51
|
Hendrickson OD, Zvereva EA, Solopova ON, Zherdev AV, Sveshnikov PG, Eremin SA, Dzantiev BB. Double Immunochromatographic Test System for Sensitive Detection of Phycotoxins Domoic Acid and Okadaic Acid in Seawater and Seafood. MICROMACHINES 2022; 13:mi13091506. [PMID: 36144129 PMCID: PMC9505318 DOI: 10.3390/mi13091506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 05/28/2023]
Abstract
In this investigation, a double immunochromatographic analysis (ICA) of two relevant phycotoxins, domoic acid (DA) and okadaic acid (OA), was developed for the first time. The ICA was performed in the indirect competitive format using gold nanoparticles conjugated with anti-species antibodies. Under optimal conditions, the instrumental detection limits/cutoffs for simultaneous detection of DA and OA were 1.2/100 and 0.1/2.5 ng/mL, respectively. The time of the assay was 18 min. The ICA was applied to test seawater and a large panel of seafood, including mussels, tiger shrimps, octopuses, whelks, crabs, and scallops. The proposed simple sample preparation method for seafood takes only 20 min. For seawater, a dilution by buffer was implemented. The assay recoveries varied from 80.8% to 124.5%. The competitive potential of the proposed technique as a tool to control natural water and seafood samples is determined by its simplicity, rapidity, and sensitivity.
Collapse
Affiliation(s)
- Olga D. Hendrickson
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Elena A. Zvereva
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Olga N. Solopova
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Kashirskoye Shosse 24, 115478 Moscow, Russia
| | - Anatoly V. Zherdev
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Peter G. Sveshnikov
- Russian Research Center for Molecular Diagnostics and Therapy, Sympheropolsky Blvrd., 8, 117638 Moscow, Russia
| | - Sergei A. Eremin
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Boris B. Dzantiev
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| |
Collapse
|
52
|
Huang L, Gong J, Hu Y, Tan QL, Liu B, Yu XW, Hao XL, Guo QN. Long-term exposure to low levels of okadaic acid accelerates cell cycle progression in colonic epithelial cells via p53 and Jak/Stat3 signaling pathways. Heliyon 2022; 8:e10444. [PMID: 36105456 PMCID: PMC9465354 DOI: 10.1016/j.heliyon.2022.e10444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/04/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
As a major component of diarrheic shellfish poisoning (DSP) toxins, okadaic acid (OA) is widely distributed worldwide, and causes a series of serious public health problems. In colon tissue, previous studies have shown that high doses of OA can affect various intracellular processes, including destroy intercellular communication at gap junctions, induce cell apoptosis and trigger cell cycle arrest. However, there is a scarcity of studies on the effect and mechanism of action of low doses of OA in colonic tissues. In this study, we observed that exposure to low levels of OA altered cell cycle progression in vitro and in vivo. Investigation of the underlying mechanism revealed that OA induced alterations in the cell cycle by inhibiting the p53 signaling pathway or inducing the Jak/Stat3 signaling pathway. In conclusion, this study provides novel insights into the effect and mechanism underlying long-term exposure to low levels of OA. Long-term exposure to low levels of OA accelerates cell cycles in vitro and in vivo OA induced changes in cell cycle by inhibiting the p53 signaling pathway OA induced changes in cell cycle by inducing the Jak/Stat3 signaling pathway
Collapse
|
53
|
Simultaneous determination of okadaic acid, dinophysistoxin-1, dinophysistoxin-2, and dinophysistoxin-3 using liquid chromatography-tandem mass spectrometry in raw and cooked food matrices. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
54
|
Aron J, Albert PS, Gribble MO. Modeling Dinophysis in Western Andalucía using an autoregressive hidden Markov model. ENVIRONMENTAL AND ECOLOGICAL STATISTICS 2022; 29:557-585. [PMID: 36540783 PMCID: PMC9762684 DOI: 10.1007/s10651-022-00534-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 03/03/2022] [Accepted: 03/13/2022] [Indexed: 06/17/2023]
Abstract
Dinophysis spp. can produce diarrhetic shellfish toxins (DST) including okadaic acid and dinophysistoxins, and some strains can also produce non-diarrheic pectenotoxins. Although DSTs are of human health concern and have motivated environmental monitoring programs in many locations, these monitoring programs often have temporal data gaps (e.g., days without measurements). This paper presents a model for the historical time-series, on a daily basis, of DST-producing toxigenic Dinophysis in 8 monitored locations in western Andalucía over 2015-2020, incorporating measurements of algae counts and DST levels. We fitted a bivariate hidden Markov Model (HMM) incorporating an autoregressive correlation among the observed DST measurements to account for environmental persistence of DST. We then reconstruct the maximum-likelihood profile of algae presence in the water column at daily intervals using the Viterbi algorithm. Using historical monitoring data from Andalucía, the model estimated that potentially toxigenic Dinophysis algae is present at greater than or equal to 250 cells/L between < 1% and >10% of the year depending on the site and year. The historical time-series reconstruction enabled by this method may facilitate future investigations into temporal dynamics of toxigenic Dinophysis blooms.
Collapse
Affiliation(s)
- Jordan Aron
- Biostatistics Branch, Division of Cancer and Epidemiology, National Cancer Institute, Rockville, MD, USA
| | - Paul S. Albert
- Biostatistics Branch, Division of Cancer and Epidemiology, National Cancer Institute, Rockville, MD, USA
| | - Matthew O. Gribble
- Department of Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| |
Collapse
|
55
|
Liu Y, Xu S, Cai Q, Li D, Li H, Yang W. In Vitro Interactions between Okadaic Acid and Rat Gut Microbiome. Mar Drugs 2022; 20:556. [PMID: 36135745 PMCID: PMC9500940 DOI: 10.3390/md20090556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Okadaic acid (OA) is a marine biotoxin associated with diarrhetic shellfish poisoning (DSP), posing some threat to human beings. The oral toxicity of OA is complex, and the mechanism of toxicity is not clear. The interaction between OA and gut microbiota may provide a reasonable explanation for the complex toxicity of OA. Due to the complex environment in vivo, an in vitro study may be better for the interactions between OA and gut microbiome. Here, we conducted an in vitro fermentation experiment of gut bacteria in the presence of 0-1000 nM OA. The remolding ability of OA on bacterial composition was investigated by 16S rDNA sequencing, and differential metabolites in fermentation system with different concentration of OA was detected by LC-MS/MS. We found that OA inhibited some specific bacterial genera but promoted others. In addition, eight possible metabolites of OA, including dinophysistoxin-2 (DTX-2), were detected in the fermentation system. The abundance of Faecalitalea was strongly correlated with the possible metabolites of OA, suggesting that Faecalitalea may be involved in the metabolism of OA in vitro. Our findings confirmed the direct interaction between OA and gut bacteria, which helps to reveal the metabolic process of OA and provide valuable evidence for elucidating the complex toxicity of OA.
Collapse
Affiliation(s)
| | | | | | - Dawei Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | | | - Weidong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
56
|
Wang S, Zhao Y, Ma R, Wang W, Zhang L, Li J, Sun J, Mao nvestigation X. Aptasensing a class of small molecules based on split aptamers and hybridization chain reaction-assisted AuNPs nanozyme. Food Chem 2022; 401:134053. [DOI: 10.1016/j.foodchem.2022.134053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
|
57
|
Toxic Responses of Different Shellfish Species after Exposure to Prorocentrum lima, a DSP Toxins Producing Dinoflagellate. Toxins (Basel) 2022; 14:toxins14070461. [PMID: 35878199 PMCID: PMC9317551 DOI: 10.3390/toxins14070461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Prorocentrum lima is a global benthic dinoflagellate that produces diarrhetic shellfish poisoning (DSP) toxins, which can be ingested by filter-feeding bivalves, and eventually pose a great threat to human health through food chain. After being exposed to P. lima, different bivalves may accumulate various levels of DSP toxins and display different toxic responses. However, the underlying mechanism remains unclear. Here, we found that the content of okadaic acid-equivalents (OA-eq) varied in the digestive glands of the three bivalves including Crassostrea gigas, Mytilus coruscus and Tegillarca granosa after P. lima exposure. The degree of esterification of OA-eq in the three bivalves were opposite to the accumulation of OA-eq. The digestive gland tissues of the three bivalve species were damaged to different degrees. The transcriptional induction of Nrf2 targeted genes such as ABCB1 and GPx indicates the functionality of Nrf2 pathway against DSP toxins in bivalves. The oyster could protect against DSP toxins mainly through ABC transporters and esterification, while the mussel and clam reduce the damage induced by DSP toxins mainly by regulating the expression of antioxidant genes. Our findings may provide some explanations for the difference in toxic response to DSP toxins in different shellfish.
Collapse
|
58
|
Hendrickson OD, Zvereva EA, Zherdev AV, Dzantiev BB. Cascade-Enhanced Lateral Flow Immunoassay for Sensitive Detection of Okadaic Acid in Seawater, Fish, and Seafood. Foods 2022; 11:foods11121691. [PMID: 35741890 PMCID: PMC9222646 DOI: 10.3390/foods11121691] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023] Open
Abstract
In this investigation, a new approach for developing a sensitive lateral flow immunoassay (LFIA) was proposed for the detection of the hazardous marine toxin okadaic acid (OA). It is based on the indirect format with anti-species antibodies labeled by gold nanoparticles (AuNPs) and cascade signal amplification. The latter is performed by first passing a mixture of anti-OA antibodies and a tested sample along the immunochromatographic test strip and then performing several cycles of the interaction of anti-species antibodies conjugated with AuNPs with free antibodies, which bind to anti-species antibodies but are not specific to the target analyte. As a result, branched aggregates are formed, due to which the colorimetric signal intensification occurs. The developed test system enabled the detection of OA with an instrumental detection limit of 30 pg/mL and a cutoff of 1 ng/mL, which exceeds these characteristics in the LFIA without amplification by 7 and 2 times, respectively. The OA recoveries from seawater, fish, and seafood varied from 76.9% to 126%. The test system may be required for point-of-care monitoring of samples for phycotoxin contamination; the developed principle of signal amplification can be used in cases where highly sensitive detection of trace amounts of a contaminant is required.
Collapse
|
59
|
Pradhan B, Kim H, Abassi S, Ki JS. Toxic Effects and Tumor Promotion Activity of Marine Phytoplankton Toxins: A Review. Toxins (Basel) 2022; 14:397. [PMID: 35737058 PMCID: PMC9229940 DOI: 10.3390/toxins14060397] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 12/25/2022] Open
Abstract
Phytoplankton are photosynthetic microorganisms in aquatic environments that produce many bioactive substances. However, some of them are toxic to aquatic organisms via filter-feeding and are even poisonous to humans through the food chain. Human poisoning from these substances and their serious long-term consequences have resulted in several health threats, including cancer, skin disorders, and other diseases, which have been frequently documented. Seafood poisoning disorders triggered by phytoplankton toxins include paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), diarrheic shellfish poisoning (DSP), ciguatera fish poisoning (CFP), and azaspiracid shellfish poisoning (AZP). Accordingly, identifying harmful shellfish poisoning and toxin-producing species and their detrimental effects is urgently required. Although the harmful effects of these toxins are well documented, their possible modes of action are insufficiently understood in terms of clinical symptoms. In this review, we summarize the current state of knowledge regarding phytoplankton toxins and their detrimental consequences, including tumor-promoting activity. The structure, source, and clinical symptoms caused by these toxins, as well as their molecular mechanisms of action on voltage-gated ion channels, are briefly discussed. Moreover, the possible stress-associated reactive oxygen species (ROS)-related modes of action are summarized. Finally, we describe the toxic effects of phytoplankton toxins and discuss future research in the field of stress-associated ROS-related toxicity. Moreover, these toxins can also be used in different pharmacological prospects and can be established as a potent pharmacophore in the near future.
Collapse
Affiliation(s)
| | | | | | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea; (B.P.); (H.K.); (S.A.)
| |
Collapse
|
60
|
Evaluation of okadaic acid toxicity in human retinal cells and zebrafish retinas. Toxicology 2022; 473:153209. [DOI: 10.1016/j.tox.2022.153209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
|
61
|
Dembitsky VM. Natural Polyether Ionophores and Their Pharmacological Profile. Mar Drugs 2022; 20:292. [PMID: 35621943 PMCID: PMC9144361 DOI: 10.3390/md20050292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
This review is devoted to the study of the biological activity of polyether ionophores produced by bacteria, unicellular marine algae, red seaweeds, marine sponges, and coelenterates. Biological activities have been studied experimentally in various laboratories, as well as data obtained using QSAR (Quantitative Structure-Activity Relationships) algorithms. According to the data obtained, it was shown that polyether toxins exhibit strong antibacterial, antimicrobial, antifungal, antitumor, and other activities. Along with this, it was found that natural polyether ionophores exhibit such properties as antiparasitic, antiprotozoal, cytostatic, anti-mycoplasmal, and antieczema activities. In addition, polyethers have been found to be potential regulators of lipid metabolism or inhibitors of DNA synthesis. Further study of the mechanisms of action and the search for new polyether ionophores and their derivatives may provide more effective therapeutic natural polyether ionophores for the treatment of cancer and other diseases. For some polyether ionophores, 3D graphs are presented, which demonstrate the predicted and calculated activities. The data presented in this review will be of interest to pharmacologists, chemists, practical medicine, and the pharmaceutical industry.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
62
|
Pradhan B, Ki JS. Phytoplankton Toxins and Their Potential Therapeutic Applications: A Journey toward the Quest for Potent Pharmaceuticals. Mar Drugs 2022; 20:md20040271. [PMID: 35447944 PMCID: PMC9030253 DOI: 10.3390/md20040271] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Accepted: 04/16/2022] [Indexed: 02/04/2023] Open
Abstract
Phytoplankton are prominent organisms that contain numerous bioactive substances and secondary metabolites, including toxins, which can be valuable to pharmaceutical, nutraceutical, and biotechnological industries. Studies on toxins produced by phytoplankton such as cyanobacteria, diatoms, and dinoflagellates have become more prevalent in recent years and have sparked much interest in this field of research. Because of their richness and complexity, they have great potential as medicinal remedies and biological exploratory probes. Unfortunately, such toxins are still at the preclinical and clinical stages of development. Phytoplankton toxins are harmful to other organisms and are hazardous to animals and human health. However, they may be effective as therapeutic pharmacological agents for numerous disorders, including dyslipidemia, obesity, cancer, diabetes, and hypertension. In this review, we have focused on the properties of different toxins produced by phytoplankton, as well as their beneficial effects and potential biomedical applications. The anticancer properties exhibited by phytoplankton toxins are mainly attributed to their apoptotic effects. As a result, phytoplankton toxins are a promising strategy for avoiding postponement or cancer treatment. Moreover, they also displayed promising applications in other ailments and diseases such as Alzheimer’s disease, diabetes, AIDS, fungal, bacterial, schizophrenia, inflammation, allergy, osteoporosis, asthma, and pain. Preclinical and clinical applications of phytoplankton toxins, as well as future directions of their enhanced nano-formulations for improved clinical efficacy, have also been reviewed.
Collapse
|
63
|
Louzao MC, Vilariño N, Vale C, Costas C, Cao A, Raposo-Garcia S, Vieytes MR, Botana LM. Current Trends and New Challenges in Marine Phycotoxins. Mar Drugs 2022; 20:md20030198. [PMID: 35323497 PMCID: PMC8950113 DOI: 10.3390/md20030198] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
Marine phycotoxins are a multiplicity of bioactive compounds which are produced by microalgae and bioaccumulate in the marine food web. Phycotoxins affect the ecosystem, pose a threat to human health, and have important economic effects on aquaculture and tourism worldwide. However, human health and food safety have been the primary concerns when considering the impacts of phycotoxins. Phycotoxins toxicity information, often used to set regulatory limits for these toxins in shellfish, lacks traceability of toxicity values highlighting the need for predefined toxicological criteria. Toxicity data together with adequate detection methods for monitoring procedures are crucial to protect human health. However, despite technological advances, there are still methodological uncertainties and high demand for universal phycotoxin detectors. This review focuses on these topics, including uncertainties of climate change, providing an overview of the current information as well as future perspectives.
Collapse
Affiliation(s)
- Maria Carmen Louzao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| | - Natalia Vilariño
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Carmen Vale
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Celia Costas
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Alejandro Cao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Sandra Raposo-Garcia
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Mercedes R. Vieytes
- Departamento de Fisiologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain;
| | - Luis M. Botana
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| |
Collapse
|
64
|
D’Amore T, Lo Magro S, Vita V, Di Taranto A. Optimization and Validation of a High Throughput UHPLC-MS/MS Method for Determination of the EU Regulated Lipophilic Marine Toxins and Occurrence in Fresh and Processed Shellfish. Mar Drugs 2022; 20:173. [PMID: 35323472 PMCID: PMC8953077 DOI: 10.3390/md20030173] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
Under the name of lipophilic marine toxins, there are included more than 1000 toxic secondary metabolites, produced by phytoplankton, with the common chemical property of lipophilicity. Due to toxicological effects and geographical distribution, in European legislation relevant compounds are regulated, and their determination is accomplished with the reference liquid chromatography-tandem mass spectrometry method. In this study a modified ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method has been developed for the identification and quantification of EU-regulated lipophilic toxins. The method optimization included a refinement of SPE-C18 clean-up, in order to reduce matrix interferences. Improved LC conditions and upgraded chromatographic ammonia-based gradient ensured the best separation of all analytes and, in particular, of the two structural isomers (OA and DTX2). Also, different MS parameters were tested, and confirmation criteria finally established. The validation studies confirmed that all parameters were satisfactory. The requirements for precision (RSD% < 11.8% for each compound), trueness (recoveries from 73 to 101%) and sensitivity (limits of quantification in the range 3−8 µg kg−1) were fulfilled. The matrix effect, ranging from −9 to 19%, allowed the use of a calibration curve in solvent (3−320 µg kg−1 in matrix) for quantification of real samples. Method relative uncertainty ranged from 12 to 20.3%. Additionally, a total of 1000 shellfish samples was analysed, providing a first preliminary surveillance study that may contribute to the knowledge of lipophilic marine toxins contamination. Increase in algae proliferation events and intoxication cases, EFSA suggestions for modification of maximum permitted levels and toxicity equivalency factors, and new studies of important toxic effects underline that implementation of reference methods still represents an important task for health and food safety laboratories.
Collapse
Affiliation(s)
- Teresa D’Amore
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (S.L.M.); (V.V.); (A.D.T.)
| | | | | | | |
Collapse
|
65
|
ElSayed S, Jay GD, Cabezas R, Qadri M, Schmidt TA, Elsaid KA. Recombinant Human Proteoglycan 4 Regulates Phagocytic Activation of Monocytes and Reduces IL-1β Secretion by Urate Crystal Stimulated Gout PBMCs. Front Immunol 2022; 12:771677. [PMID: 34992596 PMCID: PMC8725049 DOI: 10.3389/fimmu.2021.771677] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Objectives To compare phagocytic activities of monocytes in peripheral blood mononuclear cells (PBMCs) from acute gout patients and normal subjects, examine monosodium urate monohydrate (MSU) crystal-induced IL-1β secretion ± recombinant human proteoglycan 4 (rhPRG4) or interleukin-1 receptor antagonist (IL-1RA), and study the anti-inflammatory mechanism of rhPRG4 in MSU stimulated monocytes. Methods Acute gout PBMCs were collected from patients in the Emergency Department and normal PBMCs were obtained from a commercial source. Monocytes in PBMCs were identified by flow cytometry. PBMCs were primed with Pam3CSK4 (1μg/mL) for 24h and phagocytic activation of monocytes was determined using fluorescently labeled latex beads. MSU (200μg/mL) stimulated IL-1β secretion was determined by ELISA. Reactive oxygen species (ROS) generation in monocytes was determined fluorometrically. PBMCs were incubated with IL-1RA (250ng/mL) or rhPRG4 (200μg/mL) and bead phagocytosis by monocytes was determined. THP-1 monocytes were treated with MSU crystals ± rhPRG4 and cellular levels of NLRP3 protein, pro-IL-1β, secreted IL-1β, and activities of caspase-1 and protein phosphatase-2A (PP2A) were quantified. The peritoneal influx of inflammatory and anti-inflammatory monocytes and neutrophils in Prg4 deficient mice was studied and the impact of rhPRG4 on immune cell trafficking was assessed. Results Enhanced phagocytic activation of gout monocytes under basal conditions (p<0.001) was associated with ROS generation and MSU stimulated IL-1β secretion (p<0.05). rhPRG4 reduced bead phagocytosis by normal and gout monocytes compared to IL-1RA and both treatments were efficacious in reducing IL-1β secretion (p<0.05). rhPRG4 reduced pro-IL-1β content, caspase-1 activity, conversion of pro-IL-1β to mature IL-1β and restored PP2A activity in monocytes (p<0.05). PP2A inhibition reversed rhPRG4’s effects on pro-IL-1β and mature IL-1β in MSU stimulated monocytes. Neutrophils accumulated in peritoneal cavities of Prg4 deficient mice (p<0.01) and rhPRG4 treatment reduced neutrophil accumulation and enhanced anti-inflammatory monocyte influx (p<0.05). Conclusions MSU phagocytosis was higher in gout monocytes resulting in higher ROS and IL-1β secretion. rhPRG4 reduced monocyte phagocytic activation to a greater extent than IL-1RA and reduced IL-1β secretion. The anti-inflammatory activity of rhPRG4 in monocytes is partially mediated by PP2A, and in vivo, PRG4 plays a role in regulating the trafficking of immune cells into the site of a gout flare.
Collapse
Affiliation(s)
- Sandy ElSayed
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, United States
| | - Gregory D Jay
- Department of Emergency Medicine, Rhode Island Hospital, Providence, RI, United States
| | - Ralph Cabezas
- Department of Emergency Medicine, Rhode Island Hospital, Providence, RI, United States
| | - Marwa Qadri
- Department of Pharmacology, School of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Tannin A Schmidt
- Biomedical Engineering Department, University of Connecticut Health Center, Farmington, CT, United States
| | - Khaled A Elsaid
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, United States
| |
Collapse
|
66
|
Mona MH, El-Khodary GM, Abdel-Halim KY, Omran NE, Abd El-Aziz KK, El-Saidy SA. Histopathological alterations induced by marine environmental pollutants on the bivalve Cerastoderma glaucum (Bruguière 1789) from Temsah Lake, Suez Canal, Egypt. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9971-9989. [PMID: 34510354 DOI: 10.1007/s11356-021-14966-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Bivalves are considered a main consumed matrix for coastal communities worldwide and classified as hyperaccumulators of pollutants. The present study aims to determine some micro-organisms, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and okadaic acid (OA) levels in Cerastoderma glaucum collected from Temsah Lake, Egypt, and their induction through histopathological damage and caspase-3 protein expression. During the autumn, it was found different types of biological and chemical pollutants, especially benzo[a]pyrene (BaP) that accumulated in C. glaucum soft tissues and exceeded the safety limit for shellfish consumption. Dioxin-like PCB3 was predominant in C. glaucum soft tissues during autumn, but the total levels of PCBs in these tissues have not exceeded the permissible limit. Chlorophyll-a (Chl. a), nutrient concentrations, and Prorocentrum lima dinoflagellates in the water significantly increased during autumn. High P. lima abundance was confirmed by high OA in the soft tissues during this season compared to the other seasons. The measured contaminants may render C. glaucum more susceptible to bacterial and fungal infections. The autumn season showed a significant increase in the colony-forming units (CFU). C. glaucum showed calcification abnormalities and adhering of abnormal brown organic material to the inner surface of the shell valves, which was related to poor water conditions and Vibrio infection. Damages or injuries on gills and digestive gland tissues indicated an impact of the pollutants on C. glaucum. Also, high expressions of caspase-3 were recorded in these tissues during all the seasons. So, C. glaucum cockles, collected from Temsah Lake, may induce serious diseases to consumers, especially when eaten raw or insufficient cooking.
Collapse
Affiliation(s)
- Mohamed H Mona
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Gihan M El-Khodary
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Khaled Y Abdel-Halim
- Mammalian & Aquatic Toxicology Department, Central Agriculural Pesticides Laboratory (CAPL), Agricultural Research Center (ARC),12618-Dokki, Giza, Egypt.
| | - Nahla E Omran
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | | | - Salwa A El-Saidy
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
67
|
Liu Y, Lu Y, Jiao YH, Li DW, Li HY, Yang WD. Multi-omics analysis reveals metabolism of okadaic acid in gut lumen of rat. Arch Toxicol 2022; 96:831-843. [PMID: 35037095 DOI: 10.1007/s00204-021-03219-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022]
Abstract
Okadaic acid (OA) is an important marine lipophilic phycotoxin with various pathological properties, responsible for diarrheal shellfish poisoning events in human beings over the world. However, to date no mechanism can well explain the toxicity and symptom of OA, even diarrhea. Here, to reveal the toxic mechanism of OA to mammals, we analyzed the metabolism of OA in rat and the effects of OA exposure on the composition and function of gut bacteria using a multi-omics strategy and rRNA high-throughput technology. We found that OA exerted great effects on gut bacteria, mainly featured in heavy fluctuation of dominant genera and significant changes in the mapped bacterial function genes, including not only virulence genes of pathogenic bacteria, but also bacterial metabolism genes. In the feces of the OA-exposed group, we detected dinophysistoxin-2 (DTX-2), lespedezaflavanone F and tolytoxin, suggesting that OA could be transformed into other metabolites like DTX-2. Other metabolic biomarkers such as N-Acetyl-a-neuraminic acid, N,N-dihydroxy-L-tyrosine, nalbuphine, and coproporphyrin I and III were also highly correlated with OA content, which made the toxicity of OA more complicated and confusing. Spearman correlation test demonstrated that Bacteroides and Romboutsia were the genera most related to OA transformation, suggesting that Bacteroides and Romboutsia might play a key role in the complicated and confusing toxicity of OA. In this study, we found for the first time that OA may be converted into other metabolites in gut, especially DTX-2. This finding could not only help to reveal the complex toxicity of OA, but also have important significance for clarifying the transportation, metabolism, and environmental fate of OA in the food chain.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yang Lu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yu-Hu Jiao
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Da-Wei Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
68
|
Lin HY, Lin YS, Shih SP, Lee SB, El-Shazly M, Chang KM, Yang YCSH, Lee YL, Lu MC. The Anti-Proliferative Activity of Secondary Metabolite from the Marine Streptomyces sp. against Prostate Cancer Cells. Life (Basel) 2021; 11:life11121414. [PMID: 34947945 PMCID: PMC8706809 DOI: 10.3390/life11121414] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 12/21/2022] Open
Abstract
Many active substances from marine organisms are produced by symbiotic microorganisms such as bacteria, fungi, and algae. Secondary metabolites from marine actinomycetes exhibited several biological activities and provided interesting drug leads. This study reported the isolation of Lu01-M, a secondary metabolite from the marine actinomycetes Streptomyces sp., with potent anti-proliferative activity against prostate cancers. Lu01-M blocked cell proliferation with IC50 values of 1.03 ± 0.31, 2.12 ± 0.38, 1.27 ± 0.25 μg/mL in human prostate cancer PC3, DU145, and LNCaP cells, respectively. Lu01-M induced cytotoxic activity through multiple mechanisms including cell apoptosis, necroptosis, autophagy, ER stress, and inhibiting colony formation and cell migration. Lu01-M induced cell cycle arrest at the G2/M phase and DNA damage. However, the activity of autophagy induced survival response in cancer cells. Our findings suggested that Lu01-M holds the potential to be developed as an anti-cancer agent against prostate cancers.
Collapse
Affiliation(s)
- Hung-Yu Lin
- School of Medicine, College of Medicine, I-SHOU University, Division of Urology, Department of Surgery, E-Da Cancer & E-Da Hospital, Kaohsiung 824, Taiwan;
| | - Yong-Shiou Lin
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan;
- Vascular and Genomic Center, Institute of ATP, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Shou-Ping Shih
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan;
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 115, Taiwan
| | - Sung-Bau Lee
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 115, Taiwan;
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Cairo 115, Egypt;
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 118, Egypt
| | - Ken-Ming Chang
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan;
- Department of Pharmacy, Hengchuen Christian Hospital, Pingtung 946, Taiwan
| | - Yu-Chen S. H. Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (Y.-C.S.H.Y.); (Y.-L.L.); (M.-C.L.)
| | - Yi-Lun Lee
- Department of Urology, Pingtung Hospital, Ministry of Health and Welfare, Pingtung 944, Taiwan
- Correspondence: (Y.-C.S.H.Y.); (Y.-L.L.); (M.-C.L.)
| | - Mei-Chin Lu
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan;
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan
- Correspondence: (Y.-C.S.H.Y.); (Y.-L.L.); (M.-C.L.)
| |
Collapse
|
69
|
Moreira-González AR, Rosa KMS, Mafra LL. Prevalence of okadaic acid in benthic organisms associated Prorocentrum lima complex in a sub-tropical estuary. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 39:382-396. [PMID: 34732112 DOI: 10.1080/19440049.2021.1992512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Lipophilic toxins were investigated in different benthic compartments of Paranaguá Bay, southern Brazil. Relatively low concentrations of okadaic acid (OA) were frequently reported in macrophyte extracts (maximum 0.64 ng g-1), mainly in sheltered estuarine areas, correlated with the cell abundance of toxigenic benthic dinoflagellates, Prorocentrum lima. Non-conjugated OA was also detected in benthic marine animals, mostly during summer-autumn 2016. Higher OA concentrations were found in the viscera of Genidens genidens fish (24.3 ± 3.7 ng g-1) and in soft tissues of Mytella guyanensis bivalves (21.3 ± 2.13 ng g-1), whereas lower levels were less frequently reported in many other benthic feeders, including cephalopods, gastropods, crustaceans and fishes. Although OA concentrations were below the levels associated with acute human intoxication, possible chronic effects to benthic animals and their consumers cannot be disregarded due to the frequent presence of this biotoxin in various fishery resources. Human health risks are substantially enhanced for small-scale fishing communities and other socioeconomically vulnerable populations.
Collapse
Affiliation(s)
- Angel Ramón Moreira-González
- Departamento de Gestión y Ingeniería Ambiental, Centro de Estudos do Mar. Universidade Federal do Paraná, Paraná, Brazil.,Departamento de Gestión y Ingeniería Ambiental, Centro de Estudios Ambientales de Cienfuegos (CEAC), Cienfuegos, Cuba
| | - Kaianan Mauê Santos Rosa
- Departamento de Gestión y Ingeniería Ambiental, Centro de Estudos do Mar. Universidade Federal do Paraná, Paraná, Brazil
| | - Luiz Laureno Mafra
- Departamento de Gestión y Ingeniería Ambiental, Centro de Estudos do Mar. Universidade Federal do Paraná, Paraná, Brazil
| |
Collapse
|
70
|
Antioxidant responses and okadaic acid accumulation in Laeonereis acuta (Annelida) exposed to the harmful dinoflagellate Prorocentrum cf. lima. Toxicon 2021; 203:104-114. [PMID: 34662628 DOI: 10.1016/j.toxicon.2021.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/11/2021] [Accepted: 10/08/2021] [Indexed: 11/21/2022]
Abstract
We evaluated the accumulation of okadaic acid (OA), a diarrhetic toxin, and the antioxidant responses in the marine annelid Laeonereis acuta exposed to the benthic toxigenic dinoflagellate Prorocentrum cf. lima. Nontoxic Tetraselmis sp. was used as a control diet. Living cells of the two algae were supplied as food to animals kept in agar medium for 72 h. To assess the significance of the observed effects, our experimental design treated the algal species (diet), algal cell densities, and exposure time as fixed factors. Responses of the organisms were assessed through oxidative stress biomarkers (glutathione-S-transferase [GST], catalase [CAT], reduced glutathione [GSH] and lipid peroxidation [LPO]). Toxin accumulation was measured by LC-MS/MS in whole-body homogenates after 12, 24 and 72 h of exposure. Worms exposed to the toxigenic dinoflagellate gradually accumulated OA, with toxin levels directly related to the cell density of Prorocentrum cf. lima. Worms fed with Prorocentrum cf. lima exhibited decreased CAT activity, increased LPO levels - both interactively affected by algal species and time - and decreased GSH levels, which were interactively affected by algal species and cell density. Higher LPO levels, along with the inhibition of CAT and GSH, clearly indicated an oxidative stress situation in worms exposed to the toxigenic dinoflagellate. Laeonereis acuta accumulated moderate OA levels and may act as a vector of OA to food webs in estuarine areas under high Prorocentrum cf. lima abundance.
Collapse
|
71
|
Emery H, Traves W, Rowley AF, Coates CJ. The diarrhetic shellfish-poisoning toxin, okadaic acid, provokes gastropathy, dysbiosis and susceptibility to bacterial infection in a non-rodent bioassay, Galleria mellonella. Arch Toxicol 2021; 95:3361-3376. [PMID: 34374792 PMCID: PMC8448676 DOI: 10.1007/s00204-021-03132-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022]
Abstract
Diarrhetic shellfish-poisoning (DSP) toxins such as okadaic acid and dinophysistoxins harm the human gastrointestinal tract, and therefore, their levels are regulated to an upper limit of 160 μg per kg tissue to protect consumers. Rodents are used routinely for risk assessment and studies concerning mechanisms of toxicity, but there is a general move toward reducing and replacing vertebrates for these bioassays. We have adopted insect larvae of the wax moth Galleria mellonella as a surrogate toxicology model. We treated larvae with environmentally relevant doses of okadaic acid (80–400 μg/kg) via intrahaemocoelic injection or gavage to determine marine toxin-related health decline: (1) whether pre-exposure to a sub-lethal dose of toxin (80 μg/kg) enhances susceptibility to bacterial infection, or (2) alters tissue pathology and bacterial community (microbiome) composition of the midgut. A sub-lethal dose of okadaic acid (80 μg/kg) followed 24 h later by bacterial inoculation (2 × 105Escherichia coli) reduced larval survival levels to 47%, when compared to toxin (90%) or microbial challenge (73%) alone. Histological analysis of the midgut depicted varying levels of tissue disruption, including nuclear aberrations associated with cell death (karyorrhexis, pyknosis), loss of organ architecture, and gross epithelial displacement into the lumen. Moreover, okadaic acid presence in the midgut coincided with a shift in the resident bacterial population over time in that substantial reductions in diversity (Shannon) and richness (Chao-1) indices were observed at 240 μg toxin per kg. Okadaic acid-induced deterioration of the insect alimentary canal resembles those changes reported for rodent bioassays.
Collapse
Affiliation(s)
- Helena Emery
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - William Traves
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Andrew F Rowley
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Christopher J Coates
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, Wales, SA2 8PP, UK.
| |
Collapse
|
72
|
Okabe T, Saito R, Yamamoto K, Watanabe R, Kaneko Y, Yanaoka M, Furukoshi S, Yasukawa S, Ito M, Oyama H, Suo R, Suzuki M, Takatani T, Arakawa O, Sugita H, Itoi S. The role of toxic planocerid flatworm larvae on tetrodotoxin accumulation in marine bivalves. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105908. [PMID: 34273772 DOI: 10.1016/j.aquatox.2021.105908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Tetrodotoxin (TTX), also known as pufferfish toxin, has been detected in marine edible bivalves worldwide. In this study, several bivalve species, Azumapecten farreri subsp. akazara, Patinopecten yessoensis and Mytilus galloprovincialis, collected from the Pacific side of the northern Japanese Islands, were studied for the accumulation of TTX in the presence of toxic planocerid larvae. LC-MS/MS analysis demonstrated that TTX was detected only in the midgut gland of A. farreri subsp. akazara. Toxic flatworm-specific PCR and direct sequencing of the amplicons showed that the DNA fragments of the Planocera multitentaculata COI gene were detected in the gut contents of the toxified bivalves. The planocerid larvae were also detected in the environmental seawaters. Toxification experiments in the aquarium demonstrated that the mussel M. galloprovincialis was also toxified by feeding on the toxic flatworm larvae. These results suggest that the source of TTX accumulation in edible bivalves is toxic flatworm larvae.
Collapse
Affiliation(s)
- Taiki Okabe
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Rion Saito
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Kohei Yamamoto
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Riku Watanabe
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Yoshiki Kaneko
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Mutsumi Yanaoka
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Seika Furukoshi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Shino Yasukawa
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Masaaki Ito
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Rei Suo
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Miwa Suzuki
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Tomohiro Takatani
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| | - Osamu Arakawa
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| |
Collapse
|
73
|
Wilkins AL, Rundberget T, Sandvik M, Rise F, Knudsen BK, Kilcoyne J, Reguera B, Rial P, Wright EJ, Giddings SD, Boundy MJ, Rafuse C, Miles CO. Identification of 24- O-β-d-Glycosides and 7-Deoxy-Analogues of Okadaic Acid and Dinophysistoxin-1 and -2 in Extracts from Dinophysis Blooms, Dinophysis and Prorocentrum Cultures, and Shellfish in Europe, North America and Australasia. Toxins (Basel) 2021; 13:toxins13080510. [PMID: 34437381 PMCID: PMC8402559 DOI: 10.3390/toxins13080510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/25/2022] Open
Abstract
Two high-mass polar compounds were observed in aqueous side-fractions from the purification of okadaic acid (1) and dinophysistoxin-2 (2) from Dinophysis blooms in Spain and Norway. These were isolated and shown to be 24-O-β-d-glucosides of 1 and 2 (4 and 5, respectively) by nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and enzymatic hydrolysis. These, together with standards of 1, 2, dinophysistoxin-1 (3), and a synthetic specimen of 7-deoxy-1 (7), combined with an understanding of their mass spectrometric fragmentation patterns, were then used to identify 1–5, the 24-O-β-d-glucoside of dinophysistoxin-1 (6), 7, 7-deoxy-2 (8), and 7-deoxy-3 (9) in a range of extracts from Dinophysis blooms, Dinophysis cultures, and contaminated shellfish from Spain, Norway, Ireland, Canada, and New Zealand. A range of Prorocentrum lima cultures was also examined by liquid chromatography–high resolution tandem mass spectrometry (LC–HRMS/MS) and was found to contain 1, 3, 7, and 9. However, although 4–6 were not detected in these cultures, low levels of putative glycosides with the same exact masses as 4 and 6 were present. The potential implications of these findings for the toxicology, metabolism, and biosynthesis of the okadaic acid group of marine biotoxins are briefly discussed.
Collapse
Affiliation(s)
- Alistair L. Wilkins
- Norwegian Veterinary Institute, P.O. Box 64, NO-1431 Ås, Norway; (A.L.W.); (T.R.); (M.S.)
- School of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand;
| | - Thomas Rundberget
- Norwegian Veterinary Institute, P.O. Box 64, NO-1431 Ås, Norway; (A.L.W.); (T.R.); (M.S.)
- Norwegian Institute for Water Research, Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Morten Sandvik
- Norwegian Veterinary Institute, P.O. Box 64, NO-1431 Ås, Norway; (A.L.W.); (T.R.); (M.S.)
| | - Frode Rise
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway;
| | - Brent K. Knudsen
- School of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand;
| | - Jane Kilcoyne
- Marine Institute, Rinville, Oranmore, County Galway H91 R673, Ireland;
| | - Beatriz Reguera
- Centro Oceanográfico de Vigo (IEO, CSIC), Subida a Radio Faro 50, 36390 Vigo, Spain; (B.R.); (P.R.)
| | - Pilar Rial
- Centro Oceanográfico de Vigo (IEO, CSIC), Subida a Radio Faro 50, 36390 Vigo, Spain; (B.R.); (P.R.)
| | - Elliott J. Wright
- Biotoxin Metrology, National Research Council, 1411 Oxford St., Halifax, NS B3H 3Z1, Canada; (E.J.W.); (S.D.G.); (C.R.)
| | - Sabrina D. Giddings
- Biotoxin Metrology, National Research Council, 1411 Oxford St., Halifax, NS B3H 3Z1, Canada; (E.J.W.); (S.D.G.); (C.R.)
| | - Michael J. Boundy
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand;
| | - Cheryl Rafuse
- Biotoxin Metrology, National Research Council, 1411 Oxford St., Halifax, NS B3H 3Z1, Canada; (E.J.W.); (S.D.G.); (C.R.)
| | - Christopher O. Miles
- Norwegian Veterinary Institute, P.O. Box 64, NO-1431 Ås, Norway; (A.L.W.); (T.R.); (M.S.)
- Biotoxin Metrology, National Research Council, 1411 Oxford St., Halifax, NS B3H 3Z1, Canada; (E.J.W.); (S.D.G.); (C.R.)
- Correspondence:
| |
Collapse
|
74
|
Effect of Different Species of Prorocentrum Genus on the Japanese Oyster Crassostrea gigas Proteomic Profile. Toxins (Basel) 2021; 13:toxins13070504. [PMID: 34357976 PMCID: PMC8310146 DOI: 10.3390/toxins13070504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
This paper assesses the effects of exposure to toxic concentrations (1200 to 6000 cells/mL) of the dinoflagellates Prorocentrum lima, Prorocentrum minimum, and Prorocentrum rhathymum and several concentrations of aqueous and organic extracts obtained from the same species (0 to 20 parts per thousand) on the Crassostrea gigas (5-7 mm) proteomic profile. Through comparative proteomic map analyses, several protein spots were detected with different expression levels, of which eight were selected to be identified by liquid chromatography-mass spectrometry (LC-MS/MS) analyses. The proteomic response suggests that, after 72 h of exposure to whole cells, the biological functions of C. gigas affected proteins in the immune system, stress response, contractile systems and cytoskeletal activities. The exposure to organic and aqueous extracts mainly showed effects on protein expressions in muscle contraction and cytoskeleton morphology. These results enrich the knowledge on early bivalve developmental stages. Therefore, they may be considered a solid base for new bioassays and/or generation of specific analytical tools that allow for some of the main effects of algal proliferation phenomena on bivalve mollusk development to be monitored, characterized and elucidated.
Collapse
|
75
|
Faustino LS, Queiroga FR, Hégaret H, Marques-Santos LF, Neves RAF, Nascimento S, da Silva PM. Effects of the toxic dinoflagellates Prorocentrum lima and Ostreopsis cf. ovata on immune responses of cultured oysters Crassostrea gasar. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105846. [PMID: 34000566 DOI: 10.1016/j.aquatox.2021.105846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Oyster production in Brazil has been highlighted as an important economic activity and is directly impacted by the quality of the environment, which is largely the result of human interference and climate change. Harmful algal blooms occur in aquatic ecosystems worldwide, including coastal marine environments which have been increasing over the last decades as a result of global change and anthropogenic activities. In this study, the native oysters Crassostrea gasar from Northeast of Brazil were exposed to two toxic benthic dinoflagellate species, Prorocentrum lima and Ostreopsis cf. ovata. Their respective effects on C. gasar physiology and defense mechanisms were investigated. Oyster hemocytes were first exposed in vitro to different concentrations of both dinoflagellate species to assess their effects on hemocyte functions, such as phagocytosis, production of reactive oxygen species, as well as mortality. Results highlighted an alteration of hemocyte phagocytosis and viability in presence of O. cf. ovata, whereas P. lima did not affect the measured hemocyte functions. In a second experiment, oysters were exposed for 4 days in vivo to toxic culture of O. cf. ovata to assess its effects on hemocyte parameters, tissues damages and pathogenic Perkinsus spp. infection. An increase in hemocyte mortality was also observed in vivo, associated with a decrease of ROS production. Histopathological analyses demonstrated a thinning of the epithelium of the digestive tubules of the digestive gland, inflammatory reaction and a significant increase in the level of infection by Perkinsus spp. in oysters exposed to O. cf. ovata. These results indicate that oysters C. gasar seem to be pretty resilient to an exposure to P. lima and may be more susceptible to O. cf. ovata. Furthermore, the latter clearly impaired oyster physiology and defense mechanisms, thus highlighting that harmful algal blooms of O. cf. ovata could potentially lead to increased susceptibility of C. gasar oysters to parasite infections.
Collapse
Affiliation(s)
- Lucemberg Sales Faustino
- Laboratory of Immunology and Pathology of Marine Invertebrates (LABIPI), Department of Molecular Biology, Federal University of Paraíba (UFPB), CEP 58051-900, João Pessoa, Paraíba, Brazil
| | - Fernando Ramos Queiroga
- Laboratory of Immunology and Pathology of Marine Invertebrates (LABIPI), Department of Molecular Biology, Federal University of Paraíba (UFPB), CEP 58051-900, João Pessoa, Paraíba, Brazil; Faculdade de Enfermagem Nova Esperança (FACENE), CEP 58067-695, João Pessoa, Paraíba, Brazil
| | - Hélène Hégaret
- CNRS, Univ Brest, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Luis Fernando Marques-Santos
- Cell and Developmental Biology Laboratory (LABID), Department of Molecular Biology, Federal University of Paraíba (UFPB), CEP 58051-900, João Pessoa, Paraíba, Brazil
| | - Raquel A F Neves
- Research Group of Experimental and Applied Aquatic Ecology, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Silvia Nascimento
- Research Group of Experimental and Applied Aquatic Ecology, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Patrícia Mirella da Silva
- Laboratory of Immunology and Pathology of Marine Invertebrates (LABIPI), Department of Molecular Biology, Federal University of Paraíba (UFPB), CEP 58051-900, João Pessoa, Paraíba, Brazil.
| |
Collapse
|
76
|
Jiao Y, Wang G, Li D, Li H, Liu J, Yang X, Yang W. Okadaic Acid Exposure Induced Neural Tube Defects in Chicken ( Gallus gallus) Embryos. Mar Drugs 2021; 19:md19060322. [PMID: 34199615 PMCID: PMC8227060 DOI: 10.3390/md19060322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 01/03/2023] Open
Abstract
Okadaic acid (OA) is an important liposoluble shellfish toxin distributed worldwide, and is mainly responsible for diarrheic shellfish poisoning in human beings. It has a variety of toxicities, including cytotoxicity, embryonic toxicity, neurotoxicity, and even genotoxicity. However, there is no direct evidence of its developmental toxicity in human offspring. In this study, using the chicken (Gallus gallus) embryo as the animal model, we investigated the effects of OA exposure on neurogenesis and the incidence of neural tube defects (NTDs). We found that OA exposure could cause NTDs and inhibit the neuronal differentiation. Immunofluorescent staining of pHI3 and c-Caspase3 demonstrated that OA exposure could promote cell proliferation and inhibit cell apoptosis on the developing neural tube. Besides, the down-regulation of Nrf2 and increase in reactive oxygen species (ROS) content and superoxide dismutase (SOD) activity in the OA-exposed chicken embryos indicated that OA could result in oxidative stress in early chick embryos, which might enhance the risk of the subsequent NTDs. The inhibition of bone morphogenetic protein 4 (BMP4) and Sonic hedgehog (Shh) expression in the dorsal neural tube suggested that OA could also affect the formation of dorsolateral hinge points, which might ultimately hinder the closure of the neural tube. Transcriptome and qPCR analysis showed the expression of lipopolysaccharide-binding protein (LBP), transcription factor AP-1 (JUN), proto-oncogene protein c-fos (FOS), and C-C motif chemokine 4 (CCL4) in the Toll-like receptor signaling pathway was significantly increased in the OA-exposed embryos, suggesting that the NTDs induced by OA might be associated with the Toll-like receptor signaling pathway. Taken together, our findings could advance the understanding of the embryo–fetal developmental toxicity of OA on human gestation.
Collapse
Affiliation(s)
- Yuhu Jiao
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.J.); (D.L.); (H.L.); (J.L.)
| | - Guang Wang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China;
| | - Dawei Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.J.); (D.L.); (H.L.); (J.L.)
| | - Hongye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.J.); (D.L.); (H.L.); (J.L.)
| | - Jiesheng Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.J.); (D.L.); (H.L.); (J.L.)
| | - Xuesong Yang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China;
- Correspondence: (X.Y.); (W.Y); Tel.: +86-20-85228316 (X.Y.); +86-20-85221491 (W.Y)
| | - Weidong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.J.); (D.L.); (H.L.); (J.L.)
- Correspondence: (X.Y.); (W.Y); Tel.: +86-20-85228316 (X.Y.); +86-20-85221491 (W.Y)
| |
Collapse
|
77
|
Van Acker E, Huysman S, De Rijcke M, Asselman J, De Schamphelaere KAC, Vanhaecke L, Janssen CR. Phycotoxin-Enriched Sea Spray Aerosols: Methods, Mechanisms, and Human Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6184-6196. [PMID: 33843191 DOI: 10.1021/acs.est.1c00995] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To date, few studies have examined the role of sea spray aerosols (SSAs) in human exposure to harmful and beneficial marine compounds. Two groups of phycotoxins (brevetoxins and ovatoxins) have been reported to induce respiratory syndromes during harmful algal blooms. The aerosolization and coastal air concentrations of other common marine phycotoxins have, however, never been examined. This study provides the first (experimental) evidence and characterization of the aerosolization of okadaic acid (OA), homoyessotoxin, and dinophysistoxin-1 using seawater spiked with toxic algae combined with the realistic SSA production in a marine aerosol reference tank (MART). The potential for aerosolization of these phycotoxins was highlighted by their 78- to 1769-fold enrichment in SSAs relative to the subsurface water. To obtain and support these results, we first developed an analytical method for the determination of phycotoxin concentrations in SSAs, which showed good linearity (R2 > 0.99), recovery (85.3-101.8%), and precision (RSDs ≤ 17.2%). We also investigated natural phycotoxin air concentrations by means of in situ SSA sampling with concurrent aerosolization experiments using natural seawater in the MART. This approach allowed us to indirectly quantify the (harmless) magnitude of OA concentrations (0.6-51 pg m-3) in Belgium's coastal air. Overall, this study provides new insights into the enriched aerosolization of marine compounds and proposes a framework to assess their airborne exposure and effects on human health.
Collapse
Affiliation(s)
- Emmanuel Van Acker
- Laboratory of Environmental Toxicology and Aquatic Ecology, Department of Animal Sciences and Aquatic Ecology, Ghent University, Campus Coupure, Coupure links 653, 9000 Ghent, Belgium
| | - Steve Huysman
- Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Campus Merelbeke, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Maarten De Rijcke
- Flanders Marine Institute (VLIZ), InnovOcean site, Wandelaarkaai 7, 8400 Ostend, Belgium
| | - Jana Asselman
- Laboratory of Environmental Toxicology and Aquatic Ecology, Department of Animal Sciences and Aquatic Ecology, Ghent University, Campus Coupure, Coupure links 653, 9000 Ghent, Belgium
- Blue Growth Research Lab, Ghent University, Campus Oostende, Wetenschapspark 1, 8400 Ostend, Belgium
| | - Karel A C De Schamphelaere
- Laboratory of Environmental Toxicology and Aquatic Ecology, Department of Animal Sciences and Aquatic Ecology, Ghent University, Campus Coupure, Coupure links 653, 9000 Ghent, Belgium
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Campus Merelbeke, Salisburylaan 133, 9820 Merelbeke, Belgium
- Queen's University Belfast, School of Biological Sciences, Lisburn Road 97, BT7 1NN Belfast, United Kingdom
| | - Colin R Janssen
- Laboratory of Environmental Toxicology and Aquatic Ecology, Department of Animal Sciences and Aquatic Ecology, Ghent University, Campus Coupure, Coupure links 653, 9000 Ghent, Belgium
- Blue Growth Research Lab, Ghent University, Campus Oostende, Wetenschapspark 1, 8400 Ostend, Belgium
| |
Collapse
|
78
|
Braga AC, Marçal R, Marques A, Guilherme S, Vilariño Ó, Martins JML, Gago-Martínez A, Costa PR, Pacheco M. Invasive clams (Ruditapes philippinarum) are better equipped to deal with harmful algal blooms toxins than native species (R. decussatus): evidence of species-specific toxicokinetics and DNA vulnerability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144887. [PMID: 33636784 DOI: 10.1016/j.scitotenv.2020.144887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
This study aims to assess and compare the kinetics (accumulation/elimination) of the marine biotoxins okadaic acid (OA) and dinophysistoxin-1 (DTX1), between native (Ruditapes decussatus) and invasive (Ruditapes philippinarum) clam species, and their genotoxic effects and DNA recover capacity after, exposure to toxic dinoflagellates Prorocentrum lima. Clams were fed with P. lima for 5 days and then to non-toxic algae (post-exposure) during other 5 days. Toxin concentrations determined in clams by LC-MS/MS were related with DNA damage and repair assessment through the comet and base excision repair (BER) assays, respectively. Differential accumulation patterns were observed between the invasive and native species. The invasive species consistently and progressively accumulated the toxins during the first 24 h of exposure, while the native clams showed drastic variations in the toxin accumulation. Nevertheless, at the end of a 5 days of exposure period, the native clams presented higher toxin concentrations, nearly reaching the legal regulatory limit for human consumption. In addition, native clams were vastly affected by OA and DTX1, presenting an increment in the DNA damage since the first day, with a correspondent increase in the repair activity. On the other hand, invasive clams were not affected by the dinoflagellate toxins, exhibiting only some signs of the challenge, namely an increase in the DNA repair mechanisms in the post-exposure period. Invasive clams R. philippinarum are better adapted to cope with harmful algal blooms and OA-group toxins than native species. These results may increase farming interest and may lead to new introductions of the invasive clams. In sympatry sites, exposure to OA-group toxins may unbalance clams species biomass and distribution as exposure to toxic dinoflagellates affects the native clams from cellular to a population level, representing a significant threat to development and maintenance of R. decussatus populations.
Collapse
Affiliation(s)
- Ana C Braga
- IPMA-Portuguese Institute for the Sea and Atmosphere, Av. Brasília, 1449-006 Lisbon, Portugal; Biology Department and CESAM, Aveiro University, 3810-193 Aveiro, Portugal.
| | - Raquel Marçal
- Biology Department and CESAM, Aveiro University, 3810-193 Aveiro, Portugal
| | - Ana Marques
- Biology Department and CESAM, Aveiro University, 3810-193 Aveiro, Portugal
| | - Sofia Guilherme
- Biology Department and CESAM, Aveiro University, 3810-193 Aveiro, Portugal
| | - Óscar Vilariño
- Vigo University, Department of Analytical and Food Chemistry, Campus Universitario de Vigo, 36310 Vigo, Spain
| | - J Manuel Leão Martins
- Vigo University, Department of Analytical and Food Chemistry, Campus Universitario de Vigo, 36310 Vigo, Spain
| | - Ana Gago-Martínez
- Vigo University, Department of Analytical and Food Chemistry, Campus Universitario de Vigo, 36310 Vigo, Spain
| | - Pedro R Costa
- IPMA-Portuguese Institute for the Sea and Atmosphere, Av. Brasília, 1449-006 Lisbon, Portugal; CCMAR-Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Mário Pacheco
- Biology Department and CESAM, Aveiro University, 3810-193 Aveiro, Portugal
| |
Collapse
|
79
|
Majhi S. Applications of Yamaguchi Method to Esterification and Macrolactonization in Total Synthesis of Bioactive Natural Products. ChemistrySelect 2021. [DOI: 10.1002/slct.202100206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Sasadhar Majhi
- Department of Chemistry (UG & PG) Triveni Devi Bhalotia College Raniganj Kazi Nazrul University West Bengal 713347 India
| |
Collapse
|
80
|
Algal Toxic Compounds and Their Aeroterrestrial, Airborne and other Extremophilic Producers with Attention to Soil and Plant Contamination: A Review. Toxins (Basel) 2021; 13:toxins13050322. [PMID: 33946968 PMCID: PMC8145420 DOI: 10.3390/toxins13050322] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
The review summarizes the available knowledge on toxins and their producers from rather disparate algal assemblages of aeroterrestrial, airborne and other versatile extreme environments (hot springs, deserts, ice, snow, caves, etc.) and on phycotoxins as contaminants of emergent concern in soil and plants. There is a growing body of evidence that algal toxins and their producers occur in all general types of extreme habitats, and cyanobacteria/cyanoprokaryotes dominate in most of them. Altogether, 55 toxigenic algal genera (47 cyanoprokaryotes) were enlisted, and our analysis showed that besides the “standard” toxins, routinely known from different waterbodies (microcystins, nodularins, anatoxins, saxitoxins, cylindrospermopsins, BMAA, etc.), they can produce some specific toxic compounds. Whether the toxic biomolecules are related with the harsh conditions on which algae have to thrive and what is their functional role may be answered by future studies. Therefore, we outline the gaps in knowledge and provide ideas for further research, considering, from one side, the health risk from phycotoxins on the background of the global warming and eutrophication and, from the other side, the current surge of interest which phycotoxins provoke due to their potential as novel compounds in medicine, pharmacy, cosmetics, bioremediation, agriculture and all aspects of biotechnological implications in human life.
Collapse
|
81
|
Unlocking the Health Potential of Microalgae as Sustainable Sources of Bioactive Compounds. Int J Mol Sci 2021; 22:ijms22094383. [PMID: 33922258 PMCID: PMC8122763 DOI: 10.3390/ijms22094383] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/15/2022] Open
Abstract
Microalgae are known to produce a plethora of compounds derived from the primary and secondary metabolism. Different studies have shown that these compounds may have allelopathic, antimicrobial, and antipredator activities. In addition, in vitro and in vivo screenings have shown that several compounds have interesting bioactivities (such as antioxidant, anti-inflammatory, anticancer, and antimicrobial) for the possible prevention and treatment of human pathologies. Additionally, the enzymatic pathways responsible for the synthesis of these compounds, and the targets and mechanisms of their action have also been investigated for a few species. However, further research is necessary for their full exploitation and possible pharmaceutical and other industrial applications. Here, we review the current knowledge on the chemical characteristics, biological activities, mechanism of action, and the enzymes involved in the synthesis of microalgal metabolites with potential benefits for human health.
Collapse
|
82
|
Bell M, Zempel H. SH-SY5Y-derived neurons: a human neuronal model system for investigating TAU sorting and neuronal subtype-specific TAU vulnerability. Rev Neurosci 2021; 33:1-15. [PMID: 33866701 DOI: 10.1515/revneuro-2020-0152] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/06/2021] [Indexed: 11/15/2022]
Abstract
The microtubule-associated protein (MAP) TAU is mainly sorted into the axon of healthy brain neurons. Somatodendritic missorting of TAU is a pathological hallmark of many neurodegenerative diseases, including Alzheimer's disease (AD). Cause, consequence and (patho)physiological mechanisms of TAU sorting and missorting are understudied, in part also because of the lack of readily available human neuronal model systems. The human neuroblastoma cell line SH-SY5Y is widely used for studying TAU physiology and TAU-related pathology in AD and related tauopathies. SH-SY5Y cells can be differentiated into neuron-like cells (SH-SY5Y-derived neurons) using various substances. This review evaluates whether SH-SY5Y-derived neurons are a suitable model for (i) investigating intracellular TAU sorting in general, and (ii) with respect to neuron subtype-specific TAU vulnerability. (I) SH-SY5Y-derived neurons show pronounced axodendritic polarity, high levels of axonally localized TAU protein, expression of all six human brain isoforms and TAU phosphorylation similar to the human brain. As SH-SY5Y cells are highly proliferative and readily accessible for genetic engineering, stable transgene integration and leading-edge genome editing are feasible. (II) SH-SY5Y-derived neurons display features of subcortical neurons early affected in many tauopathies. This allows analyzing brain region-specific differences in TAU physiology, also in the context of differential vulnerability to TAU pathology. However, several limitations should be considered when using SH-SY5Y-derived neurons, e.g., the lack of clearly defined neuronal subtypes, or the difficulty of mimicking age-related tauopathy risk factors in vitro. In brief, this review discusses the suitability of SH-SY5Y-derived neurons for investigating TAU (mis)sorting mechanisms and neuron-specific TAU vulnerability in disease paradigms.
Collapse
Affiliation(s)
- Michael Bell
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 34, 50931Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, 50931Cologne, Germany
| | - Hans Zempel
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 34, 50931Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, 50931Cologne, Germany
| |
Collapse
|
83
|
Effects of the Marine Biotoxins Okadaic Acid and Dinophysistoxins on Fish. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9030293] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Natural high proliferations of toxin-producing microorganisms in marine and freshwater environments result in dreadful consequences at the socioeconomically and environmental level due to water and seafood contamination. Monitoring programs and scientific evidence point to harmful algal blooms (HABs) increasing in frequency and intensity as a result of global climate alterations. Among marine toxins, the okadaic acid (OA) and the related dinophysistoxins (DTX) are the most frequently reported in EU waters, mainly in shellfish species. These toxins are responsible for human syndrome diarrhetic shellfish poisoning (DSP). Fish, like other marine species, are also exposed to HABs and their toxins. However, reduced attention has been given to exposure, accumulation, and effects on fish of DSP toxins, such as OA. The present review intends to summarize the current knowledge of the impact of DSP toxins and to identify the main issues needing further research. From data reviewed in this work, it is clear that exposure of fish to DSP toxins causes a range of negative effects, from behavioral and morphological alterations to death. However, there is still much to be investigated about the ecological and food safety risks related to contamination of fish with DSP toxins.
Collapse
|
84
|
Danil K, Berman M, Frame E, Preti A, Fire SE, Leighfield T, Carretta J, Carter ML, Lefebvre K. Marine algal toxins and their vectors in southern California cetaceans. HARMFUL ALGAE 2021; 103:102000. [PMID: 33980440 DOI: 10.1016/j.hal.2021.102000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/05/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Published baseline data on biotoxin exposure in cetaceans is sparse but critical for interpreting mortality events as harmful algal blooms increase in frequency and duration. We present the first synthesis of domoic acid (DA), saxitoxin (STX), okadaic acid (OA), and microcystin detections in the feces and urine of stranded and bycaught southern California cetaceans, over an 18 year period (2001-2018), along with corresponding stomach content data. DA was detected in 13 out of 19 cetacean species, most often in harbor porpoise (Phocoena phocoena) (81.8%, n = 22) and long-beaked common dolphins (Delphinus delphis bairdii) (74%, n = 231). Maximum DA concentrations of 324,000 ng/g in feces and 271, 967 ng/ml in urine were observed in D. d. bairdii. DA was detected more frequently and at higher concentrations in male vs. female D. d. bairdii. Higher fecal DA concentrations in D. d. bairdii were associated with a greater proportion of northern anchovy (Engraulis mordax) in the diet, indicating it may be a primary vector of DA. Fecal DA concentrations for D. d. bairdii off Point Conception were greater than those from animals sampled off Los Angeles and San Diego counties, reflecting greater primary productivity and higher Pseudo-nitzschia spp. abundance in that region and a greater abundance of E. mordax in the diet. STX was detected at low levels (fecal max = 7.5 ng/g, urine max = 17 ng/ml) in 3.6% (n = 165) of individuals from 3 out of 11 species. The occurrence of E. mordax in 100% of the 3 examined stomachs suggests this species could be a primary vector of the detected STX. OA was detected in 2.4% of tested individuals (n = 85) at a maximum fecal concentration of 422.8 ng/g. Microcystin was detected in 14.3% (n = 7) of tested individuals with a maximum liver concentration of 96.8 ppb.
Collapse
Affiliation(s)
- Kerri Danil
- NOAA, National Marine Fisheries Service, Southwest Fisheries Science Center, La Jolla, CA, United States.
| | - Michelle Berman
- Channel Islands Cetacean Research Unit, Santa Barbara, CA, United States
| | - Elizabeth Frame
- King County Environmental Laboratory, Seattle, WA, United States
| | - Antonella Preti
- NOAA, National Marine Fisheries Service, Southwest Fisheries Science Center, La Jolla, CA, United States; Institute of Marine Studies, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Spencer E Fire
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | - Tod Leighfield
- NOAA, National Ocean Service, National Centers for Coastal Ocean Science, Charleston, SC, United States
| | - Jim Carretta
- NOAA, National Marine Fisheries Service, Southwest Fisheries Science Center, La Jolla, CA, United States
| | - Melissa L Carter
- Scripps Institution of Oceanography, La Jolla, CA, United States
| | - Kathi Lefebvre
- NOAA, National Marine Fisheries Service, Northwest Fisheries Science Center, Seattle, WA, United States
| |
Collapse
|
85
|
Leite IDP, Sandrini-Neto L, Squella FL, Alves TP, Schramm MA, Calado SLDM, Silva de Assis HC, Mafra LL. Toxin accumulation, detoxification and oxidative stress in bivalve (Anomalocardia flexuosa) exposed to the dinoflagellate Prorocentrum lima. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 232:105738. [PMID: 33465619 DOI: 10.1016/j.aquatox.2020.105738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Prorocentrum lima is a cosmopolitan benthic dinoflagellate capable of producing the diarrhetic shellfish toxins (DSTs) okadaic acid (OA) and dinophysistoxin (DTX). These compounds may cause oxidative stress and accumulate in bivalve tissues, which become vectors of intoxication to human consumers. We investigated DST accumulation, detoxification and oxidative stress biomarkers in clams (Anomalocardia flexuosa) experimentally exposed to P. lima cells or their compounds. Experimental diets consisted of 6000 cells mL-1 of the non-toxic chlorophyte Tetraselmis sp. (C; control condition), and combinations of C with 10 P. lima cells mL-1 (T10), 100 P. lima cells mL-1 (T100), or to a toxin concentration of ∼4 μg OA L-1 and ∼0.65 μg DTX-1 L-1 (T100d). Clams were exposed to these diets for 7 days (uptake phase), followed by a 7-day depuration period. No DSTs were detected in clams exposed to treatments C (control) nor to T100d (dissolved compounds) during either uptake or detoxification phase. Conversely, clams exposed to T10 or T100 accumulated, on average, up to 2.5 and 35 μg DST kg-1 in their whole bodies at the end of the uptake phase. These concentrations are ∼64 and ∼4.5 times lower than the regulatory level of 160 μg OA kg-1, respectively. Accumulated OA quotas were 12-22 times higher in the digestive gland (DG) than in remaining tissues over the uptake phase. Quick toxin transformation was indicated by the early detection of conjugated compounds - DTX-1 and OA esters - in the DG after 6 h of exposure, with OA-ester representing the main compound (30 - 100 %) in that tissue over the experiment. During the depuration period, detoxification rates represented 0.024 h-1, 0.04 h-1 and 0.052 h-1 for OA, DTX-1 and OA-ester, respectively. The activities of catalase, glutathione S-transferase, glutathione peroxidase and the levels of oxidative stress by lipoperoxidation varied similarly in the DG of A. flexuosa individuals subjected to T100, T100d and the control condition. However, contrasting antioxidant responses were measured in those exposed to T10. These findings indicate that no oxidative stress was primarily induced by DST-producing dinoflagellates in this clam species under laboratory conditions representative of toxic bloom situations. Even though, possible interactions should be considered under multistressor scenarios.
Collapse
Affiliation(s)
- Isabel do Prado Leite
- Center for Marine Studies, Federal University of Paraná, Av. Beira-mar, s/n, P.O. Box: 61, Pontal do Paraná, PR, 83255-976, Brazil.
| | - Leonardo Sandrini-Neto
- Center for Marine Studies, Federal University of Paraná, Av. Beira-mar, s/n, P.O. Box: 61, Pontal do Paraná, PR, 83255-976, Brazil
| | - Francisco Lagreze Squella
- Center for Marine Studies, Federal University of Paraná, Av. Beira-mar, s/n, P.O. Box: 61, Pontal do Paraná, PR, 83255-976, Brazil
| | - Thiago Pereira Alves
- Federal Institute of Santa Catarina, Av. Ver. Abraão João Francisco, 3899, Ressacada, Itajaí, SC, 88307-303, Brazil
| | - Mathias Alberto Schramm
- Federal Institute of Santa Catarina, Av. Ver. Abraão João Francisco, 3899, Ressacada, Itajaí, SC, 88307-303, Brazil
| | - Sabrina Loise de Morais Calado
- Department of Pharmacology, Federal University of Paraná, Av. Coronel Francisco Heráclito dos Santos, 100, Jardim das Américas, Curitiba, PR, 81531-980, Brazil
| | - Helena Cristina Silva de Assis
- Department of Pharmacology, Federal University of Paraná, Av. Coronel Francisco Heráclito dos Santos, 100, Jardim das Américas, Curitiba, PR, 81531-980, Brazil
| | - Luiz Laureno Mafra
- Center for Marine Studies, Federal University of Paraná, Av. Beira-mar, s/n, P.O. Box: 61, Pontal do Paraná, PR, 83255-976, Brazil
| |
Collapse
|
86
|
Leyva-Valencia I, Hernández-Castro JE, Band-Schmidt CJ, Turner AD, O’Neill A, Núñez-Vázquez EJ, López-Cortés DJ, Bustillos-Guzmán JJ, Hernández-Sandoval FE. Lipophilic Toxins in Wild Bivalves from the Southern Gulf of California, Mexico. Mar Drugs 2021; 19:md19020099. [PMID: 33572171 PMCID: PMC7914588 DOI: 10.3390/md19020099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 11/29/2022] Open
Abstract
Most of the shellfish fisheries of Mexico occur in the Gulf of California. In this region, known for its high primary productivity, blooms of diatoms and dinoflagellates are common, occurring mainly during upwelling events. Dinoflagellates that produce lipophilic toxins are present, where some outbreaks related to okadaic acid and dinophisystoxins have been recorded. From January 2015 to November 2017 samples of three species of wild bivalve mollusks were collected monthly in five sites in the southern region of Bahía de La Paz. Pooled tissue extracts were analyzed using LC-MS/MS to detect lipophilic toxins. Eighteen analogs of seven toxin groups, including cyclic imines were identified, fortunately individual toxins did not exceed regulatory levels and also the total toxin concentration for each bivalve species was lower than the maximum permitted level for human consumption. Interspecific differences in toxin number and concentration were observed in three species of bivalves even when the samples were collected at the same site. Okadaic acid was detected in low concentrations, while yessotoxins and gymnodimines had the highest concentrations in bivalve tissues. Although in low quantities, the presence of cyclic imines and other lipophilic toxins in bivalves from the southern Gulf of California was constant.
Collapse
Affiliation(s)
- Ignacio Leyva-Valencia
- CONACYT-Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, B.C.S. 23096, Mexico
- Correspondence: ; Tel.: +52-612-123-4734
| | - Jesús Ernestina Hernández-Castro
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, B.C.S. 23096, Mexico; (J.E.H.-C.); (C.J.B.-S.)
| | - Christine J. Band-Schmidt
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, B.C.S. 23096, Mexico; (J.E.H.-C.); (C.J.B.-S.)
| | - Andrew D. Turner
- The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset DT4 8UB, UK; (A.D.T.); (A.O.)
| | - Alison O’Neill
- The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset DT4 8UB, UK; (A.D.T.); (A.O.)
| | - Erick J. Núñez-Vázquez
- Centro de Investigaciones Biológicas del Noroeste, La Paz, B.C.S. 23096, Mexico; (E.J.N.-V.); (J.J.B.-G.); (F.E.H.-S.)
| | - David J. López-Cortés
- Centro de Investigaciones Biológicas del Noroeste, La Paz, B.C.S. 23096, Mexico; (E.J.N.-V.); (J.J.B.-G.); (F.E.H.-S.)
| | - José J. Bustillos-Guzmán
- Centro de Investigaciones Biológicas del Noroeste, La Paz, B.C.S. 23096, Mexico; (E.J.N.-V.); (J.J.B.-G.); (F.E.H.-S.)
| | | |
Collapse
|
87
|
Abstract
![]()
A nonthermodynamic array of four skipped methylene substituents on the hydrophobic tail
renders limaol, a C40-polyketide of marine origin, unique in structural terms. This
conspicuous segment was assembled by a two-directional approach and finally coupled to
the polyether domain by an allyl/alkenyl Stille reaction under neutral conditions. The
core region itself was prepared via a 3,3′-dibromo-BINOL-catalyzed asymmetric
propargylation, a gold-catalyzed spirocyclization, and introduction of the southern
sector via substrate-controlled allylation as the key steps.
Collapse
Affiliation(s)
- Stephan N Hess
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Xiaobin Mo
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Conny Wirtz
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
88
|
DSP Toxin Distribution across Organs in Mice after Acute Oral Administration. Mar Drugs 2021; 19:md19010023. [PMID: 33430011 PMCID: PMC7826939 DOI: 10.3390/md19010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022] Open
Abstract
Okadaic acid (OA) and its main structural analogs dinophysistoxin-1 (DTX1) and dinophysistoxin-2 (DTX2) are marine lipophilic phycotoxins distributed worldwide that can be accumulated by edible shellfish and can cause diarrheic shellfish poisoning (DSP). In order to study their toxicokinetics, mice were treated with different doses of OA, DTX1, or DTX2 and signs of toxicity were recorded up to 24 h. Toxin distribution in the main organs from the gastrointestinal tract was assessed by liquid chromatography-mass spectrometry (LC/MS/MS) analysis. Our results indicate a dose-dependency in gastrointestinal absorption of these toxins. Twenty-four hours post-administration, the highest concentration of toxin was detected in the stomach and, in descending order, in the large intestine, small intestine, and liver. There was also a different toxicokinetic pathway between OA, DTX1, and DTX2. When the same toxin doses are compared, more OA than DTX1 is detected in the small intestine. OA and DTX1 showed similar concentrations in the stomach, liver, and large intestine tissues, but the amount of DTX2 is much lower in all these organs, providing information on DSP toxicokinetics for human safety assessment.
Collapse
|
89
|
Schulthoff S, Hamilton JY, Heinrich M, Kwon Y, Wirtz C, Fürstner A. The Formosalides: Structure Determination by Total Synthesis. Angew Chem Int Ed Engl 2021; 60:446-454. [PMID: 32946141 PMCID: PMC7821135 DOI: 10.1002/anie.202011472] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 01/08/2023]
Abstract
Total synthesis allowed the constitution of the cytotoxic marine macrolides of the formosalide family to be confirmed and their previously unknown stereostructure to be assigned with confidence. The underlying blueprint was inherently modular to ensure that each conceivable isomer could be reached. This flexibility derived from the use of strictly catalyst controlled transformations to set the stereocenters, except for the anomeric position, which is under thermodynamic control; as an extra safety measure, all stereogenic centers were set prior to ring closure to preclude any interference of the conformation adopted by the macrolactone rings of the different diastereomers. Late-stage macrocyclization by ring-closing alkyne metathesis was followed by a platinum-catalyzed transannular 6-exo-dig hydroalkoxylation/ketalization to craft the polycyclic frame. The side chain featuring a very labile unsaturation pattern was finally attached to the core by Stille coupling.
Collapse
Affiliation(s)
| | | | - Marc Heinrich
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| | - Yonghoon Kwon
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| | - Conny Wirtz
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| |
Collapse
|
90
|
Wang Y, Rao D, Wu X, Zhang Q, Wu S. Aptamer-based microcantilever-array biosensor for ultra-sensitive and rapid detection of okadaic acid. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
91
|
Kilcoyne J, Burrell S, Nulty C, Salas R, Wright EJ, Rajotte I, Miles CO. Improved Isolation Procedures for Okadaic Acid Group Toxins from Shellfish ( Mytilus edulis) and Microalgae ( Prorocentrum lima). Mar Drugs 2020; 18:md18120647. [PMID: 33339248 PMCID: PMC7766028 DOI: 10.3390/md18120647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 11/17/2022] Open
Abstract
Okadaic acid (OA) group toxins may accumulate in shellfish and can result in diarrhetic shellfish poisoning when consumed by humans, and are therefore regulated. Purified toxins are required for the production of certified reference materials used to accurately quantitate toxin levels in shellfish and water samples, and for other research purposes. An improved procedure was developed for the isolation of dinophysistoxin 2 (DTX2) from shellfish (M. edulis), reducing the number of purification steps from eight to five, thereby increasing recoveries to ~68%, compared to ~40% in a previously reported method, and a purity of >95%. Cell densities and toxin production were monitored in cultures of Prorocentrum lima, that produced OA, DTX1, and their esters, over ~1.5 years with maximum cell densities of ~70,000 cells mL−1 observed. Toxin accumulation progressively increased over the study period, to ~0.7 and 2.1 mg L−1 of OA and DTX1 (including their esters), respectively, providing information on appropriate harvesting times. A procedure for the purification of OA and DTX1 from the harvested biomass was developed employing four purification steps, with recoveries of ~76% and purities of >95% being achieved. Purities were confirmed by LC-HRMS, LC-UV, and NMR spectroscopy. Additional stability observations led to a better understanding of the chemistry of these toxins.
Collapse
Affiliation(s)
- Jane Kilcoyne
- Marine Institute, Rinville, Oranmore, Co. Galway H91 R673, Ireland; (S.B.); (C.N.); (R.S.)
- Correspondence: ; Tel.: +353-91387200
| | - Stephen Burrell
- Marine Institute, Rinville, Oranmore, Co. Galway H91 R673, Ireland; (S.B.); (C.N.); (R.S.)
| | - Cíara Nulty
- Marine Institute, Rinville, Oranmore, Co. Galway H91 R673, Ireland; (S.B.); (C.N.); (R.S.)
| | - Rafael Salas
- Marine Institute, Rinville, Oranmore, Co. Galway H91 R673, Ireland; (S.B.); (C.N.); (R.S.)
| | - Elliott J. Wright
- Biotoxin Metrology, National Research Council Canada, Halifax, NS B3H 3Z1, Canada; (E.J.W.); (I.R.); (C.O.M.)
| | - Isabelle Rajotte
- Biotoxin Metrology, National Research Council Canada, Halifax, NS B3H 3Z1, Canada; (E.J.W.); (I.R.); (C.O.M.)
| | - Christopher O. Miles
- Biotoxin Metrology, National Research Council Canada, Halifax, NS B3H 3Z1, Canada; (E.J.W.); (I.R.); (C.O.M.)
| |
Collapse
|
92
|
Qiu J, Ji Y, Fang Y, Zhao M, Wang S, Ai Q, Li A. Response of fatty acids and lipid metabolism enzymes during accumulation, depuration and esterification of diarrhetic shellfish toxins in mussels (Mytilus galloprovincialis). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111223. [PMID: 32891913 DOI: 10.1016/j.ecoenv.2020.111223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Bivalve mollusks accumulate diarrhetic shellfish toxins (DSTs) from toxigenic microalgae, thus posing a threat to human health by acting as a vector of toxins to consumers. In bivalves, free forms of DSTs can be esterified with fatty acids at the C-7 site to form acyl esters (DTX3), presumably a detoxification mechanism for bivalves. However, the effects of esterification of DSTs on fatty acid metabolism in mollusks remain poorly understood. In this study, mussels (Mytilus galloprovincialis) were fed the DST-producing dinoflagellate Prorocentrum lima for 10 days followed by an additional 10-days depuration in filtered seawater to track the variation in quantity and composition of DST acyl esters and fatty acids. A variety of esters of okadaic acid (OA) and dinophysistoxin-1 (DTX1) were mainly formed in the digestive gland (DG), although trace amounts of esters also appeared in muscle tissue. A large relative amount of OA (60%-84%) and DTX1 (80%-92%) was esterified to DTX3 in the visceral mass (referred to as digestive gland, DG), and the major ester acyl chains were C16:0, C16:1, C18:0, C18:1, C20:1 and C20:2. The DG and muscle tissues showed pronounced differences in fatty acid content and composition during both feeding and depuration periods. In the DG, fatty acid content gradually decreased in parallel with increasing accumulation and esterification of DSTs. The decline in fatty acids was accelerated during depuration without food. This reduction in the content of important polyunsaturated fatty acids, especially docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), would lead to a reduction in the nutritional value of mussels. Enzymes involved in lipid metabolism, including acetyl-coenzyme A carboxylase (ACC), fatty acid synthase (FAS), lipoprotein lipase (LPL) and hepatic lipase (HL), were actively involved in the metabolism of fatty acids in the DG, whereas their activities were weak in muscle tissue during the feeding period. This study helps to improve the understanding of interactions between the esterification of DSTs and fatty acid dynamics in bivalve mollusks.
Collapse
Affiliation(s)
- Jiangbing Qiu
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Ying Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yuan Fang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mingyue Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Shuqin Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Qinghui Ai
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao, 266100, China.
| |
Collapse
|
93
|
Huguet A, Drapeau O, Rousselet F, Quenault H, Fessard V. Differences in Toxic Response Induced by Three Variants of the Diarrheic Shellfish Poisoning Phycotoxins in Human Intestinal Epithelial Caco-2 Cells. Toxins (Basel) 2020; 12:toxins12120783. [PMID: 33302514 PMCID: PMC7764622 DOI: 10.3390/toxins12120783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
Diarrheic shellfish poisoning (DSP) is caused by the consumption of shellfish contaminated with a group of phycotoxins that includes okadaic acid (OA), dinophysistoxin-1 (DTX-1), and dinophysistoxin-2 (DTX-2). These toxins are inhibitors of serine/threonine protein phosphatases 1 (PP1) and 2A (PP2A), but show distinct levels of toxicity. Aside from a difference in protein phosphatases (PP) inhibition potency that would explain these differences in toxicity, others mechanisms of action are thought to be involved. Therefore, we investigated and compared which mechanisms are involved in the toxicity of these three analogues. As the intestine is one of the target organs, we studied the transcriptomic profiles of human intestinal epithelial Caco-2 cells exposed to OA, DTX-1, and DTX-2. The pathways specifically affected by each toxin treatment were further confirmed through the expression of key genes and markers of toxicity. Our results did not identify any distinct biological mechanism for OA and DTX-2. However, only DTX-1 induced up-regulation of the MAPK transduction signalling pathway, and down-regulation of gene products involved in the regulation of DNA repair. As a consequence, based on transcriptomic results, we demonstrated that the higher toxicity of DTX-1 compared to OA and DTX-2 was consistent with certain specific pathways involved in intestinal cell response.
Collapse
Affiliation(s)
- Antoine Huguet
- Toxicology of Contaminants Unit, Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 35306 Fougères CEDEX, France; (O.D.); (F.R.); (V.F.)
- Correspondence:
| | - Olivia Drapeau
- Toxicology of Contaminants Unit, Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 35306 Fougères CEDEX, France; (O.D.); (F.R.); (V.F.)
| | - Fanny Rousselet
- Toxicology of Contaminants Unit, Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 35306 Fougères CEDEX, France; (O.D.); (F.R.); (V.F.)
| | - Hélène Quenault
- Viral Genetic and Biosecurity Unit, Ploufragan-Plouzané Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France;
| | - Valérie Fessard
- Toxicology of Contaminants Unit, Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 35306 Fougères CEDEX, France; (O.D.); (F.R.); (V.F.)
| |
Collapse
|
94
|
Schulthoff S, Hamilton JY, Heinrich M, Kwon Y, Wirtz C, Fürstner A. The Formosalides: Structure Determination by Total Synthesis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011472] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | | | - Marc Heinrich
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| | - Yonghoon Kwon
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| | - Conny Wirtz
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| |
Collapse
|
95
|
Wu H, Chen J, Peng J, Zhong Y, Zheng G, Guo M, Tan Z, Zhai Y, Lu S. Nontarget Screening and Toxicity Evaluation of Diol Esters of Okadaic Acid and Dinophysistoxins Reveal Intraspecies Difference of Prorocentrum lima. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12366-12375. [PMID: 32902972 DOI: 10.1021/acs.est.0c03691] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High-resolution mass spectrometry (HRMS) analysis with the assistance of molecular networking was used to investigate intracellular toxin profiles of five Prorocentrum lima (P. lima) strains sampled from the north Yellow Sea and South China Sea. Mice were used as a model species for testing the acute toxicity of intracellular okadaic acid (OA) and dinophysistoxins (DTXs) in free and esterified states. Results showed that OA and DTX1 esterified derivatives were detected in all P. lima samples, accounting for 55%-96% of total toxins in five strains. A total of 24 esters and 1 stereoisomer of DTX1 (35S DTX1) were identified based on molecular networking and MS data analysis, 15 esters of which have been reported first. All P. lima strains displayed specific toxin profiles, and preliminary analysis suggested that toxin profiles of the five P. lima strains might be region-related. Moreover, acute toxicity in mice suggested higher toxicity of esters compared with free toxins, which highlights the importance and urgency of attention to esterified toxins in P. lima.
Collapse
Affiliation(s)
- Haiyan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jiaqi Chen
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jixing Peng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yun Zhong
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Guanchao Zheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Mengmeng Guo
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Yuxiu Zhai
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Songhui Lu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
96
|
Reale O, Huguet A, Fessard V. Co-culture model of Caco-2/HT29-MTX cells: A promising tool for investigation of phycotoxins toxicity on the intestinal barrier. CHEMOSPHERE 2020; 273:128497. [PMID: 34756374 DOI: 10.1016/j.chemosphere.2020.128497] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 06/13/2023]
Abstract
Most lipophilic phycotoxins have been involved in human intoxications but some of these toxins have never been proven to induce human gastro-intestinal symptoms, although intestinal damage in rodents has been documented. For investigating the in vitro toxicological profile of lipophilic phycotoxins on intestine, the epithelial Caco-2 cell line has been the most commonly used model. Nevertheless, considering the complexity of the intestinal epithelium, in vitro co-cultures integrating enterocyte-like and mucus-secreting cell types are expected to provide more relevant data. In this study, the toxic effects (viability, inflammation, cellular monolayer integrity, modulation of cell type proportion and production of mucus) of four lipophilic phycotoxins (PTX2, YTX, AZA1 and OA) were evaluated in Caco-2/HT29-MTX co-cultured cells. The four toxins induced a reduction of viability from 20% to 50% and affected the monolayer integrity. Our results showed that the HT29-MTX cells population were more sensitive to OA and PTX2 than Caco-2 cells. Among the four phycotoxins, OA induced inflammation (28-fold increase of IL-8 release) and also a slight increase of both mucus production (up-regulation of mucins mRNA expression) and mucus secretion (mucus area and density). For PTX2 we observed an increase of IL-8 release but weaker than OA. Intestinal cell models integrating several cell types can contribute to improve hazard characterization and to describe more accurately the modes of action of phycotoxins.
Collapse
Affiliation(s)
- Océane Reale
- ANSES, Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères, 35306, France.
| | - Antoine Huguet
- ANSES, Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères, 35306, France.
| | - Valérie Fessard
- ANSES, Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères, 35306, France.
| |
Collapse
|
97
|
Camacho-Muñoz D, Lawton LA, Edwards C. Degradation of okadaic acid in seawater by UV/TiO 2 photocatalysis - Proof of concept. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139346. [PMID: 32447082 PMCID: PMC7298613 DOI: 10.1016/j.scitotenv.2020.139346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/16/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
The consumption of contaminated shellfish with marine toxins causes adverse socioeconomical, environmental and health impacts. The marine toxin okadaic acid (OA) provokes diarrhetic shellfish poisoning (DSP) syndrome characterized by severe gastrointestinal symptoms. Therefore, there is increasing interest in removing these toxins from the marine environment to protect shellfish harvesting sites. Photocatalysis is proposed as an efficient method to detoxify the marine environment. In this study, Prorocentrum lima was used to produce high purity DSP toxins, in particular OA, for degradation studies. The profiling, characterization and quantification of DSP toxins in the culture of P. lima were achieved by ultrahigh performance liquid chromatography coupled to quadrupole-time of flight mass spectrometry (UPLC-QTOF-MSE) for accurate-mass full spectrum acquisition data. The effectiveness of UV/TiO2 system to degrade OA in seawater was assessed in lab-scale experiments and identification of transformation products was proposed based on the data obtained during analysis by UPLC-QTOF-MSE. The detoxification potential of the UV/TiO2 system was investigated using the phosphatase inhibition assay. Sufficient amount of high-purity OA (25 mg, >90% purity) was produced in-house for use in photocatalysis experiments by simple reversed-phase flash chromatography. Complete degradation of OA was observed in seawater after 30 min and 7.5 min in deionized water. The rate constants fitted with the pseudo-first order kinetic model (R2 > 0.96). High-resolution mass spectrometry analysis of the photocatalyzed OA allowed tentative identification of four transformation products. Detoxification was achieved in parallel with the degradation of OA in deionized water and artificial ocean water (≤20 min) but not for seawater. Overall, results suggest that UV/TiO2 photocatalysis can be an effective approach for degrading OA and their TPs in the marine environment. To the best of our knowledge, this is the first report on the use of photocatalysis to degrade marine toxins and its promising potential to protect shellfish harvesting sites.
Collapse
Affiliation(s)
- Dolores Camacho-Muñoz
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK.
| | - Linda Ann Lawton
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK
| | - Christine Edwards
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK
| |
Collapse
|
98
|
Liu Y, Zheng JW, Peng XC, Li HY, Huang L, Li DW, Liu JS, Yang WD. Changes in colonic microbiotas in rat after long-term exposure to low dose of okadaic acid. CHEMOSPHERE 2020; 254:126874. [PMID: 32361543 DOI: 10.1016/j.chemosphere.2020.126874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/05/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Okadaic acid (OA), one of the most important phycotoxins, is widely distributed around the world, concerning diarrheic shellfish poisoning (DSP), and even colorectal cancer. Here, we found that long-term exposure of OA at a low dose (80 μg kg-1 body weight) had certain effects on colonic microbiotas and tract in rat. In the OA-exposed rat, colonic epithelium layer was damaged, and relative abundance of some microbiotas were significantly changed, especially genera in Clostridiales. However, no intestinal inflammation or significant disease was observed. Combined with the increase in relative abundance of some genera in Clostridiales induced by OA in the fermentation experiment, we proposed that OA could cause damage to the intestinal epithelium and increase the relative abundance of pathogenic bacteria, thereby increasing the probability of contact between intestinal epithelium and pathogenic bacteria and leading to an easier pathogenicity.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jian-Wei Zheng
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xi-Chun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou, 510630, China
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Lu Huang
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Da-Wei Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jie-Sheng Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
99
|
Young N, Robin C, Kwiatkowska R, Beck C, Mellon D, Edwards P, Turner J, Nicholls P, Fearby G, Lewis D, Hallett D, Bishop T, Smith T, Hyndford R, Coates L, Turner A. Outbreak of diarrhetic shellfish poisoning associated with consumption of mussels, United Kingdom, May to June 2019. ACTA ACUST UNITED AC 2020; 24. [PMID: 31481146 PMCID: PMC6724464 DOI: 10.2807/1560-7917.es.2019.24.35.1900513] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report on six cases of diarrhetic shellfish poisoning following consumption of mussels harvested in the United Kingdom. Dinophysis spp. in the water column was found to have increased rapidly at the production site resulting in high levels of okadaic acid-group lipophilic toxins in the flesh of consumed mussels. Clinicians and public health professionals should remain aware of algal-derived toxins being a potential cause of illness following seafood consumption.
Collapse
Affiliation(s)
- Nick Young
- Public Health England South West, Bristol, United Kingdom
| | - Charlotte Robin
- Field Service, National Infection Service, Public Health England, London, United Kingdom
| | - Rachel Kwiatkowska
- Field Service, National Infection Service, Public Health England, London, United Kingdom
| | - Charles Beck
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom.,Field Service, National Infection Service, Public Health England, London, United Kingdom
| | - Dominic Mellon
- Public Health England South West, Bristol, United Kingdom
| | | | - Jonathan Turner
- Public Health England South West Regional Laboratory, Bristol, United Kingdom
| | - Paul Nicholls
- Teignbridge District Council, Newton Abbot, United Kingdom
| | - Gavin Fearby
- Teignbridge District Council, Newton Abbot, United Kingdom
| | - Debbie Lewis
- Cornwall Port Health Authority, Cornwall Council, Falmouth, United Kingdom
| | | | | | | | | | - Lewis Coates
- The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, United Kingdom
| | - Andrew Turner
- The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, United Kingdom
| |
Collapse
|
100
|
Yadikar H, Torres I, Aiello G, Kurup M, Yang Z, Lin F, Kobeissy F, Yost R, Wang KK. Screening of tau protein kinase inhibitors in a tauopathy-relevant cell-based model of tau hyperphosphorylation and oligomerization. PLoS One 2020; 15:e0224952. [PMID: 32692785 PMCID: PMC7373298 DOI: 10.1371/journal.pone.0224952] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
Tauopathies are a class of neurodegenerative disorders characterized by abnormal deposition of post-translationally modified tau protein in the human brain. Tauopathies are associated with Alzheimer's disease (AD), chronic traumatic encephalopathy (CTE), and other diseases. Hyperphosphorylation increases tau tendency to aggregate and form neurofibrillary tangles (NFT), a pathological hallmark of AD. In this study, okadaic acid (OA, 100 nM), a protein phosphatase 1/2A inhibitor, was treated for 24h in mouse neuroblastoma (N2a) and differentiated rat primary neuronal cortical cell cultures (CTX) to induce tau-hyperphosphorylation and oligomerization as a cell-based tauopathy model. Following the treatments, the effectiveness of different kinase inhibitors was assessed using the tauopathy-relevant tau antibodies through tau-immunoblotting, including the sites: pSer202/pThr205 (AT8), pThr181 (AT270), pSer202 (CP13), pSer396/pSer404 (PHF-1), and pThr231 (RZ3). OA-treated samples induced tau phosphorylation and oligomerization at all tested epitopes, forming a monomeric band (46-67 kDa) and oligomeric bands (170 kDa and 240 kDa). We found that TBB (a casein kinase II inhibitor), AR and LiCl (GSK-3 inhibitors), cyclosporin A (calcineurin inhibitor), and Saracatinib (Fyn kinase inhibitor) caused robust inhibition of OA-induced monomeric and oligomeric p-tau in both N2a and CTX culture. Additionally, a cyclin-dependent kinase 5 inhibitor (Roscovitine) and a calcium chelator (EGTA) showed contrasting results between the two neuronal cultures. This study provides a comprehensive view of potential drug candidates (TBB, CsA, AR, and Saracatinib), and their efficacy against tau hyperphosphorylation and oligomerization processes. These findings warrant further experimentation, possibly including animal models of tauopathies, which may provide a putative Neurotherapy for AD, CTE, and other forms of tauopathy-induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Hamad Yadikar
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait
- Department of Chemistry, Chemistry Laboratory Building, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| | - Isabel Torres
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
| | - Gabrielle Aiello
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
| | - Milin Kurup
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
| | - Zhihui Yang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
| | - Fan Lin
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Richard Yost
- Department of Chemistry, Chemistry Laboratory Building, University of Florida, Gainesville, FL, United States of America
| | - Kevin K. Wang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States of America
| |
Collapse
|