellagic acid and quercetin compounds. There was significant retention of phenolic compounds when microencapsulated, demonstrating high retention at all evaluated temperatures. This study is the first to microencapsulate the extract of taperebá peel, in addition to identifying and quantifying some compounds in this fruit.
Collapse
|
92
|
Bibi N, Shah MH, Khan N, Al-Hashimi A, Elshikh MS, Iqbal A, Ahmad S, Abbasi AM. Variations in Total Phenolic, Total Flavonoid Contents, and Free Radicals' Scavenging Potential of Onion Varieties Planted under Diverse Environmental Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070950. [PMID: 35406930 PMCID: PMC9002954 DOI: 10.3390/plants11070950] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 05/03/2023]
Abstract
Genetic diversity and Agro-climatic conditions contribute significantly to the agronomic and morphological features of the food plant species, and their nutraceutical potential. The present study was intended to evaluate the impact of growing conditions on total phenolic and total flavonoid contents, and in vitro antioxidant potential in the bulbs and leaves of onion varieties planted under diverse environmental conditions. Standard analytical methods were used to quantify total phenolic content (TPC), total flavonoid content (TFC), and free radicals’ scavenging/antioxidant capacity. The impact of climatic and soil conditions was assessed using statistical tools. In general, onion varieties cultivated at three different locations viz. Kalar Kahar, Lahore and Swabi exhibited significant variations in TPC and TFC, and antioxidant activities. The bulbs and leaves of Mustang (V1) variety planted at Lahore and Swabi had significantly (p < 0.05), high levels of TPC (659.5 ± 6.59, and 631.1 ± 8.58 mg GAE/100 g, respectively). However, leaves of Red Orb (V2) and bulbs of Mustang (V1), and Golden Orb (V6), harvested from Kalar Kahar depicted the highest concentration of TFC (432.5 ± 10.3, 303.0 ± 6.67, and 303.0 ± 2.52 mg QE/100 g DW, respectively). Likewise, bulbs of V1 planted at Kalar Kahar, Lahore and Swabi exhibited maximum inhibition of DPPH, ABTS, and H2O2 radicals (79.01 ± 1.49, 65.38 ± 0.99, and 59.76 ± 0.90%, respectively). Golden Orb (V6) harvested from Lahore had the highest scavenging of OH radical (67.40 ± 0.09%). Likewise, bulbs of V1 variety planted at KalarKahar and Swabi had significant capacity to scavenge ferric ions (415.1 ± 10.6 mg GAE/100 g DW), and molybdate ions (213.7 ± 0.00 mg AAE/100 g DW). Conversely, leaves of Amazon (V8), planted at Lahore and Swabi depicted significant levels of DPPH, ABTS, H2O2 radical scavenging (90.69 ± 0.26, 63.55 ± 1.06, 51.86 ± 0.43%, respectively), and reduction of ferric ions (184.2 ± 6.75 mg GAE/100 g DW). V6 leaves harvested from Lahore and that of Super Sarhad (V3) from Swabi showed the highest inhibition of OH radical (61.21 ± 0.79%), and molybdate ions (623.6 ± 0.12 mg AAE/100 g DW), respectively. Pearson correlation and principal component analysis revealed strong relationships of climatic conditions, soil properties and elevation with TPC, TFC and free radicals’ scavenging potential in the bulbs and leaves of onion varieties. The variations in the total phenolic and flavonoid contents, and antioxidant potential of different varieties, and their associations with climatic and soil factors revealed the complexity of the growing conditions and genetic makeup that imposed significant impacts on the synthesis of secondary metabolites and nutraceutical potential of food and medicinal plant species.
Collapse
Affiliation(s)
- Nusrat Bibi
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad 22060, Pakistan; (N.B.); (A.I.)
| | - Munir H. Shah
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Nadeem Khan
- Department of Breeding and Genomics, Magnus Kahl Seeds (Pty), 6A Dairy Drive Coburg North, Coburg, VIC 3058, Australia;
| | - Abdulrahman Al-Hashimi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.-H.); (M.S.E.)
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.-H.); (M.S.E.)
| | - Akhtar Iqbal
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad 22060, Pakistan; (N.B.); (A.I.)
| | - Shakeel Ahmad
- School of Environment, Tsinghua University, Beijing 100048, China;
| | - Arshad Mehmood Abbasi
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad 22060, Pakistan; (N.B.); (A.I.)
- Correspondence: or
| |
Collapse
|
93
|
Hameed A, Liu Z, Wu H, Zhong B, Ciborowski M, Suleria HAR. A Comparative and Comprehensive Characterization of Polyphenols of Selected Fruits from the Rosaceae Family. Metabolites 2022; 12:metabo12030271. [PMID: 35323714 PMCID: PMC8950050 DOI: 10.3390/metabo12030271] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
The present research presents a comprehensive characterization of polyphenols from peach, pear, and plum using liquid chromatography coupled with electrospray ionization quadrupole-time-of-flight-mass spectrometry (LC-ESI-QTOF-MS/MS), followed by the determination of their antioxidant potential. Plums showed the highest total phenolic content (TPC; 0.62 mg GAE/g), while peaches showed the highest total flavonoid content (TFC; 0.29 mg QE/g), also corresponding to their high scavenging activities (i.e., DPPH, ABTS, FRAP, and TAC). In all three fruit samples, a total of 51 polyphenolic compounds were tentatively identified and were mainly characterized from hydroxybenzoic acids, hydroxycinnamic acids, hydroxyphenylpentanoic acids, flavanols, flavonols, and isoflavonoids subclasses. Twenty targeted phenolic compounds were quantified using high-performance liquid chromatography with photodiode array detection (HPLC-PDA). The plum cultivar showed the highest content of phenolic acids (chlorogenic acid, 11.86 mg/100 g), whereas peach samples showed the highest concentration of flavonoids (catechin, 7.31 mg/100 g), as compared to pear. Based on these findings, the present research contributes and complements the current characterization data of these fruits presented in the literature, as well as ensures and encourages the utilization of these fruits in different food, feed, and nutraceutical industries.
Collapse
Affiliation(s)
- Ahsan Hameed
- Clinical Research Center, Medical University of Bialystok, Jana Kilińskiego Street 1, 15-089 Bialystok, Poland; (A.H.); (M.C.)
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Z.L.); (H.W.); (B.Z.)
| | - Ziyao Liu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Z.L.); (H.W.); (B.Z.)
| | - Hanjing Wu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Z.L.); (H.W.); (B.Z.)
| | - Biming Zhong
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Z.L.); (H.W.); (B.Z.)
| | - Michal Ciborowski
- Clinical Research Center, Medical University of Bialystok, Jana Kilińskiego Street 1, 15-089 Bialystok, Poland; (A.H.); (M.C.)
| | - Hafiz Ansar Rasul Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Z.L.); (H.W.); (B.Z.)
- Correspondence: ; Tel.: +61-3-834-44984
| |
Collapse
|
94
|
KURTULBAŞ ŞAHİN E. Microwave-assisted extraction of Prunus cerasus L. peels: Citric acid-based deep eutectic solvents. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1033685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
95
|
Ullah H, Hussain Y, Santarcangelo C, Baldi A, Di Minno A, Khan H, Xiao J, Daglia M. Natural Polyphenols for the Preservation of Meat and Dairy Products. Molecules 2022; 27:1906. [PMID: 35335268 PMCID: PMC8954466 DOI: 10.3390/molecules27061906] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 02/05/2023] Open
Abstract
Food spoilage makes foods undesirable and unacceptable for human use. The preservation of food is essential for human survival, and different techniques were initially used to limit the growth of spoiling microbes, e.g., drying, heating, salting, or fermentation. Water activity, temperature, redox potential, preservatives, and competitive microorganisms are the most important approaches used in the preservation of food products. Preservative agents are generally classified into antimicrobial, antioxidant, and anti-browning agents. On the other hand, artificial preservatives (sorbate, sulfite, or nitrite) may cause serious health hazards such as hypersensitivity, asthma, neurological damage, hyperactivity, and cancer. Thus, consumers prefer natural food preservatives to synthetic ones, as they are considered safer. Polyphenols have potential uses as biopreservatives in the food industry, because their antimicrobial and antioxidant activities can increase the storage life of food products. The antioxidant capacity of polyphenols is mainly due to the inhibition of free radical formation. Moreover, the antimicrobial activity of plants and herbs is mainly attributed to the presence of phenolic compounds. Thus, incorporation of botanical extracts rich in polyphenols in perishable foods can be considered since no pure polyphenolic compounds are authorized as food preservatives. However, individual polyphenols can be screened in this regard. In conclusion, this review highlights the use of phenolic compounds or botanical extracts rich in polyphenols as preservative agents with special reference to meat and dairy products.
Collapse
Affiliation(s)
- Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (C.S.); (A.B.); (A.D.M.)
| | - Yaseen Hussain
- Lab of Controlled Release and Drug Delivery System, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China;
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
- Department of Pharmacy, Bashir Institute of Health Sciences, Islamabad 45400, Pakistan
| | - Cristina Santarcangelo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (C.S.); (A.B.); (A.D.M.)
| | - Alessandra Baldi
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (C.S.); (A.B.); (A.D.M.)
| | - Alessandro Di Minno
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (C.S.); (A.B.); (A.D.M.)
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, University of Vigo, 36310 Vigo, Spain;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (C.S.); (A.B.); (A.D.M.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
96
|
Munekata PES, Yilmaz B, Pateiro M, Kumar M, Domínguez R, Shariati MA, Hano C, Lorenzo JM. Valorization of by-products from Prunus genus fruit processing: Opportunities and applications. Crit Rev Food Sci Nutr 2022; 63:7795-7810. [PMID: 35285755 DOI: 10.1080/10408398.2022.2050350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food processing, especially the juice industry, is an important sector that generate million tons of residues every. Due to the increasing concern about waste generation and the interest in its valorization, the reutilization of by-products generated from the processing of popular fruits of the Prunus genus (rich in high-added value compounds) has gained the spotlight in the food area. This review aims to provide an overview of the high added-value compounds found in the residues of Prunus fruits (peach, nectarine, donut peach, plum, cherry, and apricot) processing and applications in the food science area. Collective (pomace) and individual (kernels, peels, and leaves) residues from Prunus fruits processing contains polyphenols (especially flavonoids and anthocyanins), lipophilic compounds (such as unsaturated fatty acids, carotenes, tocopherols, sterols, and squalene), proteins (bioactive peptides and essential amino acids) that are wasted. Applications are increasingly expanding from the flour from the kernels to encapsulated bioactive compounds, active films, and ingredients with technological relevance for the quality of bread, cookies, ice cream, clean label meat products and extruded foods. Advances to increasing safety has also been reported against anti-nutritional (amygdalin) and toxic compounds (aflatoxin and pesticides) due to advances in emerging processing technologies and strategic use of resources.
Collapse
Affiliation(s)
| | - Birsen Yilmaz
- Department of Nutrition and Dietetics, Cukurova University, Adana, Turkey
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | | | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russian Federation
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, Chartres, France
- Le Studium Institue for Advanced Studies, Orleans, France
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
97
|
Tongkaew P, Tohraman A, Bungaramphai R, Mitrpant C, Aydin E. Kluai Hin (Musa sapientum Linn.) peel as a source of functional polyphenols identified by HPLC-ESI-QTOF-MS and its potential antidiabetic function. Sci Rep 2022; 12:4145. [PMID: 35264695 PMCID: PMC8907229 DOI: 10.1038/s41598-022-08008-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
To date, information on the polyphenolic composition of Kluai Hin banana peel and pulp and the potential antidiabetic activity of its major active compounds is limited. This study aimed to identify polyphenols in extracts of fresh and freeze-dried Kluai Hin banana peel and pulp (methanol:water; M:W, 80:20 for flavonoids and acetone:water:acetic acid; A:W:A, 50:49:1 for phenolic acids) by RP-HPLC-DAD and HPLC-ESI-QTOF-MS. Additionally, inhibition of α-amylase and α-glucosidase activities was investigated with crude extracts from Kluai Hin banana peel and pulp, and compared with its major polyphenols ((+)-catechin, (-)-epicatechin and gallic acid) and the antidiabetic drug acarbose. (-)-Gallocatechin was the most abundant polyphenol and was detected in all fresh and freeze-dried pulp and peel extracts by RP-HPLC-DAD. Furthermore, unidentified polyphenol peaks of Kluai Hin were further explored by HPLC-ESI-QTOF-MS. The A:W:A fresh peel extract contained more total phenolic content (811.56 mg GAE/100 g) than the freeze-dried peel (565.03 mg GAE/100 g). A:W:A extraction of the fresh and freeze-dried peel of exhibited IC50 values for α-amylase activity 2.66 ± 0.07 mg/ml and 2.97 ± 0.00 mg/ml, respectively, but its inhibitory activity was lower than acarbose (IC50 = 0.25 ± 0.01 mg/ml). Peel extracts inhibited α-glucosidase activity, whereas pulp extracts had no effect. In addition, all standards, except gallocatechin, activated α-amylase activity, while, gallocatechin inhibited α-glucosidase activity better than acarbose. Therefore, we propose a further investigation into the use of Kluai Hin banana peel as a potential functional food for the management of postprandial glycaemic response to reduce diabetes risk and in the management of diabetes with a commercial drug.
Collapse
Affiliation(s)
- Patthamawadee Tongkaew
- Department of Food Science and Nutrition, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000, Thailand.
| | - Anna Tohraman
- Department of Food Science and Nutrition, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000, Thailand
| | - Ramlatee Bungaramphai
- Department of Food Science and Nutrition, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000, Thailand
| | - Chalermchai Mitrpant
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Ebru Aydin
- Department of Food Engineering, Suleyman Demirel University, Isparta, 32260, Turkey
| |
Collapse
|
98
|
Vo GT, Liu Z, Chou O, Zhong B, Barrow CJ, Dunshea FR, Suleria HA. Screening of phenolic compounds in australian grown grapes and their potential antioxidant activities. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
99
|
Ilyas UK, Elayadeth-Meethal M, Kuruniyan MS, Quadri SA, Rajasree R, Naseef PP. Densitometric Quantification and Optimization of Polyphenols in Phyllanthus maderaspatensis by HPTLC. Saudi J Biol Sci 2022; 29:1521-1529. [PMID: 35280567 PMCID: PMC8913410 DOI: 10.1016/j.sjbs.2021.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/11/2021] [Accepted: 11/13/2021] [Indexed: 12/21/2022] Open
Abstract
Quantifying and optimizing the polyphenol content of Phyllanthus maderaspatensis was accomplished using a single-solvent HPTLC system. Analyzing hydroalcoholic extracts for kaempferol, rutin, ellagic acid, quercetin, catechin, and gallic acid, we simultaneously quantified and optimized their concentration. In the experiment, the methanol to water ratio (%), temperature (°C), and time of extraction (min) were all optimized using a Box-Behnken statistical design. Kaempferol, rutin, ellagic acid, quercetin, catechin, and gallic acid were among the dependent variables analyzed. In the HPTLC separation, silica gel 60F254 plates were used, and toluene, ethyl acetate, and formic acid (5:4:1) made up the mobile phase. For kaempferol, rutin, ellagic acid, quercetin, catechin, and gallic acid, densitometric measurements were carried out using the absorbance mode at 254 nm. Hydroalcoholic extract of P. maderaspatensis contains rutin (0.344), catechin (2.62), gallic acid (0.93), ellagic acid (0.172), quercetin (0.0108) and kaempferol (0.06). Further, it may be affected by more than one factor at a time, resulting in a varying degree of reaction. A negative correlation was found between X1 (extraction time (min)) and X2 (temperature), as well as X1 and X3 (solvent ratios). Taking these characteristics into consideration, the method outlined here is a validated HPTLC method for measuring kaempferol, rutin, ellagic acid, quercetin, catechin, and gallic acid.
Collapse
Affiliation(s)
- UK Ilyas
- Department of Pharmacognosy and Phytochemistry, Moulana College of Pharmacy, Perinthalmanna, 679321, Kerala, India
| | - Muhammed Elayadeth-Meethal
- Department of Animal Breeding and Genetics, Kerala Veterinary and Animal Sciences University, Wayanad, 673576, Kerala, India
| | - Mohamed Saheer Kuruniyan
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Syed Altafuddin Quadri
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - R.S. Rajasree
- College of Pharmaceutical Sciences, Government Thirumala Devaswom Medical College, Alappuzha 688005, India
| | - Punnoth Poonkuzhi Naseef
- Department of Pharmaceutics, Moulana College of Pharmacy, Perinthalmanna, 679321, Kerala, India
- Corresponding author.
| |
Collapse
|
100
|
Leng Z, Zhong B, Wu H, Liu Z, Rauf A, Bawazeer S, Suleria HAR. Identification of Phenolic Compounds in Australian-Grown Bell Peppers by Liquid Chromatography Coupled with Electrospray Ionization-Quadrupole-Time-of-Flight-Mass Spectrometry and Estimation of Their Antioxidant Potential. ACS OMEGA 2022; 7:4563-4576. [PMID: 35155947 PMCID: PMC8829910 DOI: 10.1021/acsomega.1c06532] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 05/05/2023]
Abstract
Bell peppers are widely considered as healthy foods that can provide people with various phytochemicals, especially phenolic compounds, which contribute to the antioxidant property of bell peppers. Nevertheless, the acknowledgment of phenolic compounds in bell peppers is still limited. Therefore, this study aimed to determine the phenolic content and the antioxidant potential in pulps and seeds of different bell peppers (green, yellow, and red) by several in vitro assays followed by the characterization and quantification of individual phenolics using liquid chromatography coupled with electrospray ionization-quadrupole-time-of-flight-mass spectrometry (LC-ESI-QTOF-MS/MS) and high-performance liquid chromatography photodiode array (HPLC-PDA) quantification, respectively. The captured results showed that the pulp of red bell peppers exhibited the highest phenolic content in the total polyphenol content (1.03 ± 0.07 mg GAE/gf.w.), total flavonoid content (137.43 ± 6.35 μg QE/gf.w.), and total tannin content (0.22 ± 0.01 mg CE/gf.w.) as well as the most antioxidant potential in all antioxidant capacity estimation assays including total antioxidant capacity (3.56 ± 0.01 mg AAE/gf.w.), 2,2'-diphenyl-1-picrylhydrazyl (0.89 ± 0.01 mg AAE/gf.w.), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (1.36 ± 0.12 mg AAE/gf.w.), and ferric reducing antioxidant power (0.15 ± 0.01 mg AAE/gf.w.). LC-ESI-QTOF-MS/MS isolated and identified a total of 59 phenolic compounds, including flavonoids (21), phenolic acids (20), other phenolic compounds (12), lignans (5), and stilbenes (1) in all samples. According to HPLC-PDA quantification, the seed portions showed a significantly higher amount of phenolic compounds. These findings indicated that the waste of bell peppers can be a potential source of phenolic compounds, which can be utilized as antioxidant ingredients in foods and nutritional products.
Collapse
Affiliation(s)
- Zexing Leng
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Biming Zhong
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hanjing Wu
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ziyao Liu
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Abdur Rauf
- Department
of Chemistry, University of Swabi, Anbar, Swabi, Khyber Pakhtunkhwa 23561, Pakistan
| | - Sami Bawazeer
- Department
of Pharmacognosy, Faculty of Pharmacy, Umm
Al-Qura University, P.O. Box 42, Makkah 21421, Kingdom of Saudi Arabia
| | - Hafiz Ansar Rasul Suleria
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|