51
|
Luan YX, Cui Y, Chen WJ, Jin JF, Liu AM, Huang CW, Potapov M, Bu Y, Zhan S, Zhang F, Li S. High-quality genomes reveal significant genetic divergence and cryptic speciation in the model organism Folsomia candida (Collembola). Mol Ecol Resour 2022; 23:273-293. [PMID: 35962787 PMCID: PMC10087712 DOI: 10.1111/1755-0998.13699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 12/01/2022]
Abstract
The collembolan Folsomia candida Willem, 1902, is widely distributed throughout the world and has been frequently used as a test organism in soil ecology and ecotoxicology studies. However, it is questioned as an ideal "standard" because of differences in reproductive modes and cryptic genetic diversity between strains from various geographical origins. In this study, we obtained two high-quality chromosome-level genomes of F. candida, for a parthenogenetic strain (named as FCDK, 219.08 Mb, 25,139 protein-coding genes) and a sexual strain (named as FCSH, 153.09 Mb, 21,609 protein-coding genes), reannotated the genome of the parthenogenetic strain reported by Faddeeva-Vakhrusheva et al. in 2017 (named as FCBL, 221.7 Mb, 25,980 protein-coding genes), and conducted comparative genomic analyses of three strains. High genome similarities between FCDK and FCBL on synteny, genome architecture, mitochondrial and nuclear gene sequences support they are conspecific. The seven chromosomes of FCDK are each 25-54% larger than the corresponding chromosomes of FCSH, showing obvious repetitive element expansions and large-scale inversions and translocations but no whole-genome duplication. The strain-specific genes, expanded gene families and genes in nonsyntenic chromosomal regions identified in FCDK are highly related to the broader environmental adaptation of parthenogenetic strains. In addition, FCDK has fewer strain-specific microRNAs than FCSH, and their mitochondrial and nuclear genes have diverged greatly. In conclusion, FCDK/FCBL and FCSH have accumulated independent genetic changes and evolved into distinct species since 10 Mya. Our work provides important genomic resources for studying the mechanisms of rapidly cryptic speciation and soil arthropod adaptation to soil ecosystems.
Collapse
Affiliation(s)
- Yun-Xia Luan
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yingying Cui
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | | | - Jian-Feng Jin
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ai-Min Liu
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Cheng-Wang Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Yun Bu
- Natural History Research Center, Shanghai Natural History Museum, Shanghai Science & Technology Museum, Shanghai, China
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feng Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| |
Collapse
|
52
|
Yang J, Chen S, Xu X, Lin G, Lin S, Bai J, Song Q, You M, Xie M. Novel-miR-310 mediated response mechanism to Cry1Ac protoxin in Plutella xylostella (L.). Int J Biol Macromol 2022; 219:587-596. [PMID: 35952810 DOI: 10.1016/j.ijbiomac.2022.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/16/2022] [Accepted: 08/02/2022] [Indexed: 12/12/2022]
Abstract
The diamondback moth (DBM), Plutella xylostella (L.), has evolved resistance to multiple insecticides including Bacillus thuringiensis (Bt). ATP-binding cassette (ABC) transporters are a class of transmembrane protein families, involved in multiple physiological processes and pesticide resistances in insects. However, the role and regulatory mechanism of ABC transporter in mediating the response to Bt Cry1Ac toxin remain unclear. Here, we characterized a MAPK signaling pathway-enriched ABCG subfamily gene PxABCG20 from DBM, and found it was differentially expressed in the Cry1Ac-resistant and Cry1Ac-susceptible strains. RNAi knockdown of PxABCG20 increased the tolerance of DBM to Cry1Ac protoxin. To explore the regulatory mechanism of PxABCG20 expression, we predicted the potential miRNAs targeting PxABCG20 using two target prediction algorithms. Luciferase reporter assay confirmed that novel-miR-310 was able to down-regulate PxABCG20 expression in HEK293T cells. Furthermore, injection of novel-miR-310 agomir markedly inhibited PxABCG20 expression, resulting in increased tolerance to Cry1Ac protoxin in susceptible strain, while injection of novel-miR-310 antagomir markedly induced the expression of PxABCG20, leading to decreased tolerance to Cry1Ac protoxin. Our work provides theoretical basis for exploring novel targets for the DBM response to Cry1Ac toxin and expands the understanding of miRNA role in mediating the susceptibility of insect pest to Cry1Ac toxin.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shiyao Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuejiao Xu
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Guifang Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sujie Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianlin Bai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qisheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Miao Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
53
|
Lin S, Zhang L, Wang G, Huang S, Wang Y. Searching and identifying pigmentation genes from Neocaridina denticulate sinensis via comparison of transcriptome in different color strains. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100977. [PMID: 35247793 DOI: 10.1016/j.cbd.2022.100977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Aquaria species are characterized by their amazing colors and patterns. Research on the breeding molecular genetics of ornamental shrimps is surprisingly limited. We conducted a transcriptome analysis to investigate the expression of encoding genes in the integument of the strains Neocaridina denticulate sinensis. After assembled and filtered, 19,992 unigenes were annotated by aligning with public functional databases (NR, Swiss-Prot, KEGG, COG). 14,915 unigenes with significantly different expressions were found by comparing three strains integument transcriptomes. Ribosomal protein genes, ABC transporter families, calmodulin, carotenoid proteins and crustacyanin may play roles in the cytological process of pigment migration and chromatophore maintenance. Numerous color genes associated with multiple pathways including melanin, ommochrome and pteridines pathways were identified. The expression patterns of 25 candidate genes were analysis by qPCR in red, yellow, transparent and glass strains. The qPCR results in red, yellow and transparent were consistent with the level of RPKM values in the transcriptomes. The above results will advance our knowledge of integument color varieties in N. denticulate sinensis and help the genetic selection of crustaceans with consumer-favored colors. Furthermore, it also provides some candidate pigmentation genes to investigate the correlation between coloration and sympatric speciation in crustaceans.
Collapse
Affiliation(s)
- Shi Lin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Lili Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Guodong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Shiyu Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| |
Collapse
|
54
|
Sureshan SC, Mohideen HS, Ramya M. Differential expression profiling of Oxycarenus laetus Kirby (Hemiptera: Lygaeidae) upon exposure to gossypol. Mol Biol Rep 2022; 49:4727-4735. [PMID: 35290558 DOI: 10.1007/s11033-022-07322-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/02/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Gossypium hirsutum seeds are rich in gossypol. In addition to its diverse beneficial properties, it is a known anti-fertility inducing agent in humans. Oxycarenus laetus feeds on the cottonseeds and yet its courtship, mating and reproduction is unaffected. METHODS AND RESULTS In this study, we performed a transcriptome profiling of O. laetus fed on Abutilon indicum (AB-no gossypol), G. hirsutum (GH-natural gossypol) and 1400 ppm commercial gossypol-soaked GH seeds (GHGO). Illumina NextSeq-500 paired-end 75 bp reads were generated and de novo assembled (48,214 genes) to identify the differentially expressed transcripts (DET) between the samples. Gene enrichment, KEGG pathway and cluster profiling of the DETs resulted in the identification of vital genes involved in the detoxification, pheromone biosynthesis, cuticle protein in the GHGO sample. Cyp4C1, Cyp6a13, Cyp6a14, Cyp4g15, Cyp4em8, Cyp303a1 were the detoxification related genes identified. Similarly, SDR dehydrogenase family 11 and fatty acid synthase in pheromone biosynthesis and cuticle proteins (RR1 and RR2) coding transcripts were found to be differentially expressed. CONCLUSION This is the first study to report the expression of genes induced by gossypol in O. laetus. Based on the findings from the DET analysis, we conclude that the detoxification related genes of gossypol treated samples were affected.
Collapse
Affiliation(s)
- Shruthi Chalil Sureshan
- Bioinformatics and Entomoinformatics Lab, Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Chennai, TN, 603203, India
| | - Habeeb Shaik Mohideen
- Bioinformatics and Entomoinformatics Lab, Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Chennai, TN, 603203, India.
| | - Mohandass Ramya
- Molecular Genetics Laboratory, Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Chennai, TN, 603203, India
| |
Collapse
|
55
|
Li Q, Li M, Zhu M, Zhong J, Wen L, Zhang J, Zhang R, Gao Q, Yu XQ, Lu Y. Genome-wide identification and comparative analysis of Cry toxin receptor families in 7 insect species with a focus on Spodoptera litura. INSECT SCIENCE 2022; 29:783-800. [PMID: 34405540 DOI: 10.1111/1744-7917.12961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/30/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Cadherin, aminopeptidase N (APN) and alkaline phosphatase (ALP) have been characterized as Cry receptors. In this study, comparative genomic analysis of the 3 receptor families was performed in 7 insects. ALPs and APNs are divided into three and eight clades in phylogenetic trees, respectively. ALPs in clade 3 and APNs in clade 1 contain multiple paralogs within each species and most paralogs are located closely in chromosomes. Drosophila melanogaster has expanded APNs in clade 5 and were lowly expressed in midgut. Cadherins are divided into 16 clades; they may diverge before holometabolous insect speciation except for BtR and Cad89D-like clades. Eight insects from different orders containing BtR orthologs are sensitive to Cry1A or Cry3A, while five species without BtR are insensitive to both toxins. Most APNs in clade 1, several ALPs in clade 3, BtR and Cad89D-like genes were highly or moderately expressed in larval midgut of Spodoptera litura and the other six species, and several members in these clades have been identified as Cry receptors. Expressions of putative S. litura Cry receptors in the midgut after exposing to Bt toxins were also analyzed.
Collapse
Affiliation(s)
- Qilin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Mengge Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Mengyao Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jielai Zhong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Liang Wen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jie Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Ruonan Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qiang Gao
- College of Biology, Hunan University, Changsha, 410082, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yuzhen Lu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
56
|
Wang X, Yi XL, Hou CX, Wang XY, Sun X, Zhang ZJ, Qin S, Li MW. Map-based cloning and functional analysis revealed ABCC2 is responsible for Cry1Ac toxin resistance in Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21886. [PMID: 35307854 DOI: 10.1002/arch.21886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Bt toxins are parasporal crystals produced by Bacillus thuringiensis (Bt). They have specific killing activity against various insects and have been widely used to control agricultural pests. However, their widespread use has developed the resistance of many target insects. To maintain the sustainable use of Bt products, the resistance mechanism of insects to Bt toxins must be fully clarified. In this study, Bt-resistant and Bt-susceptible silkworm strains were used to construct genetic populations, and the genetic pattern of silkworm resistance to Cry1Ac toxin was determined. Sequence-tagged site molecular marker technology was used to finely map the resistance gene and to draw a molecular genetic linkage map, and the two closest markers were T1590 and T1581, indicating the resistance gene located in the 155 kb genetic region. After analyzing the sequence of the predicted gene in the genetic region, an ATP binding cassette transporter (ABCC2) was identified as the candidate gene. Molecular modeling and protein-protein docking result showed that a tyrosine insertion in the mutant ABCC2 might be responsible for the interaction between Cry1Ac and ABCC2. Moreover, CRISPR/Cas9-mediated genome editing technology was used to knockout ABCC2 gene. The homozygous mutant ABCC2 silkworm was resistant to Cry1Ac toxin, which indicated ABCC2 is the key gene that controls silkworm resistance to Cry1Ac toxin. The results have laid the foundation for elucidating the molecular resistance mechanism of silkworms to Cry1Ac toxin and could provide a theoretical basis for the biological control of lepidopteran pests.
Collapse
Affiliation(s)
- Xin Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Xiao-Li Yi
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Cheng-Xiang Hou
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Xue-Yang Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Xia Sun
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Zhong-Jie Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Sheng Qin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Mu-Wang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| |
Collapse
|
57
|
Transcriptional Analysis of Cotton Bollworm Strains with Different Genetic Mechanisms of Resistance and Their Response to Bacillus thuringiensis Cry1Ac Toxin. Toxins (Basel) 2022; 14:toxins14060366. [PMID: 35737027 PMCID: PMC9228822 DOI: 10.3390/toxins14060366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023] Open
Abstract
Transgenic crops producing Bacillus thuringiensis (Bt) insecticidal proteins are grown widely for pest control, but the evolution of resistance in target pests could reduce their efficacy. Mutations in genes encoding cadherin, ABC transporter or tetraspanin were linked with resistance to Cry1Ac in several lepidopteran insects, including the cotton bollworm (Helicoverpa armigera), a worldwide agricultural pest. However, the detailed molecular mechanisms by which these mutations confer insect resistance to Cry1Ac remain largely unknown. In this study, we analyzed the midgut transcriptomes of a susceptible SCD strain and three SCD-derived Cry1Ac-resistant strains of H. armigera (SCD-r1, with a naturally occurring deletion mutation of cadherin; SCD-KI, with a knock-in T92C point mutation in tetraspanin; and C2/3-KO, with both ABCC2 and ABCC3 knocked out). Evaluation of midgut transcript profiles of the four strains without Cry1Ac exposure identified many constitutively differentially expressed genes (DEGs) in the resistant SCD-r1 (n = 1355), SCD-KI (n = 1254) and C2/3-KO (n = 2055) strains. Analysis of DEGs in the midguts of each strain after Cry1Ac exposure revealed similar patterns of response to Cry1Ac in the SCD and SCD-r1 strains, but unique responses in the SCD-KI and C2/3-KO strains. Expression of midgut epithelium healing and defense-related genes was strongly induced by Cry1Ac intoxication in the SCD and SCD-r1 strains, while immune-related pattern recognition receptor and effector genes were highly expressed in the SCD-KI strain after Cry1Ac exposure. This study advances our knowledge of the transcriptomic basis for insect resistance to Bt toxins and provides a valuable resource for further molecular characterization of insect response to Cry1Ac toxin in H. armigera and other pest species.
Collapse
|
58
|
Wu C, Zhang L, Liu B, Gao B, Huang C, Zhang J, Jin M, Wang H, Peng Y, Rice A, Hegazi E, Wilson K, Xu P, Xiao Y. Genomic features of the polyphagous cotton leafworm Spodoptera littoralis. BMC Genomics 2022; 23:353. [PMID: 35525948 PMCID: PMC9080191 DOI: 10.1186/s12864-022-08582-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The cotton leafworm, Spodoptera littoralis, is a highly polyphagous pest of many cultivated plants and crops in Africa and Europe. The genome of this pest will help us to further understand the molecular mechanisms of polyphagy. RESULTS Herein, the high-quality genome of S. littoralis was obtained by Pacific Bioscience (PacBio) sequencing. The assembled genome size of S. littoralis is 436.55 Mb with a scaffold N50 of 6.09 Mb, consisting of 17,207 annotated protein-coding genes. Phylogenetic analysis shows that S. littoralis and its sibling species S. litura diverged about 5.44 million years ago. Expanded gene families were mainly involved in metabolic detoxification and tolerance to toxic xenobiotics based on GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis. Comparative genomics analysis showed that gene families involved in detoxification and chemosensation were significantly expanded in S. littoralis, representing genetic characteristics related to polyphagy and an extensive host range. CONCLUSIONS We assembled and annotated the reference genome of S. littoralis, and revealed that this pest has the genetic features of strong detoxification capacity, consistent with it being a significant risk to a wide range of host crops. These data resources will provide support for risk assessment and early warning monitoring of major polyphagous agricultural pests.
Collapse
Affiliation(s)
- Chao Wu
- Lancaster Environment Centre, Lancaster University, Lancaster, UK.,Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture; Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lei Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture; Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bo Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture; Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bojia Gao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture; Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Cong Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture; Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ji Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture; Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture; Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hanyue Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture; Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture; Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Annabel Rice
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Esmat Hegazi
- Department of Entomology, Faculty of Agriculture Alexandria University, Alexandria, 22542, Egypt
| | - Kenneth Wilson
- Lancaster Environment Centre, Lancaster University, Lancaster, UK. .,Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture; Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Pengjun Xu
- Lancaster Environment Centre, Lancaster University, Lancaster, UK. .,Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China.
| | - Yutao Xiao
- Lancaster Environment Centre, Lancaster University, Lancaster, UK. .,Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture; Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
59
|
Guan D, Yang X, Jiang H, Zhang N, Wu Z, Jiang C, Shen Q, Qian K, Wang J, Meng X. Identification and Validation of ATP-Binding Cassette Transporters Involved in the Detoxification of Abamectin in Rice Stem Borer, Chilo suppressalis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4611-4619. [PMID: 35410476 DOI: 10.1021/acs.jafc.2c00414] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chilo suppressalis has developed high levels of resistance to abamectin in many areas of China, while the underline resistance mechanisms are largely unclear. ATP-binding cassette (ABC) transporters function in transporting a large diversity of substrates including insecticides and play important roles in the detoxification metabolism of insects. In this study, synergism bioassay revealed that the ABC transporters were involved in the detoxification of C. suppressalis to abamectin. Six ABC transporter genes were upregulated in C. suppressalis after abamectin exposure, among which five genes CsABCC8, CsABCE1, CsABCF1, CsABCF2, and CsABCH1 were induced in the detoxification-related tissues. In addition, the five ABC transporters were recombinantly expressed in Sf9 cells, and the cytotoxicity assay showed that the viabilities of cells expressing CsABCC8 or CsABCH1 were significantly increased when compared with the viabilities of cells expressing EGFP after abamectin, chlorantraniliprole, cyantraniliprole, fipronil, and chlorpyrifos treatment, respectively. Overexpression of CsABCE1 significantly increased the viabilities of cells to abamectin, chlorantraniliprole, deltamethrin, and indoxacarb exposure, respectively. These results suggested that CsABCC8, CsABCE1, and CsABCH1 might participate in the detoxification and transport of abamectin and several other classes of insecticides in C. suppressalis. Our study provides valuable insights into the transport-related detoxification mechanisms in C. suppressalis and other insects.
Collapse
Affiliation(s)
- Daojie Guan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xuemei Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Heng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Nan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Zhaolu Wu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Chengyun Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Qinwen Shen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiangkun Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
60
|
Yang X, Ali S, Zhao M, Richter L, Schäfer V, Schliehe-Diecks J, Frank M, Qi J, Larsen PK, Skerra J, Islam H, Wachtmeister T, Alter C, Huang A, Bhatia S, Köhrer K, Kirschning C, Weighardt H, Kalinke U, Kalscheuer R, Uhrberg M, Scheu S. The Mycotoxin Beauvericin Exhibits Immunostimulatory Effects on Dendritic Cells via Activating the TLR4 Signaling Pathway. Front Immunol 2022; 13:856230. [PMID: 35464417 PMCID: PMC9024221 DOI: 10.3389/fimmu.2022.856230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022] Open
Abstract
Beauvericin (BEA), a mycotoxin of the enniatin family produced by various toxigenic fungi, has been attributed multiple biological activities such as anti-cancer, anti-inflammatory, and anti-microbial functions. However, effects of BEA on dendritic cells remain unknown so far. Here, we identified effects of BEA on murine granulocyte–macrophage colony-stimulating factor (GM-CSF)-cultured bone marrow derived dendritic cells (BMDCs) and the underlying molecular mechanisms. BEA potently activates BMDCs as signified by elevated IL-12 and CD86 expression. Multiplex immunoassays performed on myeloid differentiation primary response 88 (MyD88) and toll/interleukin-1 receptor (TIR) domain containing adaptor inducing interferon beta (TRIF) single or double deficient BMDCs indicate that BEA induces inflammatory cytokine and chemokine production in a MyD88/TRIF dependent manner. Furthermore, we found that BEA was not able to induce IL-12 or IFNβ production in Toll-like receptor 4 (Tlr4)-deficient BMDCs, whereas induction of these cytokines was not compromised in Tlr3/7/9 deficient BMDCs. This suggests that TLR4 might be the functional target of BEA on BMDCs. Consistently, in luciferase reporter assays BEA stimulation significantly promotes NF-κB activation in mTLR4/CD14/MD2 overexpressing but not control HEK-293 cells. RNA-sequencing analyses further confirmed that BEA induces transcriptional changes associated with the TLR4 signaling pathway. Together, these results identify TLR4 as a cellular BEA sensor and define BEA as a potent activator of BMDCs, implying that this compound can be exploited as a promising candidate structure for vaccine adjuvants or cancer immunotherapies.
Collapse
Affiliation(s)
- Xiaoli Yang
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Shafaqat Ali
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Manman Zhao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Lisa Richter
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vanessa Schäfer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julian Schliehe-Diecks
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Marian Frank
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jing Qi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Pia-Katharina Larsen
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Jennifer Skerra
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Heba Islam
- Institute of Medical Microbiology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Thorsten Wachtmeister
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christina Alter
- Institute of Molecular Cardiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anfei Huang
- Institute for Systems Immunology, Julius-Maximilians-Universität of Würzburg (JMU), Würzburg, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Carsten Kirschning
- Institute of Medical Microbiology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Heike Weighardt
- Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
- Cluster of Excellence - Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Rainer Kalscheuer
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- *Correspondence: Stefanie Scheu,
| |
Collapse
|
61
|
Gut Metagenomic Profiling of Gossypol Induced Oxycarenus laetus (Hemiptera: Lygaeidae) Reveals Gossypol Tolerating Bacterial Species. Indian J Microbiol 2022; 62:54-60. [PMID: 35068604 PMCID: PMC8758820 DOI: 10.1007/s12088-021-00964-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022] Open
Abstract
Oxycarenus laetus is a cotton pest that primarily feeds on seeds that are rich in gossypol. Though gossypol is toxic to general herbivores, O. laetus does not show such complications and instead grows and reproduces well on cotton plants compared to its other hosts. In this study, we have fed O. laetus with natural and induced gossypol-based diets to explore the difference in its gut microbiota. We performed NGS 16S rRNA amplicon sequencing on the Illumina MiSeq platform and analyzed the data using the QIIME2 pipeline supplemented with Greengenes and EZBioCloud reference databases. We also used culture-based methods to identify a few abundant gut bacteria present in O. laetus. Enterococcus faecalis, Wolbachia bourtzisii, Wolbachia pipientis, Corynebacterium glyciniphilum, Staphylococcus sciuri, and Kocuria rosea were some of the major species that formed the core gut microbiome of O. laetus. We have also observed that some species were present only in the sample with the highest concentration of gossypol, signifying that they might have the potential to degrade gossypol. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12088-021-00964-0.
Collapse
|
62
|
Xu L, Qin J, Fu W, Wang S, Wu Q, Zhou X, Crickmore N, Guo Z, Zhang Y. MAP4K4 controlled transcription factor POUM1 regulates PxABCG1 expression influencing Cry1Ac resistance in Plutella xylostella (L.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 182:105053. [PMID: 35249643 DOI: 10.1016/j.pestbp.2022.105053] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Deciphering the molecular mechanisms of insect resistance to Bacillus thuringiensis (Bt) based biotechnology products including Bt sprays and Bt crops is critical for the long-term application of Bt technology. Previously, we established that down-regulation of the ABC transporter gene PxABCG1, trans-regulated by the MAPK signaling pathway, contributed to high-level resistance to Bt Cry1Ac toxin in diamondback moth, Plutella xylostella (L.). However, the underlying transcriptional regulatory mechanism was unknown. Herein, we identified putative binding sites (PBSs) of the transcription factor (TF) POUM1 in the PxABCG1 promoter and used a dual-luciferase reporter assay (DLRA) and yeast one-hybrid (Y1H) assay to reveal that POUM1 activates PxABCG1 via interaction with one of these sites. The expression of POUM1 was significantly decreased in the midgut tissue of Cry1Ac-resistant P. xylostella strains compared to a Cry1Ac-susceptible P. xylostella strain. Silencing of POUM1 expression resulted in reduced expression of the PxABCG1 gene and an increase in larval tolerance to Bt Cry1Ac toxin in the Cry1Ac-susceptible P. xylostella strain. Furthermore, silencing of PxMAP4K4 expression increased the expression of both POUM1 and PxABCG1 genes in the Cry1Ac-resistant P. xylostella strain. These results indicate that the POUM1 induces PxABCG1 expression, while the activated MAPK cascade represses PxABCG1 expression thus reducing Cry1Ac susceptibility in P. xylostella. This result deepens our understanding of the transcriptional regulatory mechanism of midgut Cry receptor genes and the molecular basis of the evolution of Bt resistance in insects.
Collapse
Affiliation(s)
- Linzheng Xu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jianying Qin
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wei Fu
- Department of Entomology, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Qinjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA.
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
63
|
The Genome of Rhyzopertha dominica (Fab.) (Coleoptera: Bostrichidae): Adaptation for Success. Genes (Basel) 2022; 13:genes13030446. [PMID: 35328000 PMCID: PMC8956072 DOI: 10.3390/genes13030446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
The lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae), is a major global pest of cereal grains. Infestations are difficult to control as larvae feed inside grain kernels, and many populations are resistant to both contact insecticides and fumigants. We sequenced the genome of R. dominica to identify genes responsible for important biological functions and develop more targeted and efficacious management strategies. The genome was assembled from long read sequencing and long-range scaffolding technologies. The genome assembly is 479.1 Mb, close to the predicted genome size of 480.4 Mb by flow cytometry. This assembly is among the most contiguous beetle assemblies published to date, with 139 scaffolds, an N50 of 53.6 Mb, and L50 of 4, indicating chromosome-scale scaffolds. Predicted genes from biologically relevant groups were manually annotated using transcriptome data from adults and different larval tissues to guide annotation. The expansion of carbohydrase and serine peptidase genes suggest that they combine to enable efficient digestion of cereal proteins. A reduction in the copy number of several detoxification gene families relative to other coleopterans may reflect the low selective pressure on these genes in an insect that spends most of its life feeding internally. Chemoreceptor genes contain elevated numbers of pseudogenes for odorant receptors that also may be related to the recent ontogenetic shift of R. dominica to a diet consisting primarily of stored grains. Analysis of repetitive sequences will further define the evolution of bostrichid beetles compared to other species. The data overall contribute significantly to coleopteran genetic research.
Collapse
|
64
|
Kuwar SS, Mishra R, Banerjee R, Milligan J, Rydel T, Du Z, Xie Z, Ivashuta S, Kouadio JL, Meyer JM, Bonning BC. Engineering of Cry3Bb1 provides mechanistic insights toward countering western corn rootworm resistance. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100033. [PMID: 36003270 PMCID: PMC9387510 DOI: 10.1016/j.cris.2022.100033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/28/2022]
Abstract
The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is an economically important pest of corn (maize) in North America and Europe. Current management practices for WCR involve transgenic expression of insecticidal proteins to minimize larval feeding damage to corn roots. The evolution of resistant WCR populations to transgenic corn expressing insecticidal proteins (e.g. Cry3Bb1, Gpp34Ab1/Tpp35Ab1) necessitates efforts to discover and deploy new modes of action for WCR control. Here, we tested the hypothesis that the addition of short peptides selected for binding to the WCR gut would restore insecticidal activity of Cry3Bb1 to resistant insects. Phage display technology coupled with deep sequencing was used to identify peptides selected for binding to WCR brush border membrane vesicles and to recombinant putative receptors aminopeptidase and cadherin. The binding and specificity of selected peptides was confirmed by ELISA and pull-down assays, and candidate gut surface binding partners were identified. Although production of 284 novel Cry3Bb1 variants with these peptides did not restore activity against resistant WCR in artificial diet bioassays, 112 variants were active against susceptible insects. These results provided insights for the mechanism of Cry3Bb1 activity and toward engineering a new mode-of-action via receptor re-targeting in the context of protein structure and function.
Collapse
Affiliation(s)
- Suyog S. Kuwar
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Ruchir Mishra
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Rahul Banerjee
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Jason Milligan
- Bayer U.S., Research and Development, Crop Science Plant Biotechnology, Chesterfield, MO, 63017 USA
| | - Timothy Rydel
- Bayer U.S., Research and Development, Crop Science Plant Biotechnology, Chesterfield, MO, 63017 USA
| | - Zijin Du
- Bayer U.S., Research and Development, Crop Science Plant Biotechnology, Chesterfield, MO, 63017 USA
| | - Zhidong Xie
- Bayer U.S., Research and Development, Crop Science Plant Biotechnology, Chesterfield, MO, 63017 USA
| | - Sergey Ivashuta
- Bayer U.S., Research and Development, Crop Science Plant Biotechnology, Chesterfield, MO, 63017 USA
| | - Jean-Louis Kouadio
- Bayer U.S., Research and Development, Crop Science Plant Biotechnology, Chesterfield, MO, 63017 USA
| | - Jason M. Meyer
- Bayer U.S., Research and Development, Crop Science Plant Biotechnology, Chesterfield, MO, 63017 USA
| | - Bryony C. Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
65
|
Lan T, Fang D, Li H, Sahu SK, Wang Q, Yuan H, Zhu Y, Yang Z, Zhang L, Yang S, Lu H, Han L, Zhang S, Yu J, Mahmmod YS, Xu Y, Hua Y, He F, Yuan Z, Liu H. Chromosome-Scale Genome of Masked Palm Civet (Paguma larvata) Shows Genomic Signatures of Its Biological Characteristics and Evolution. Front Genet 2022; 12:819493. [PMID: 35126472 PMCID: PMC8815822 DOI: 10.3389/fgene.2021.819493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022] Open
Abstract
The masked palm civet (Paguma larvata) is a small carnivore with distinct biological characteristics, that likes an omnivorous diet and also serves as a vector of pathogens. Although this species is not an endangered animal, its population is reportedly declining. Since the severe acute respiratory syndrome (SARS) epidemic in 2003, the public has been particularly concerned about this species. Here, we present the first genome of the P. larvata, comprising 22 chromosomes assembled using single-tube long fragment read (stLFR) and Hi-C technologies. The genome length is 2.41 Gb with a scaffold N50 of 105.6 Mb. We identified the 107.13 Mb X chromosome and one 1.34 Mb Y-linked scaffold and validated them by resequencing 45 P. larvata individuals. We predicted 18,340 protein-coding genes, among which 18,333 genes were functionally annotated. Interestingly, several biological pathways related to immune defenses were found to be significantly expanded. Also, more than 40% of the enriched pathways on the positively selected genes (PSGs) were identified to be closely related to immunity and survival. These enriched gene families were inferred to be essential for the P. larvata for defense against the pathogens. However, we did not find a direct genomic basis for its adaptation to omnivorous diet despite multiple attempts of comparative genomic analysis. In addition, we evaluated the susceptibility of the P. larvata to the SARS-CoV-2 by screening the RNA expression of the ACE2 and TMPRSS2/TMPRSS4 genes in 16 organs. Finally, we explored the genome-wide heterozygosity and compared it with other animals to evaluate the population status of this species. Taken together, this chromosome-scale genome of the P. larvata provides a necessary resource and insights for understanding the genetic basis of its biological characteristics, evolution, and disease transmission control.
Collapse
Affiliation(s)
- Tianming Lan
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Dongming Fang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Haimeng Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Qing Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yixin Zhu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zipeng Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Le Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Shangchen Yang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Haorong Lu
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China
| | - Lei Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Shaofang Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China
| | - Jieyao Yu
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China
| | - Yasser S. Mahmmod
- Department of Veterinary Sciences, Faculty of Health Sciences, Higher Colleges of Technology, Al Ain, United Arab Emirates
- Division of Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yanchun Xu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yan Hua
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Fengping He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
- *Correspondence: Huan Liu, ; Ziguo Yuan, ; Fengping He,
| | - Ziguo Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- *Correspondence: Huan Liu, ; Ziguo Yuan, ; Fengping He,
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China
- *Correspondence: Huan Liu, ; Ziguo Yuan, ; Fengping He,
| |
Collapse
|
66
|
Ding CY, Ma YM, Li B, Wang Y, Zhao L, Peng JN, Li MY, Liu S, Li SG. Identification and Functional Analysis of Differentially Expressed Genes in Myzus persicae (Hemiptera: Aphididae) in Response to Trans-anethole. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:6484926. [PMID: 34958664 PMCID: PMC8711753 DOI: 10.1093/jisesa/ieab094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 06/14/2023]
Abstract
Plant essential oils, with high bioactivity and biodegradability, provide promising alternatives to synthetic pesticides for pest control. Trans-anethole is the major component of essential oil from star anise, Illicium verum Hook. The compound has a strong contact toxicity against the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), which is a major insect pest of many vegetables and crops. However, little information is known about how M. persicae responds to trans-anethole at the molecular level. We conducted a comparative transcriptome analysis of M. persicae in response to a LD50 dose of trans-anethole. A total of 559 differentially expressed genes were detected in the treated individuals, with 318 genes up-regulated, and 241 genes down-regulated. Gene ontology (GO) analysis revealed that these genes were classified into different biological processes and pathways. We also found that genes encoding ATP-binding cassette (ABC) transporters, DnaJ, and cuticle proteins were dramatically up-regulated in response to trans-anethole. To study the function of these genes, we performed RNA interference (RNAi) analysis. Knockdown of an ABC transporter gene (ABCG4) and a DnaJ gene (DnaJC1) resulted in a significantly increased mortality rate in M. persicae following trans-anethole exposure, indicating the involvement of these two genes in the toxicity response to trans-anethole. The findings provide new insights into the mechanisms of M. persicae in coping with plant essential oils.
Collapse
Affiliation(s)
- Chao-Yang Ding
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yu-Meng Ma
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Bin Li
- Department of Science and Technology, Sichuan Provincial Branch of China National Tobacco Corporation, Chengdu 610041, China
| | - Yun Wang
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Le Zhao
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | | | - Mao-Ye Li
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Su Liu
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Shi-Guang Li
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
67
|
Scanlan JL, Battlay P, Robin C. Ecdysteroid kinase-like (EcKL) paralogs confer developmental tolerance to caffeine in Drosophila melanogaster. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100030. [PMID: 36003262 PMCID: PMC9387500 DOI: 10.1016/j.cris.2022.100030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 10/29/2022]
|
68
|
Yao X, Liu C, Duan Y, An S, Wei J, Liang G. ABCC2 is a functional receptor of Bacillus thuringiensis Cry1Ca in Spodoptera litura. Int J Biol Macromol 2022; 194:9-16. [PMID: 34861271 DOI: 10.1016/j.ijbiomac.2021.11.174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022]
Abstract
Spodoptera litura is a serious polyphagous pest in the whole world, which has developed resistance to most conventional insecticides and even some Bacillus thuringiensis (Bt) toxins. Cry1Ca has excellent insecticide activity against S. litura with potential application to control S. litura and delay the development of insect resistance. However, the mode of action of Cry1Ca in S. litura is poorly understood. Here, Cry1Ca-binding proteins were identified from S. litura by using pull down assays and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results indicated that aminopeptidase-N (APN), ATP binding cassette subfamily C member 2 (ABCC2), polycalin, actin and V-type proton ATPase subunit A may bind with Cry1Ca. Further study confirmed that ABCC2 fragment expressed in vitro can bind to Cry1Ca as demonstrated by Ligand blot and homologous competition experiments. The over-expression of endogenous SlABCC2 in Sf9 cells increased Cry1Ca cytotoxicity. Correspondingly, the vivo loss of function analyses by SlABCC2 small interfering RNAs (siRNAs) in S. litura larvae decreased the toxicity of Cry1Ca to larvae. Altogether, these results show that ABCC2 of S. litura is a functional receptor that is involved in the action mode of Cry1Ca.
Collapse
Affiliation(s)
- Xue Yao
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Chen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, PR China
| | - Yunpeng Duan
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Shiheng An
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Jizhen Wei
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, PR China.
| |
Collapse
|
69
|
Zhao P, Xue H, Zhu X, Wang L, Zhang K, Li D, Ji J, Niu L, Gao X, Luo J, Cui J. Silencing of cytochrome P450 gene CYP321A1 effects tannin detoxification and metabolism in Spodoptera litura. Int J Biol Macromol 2022; 194:895-902. [PMID: 34843814 DOI: 10.1016/j.ijbiomac.2021.11.144] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/19/2022]
Abstract
Cytochrome P450 monooxygenase (P450 or CYP) plays an important role in the metabolism of insecticides and plant allelochemicals by insects. CYP321B1, a novel Spodoptera litura P450 gene, was identified and characterized. CYP321B1 contains a 1488 bp open reading frame (ORF) that encodes a 495 amino acid protein. In fourth instar larvae, the highest CYP321B1 expression levels were found in the midgut and fat body. In the tannin feeding test, tannin can significantly induce the expression of CYP321B1 in the midgut and fat body of 4th instar larvae. To verify the function of CYP321B1, RNA interference and metabolome analysis were performed. The results showed that silencing CYP321B1 significantly reduced the rate of weight gain under tannin induction. Metabolome analysis showed silencing affected 47 different metabolites, mainly involved in secondary metabolite biosynthesis and amino acid metabolism, including amino acids, lipid fatty acids, organic acids and their derivatives. Henoxyacetic acid and cysteamine are the most highly regulated metabolites, respectively. These findings demonstrate that CYP321B1 plays an important role in tannin detoxification and metabolism. Functional knowledge about metabolite detoxification genes in this major herbivorous insect pest can provide new insights into this biological process and provide new targets for agricultural pest control.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hui Xue
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiangzhen Zhu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Li Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Kaixin Zhang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Dongyang Li
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Jichao Ji
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Lin Niu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Xueke Gao
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Junyu Luo
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
70
|
Xin S, Zhang W. Construction and analysis of the protein-protein interaction network for the detoxification enzymes of the silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21850. [PMID: 34750851 DOI: 10.1002/arch.21850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Detoxification enzymes are necessary for insects to metabolize toxic substances and maintain physiological activities. Cytochromes P450 (CYPs), glutathione S-transferases (GSTs), and carboxylesterase (CarEs) are the main detoxification enzymes in insects. In addition, UDP-glucosyltransferase and ATP-binding cassette transporter also participate in the process of material metabolism. This study collected proteins related to detoxification in the silkworm, Bombyx mori (Lepidoptera: Bombycidae). And we performed Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis on these proteins to understand their biological function. We constructed the protein-protein interaction network for the silkworm's detoxification enzymes and analyzed the network's topological properties. We found that BGIBMGA014046-TA, BGIBMGA003221-TA, BGIBMGA011092-TA, BGIBMGA000074-TA, and LOC732976 are the essential proteins in the network. These proteins are primarily involved in the process of ribosome biogenesis and may be related to protein synthesis. We integrated GO, KEGG, and network analysis and found that ribosome-associated protein and GSTs played a vital role in the detoxification process.
Collapse
Affiliation(s)
- ShangHong Xin
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - WenJun Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
71
|
Fratini E, Salvemini M, Lombardo F, Muzzi M, Molfini M, Gisondi S, Roma E, D'Ezio V, Persichini T, Gasperi T, Mariottini P, Di Giulio A, Bologna MA, Cervelli M, Mancini E. Unraveling the role of male reproductive tract and haemolymph in cantharidin-exuding Lydus trimaculatus and Mylabris variabilis (Coleoptera: Meloidae): a comparative transcriptomics approach. BMC Genomics 2021; 22:808. [PMID: 34749651 PMCID: PMC8576976 DOI: 10.1186/s12864-021-08118-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 10/23/2021] [Indexed: 12/13/2022] Open
Abstract
Background Meloidae (blister beetles) are known to synthetize cantharidin (CA), a toxic and defensive terpene mainly stored in male accessory glands (MAG) and emitted outward through reflex-bleeding. Recent progresses in understanding CA biosynthesis and production organ(s) in Meloidae have been made, but the way in which self-protection is achieved from the hazardous accumulation and release of CA in blister beetles has been experimentally neglected. To provide hints on this pending question, a comparative de novo assembly transcriptomic approach was performed by targeting two tissues where CA is largely accumulated and regularly circulates in Meloidae: the male reproductive tract (MRT) and the haemolymph. Differential gene expression profiles in these tissues were examined in two blister beetle species, Lydus trimaculatus (Fabricius, 1775) (tribe Lyttini) and Mylabris variabilis (Pallas, 1781) (tribe Mylabrini). Upregulated transcripts were compared between the two species to identify conserved genes possibly involved in CA detoxification and transport. Results Based on our results, we hypothesize that, to avoid auto-intoxication, ABC, MFS or other solute transporters might sequester purported glycosylated CA precursors into MAG, and lipocalins could bind CA and mitigate its reactivity when released into the haemolymph during the autohaemorrhaging response. We also found an over-representation in haemolymph of protein-domains related to coagulation and integument repairing mechanisms that likely reflects the need to limit fluid loss during reflex-bleeding. Conclusions The de novo assembled transcriptomes of L. trimaculatus and M. variabilis here provided represent valuable genetic resources to further explore the mechanisms employed to cope with toxicity of CA in blister beetle tissues. These, if revealed, might help conceiving safe and effective drug-delivery approaches to enhance the use of CA in medicine. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08118-8.
Collapse
Affiliation(s)
| | - Marco Salvemini
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Fabrizio Lombardo
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Maurizio Muzzi
- Department of Sciences, University of Roma Tre, Rome, Italy
| | - Marco Molfini
- Department of Sciences, University of Roma Tre, Rome, Italy
| | - Silvia Gisondi
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, Rome, Italy.,Natural History Museum of Denmark, Copenhagen, Denmark
| | - Elia Roma
- Department of Sciences, University of Roma Tre, Rome, Italy
| | | | | | - Tecla Gasperi
- Department of Sciences, University of Roma Tre, Rome, Italy
| | | | | | | | | | - Emiliano Mancini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, Rome, Italy.
| |
Collapse
|
72
|
Liu W, Sun X, Sun W, Zhou A, Li R, Wang B, Li X, Yan C. Genome-wide analyses of ATP-Binding Cassette (ABC) transporter gene family and its expression profile related to deltamethrin tolerance in non-biting midge Propsilocerus akamusi. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 239:105940. [PMID: 34455205 DOI: 10.1016/j.aquatox.2021.105940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/18/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Non-biting midges are dominant species in aquatic systems and often used for studying the toxicological researches of insecticides. ATP-binding cassette (ABC) transporters represent the largest known members in detoxification genes but is little known about their function in non-biting midges. Here, we selected Propsilocerus akamusi, widespread in urban streams, to first uncover the gene structure, location, characteristics, and phylogenetics of chironomid ABC transporters at genome-scale. Fifty-seven ABC transporter genes are located on four chromosomes, including eight subfamilies (ABCA-H). The ABCC, ABCG, and ABCH subfamilies experienced the duplication events to different degrees. The study showed that expression of the PaABCG17 gene is uniquely significantly elevated, with deltamethrin concentration increasing (1, 4, and 20 ug/L) both in RNA-seq and qPCR results. Additionally, the ABC transporter members of other six chironomids with assembled genomes are first described and used to investigate the characteristic of those living in the different adverse habitats. The ABC transporter frame for Propsilocerus akamusi and its transcriptomic results lay an important foundation for providing valuable resources for understanding the ABC transporter function in insecticide toxification of this species as well as those of other non-biting midges. The PaABCG17 gene is shown to play an important role in deltamethrin detoxification, and it functions need to be further investigated and might be used in the management of insecticide-resistance in chironomid adults.
Collapse
Affiliation(s)
- Wenbin Liu
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Xiaoya Sun
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Wenwen Sun
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Anmo Zhou
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Ruoqun Li
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Bin Wang
- Tianjin Beidagang Wetland Nature Reserve Management Center, Tianjin, China
| | - Xun Li
- Tianjin Beidagang Wetland Nature Reserve Management Center, Tianjin, China
| | - Chuncai Yan
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China.
| |
Collapse
|
73
|
He Y, He G, He T. Specifically Targeted Transport of Plasma Membrane Transporters: From Potential Mechanisms for Regulating Cell Health or Disease to Applications. MEMBRANES 2021; 11:membranes11100736. [PMID: 34677502 PMCID: PMC8538571 DOI: 10.3390/membranes11100736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/23/2022]
Abstract
Normal substrate transport and signal transmission are the premise to ensure the health of biological somatic cells. Therefore, a comprehensive understanding of the molecular mechanism of intercellular substrate transport is of great significance for clinical treatment. In order to better understand the membrane protein through its interaction with receptors, to help maintain a healthy cell and the molecular mechanisms of disease, in this paper, we seek to clarify, first of all, the recognition mechanism for different types of membrane protein receptors; pathogen invasion using the transport pathway involved in the membrane; and the latest specific target sites of various kinds of membrane transport carriers; to provide an explanation and summary of the system. Secondly, the downstream receptor proteins and specific substrates of different membrane transporters were classified systematically; the functional differences of different subclasses and their relationship with intracellular transport disorders were analyzed to further explore the potential relationship between cell transport disorders and diseases. Finally, the paper summarizes the use of membrane transporter-specific targets for drug design and development from the latest research results; it points out the transporter-related results in disease treatment; the application prospects and the direction for drug development and disease treatment providing a new train of thought; also for disease-specific targeted therapy, it provides a certain reference value.
Collapse
Affiliation(s)
- Yeqing He
- College of Agricultural, Guizhou University, Guiyang 550025, China; (Y.H.); (T.H.)
| | - Guandi He
- College of Agricultural, Guizhou University, Guiyang 550025, China; (Y.H.); (T.H.)
- Correspondence:
| | - Tengbing He
- College of Agricultural, Guizhou University, Guiyang 550025, China; (Y.H.); (T.H.)
- Institute of New Rural Development, Guizhou University, Guiyang 550025, China
| |
Collapse
|
74
|
Montejo-Kovacevich G, Salazar PA, Smith SH, Gavilanes K, Bacquet CN, Chan YF, Jiggins CD, Meier JI, Nadeau NJ. Genomics of altitude-associated wing shape in two tropical butterflies. Mol Ecol 2021; 30:6387-6402. [PMID: 34233044 DOI: 10.1111/mec.16067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/01/2021] [Indexed: 11/30/2022]
Abstract
Understanding how organisms adapt to their local environment is central to evolution. With new whole-genome sequencing technologies and the explosion of data, deciphering the genomic basis of complex traits that are ecologically relevant is becoming increasingly feasible. Here, we studied the genomic basis of wing shape in two Neotropical butterflies that inhabit large geographical ranges. Heliconius butterflies at high elevations have been shown to generally have rounder wings than those in the lowlands. We reared over 1,100 butterflies from 71 broods of H. erato and H. melpomene in common-garden conditions and showed that wing aspect ratio, that is, elongatedness, is highly heritable in both species and that elevation-associated wing aspect ratio differences are maintained. Genome-wide associations with a published data set of 666 whole genomes from across a hybrid zone, uncovered a highly polygenic basis to wing aspect ratio variation in the wild. We identified several genes that have roles in wing morphogenesis or wing aspect ratio variation in Drosophila flies, making them promising candidates for future studies. There was little evidence for molecular parallelism in the two species, with only one shared candidate gene, nor for a role of the four known colour pattern loci, except for optix in H. erato. Thus, we present the first insights into the heritability and genomic basis of within-species wing aspect ratio in two Heliconius species, adding to a growing body of evidence that polygenic adaptation may underlie many ecologically relevant traits.
Collapse
Affiliation(s)
| | | | - Sophie H Smith
- Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | | | | | | | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Joana I Meier
- Department of Zoology, University of Cambridge, Cambridge, UK.,St John's College, University of Cambridge, Cambridge, UK
| | - Nicola J Nadeau
- Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
75
|
Shan J, Sun X, Li R, Zhu B, Liang P, Gao X. Identification of ABCG transporter genes associated with chlorantraniliprole resistance in Plutella xylostella (L.). PEST MANAGEMENT SCIENCE 2021; 77:3491-3499. [PMID: 33837648 DOI: 10.1002/ps.6402] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Plutella xylostella (L.) is a serious worldwide pest that feeds on cruciferous plants and has evolved resistance to different classes of insecticides used for its control, including chlorantraniliprole. ATP-binding cassette (ABC) transporters, constituting the largest transport family in organisms, are involved in phase III of the detoxification process and may play important roles in insecticide resistance. RESULTS A total of 15 ABC transporter transcripts from subfamily G were identified in P. xylostella based on the latest DBM genome. Synergism studies showed that treatment with verapamil, a potent inhibitor of ABC transporters, significantly increased the toxicity of chlorantraniliprole against larvae of two chlorantraniliprole-resistant P. xylostella populations (NIL and BL). ABCG2, ABCG5, ABCG6, ABCG9, ABCG11, ABCG14 and ABCG15 were significantly overexpressed in NIL and BL compared with the susceptible population (SS), and ABCG1, ABCG6, ABCG8, ABCG9, ABCG14 and ABCG15 were significantly upregulated after treatment with the LC50 of chlorantraniliprole in SS. Subsequently, ABCG6, ABCG9 and ABCG14, which were overexpressed in both NIL and BL and could be induced in SS, were chosen for functional study. RNAi-mediated knockdown of each of the three ABCGs significantly increased the sensitivity of larvae to chlorantraniliprole. These results confirmed that overexpression of ABCG6, ABCG9 and ABCG14 may contribute to chlorantraniliprole resistance in P. xylostella. CONCLUSION Overexpression of some genes in the ABCG subfamily is involved in P. xylostella resistance to chlorantraniliprole. These results may help to establish a foundation for further studies investigating the role played by ABC transporters in chlorantraniliprole resistance in P. xylostella or other insect pests. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinqiong Shan
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Xi Sun
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Ran Li
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Bin Zhu
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
76
|
Qin S, Zhang S, Sun X, Kong Y, Hou C, Li M. Transcriptome reveal the response to Cry1Ac toxin in susceptible Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 107:e21794. [PMID: 33948968 DOI: 10.1002/arch.21794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Bombyx mori as a representative in Lepidoptera is an important economic insect in agriculture production. Bacillus thuringiensis (Bt) is a bacterial pathogen in silkworm production. Understanding how silkworm respond to Bt-toxin can provide guidance to cultivate resistant silkworm strains. Cry1Ac is one type of Bt-toxin. In current research, Dazao, a susceptible B. mori strain to Bt-toxin, was treated by Cry1Ac toxin and compared its transcriptome with untreated samples. This analysis detected 1234 differentially expressed genes (DEGs). Gene Ontology, KEGG, and UniProt keyword enrichment analysis showed that DEGs include ATP-binding cassette (ABC) transporter, stress response, cuticle, and protein synthesis, and folding process. Five ABC genes were upregulated after Cry1Ac treatment including ABCA2, ABCA3, and ABCC4. They are also known as the transporters of Bt-toxin in lepidopteran insect. Expression of cuticle proteins was significantly increased at 6 h after Cry1Ac treatment. Sex-specific storage-proteins and heat shock protein were also upregulated in Cry1Ac treated samples. Our data provide an expression profile about the response of Cry1Ac toxin in susceptible B. mori strain.
Collapse
Affiliation(s)
- Sheng Qin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Shu Zhang
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Xia Sun
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Yunhui Kong
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Chengxiang Hou
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Muwang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| |
Collapse
|
77
|
Borovsky D, Deckers K, Vanhove AC, Verstraete M, Rougé P, Shatters RG, Powell CA. Cloning and Characterization of Aedes aegypti Trypsin Modulating Oostatic Factor (TMOF) Gut Receptor. Biomolecules 2021; 11:biom11070934. [PMID: 34201823 PMCID: PMC8301768 DOI: 10.3390/biom11070934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 12/17/2022] Open
Abstract
Trypsin Modulating Oostatic Factor (TMOF) receptor was solubilized from the guts of female Ae. Aegypti and cross linked to His6-TMOF and purified by Ni affinity chromatography. SDS PAGE identified two protein bands (45 and 61 kDa). The bands were cut digested and analyzed using MS/MS identifying a protein sequence (1306 amino acids) in the genome of Ae. aegypti. The mRNA of the receptor was extracted, the cDNA sequenced and cloned into pTAC-MAT-2. E. coli SbmA− was transformed with the recombinant plasmid and the receptor was expressed in the inner membrane of the bacterial cell. The binding kinetics of TMOF-FITC was then followed showing that the cloned receptor exhibits high affinity to TMOF (KD = 113.7 ± 18 nM ± SEM and Bmax = 28.7 ± 1.8 pmol ± SEM). Incubation of TMOF-FITC with E. coli cells that express the receptor show that the receptor binds TMOF and imports it into the bacterial cells, indicating that in mosquitoes the receptor imports TMOF into the gut epithelial cells. A 3D modeling of the receptor indicates that the receptor has ATP binding sites and TMOF transport into recombinant E. coli cells is inhibited with ATPase inhibitors Na Arsenate and Na Azide.
Collapse
Affiliation(s)
- Dov Borovsky
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz School of Medicine, Aurora, CO 80045, USA
- Correspondence:
| | - Kato Deckers
- Zoological Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (K.D.); (A.C.V.); (M.V.)
| | - Anne Catherine Vanhove
- Zoological Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (K.D.); (A.C.V.); (M.V.)
| | - Maud Verstraete
- Zoological Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (K.D.); (A.C.V.); (M.V.)
| | - Pierre Rougé
- UMR 152 Pharma-Dev, Faculté des Sciences Pharmaceutiques, Institut de Recherche et Développement, Université Toulouse 3, F-31062 Toulouse, France;
| | - Robert G. Shatters
- USDA ARS, Subtropical Horticultural Laboratory, 2001 Rock Road, Ft. Pierce, FL 34945, USA;
| | - Charles A. Powell
- UF-IFAS Indian River Research and Education Center, Fort Pierce, FL 34945, USA;
| |
Collapse
|
78
|
MAPK-Activated Transcription Factor PxJun Suppresses PxABCB1 Expression and Confers Resistance to Bacillus thuringiensis Cry1Ac Toxin in Plutella xylostella (L.). Appl Environ Microbiol 2021; 87:e0046621. [PMID: 33893113 DOI: 10.1128/aem.00466-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Deciphering the molecular mechanisms underlying insect resistance to Cry toxins produced by Bacillus thuringiensis (Bt) is pivotal for the sustainable utilization of Bt biopesticides and transgenic Bt crops. Previously, we identified that mitogen-activated protein kinase (MAPK)-mediated reduced expression of the PxABCB1 gene is associated with Bt Cry1Ac resistance in the diamondback moth, Plutella xylostella (L.). However, the underlying transcriptional regulation mechanism remains enigmatic. Here, the PxABCB1 promoter in Cry1Ac-susceptible and Cry1Ac-resistant P. xylostella strains was cloned and analyzed and found to contain a putative Jun binding site (JBS). A dual-luciferase reporter assay and yeast one-hybrid assay demonstrated that the transcription factor PxJun repressed PxABCB1 expression by interacting with this JBS. The expression levels of PxJun were increased in the midguts of all resistant strains compared to the susceptible strain. Silencing of PxJun expression significantly elevated PxABCB1 expression and Cry1Ac susceptibility in the resistant NIL-R strain, and silencing of PxMAP4K4 expression decreased PxJun expression and also increased PxABCB1 expression. These results indicate that MAPK-activated PxJun suppresses PxABCB1 expression to confer Cry1Ac resistance in P. xylostella, deepening our understanding of the transcriptional regulation of midgut Cry receptor genes and the molecular basis of insect resistance to Bt Cry toxins. IMPORTANCE The transcriptional regulation mechanisms underlying reduced expression of Bt toxin receptor genes in Bt-resistant insects remain elusive. This study unveils that a transcription factor PxJun activated by the MAPK signaling pathway represses PxABCB1 expression and confers Cry1Ac resistance in P. xylostella. Our results provide new insights into the transcriptional regulation mechanisms of midgut Cry receptor genes and deepen our understanding of the molecular basis of insect resistance to Bt Cry toxins. To our knowledge, this study identified the first transcription factor that can be involved in the transcriptional regulation mechanisms of midgut Cry receptor genes in Bt-resistant insects.
Collapse
|
79
|
He W, Wei DD, Xu HQ, Yang Y, Miao ZQ, Wang L, Wang JJ. Molecular Characterization and Transcriptional Expression Analysis of ABC Transporter H Subfamily Genes in the Oriental Fruit Fly. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1298-1309. [PMID: 33822985 DOI: 10.1093/jee/toab045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 06/12/2023]
Abstract
The oriental fruit fly, Bactrocera dorsalis Hendel (Diptera: Tephretidae), is a serious pest of fruits and vegetables and has developed high levels of insecticide resistance. ATP-binding cassette transporter genes (ABC transporters) are involved in mediating the energy-driven transport of many substances across membranes and are closely associated with development and insecticide detoxification. In this study, three ABC transporters in the H subfamily were identified, and the possible roles of these genes in B. dorsalis are discussed. Bioinformatics analysis revealed that those genes are conserved, typical of half-transporters. The expression profiles of BdABCH genes (BdABCHs) in the developmental stages, tissues, and following insecticide exposure, extreme temperature, warm- and cold-acclimated strain, starvation, and desiccation stress were determined by quantitative real-time PCR. Expression of BdABCHs can be detected in various tissues and in different developmental stages. They were most highly expressed in the hindgut and in newly emerged adults. The mRNA levels of BdABCHs in males (including most tissues and body segments) were higher than in females. The expression of BdABCH1 was significantly upregulated 3.8-fold in the cold-acclimated strain, and was significantly upregulated by 1.9-, 3.8- and 4.1-fold in the 0°C, starvation, and desiccation treatments, respectively. Treatment with malathion and avermectin at LD20 and LD30 concentrations produced no obvious changes in the levels of BdABCHs. BdABCHs may be involved in the transport of related hormones during eclosion, as well as water and inorganic salts. BdABCH1 also demonstrated that it is related to the ability to cope with adverse environments.
Collapse
Affiliation(s)
- Wang He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hui-Qian Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Yang Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Ze-Qing Miao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Lei Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
80
|
Qin J, Ye F, Xu L, Zhou X, Crickmore N, Zhou X, Zhang Y, Guo Z. A cis-Acting Mutation in the PxABCG1 Promoter Is Associated with Cry1Ac Resistance in Plutella xylostella (L.). Int J Mol Sci 2021; 22:6106. [PMID: 34198929 PMCID: PMC8201282 DOI: 10.3390/ijms22116106] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
The molecular mechanisms of insect resistance to Cry toxins generated from the bacterium Bacillus thuringiensis (Bt) urgently need to be elucidated to enable the improvement and sustainability of Bt-based products. Although downregulation of the expression of midgut receptor genes is a pivotal mechanism of insect resistance to Bt Cry toxins, the underlying transcriptional regulation of these genes remains elusive. Herein, we unraveled the regulatory mechanism of the downregulation of the ABC transporter gene PxABCG1 (also called Pxwhite), a functional midgut receptor of the Bt Cry1Ac toxin in Plutella xylostella. The PxABCG1 promoters of Cry1Ac-susceptible and Cry1Ac-resistant strains were cloned and analyzed, and they showed clear differences in activity. Subsequently, a dual-luciferase reporter assay, a yeast one-hybrid (Y1H) assay, and RNA interference (RNAi) experiments demonstrated that a cis-mutation in a binding site of the Hox transcription factor Antennapedia (Antp) decreased the promoter activity of the resistant strain and eliminated the binding and regulation of Antp, thereby enhancing the resistance of P. xylostella to the Cry1Ac toxin. These results advance our knowledge of the roles of cis- and trans-regulatory variations in the regulation of midgut Cry receptor genes and the evolution of Bt resistance, contributing to a more complete understanding of the Bt resistance mechanism.
Collapse
Affiliation(s)
- Jianying Qin
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (J.Q.); (X.Z.)
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (F.Y.); (L.X.); (Y.Z.)
| | - Fan Ye
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (F.Y.); (L.X.); (Y.Z.)
| | - Linzheng Xu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (F.Y.); (L.X.); (Y.Z.)
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA;
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK;
| | - Xiaomao Zhou
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (J.Q.); (X.Z.)
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (F.Y.); (L.X.); (Y.Z.)
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (F.Y.); (L.X.); (Y.Z.)
| |
Collapse
|
81
|
Huang Q, Wu ZH, Li WF, Guo R, Xu JS, Dang XQ, Ma ZG, Chen YP, Evans JD. Genome and Evolutionary Analysis of Nosema ceranae: A Microsporidian Parasite of Honey Bees. Front Microbiol 2021; 12:645353. [PMID: 34149635 PMCID: PMC8206274 DOI: 10.3389/fmicb.2021.645353] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/29/2021] [Indexed: 01/18/2023] Open
Abstract
Microsporidia comprise a phylum of single cell, intracellular parasites and represent the earliest diverging branch in the fungal kingdom. The microsporidian parasite Nosema ceranae primarily infects honey bee gut epithelial cells, leading to impaired memory, suppressed host immune responses and colony collapse under certain circumstances. As the genome of N. ceranae is challenging to assembly due to very high genetic diversity and repetitive region, the genome was re-sequenced using long reads. We present a robust 8.8 Mbp genome assembly of 2,280 protein coding genes, including a high number of genes involved in transporting nutrients and energy, as well as drug resistance when compared with sister species Nosema apis. We also describe the loss of the critical protein Dicer in approximately half of the microsporidian species, giving new insights into the availability of RNA interference pathway in this group. Our results provided new insights into the pathogenesis of N. ceranae and a blueprint for treatment strategies that target this parasite without harming honey bees. The unique infectious apparatus polar filament and transportation pathway members can help to identify treatments to control this parasite.
Collapse
Affiliation(s)
- Qiang Huang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang, China
| | - Zhi Hao Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang, China
| | - Wen Feng Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jin Shan Xu
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Xiao Qun Dang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Zheng Gang Ma
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yan Ping Chen
- US Department of Agriculture-Aricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD, United States
| | - Jay D Evans
- US Department of Agriculture-Aricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD, United States
| |
Collapse
|
82
|
Rösner J, Tietmeyer J, Merzendorfer H. Functional analysis of ABCG and ABCH transporters from the red flour beetle, Tribolium castaneum. PEST MANAGEMENT SCIENCE 2021; 77:2955-2963. [PMID: 33620766 DOI: 10.1002/ps.6332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/21/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND ATP-binding cassette transporter (ABC transporter) subfamilies ABCA-C and ABCG-H have been implicated in insecticide detoxification, mostly based on findings of elevated gene expression in response to insecticide treatment. We previously characterized TcABCA-C genes from the model beetle and pest Tribolium castaneum and demonstrated that TcABCA and TcABCC genes are involved in the elimination of diflubenzuron, because RNA interference (RNAi)-mediated gene silencing increased susceptibility. In this study, we focused on the potential functions of TcABCG and TcABCH genes in insecticide detoxification. RESULTS When we silenced the expression of TcABCG-H genes using RNAi, we noticed a previously unreported developmental RNAi phenotype for TcABCG-4F, which is characterized by 50% mortality and ecdysial arrest during adult moult. When we knocked down the Drosophila brown orthologue TcABCG-XC, we did not obtain apparent eye colour phenotypes but did observe a loss of riboflavin uptake by Malpighian tubules. Next, we determined the expression profiles of all TcABCG-H genes in different tissues and developmental stages and analysed transcript levels in response to treatment with four chemically unrelated insecticides. We found that some genes were specifically upregulated after insecticide treatment. However, when we determined insecticide-induced mortalities in larvae that were treated by double-stranded RNA injection to silence those TcABCG-H genes that were upregulated, we did not observe a significant increase in susceptibility to insecticides. CONCLUSION Our findings suggest that the observed insecticide-dependent induction of TcABCG-H gene expression reflects an unspecific stress response, and hence underlines the significance of functional studies on insecticide detoxification. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Janin Rösner
- Department of Chemistry-Biology, University of Siegen, Siegen, Germany
| | - Johanne Tietmeyer
- Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Hans Merzendorfer
- Department of Chemistry-Biology, University of Siegen, Siegen, Germany
| |
Collapse
|
83
|
Shu B, Zou Y, Yu H, Zhang W, Li X, Cao L, Lin J. Growth inhibition of Spodoptera frugiperda larvae by camptothecin correlates with alteration of the structures and gene expression profiles of the midgut. BMC Genomics 2021; 22:391. [PMID: 34039281 PMCID: PMC8157707 DOI: 10.1186/s12864-021-07726-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/19/2021] [Indexed: 12/31/2022] Open
Abstract
Background Spodoptera frugiperda is a serious pest that causes devastating losses to many major crops, including corn, rice, sugarcane, and peanut. Camptothecin (CPT) is a bioactive secondary metabolite of the woody plant Camptotheca acuminata, which has shown high toxicity to various pests. However, the effect of CPT against S. frugiperda remains unknown. Results In this study, bioassays have been conducted on the growth inhibition of CPT on S. frugiperda larvae. Histological and cytological changes were examined in the midgut of larvae fed on an artificial diet supplemented with 1.0 and 5.0 µg/g CPT. The potential molecular mechanism was explored by comparative transcriptomic analyses among midgut samples obtained from larvae under different treatments. A total of 915 and 3560 differentially expressed genes (DEGs) were identified from samples treated with 1.0 and 5.0 µg/g CPT, respectively. Among the identified genes were those encoding detoxification-related proteins and components of peritrophic membrane such as mucins and cuticle proteins. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that part of DEGs were involved in DNA replication, digestion, immunity, endocrine system, and metabolism. Conclusions Our results provide useful information on the molecular basis for the impact of CPT on S. frugiperda and for future studies on potential practical application. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07726-8.
Collapse
Affiliation(s)
- Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong teaching building, 510225, Guangzhou, PR China
| | - Yan Zou
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong teaching building, 510225, Guangzhou, PR China
| | - Haikuo Yu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong teaching building, 510225, Guangzhou, PR China
| | - Wanying Zhang
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong teaching building, 510225, Guangzhou, PR China
| | - Xiangli Li
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong teaching building, 510225, Guangzhou, PR China
| | - Liang Cao
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong teaching building, 510225, Guangzhou, PR China
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong teaching building, 510225, Guangzhou, PR China.
| |
Collapse
|
84
|
Al Khoury C, Nemer N, Nemer G. Beauvericin potentiates the activity of pesticides by neutralizing the ATP-binding cassette transporters in arthropods. Sci Rep 2021; 11:10865. [PMID: 34035330 PMCID: PMC8149815 DOI: 10.1038/s41598-021-89622-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/19/2021] [Indexed: 02/04/2023] Open
Abstract
Multi-drug resistance is posing major challenges in suppressing the population of pests. Many herbivores develop resistance, causing a prolonged survival after exposure to a previously effective pesticide. Consequently, resistant pests reduce the yield of agricultural production, causing significant economic losses and reducing food security. Therefore, overpowering resistance acquisition of crop pests is a must. The ATP binding cassette transporters (ABC transporters) are considered as the main participants to the pesticide efflux and their neutralization will greatly contribute to potentiate failed treatments. Real-Time PCR analysis of 19 ABC transporter genes belonging to the ABCB, ABCC, ABCG, and ABCH revealed that a broad range of efflux pumps is activated in response to the exposure to pesticides. In this study, we used beauvericin (BEA), a known ABC transporters modulator, to resensitize different strains of Tetranychus urticae after artificial selection for resistance to cyflumetofen, bifenazate, and abamectin. Our results showed that the combinatorial treatment of pesticide (manufacturer's recommended doses) + BEA (sublethal doses: 0.15 mg/L) significantly suppressed the resistant populations of T. urticae when compared to single-drug treatments. Moreover, after selective pressure for 40 generations, the LC50 values were significantly reduced from 36.5, 44.7, and 94.5 (pesticide) to 8.3, 12.5, and 23.4 (pesticide + BEA) for cyflumetofen, bifenazate, and abamectin, respectively. While the downstream targets for BEA are still elusive, we demonstrated hereby that it synergizes with sub-lethal doses of different pesticides and increases their effect by inhibiting ABC transporters. This is the first report to document such combinatorial activity of BEA against higher invertebrates paving the way for its usage in treating refractory cases of resistance to pesticides. Moreover, we demonstrated, for the first time, using in silico techniques, the higher affinity of BEA to ABC transformers subfamilies when compared to xenobiotics; thus, elucidating the pathway of the mycotoxin.
Collapse
Affiliation(s)
- Charbel Al Khoury
- grid.411323.60000 0001 2324 5973Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos Campus, P.O. Box 36, Byblos, Lebanon
| | - Nabil Nemer
- grid.444434.70000 0001 2106 3658Department of Agriculture and Food Engineering, Holy Spirit University of Kaslik, P.O. Box 446, Jounieh, Lebanon
| | - Georges Nemer
- grid.22903.3a0000 0004 1936 9801Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 110236, Beirut, Lebanon ,grid.452146.00000 0004 1789 3191Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| |
Collapse
|
85
|
Cordova D, Benner EA, Clark DA, Bolgunas SP, Lahm GP, Gutteridge S, Rhoades DF, Wu L, Sopa JS, Rauh JJ, Barry JD. Pyrrole-2 carboxamides - A novel class of insect ryanodine receptor activators. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 174:104798. [PMID: 33838722 DOI: 10.1016/j.pestbp.2021.104798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
The ryanodine receptor (RyR) is an intracellular calcium channel critical to the regulation of insect muscle contraction and the target site of diamide insecticides such as chlorantraniliprole, cyantraniliprole and flubendiamide. To-date, diamides are the only known class of synthetic molecules with high potency against insect RyRs. Target-based screening of an informer library led to discovery of a novel class of RyR activators, pyrrole-2-carboxamides. Efforts to optimize receptor activity resulted in analogs with potency comparable to that of commercial diamides when tested against RyR of the fruit fly, Drosophila melanogaster. Surprisingly, testing of pyrrole-2-carboxamides in whole-insect screens showed poor insecticidal activity, which is partially attributed to differential selectivity among insect receptors and rapid detoxification. Among various lepidopteran species field resistance to diamide insecticides has been well documented and in many cases has been attributed to a single point mutation, G4946E, of the RyR gene. As with diamide insecticides, the G4946E mutation confers greatly reduced sensitivity to pyrrole-2-carboxamides. This, coupled with findings from radioligand binding studies, indicates a shared binding domain between anthranilic diamides and pyrrole-2-carboxamides.
Collapse
Affiliation(s)
- Daniel Cordova
- FMC, Agricultural Solutions Discovery Biology, Stine Research Center, 1090 Elkton Road, Newark, DE 19711, USA.
| | - Eric A Benner
- FMC, Agricultural Solutions Discovery Biology, Stine Research Center, 1090 Elkton Road, Newark, DE 19711, USA
| | - David A Clark
- FMC, Agricultural Solutions Discovery Biology, Stine Research Center, 1090 Elkton Road, Newark, DE 19711, USA
| | - Stephen P Bolgunas
- FMC, Agricultural Solutions Discovery Biology, Stine Research Center, 1090 Elkton Road, Newark, DE 19711, USA
| | - George P Lahm
- FMC, Agricultural Solutions Discovery Biology, Stine Research Center, 1090 Elkton Road, Newark, DE 19711, USA
| | - Steven Gutteridge
- FMC, Agricultural Solutions Discovery Biology, Stine Research Center, 1090 Elkton Road, Newark, DE 19711, USA
| | - Daniel F Rhoades
- FMC, Agricultural Solutions Discovery Biology, Stine Research Center, 1090 Elkton Road, Newark, DE 19711, USA
| | - Lihong Wu
- FMC, Agricultural Solutions Discovery Biology, Stine Research Center, 1090 Elkton Road, Newark, DE 19711, USA
| | - Jeffrey S Sopa
- ThermoFisher Scientific, 105 Pearl Wyn Lane, Rising Sun, MD 21911, United States of America
| | - James J Rauh
- 49 Ravens Rd. Winthrop, WA 98862, United States of America
| | - James D Barry
- FMC, Agricultural Solutions Discovery Biology, Stine Research Center, 1090 Elkton Road, Newark, DE 19711, USA
| |
Collapse
|
86
|
The Essential and Enigmatic Role of ABC Transporters in Bt Resistance of Noctuids and Other Insect Pests of Agriculture. INSECTS 2021; 12:insects12050389. [PMID: 33924857 PMCID: PMC8145640 DOI: 10.3390/insects12050389] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 11/18/2022]
Abstract
Simple Summary The insect family, Noctuidae, contains some of the most damaging pests of agriculture, including bollworms, budworms, and armyworms. Transgenic cotton and maize expressing Cry-type insecticidal proteins from Bacillus thuringiensis (Bt) are protected from such pests and greatly reduce the need for chemical insecticides. However, evolution of Bt resistance in the insects threatens the sustainability of this environmentally beneficial pest control strategy. Understanding the interaction between Bt toxins and their targets in the insect midgut is necessary to evaluate the risk of resistance evolution. ABC transporters, which in eukaryotes typically expel small molecules from cells, have recently been proposed as a target for the pore-forming Cry toxins. Here we review the literature surrounding this hypothesis in noctuids and other insects. Appreciation of the critical role of ABC transporters will be useful in discovering counterstrategies to resistance, which is already evolving in some field populations of noctuids and other insects. Abstract In the last ten years, ABC transporters have emerged as unexpected yet significant contributors to pest resistance to insecticidal pore-forming proteins from Bacillus thuringiensis (Bt). Evidence includes the presence of mutations in resistant insects, heterologous expression to probe interactions with the three-domain Cry toxins, and CRISPR/Cas9 knockouts. Yet the mechanisms by which ABC transporters facilitate pore formation remain obscure. The three major classes of Cry toxins used in agriculture have been found to target the three major classes of ABC transporters, which requires a mechanistic explanation. Many other families of bacterial pore-forming toxins exhibit conformational changes in their mode of action, which are not yet described for the Cry toxins. Three-dimensional structures of the relevant ABC transporters, the multimeric pore in the membrane, and other proteins that assist in the process are required to test the hypothesis that the ATP-switch mechanism provides a motive force that drives Cry toxins into the membrane. Knowledge of the mechanism of pore insertion will be required to combat the resistance that is now evolving in field populations of insects, including noctuids.
Collapse
|
87
|
Pan Y, Fang G, Wang Z, Cao Y, Liu Y, Li G, Liu X, Xiao Q, Zhan S. Chromosome-level genome reference and genome editing of the tea geometrid. Mol Ecol Resour 2021; 21:2034-2049. [PMID: 33738922 DOI: 10.1111/1755-0998.13385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022]
Abstract
The tea geometrid is a destructive insect pest on tea plants, which seriously affects tea production in terms of both yield and quality and causes severe economic losses. The tea geometrid also provides an important study system to address the ecological adaptive mechanisms underlying its unique host plant adaptation and protective resemblance. In this study, we fully sequenced and de novo assembled the reference genome of the tea geometrid, Ectropis grisescens, using long sequencing reads. We presented a highly continuous, near-complete genome reference (787.4 Mb; scaffold N50: 26.9 Mb), along with the annotation of 18,746 protein-coding genes and 53.3% repeat contents. Importantly, we successfully placed 97.8% of the assembly in 31 chromosomes based on Hi-C interactions and characterized the sex chromosome based on sex-biased sequencing coverage. Multiple quality-control assays and chromosome-scale synteny with the model species all supported the high quality of the presented genome reference. We focused biological annotations on gene families related to the host plant adaptation and camouflage in the tea geometrid and performed comparisons with other representative lepidopteran species. Important findings include the E. grisescens-specific expansion of CYP6 P450 genes that might be involved in metabolism of tea defensive chemicals and unexpected massive expansion of gustatory receptor gene families that suggests potential polyphagy for this tea pest. Furthermore, we developed an efficient genome editing system based on CRISPR/Cas9 technology and successfully implement mutagenesis of a Hox gene in the tea geometrid. Our study provides key genomic resources both for exploring unique mechanisms underlying the ecological adaptation of tea geometrids and for developing environment-friendly strategies for tea pest management.
Collapse
Affiliation(s)
- Yunjie Pan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Gangqi Fang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Zhibo Wang
- Key Laboratory of Tea Quality and Safety Control, Tea Research Institute, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yanghui Cao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yongjian Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guiyun Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaojing Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Xiao
- Key Laboratory of Tea Quality and Safety Control, Tea Research Institute, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
88
|
Zeng Y, Charkowski AO. The Role of ATP-Binding Cassette Transporters in Bacterial Phytopathogenesis. PHYTOPATHOLOGY 2021; 111:600-610. [PMID: 33225831 DOI: 10.1094/phyto-06-20-0212-rvw] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Bacteria use selective membrane transporting strategies to support cell survival in different environments. Of the membrane transport systems, ATP-binding cassette (ABC) transporters, which utilize the energy of ATP hydrolysis to deliver substrate across the cytoplasmic membrane, are the largest and most diverse superfamily. These transporters import nutrients, export molecules, and are required for diverse cell functions, including cell division and morphology, gene regulation, surface motility, chemotaxis, and interspecies competition. Phytobacterial pathogens encode numerous ABC transporter homologs compared with related nonphytopathogens, with up to 160 transporters per genome, suggesting that plant pathogens must be able to import or respond to a greater number of molecules compared with saprophytes or animal pathogens. Despite their importance, ABC transporters have been little examined in plant pathogens. To understand bacterial phytopathogenesis and evolution, we need to understand the roles that ABC transporters play in plant-microbe interactions. In this review, we outline a multitude of roles that bacterial ABC transporters play, using both plant and animal pathogens as examples, to emphasize the importance of exploring these transporters in phytobacteriology.
Collapse
Affiliation(s)
- Yuan Zeng
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523
| | - Amy O Charkowski
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
89
|
Juan-Carlos PDM, Perla-Lidia PP, Stephanie-Talia MM, Mónica-Griselda AM, Luz-María TE. ABC transporter superfamily. An updated overview, relevance in cancer multidrug resistance and perspectives with personalized medicine. Mol Biol Rep 2021; 48:1883-1901. [PMID: 33616835 DOI: 10.1007/s11033-021-06155-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022]
Abstract
The ATP binding-cassette superfamily corresponds the mostly transmembrane transporters family found in humans. These proteins actively transport endogenous and exogenous substrates through biological membranes in body tissues, so they have an important role in the regulation of many physiological functions necessary for human homeostasis, as well as in response regulation to several pharmacological substrates. The development of multidrug resistance has become one of the main troubles in conventional chemotherapy in different illnesses including cancer, being the increased efflux of antineoplastic drugs the main reason for this multidrug resistance, with a key role of the ABC superfamily. Likely, the interindividual variability in the pharmacological response among patients is well known, and may be due to intrinsically factors of the disease, genetic and environmental ones. Thus, the understanding of this variability, especially the genetic variability associated with the efficacy and toxicity of drugs, can provide a safer and more effective pharmacological treatment, so ABC genes are considered as important regulators due to their relationship with the reduction in pharmacological response. In this review, updated information about transporters belonging to this superfamily was collected, the possible role of these transporters in cancer, the role of genetic variability in their genes, as well as some therapeutic tools that have been tried to raise against main transporters associated with chemoresistance in cancer.
Collapse
Affiliation(s)
- Pérez-De Marcos Juan-Carlos
- Laboratory of Pharmacology, National Institute of Pediatrics, Mexico City, México.,Postgraduate Degree in Pharmacology, National Polytechnic Institute, Mexico City, México
| | | | | | | | | |
Collapse
|
90
|
Liu G, Liu W, Zhao R, He J, Dong Z, Chen L, Wan W, Chang Z, Wang W, Li X. Genome-wide identification and gene-editing of pigment transporter genes in the swallowtail butterfly Papilio xuthus. BMC Genomics 2021; 22:120. [PMID: 33596834 PMCID: PMC7891156 DOI: 10.1186/s12864-021-07400-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 01/19/2021] [Indexed: 02/03/2023] Open
Abstract
Background Insect body coloration often functions as camouflage to survive from predators or mate selection. Transportation of pigment precursors or related metabolites from cytoplasm to subcellular pigment granules is one of the key steps in insect pigmentation and usually executed via such transporter proteins as the ATP-binding cassette (ABC) transmembrane transporters and small G-proteins (e.g. Rab protein). However, little is known about the copy numbers of pigment transporter genes in the butterfly genomes and about the roles of pigment transporters in the development of swallowtail butterflies. Results Here, we have identified 56 ABC transporters and 58 Rab members in the genome of swallowtail butterfly Papilio xuthus. This is the first case of genome-wide gene copy number identification of ABC transporters in swallowtail butterflies and Rab family in lepidopteran insects. Aiming to investigate the contribution of the five genes which are orthologous to well-studied pigment transporters (ABCG: white, scarlet, brown and ok; Rab: lightoid) of fruit fly or silkworm during the development of swallowtail butterflies, we performed CRISPR/Cas9 gene-editing of these genes using P. xuthus as a model and sequenced the transcriptomes of their morphological mutants. Our results indicate that the disruption of each gene produced mutated phenotypes in the colors of larvae (cuticle, testis) and/or adult eyes in G0 individuals but have no effect on wing color. The transcriptomic data demonstrated that mutations induced by CRISPR/Cas9 can lead to the accumulation of abnormal transcripts and the decrease or dosage compensation of normal transcripts at gene expression level. Comparative transcriptomes revealed 606 ~ 772 differentially expressed genes (DEGs) in the mutants of four ABCG transporters and 1443 DEGs in the mutants of lightoid. GO and KEGG enrichment analysis showed that DEGs in ABCG transporter mutants enriched to the oxidoreductase activity, heme binding, iron ion binding process possibly related to the color display, and DEGs in lightoid mutants are enriched in glycoprotein binding and protein kinases. Conclusions Our data indicated these transporter proteins play an important role in body color of P. xuthus. Our study provides new insights into the function of ABC transporters and small G-proteins in the morphological development of butterflies. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07400-z.
Collapse
Affiliation(s)
- Guichun Liu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shanxi, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Wei Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Ruoping Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Jinwu He
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shanxi, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Zhiwei Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Lei Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shanxi, China
| | - Wenting Wan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shanxi, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Zhou Chang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shanxi, China. .,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China. .,Center for Excellence in Animal Evolution and Genetics, Kunming, 650223, Yunnan, China.
| | - Xueyan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| |
Collapse
|
91
|
Abdelgaffar H, Perera OP, Jurat-Fuentes JL. ABC transporter mutations in Cry1F-resistant fall armyworm (Spodoptera frugiperda) do not result in altered susceptibility to selected small molecule pesticides. PEST MANAGEMENT SCIENCE 2021; 77:949-955. [PMID: 32985759 DOI: 10.1002/ps.6106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/31/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Transgenic crops producing Cry and Vip3 insecticidal proteins from the bacterium Bacillus thuringiensis provide effective control of the fall armyworm, Spodoptera frugiperda J. E. Smith. However, cases of practical S. frugiperda resistance to transgenic corn producing Cry1F, Cry1Ab and Cry1A.105 proteins have been reported in the Western hemisphere. Importantly, S. frugiperda resistance to Cry1F corn in Puerto Rico was previously associated with lower susceptibility to synthetic pesticides. When characterized, resistance to transgenic corn in S. frugiperda involved alterations in an ABC transporter subfamily C2 (SfABCC2) gene. The main goal of this work was to test the role of mutations in SfABCC2 that result in resistance to Cry1F in susceptibility to synthetic and semisynthetic small molecule pesticides. RESULTS Marginal but significantly reduced susceptibility to bifenthrin and increased susceptibility to spinetoram was detected in a Cry1F-resitant S. frugiperda strain from Puerto Rico carrying a frameshift mutation in the SfABCC2 gene. Gene editing by CRISPR/Cas9 created a SfABCC2 knockout in a laboratory reference S. frugiperda strain. When compared to the parental reference, the knockout strain displayed 25-fold resistance to Cry1F but no alteration in susceptibility to small molecule pesticides. CONCLUSION These results support that resistance to Cry1F due to mutations in the SfABCC2 gene do not affect susceptibility to the tested small molecule pesticides.
Collapse
Affiliation(s)
- Heba Abdelgaffar
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Omaththage P Perera
- Southern Insect Management Research Unit, USDA, Agricultural Research Service, Stoneville, MS, USA
| | | |
Collapse
|
92
|
Li B, Du Z, Tian L, Zhang L, Huang Z, Wei S, Song F, Cai W, Yu Y, Yang H, Li H. Chromosome-level genome assembly of the aphid parasitoid Aphidius gifuensis using Oxford Nanopore sequencing and Hi-C technology. Mol Ecol Resour 2021; 21:941-954. [PMID: 33314728 PMCID: PMC7986076 DOI: 10.1111/1755-0998.13308] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022]
Abstract
Aphidius gifuensis is a parasitoid wasp that has been commercially bred and released in large scale as a biocontrol agent for the management of aphid pests. As a highly efficient endoparasitoid, it is also an important model for exploring mechanisms of parasitism. Currently, artificially bred populations of this wasp are facing rapid decline with undetermined cause, and mechanisms underlying its parasitoid strategy remain poorly understood. Exploring the mechanism behind its population decline and the host–parasitoid relationship is impeded partly due to the lack of a comprehensive genome data for this species. In this study, we constructed a high‐quality reference genome of A. gifuensis using Oxford Nanopore sequencing and Hi‐C (proximity ligation chromatin conformation capture) technology. The final genomic assembly was 156.9 Mb, with a contig N50 length of 3.93 Mb, the longest contig length of 10.4 Mb and 28.89% repetitive sequences. 99.8% of genome sequences were anchored onto six linkage groups. A total of 11,535 genes were predicted, of which 90.53% were functionally annotated. Benchmarking Universal Single‐Copy Orthologs (BUSCO) analysis showed the completeness of assembled genome is 98.3%. We found significantly expanded gene families involved in metabolic processes, transmembrane transport, cell signal communication and oxidoreductase activity, in particular ATP‐binding cassette (ABC) transporter, Cytochrome P450 and venom proteins. The olfactory receptors (ORs) showed significant contraction, which may be associated with the decrease in host recognition. Our study provides a solid foundation for future studies on the molecular mechanisms of population decline as well as host–parasitoid relationship for parasitoid wasps.
Collapse
Affiliation(s)
- Bingyan Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhenyong Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | | | | | - Shujun Wei
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yanbi Yu
- Yunnan Tobacco Company of China National Tobacco Corporation, Kunming, China
| | | | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
93
|
Epelboin Y, Wang L, Giai Gianetto Q, Choumet V, Gaborit P, Issaly J, Guidez A, Douché T, Chaze T, Matondo M, Dusfour I. CYP450 core involvement in multiple resistance strains of Aedes aegypti from French Guiana highlighted by proteomics, molecular and biochemical studies. PLoS One 2021; 16:e0243992. [PMID: 33428654 PMCID: PMC7799788 DOI: 10.1371/journal.pone.0243992] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022] Open
Abstract
Insecticide resistance is a worldwide threat for vector control around the world, and Aedes aegypti, the main vector of several arboviruses, is a particular concern. To better understand the mechanisms of resistance, four isofemale strains originally from French Guiana were isolated and analysed using combined approaches. The activity of detoxification enzymes involved in insecticide resistance was assayed, and mutations located at positions 1016 and 1534 of the sodium voltage-gated channel gene, which have been associated with pyrethroid resistance in Aedes aegypti populations in Latin America, were monitored. Resistance to other insecticide families (organophosphates and carbamates) was evaluated. A large-scale proteomic analysis was performed to identify proteins involved in insecticide resistance. Our results revealed a metabolic resistance and resistance associated with a mutation of the sodium voltage-gated channel gene at position 1016. Metabolic resistance was mediated through an increase of esterase activity in most strains but also through the shifts in the abundance of several cytochrome P450 (CYP450s). Overall, resistance to deltamethrin was linked in the isofemale strains to resistance to other class of insecticides, suggesting that cross- and multiple resistance occur through selection of mechanisms of metabolic resistance. These results give some insights into resistance to deltamethrin and into multiple resistance phenomena in populations of Ae. aegypti.
Collapse
Affiliation(s)
- Yanouk Epelboin
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana, France
| | - Lanjiao Wang
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana, France
| | - Quentin Giai Gianetto
- Proteomics Platform, Mass Spectrometry for Biology Unit, USR CNRS 2000, Institut Pasteur, Paris, France
- Bioinformatics and Biostatistics HUB, Computational Biology Department, USR CNRS 3756, Institut Pasteur, Paris, France
| | - Valérie Choumet
- Environment and Infectious risks Unit, Institut Pasteur, Paris, France
| | - Pascal Gaborit
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana, France
| | - Jean Issaly
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana, France
| | - Amandine Guidez
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana, France
| | - Thibaut Douché
- Proteomics Platform, Mass Spectrometry for Biology Unit, USR CNRS 2000, Institut Pasteur, Paris, France
| | - Thibault Chaze
- Proteomics Platform, Mass Spectrometry for Biology Unit, USR CNRS 2000, Institut Pasteur, Paris, France
| | - Mariette Matondo
- Proteomics Platform, Mass Spectrometry for Biology Unit, USR CNRS 2000, Institut Pasteur, Paris, France
| | - Isabelle Dusfour
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana, France
- Global Health department, Institut Pasteur, Paris, France
| |
Collapse
|
94
|
Functional validation of DvABCB1 as a receptor of Cry3 toxins in western corn rootworm, Diabrotica virgifera virgifera. Sci Rep 2020; 10:15830. [PMID: 32985523 PMCID: PMC7522262 DOI: 10.1038/s41598-020-72572-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/03/2020] [Indexed: 02/03/2023] Open
Abstract
Western corn rootworm (WCR), Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), is a serious insect pest in the major corn growing areas of North America and in parts of Europe. WCR populations with resistance to Bacillus thuringiensis (Bt) toxins utilized in commercial transgenic traits have been reported, raising concerns over their continued efficacy in WCR management. Understanding the modes of action of Bt toxins is important for WCR control and resistance management. Although different classes of proteins have been identified as Bt receptors for lepidopteran insects, identification of receptors in WCR has been limited with no reports of functional validation. Our results demonstrate that heterologous expression of DvABCB1 in Sf9 and HEK293 cells conferred sensitivity to the cytotoxic effects of Cry3A toxins. The result was further validated using knockdown of DvABCB1 by RNAi which rendered WCR larvae insensitive to a Cry3A toxin. However, silencing of DvABCB2 which is highly homologous to DvABCB1 at the amino acid level, did not reduce the sensitivity of WCR larvae to a Cry3A toxin. Furthermore, our functional studies corroborate different mode-of-actions for other insecticidal proteins including Cry34Ab1/35Ab1, Cry6Aa1, and IPD072Aa against WCR. Finally, reduced expression and alternatively spliced transcripts of DvABCB1 were identified in a mCry3A-resistant strain of WCR. Our results provide the first clear demonstration of a functional receptor in the molecular mechanism of Cry3A toxicity in WCR and confirmed its role in the mechanism of resistance in a mCry3A resistant strain of WCR.
Collapse
|
95
|
Kowalski P, Baum M, Körten M, Donath A, Dobler S. ABCB transporters in a leaf beetle respond to sequestered plant toxins. Proc Biol Sci 2020; 287:20201311. [PMID: 32873204 PMCID: PMC7542790 DOI: 10.1098/rspb.2020.1311] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
Phytophagous insects can tolerate and detoxify toxic compounds present in their host plants and have evolved intricate adaptations to this end. Some insects even sequester the toxins for their defence. This necessitates specific mechanisms, especially carrier proteins that regulate uptake and transport to specific storage sites or protect sensitive tissues from noxious compounds. We identified three ATP-binding cassette subfamily B (ABCB) transporters from the transcriptome of the cardenolide-sequestering leaf beetle Chrysochus auratus and analysed their functional role in the sequestration process. These were heterologously expressed and tested for their ability to interact with various potential substrates: verapamil (standard ABCB substrate), the cardenolides digoxin (commonly used), cymarin (present in the species's host plant) and calotropin (present in the ancestral host plants). Verapamil stimulated all three ABCBs and each was activated by at least one cardenolide, however, they differed as to which they were activated by. While the expression of the most versatile transporter fits with a protective role in the blood-brain barrier, the one specific for cymarin shows an extreme abundance in the elytra, coinciding with the location of the defensive glands. Our data thus suggest a key role of ABCBs in the transport network needed for cardenolide sequestration.
Collapse
Affiliation(s)
- Paulina Kowalski
- Molecular Evolutionary Biology, Institute of Zoology, Universität Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| | - Michael Baum
- Molecular Evolutionary Biology, Institute of Zoology, Universität Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| | - Marcel Körten
- Molecular Evolutionary Biology, Institute of Zoology, Universität Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| | - Alexander Donath
- ZFMK, Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere, Adenauerallee 160, 53113 Bonn, Germany
| | - Susanne Dobler
- Molecular Evolutionary Biology, Institute of Zoology, Universität Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| |
Collapse
|
96
|
Investigation of the ability of the oviposition-stimulant lectin from Moringa oleifera seeds (WSMoL) to bind with membrane proteins present in the legs of Aedes aegypti. Int J Biol Macromol 2020; 162:657-662. [PMID: 32585265 DOI: 10.1016/j.ijbiomac.2020.06.189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/22/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Abstract
The mosquito Aedes aegypti L. is a vector transmitting diseases such as dengue, chikungunya and Zika virus fever. The water-soluble lectin from Moringa oleifera Lam. seeds (WSMoL) is larvicidal, ovicidal and can stimulate oviposition in A. aegypti. This study aimed to investigate whether WSMoL could bind to membrane proteins from A. aegypti legs. Initially, proteins from the legs were extracted using sodium deoxycholate, digitonin, dodecyl sodium sulfate (SDS) or Triton X-100. The protein concentration was found to be higher in the extract obtained using Triton X-100, which was applied to a WSMoL-Sepharose column. The adsorbed proteins were evaluated using gel filtration chromatography and polyacrylamide gel electrophoresis (PAGE) in presence of SDS. The similarity in the sequences of adsorbed proteins with those available in databases was determined. The proteins adsorbed on the matrix were eluted forming a single peak. Gel filtration chromatography and SDS-PAGE revealed the presence of proteins with molecular masses of approximately 20 kDa and polypeptide bands of 17.0 and 23.7 kDa, respectively. MS/MS analysis indicated similarity between these proteins and ABC carriers, which are expressed in the legs of mosquitos. WSMoL could bind to membrane proteins in the legs of A. aegypti females and induce oviposition through these interactions.
Collapse
|
97
|
Van Leeuwen T, Dermauw W, Mavridis K, Vontas J. Significance and interpretation of molecular diagnostics for insecticide resistance management of agricultural pests. CURRENT OPINION IN INSECT SCIENCE 2020; 39:69-76. [PMID: 32361620 DOI: 10.1016/j.cois.2020.03.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/06/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
Insecticide resistant pests become increasingly difficult to control in current day agriculture. Because of environmental and health concerns, the insecticide portfolio to combat agricultural pests is gradually decreasing. It is therefore crucial to make rational decisions on insecticide use to assure effective resistance management. However, resistance monitoring programs that inform on pest susceptibility and resistance are not yet common practice in agriculture. Molecular markers of resistance that are turned into convenient diagnostic tools are urgently needed and will only increase in importance. This review investigates which factors determine the strength, diagnostic value, and success of a diagnostic marker, and in which cases recent technical advances might provide new opportunities for decision making in an operational meaningful way.
Collapse
Affiliation(s)
- Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Konstantinos Mavridis
- Molecuar Entomology Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013, Heraklion, Crete, Greece
| | - John Vontas
- Molecuar Entomology Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013, Heraklion, Crete, Greece; Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| |
Collapse
|
98
|
Li X, Miyamoto K, Takasu Y, Wada S, Iizuka T, Adegawa S, Sato R, Watanabe K. ATP-Binding Cassette Subfamily A Member 2 is a Functional Receptor for Bacillus thuringiensis Cry2A Toxins in Bombyx mori, but not for Cry1A, Cry1C, Cry1D, Cry1F, or Cry9A Toxins. Toxins (Basel) 2020; 12:E104. [PMID: 32041133 PMCID: PMC7076765 DOI: 10.3390/toxins12020104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 11/29/2022] Open
Abstract
: Cry toxins are insecticidal proteins produced by Bacillus thuringiensis (Bt). They are used commercially to control insect pests since they are very active in specific insects and are harmless to the environment and human health. The gene encoding ATP-binding cassette subfamily A member 2 (ABCA2) was identified in an analysis of Cry2A toxin resistance genes. However, we do not have direct evidence for the role of ABCA2 for Cry2A toxins or why Cry2A toxin resistance does not cross to other Cry toxins. Therefore, we performed two experiments. First, we edited the ABCA2 sequence in Bombyx mori using transcription activator-like effector-nucleases (TALENs) and confirmed the susceptibility-determining ability in a diet overlay bioassay. Strains with C-terminal half-deleted BmABCA2 showed strong and specific resistance to Cry2A toxins; even strains carrying a deletion of 1 to 3 amino acids showed resistance. However, the C-terminal half-deleted strains did not show cross-resistance to other toxins. Second, we conducted a cell swelling assay and confirmed the specific ability of BmABCA2 to Cry2A toxins in HEK239 cells. Those demonstrated that BmABCA2 is a functional receptor for Cry2A toxins and that BmABCA2 deficiency-dependent Cry2A resistance does not confer cross-resistance to Cry1A, Cry1F, Cry1Ca, Cry1Da, or Cry9Aa toxins.
Collapse
Affiliation(s)
- Xiaoyi Li
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan; (X.L.); (S.A.)
| | - Kazuhisa Miyamoto
- Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan; (K.M.); (Y.T.); (S.W.); (T.I.)
| | - Yoko Takasu
- Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan; (K.M.); (Y.T.); (S.W.); (T.I.)
| | - Sanae Wada
- Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan; (K.M.); (Y.T.); (S.W.); (T.I.)
| | - Tetsuya Iizuka
- Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan; (K.M.); (Y.T.); (S.W.); (T.I.)
| | - Satomi Adegawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan; (X.L.); (S.A.)
| | - Ryoichi Sato
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan; (X.L.); (S.A.)
| | - Kenji Watanabe
- Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan; (K.M.); (Y.T.); (S.W.); (T.I.)
| |
Collapse
|
99
|
Yang H, Zhou C, Yang XB, Long GY, Jin DC. Effects of Insecticide Stress on Expression of NlABCG Transporter Gene in the Brown Planthopper, Nilaparvata lugens. INSECTS 2019; 10:insects10100334. [PMID: 31597380 PMCID: PMC6836012 DOI: 10.3390/insects10100334] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Abstract
The brown planthopper (BPH), Nilaparvata lugens, is an important pest of rice that severely affects production. Insecticides are an important means of controlling BPH, but their long-term use has led to resistance. To provide insight into BPH responses to insecticide stress, we determined the expression levels of BPH ABCG transporter genes under treatment with thiamethoxam, abamectin, and cyantraniliprole at LC10, LC25, LC50, and LC90. We cloned 13 BPH ABCG transporters, named NlABCG1 to NlABCG13. Conservative domain analysis showed that all 13 transporters have one nucleotide binding domain and one transmembrane domain, typical of semi-molecular transporters. Real-time quantitative PCR showed that thiamethoxam, abamectin, and cyantraniliprole stress increased the expression of some NlABCG transporters gene in BPH. However, after treatment with thiamethoxam at LC25 and abamectin at LC10, there was no significant upregulation of NlABCG. These results indicate that the expression of NlABCG varies in response to stress from different insecticides. These findings provide baseline information for further understanding of the molecular mechanisms of insecticide resistance in BPH.
Collapse
Affiliation(s)
- Hong Yang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China.
- College of Tobacco Science, Guizhou University, Guiyang 550025, China.
| | - Cao Zhou
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China.
| | - Xi-Bin Yang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China.
| | - Gui-Yun Long
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China.
| | - Dao-Chao Jin
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China.
| |
Collapse
|