51
|
Zhang L, Yi H. Potential antitumor and anti-inflammatory activities of an extracellular polymeric substance (EPS) from Bacillus subtilis isolated from a housefly. Sci Rep 2022; 12:1383. [PMID: 35082324 PMCID: PMC8791979 DOI: 10.1038/s41598-022-05143-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/06/2022] [Indexed: 01/25/2023] Open
Abstract
Bacillus subtilis, a probiotic, has been applied in the medical, food, and feed industries among others. However, the mechanisms of its benefits to hosts are not yet fully understood. Here the characterization and bioactivities of an extracellular polymeric substance (EPS) from Bacillus subtilis were investigated to reveal its partial mechanisms and provide the theoretical basics for further development and utilization of Bacillus subtilis. In this study, the novel strain Bacillus subtilis xztubd1 (GenBank: MG458322.1) was isolated from a housefly's body, identified according to phenotypical and genotypical analyses, and found to produce large amounts of an EPS. Through ultraviolet spectroscopy and Fourier transform infrared spectroscopy (FTIR spectroscopy), the EPS was found to contain a variety of chemical functional groups, such as O-H groups, C=C, C=O, CH3, C-O-H and C-O-C bonds, and alpha-type pyranose. Furthermore, the in vitro antioxidant activity of the EPS on DPPH radicals at a concentration of 90 μg/ml was 62%; on the superoxide radical at a concentration of 90 μg/ml, this value was 75%; and on hydroxyl radicals at a concentration of 90 μg/ml, the activity was 54%. EPS also enhanced significantly phagocytosis, lysozyme activity in macrophages, IL-2 content in mice and inhibited dramatically the growth of HeLa cells. These results showed that the EPS with reductive groups have the strong capacity to scavenge reactive oxygen species (ROS), reinforce the immune system and inhibit the growth of cancer cell, which helps theirs hosts defence against many diseases, including inflammation and cancer. The EPS from Bacillus subtilis has the potential to be an anticancer and anti-inflammatory drug candidate in the pharmaceutical industries, which provide scientific evidence for the development and utilization of probiotic-derived medicines.
Collapse
Affiliation(s)
- Lingxiu Zhang
- School of Life Science, Shanxi University, No. 92 Wucheng Road, Taiyuan, 030006, China.,College of Environment and Resource Sciences, Shanxi University, Taiyuan, 030006, China.,Department of Biology, Xinzhou Teachers University, Xinzhou, 034000, China
| | - Huilan Yi
- School of Life Science, Shanxi University, No. 92 Wucheng Road, Taiyuan, 030006, China.
| |
Collapse
|
52
|
Abo-Lila GM, Sokkar TZN, Seisa EA, Omar EZ. Investigation of the opto-thermo-mechanical properties of antimicrobial PET/TiO 2 fiber using the transport of intensity equation technique. APPLIED PHYSICS. B, LASERS AND OPTICS 2022; 128:15. [PMID: 35013651 PMCID: PMC8732971 DOI: 10.1007/s00340-021-07745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The transport of intensity equation (TIE) technique is used to investigate the effect of stretching and annealing conditions on the optical features and antimicrobial activity of polyethylene terephthalate (PET) fibers treated with TiO2 nanoparticles. The main core of this paper gets the most preferable optical and mechanical properties for PET/TiO2 fiber which maintains its antibacterial activity. The variation of the refractive index of untreated PET/TiO2 fiber along its axis is studied. The computed tomography technique is used to investigate the morphology of the tested fiber and the distribution of TiO2 nanoparticles inside the fiber. The effect of stretching on the refractive index and the density of TiO2 nanoparticles of drawn PET/TiO2 fibers are carried out. The antimicrobial activity of the PET/TiO2 fibers are evaluated before and after stretching. The PET/TiO2 fibers are annealed at different temperatures and durations. The influence of annealing on the variation of the refractive index of PET/TiO2 fiber along its axis and the distribution of TiO2 is investigated.
Collapse
Affiliation(s)
- G. M. Abo-Lila
- Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - T. Z. N. Sokkar
- Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - E. A. Seisa
- Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - E. Z. Omar
- Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
- Physics Department, Faculty of Science, New Mansoura University, New Mansoura City, Egypt
| |
Collapse
|
53
|
Mycotoxin Interactions along the Gastrointestinal Tract: In Vitro Semi-Dynamic Digestion and Static Colonic Fermentation of a Contaminated Meal. Toxins (Basel) 2022; 14:toxins14010028. [PMID: 35051005 PMCID: PMC8779761 DOI: 10.3390/toxins14010028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 02/04/2023] Open
Abstract
Aflatoxin B1 (AFB1) and ochratoxin A (OTA) naturally co-occur in several foods, but no studies have followed the fate of mycotoxins' interactions along the gastrointestinal tract using in vitro digestion models. This study used a novel semi-dynamic model that mimics gradual acidification and gastric emptying, coupled with a static colonic fermentation phase, in order to monitor mycotoxins' bioaccessibility by the oral route. AFB1 and OTA bioaccessibility patterns differed in single or co-exposed scenarios. When co-exposed (MIX meal), AFB1 bioaccessibility at the intestinal level increased by ~16%, while OTA bioaccessibility decreased by ~20%. Additionally, a significant increase was observed in both intestinal cell viability and NO production. With regard to mycotoxin-probiotic interactions, the MIX meal showed a null effect on Lactobacillus and Bifidobacterium strain growth, while isolated AFB1 reduced bacterial growth parameters. These results were confirmed at phylum and family levels using a gut microbiota approach. After colonic fermentation, the fecal supernatant did not trigger the NF-kB activation pathway, indicating reduced toxicity of mycotoxins. In conclusion, if single exposed, AFB1 will have a significant impact on intestinal viability and probiotic growth, while OTA will mostly trigger NO production; in a co-exposure situation, both intestinal viability and inflammation will be affected, but the impact on probiotic growth will be neglected.
Collapse
|
54
|
Zafar H, Saier MH. Comparative Analyses of the Transport Proteins Encoded within the Genomes of nine Bifidobacterium Species. Microb Physiol 2022; 32:30-44. [PMID: 34555832 PMCID: PMC8940750 DOI: 10.1159/000518954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 08/02/2021] [Indexed: 01/03/2023]
Abstract
The human microbiome influences human health in both negative and positive ways. Studies on the transportomes of these organisms yield information that may be utilized for various purposes, including the identification of novel drug targets and the manufacture of improved probiotic strains. Moreover, these genomic analyses help to improve our understanding of the physiology and metabolic capabilities of these organisms. The present study is a continuation of our studies on the transport proteins of the major gut microbes. Bifidobacterium species are essential members of the human gut microbiome, and they initiate colonization of the gut at birth, providing health benefits that last a lifetime. In this study we analyze the transportomes of nine bifidobacterial species: B. adolescentis, B. animalis, B. bifidum, B. breve, B. catenulatum, B. dentium, B. longum subsp. infantis, B. longum subsp. longum, and B. pseudocatenulatum. All of these species have proven probiotic characteristics and exert beneficial effects on human health. Surprisingly, we found that all nine of these species have similar pore-forming toxins and drug exporters that may play roles in pathogenesis. These species have transporters for amino acids, carbohydrates, and proteins, essential for their organismal lifestyles and adaption to their respective ecological niches. The strictly probiotic species, B. bifidum, however, contains fewer such transporters, thus indicative of limited interactions with host cells and other gut microbial counterparts. The results of this study were compared with those of our previous studies on the transportomes of multiple species of Bacteroides, Escherichia coli/Salmonella, and Lactobacillus. Overall, bifidobacteria have larger transportomes (based on percentages of total proteins) than the previously examined groups of bacterial species, with a preference for primary active transport systems over secondary carriers. Taken together, these results provide useful information about the physiologies and pathogenic potentials of these probiotic organisms as reflected by their transportomes.
Collapse
Affiliation(s)
- Hassan Zafar
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116.,Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.,Corresponding Authors HZ: Tel: +420773283624, ; MS: Tel: +1 858 534 4084, Fax: +1 858 534 7108,
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116.,Corresponding Authors HZ: Tel: +420773283624, ; MS: Tel: +1 858 534 4084, Fax: +1 858 534 7108,
| |
Collapse
|
55
|
Islam MT, Quispe C, Martorell M, Docea AO, Salehi B, Calina D, Reiner Ž, Sharifi-Rad J. Dietary supplements, vitamins and minerals as potential interventions against viruses: Perspectives for COVID-19. INT J VITAM NUTR RES 2022; 92:49-66. [PMID: 33435749 DOI: 10.1024/0300-9831/a000694] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The novel coronavirus (SARS-CoV-2) causing COVID-19 disease pandemic has infected millions of people and caused more than thousands of deaths in many countries across the world. The number of infected cases is increasing day by day. Unfortunately, we do not have a vaccine and specific treatment for it. Along with the protective measures, respiratory and/or circulatory supports and some antiviral and retroviral drugs have been used against SARS-CoV-2, but there are no more extensive studies proving their efficacy. In this study, the latest publications in the field have been reviewed, focusing on the modulatory effects on the immunity of some natural antiviral dietary supplements, vitamins and minerals. Findings suggest that several dietary supplements, including black seeds, garlic, ginger, cranberry, orange, omega-3 and -6 polyunsaturated fatty acids, vitamins (e.g., A, B vitamins, C, D, E), and minerals (e.g., Cu, Fe, Mg, Mn, Na, Se, Zn) have anti-viral effects. Many of them act against various species of respiratory viruses, including severe acute respiratory syndrome-related coronaviruses. Therefore, dietary supplements, including vitamins and minerals, probiotics as well as individual nutritional behaviour can be used as adjuvant therapy together with antiviral medicines in the management of COVID-19 disease.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico (UDT), Concepción, Chile
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Romania
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Romania
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Croatia
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| |
Collapse
|
56
|
Efstathiou V, Stefanou MI, Siafakas N, Makris M, Tsivgoulis G, Zoumpourlis V, Spandidos DA, Smyrnis N, Rizos E. Suicidality and COVID-19: Suicidal ideation, suicidal behaviors and completed suicides amidst the COVID-19 pandemic (Review). Exp Ther Med 2022; 23:107. [PMID: 34976149 PMCID: PMC8674972 DOI: 10.3892/etm.2021.11030] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Since the outbreak of the coronavirus 2019 (COVID-19) pandemic, there has been widespread concern that social isolation, financial stress, depression, limited or variable access to health care services and other pandemic-related stressors may contribute to an increase in suicidal behaviors. In patients who have recovered from COVID-19, an increased risk of developing suicidal behaviors may be noted, while post-COVID syndrome comprises another potential risk factor contributing to increased suicidal behaviors. Despite the initial alarming predictions for an increase in suicide rates due to the COVID-19 pandemic, the majority of published studies to date suggest that experienced difficulties and distress do not inevitably translate into an increased number of suicide-related deaths, at least not in the short-term. Nevertheless, the long-term mental health effects of the COVID-19 pandemic have yet to be unfolded and are likely to remain for a long period of time. Suicide prevention and measures aiming at promoting well-being and mitigating the effects of COVID-19 on mental health, particularly among vulnerable groups, should thus be a priority for healthcare professionals and policymakers amidst the evolving COVID-19 pandemic.
Collapse
Affiliation(s)
- Vasiliki Efstathiou
- Second Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, ‘Attikon’ University General Hospital, Athens 12462, Greece
| | - Maria-Ioanna Stefanou
- Second Department of Neurology, Medical School, National and Kapodistrian University of Athens, ‘Attikon’ University General Hospital, Athens 12462, Greece
| | - Nikolaos Siafakas
- Clinical Microbiology Laboratory, Medical School, National and Kapodistrian University of Athens, ‘Attikon’ University General Hospital, Athens 12462, Greece
| | - Michael Makris
- Allergy Unit, Medical School, National and Kapodistrian University of Athens, ‘Attikon’ University General Hospital, Athens 12462, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, Medical School, National and Kapodistrian University of Athens, ‘Attikon’ University General Hospital, Athens 12462, Greece
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Vassilios Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), Athens 11635, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Nikolaos Smyrnis
- Second Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, ‘Attikon’ University General Hospital, Athens 12462, Greece
| | - Emmanouil Rizos
- Second Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, ‘Attikon’ University General Hospital, Athens 12462, Greece
| |
Collapse
|
57
|
de Souza da Motta A, Nespolo CR, Breyer GM. Probiotics in milk and dairy foods. PROBIOTICS 2022:103-128. [DOI: 10.1016/b978-0-323-85170-1.00004-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
58
|
Hossain R, Quispe C, Herrera-Bravo J, Islam MS, Sarkar C, Islam MT, Martorell M, Cruz-Martins N, Al-Harrasi A, Al-Rawahi A, Sharifi-Rad J, Ibrayeva M, Daştan SD, Alshehri MM, Calina D, Cho WC. Lasia spinosa Chemical Composition and Therapeutic Potential: A Literature-Based Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1602437. [PMID: 34992714 PMCID: PMC8727140 DOI: 10.1155/2021/1602437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/08/2021] [Accepted: 12/03/2021] [Indexed: 12/14/2022]
Abstract
Lasia spinosa (L.) is used ethnobotanically for the treatment of various diseases, including rheumatoid arthritis, inflammation of the lungs, bleeding cough, hemorrhoids, intestinal diseases, stomach pain, and uterine cancer. This review is aimed at summarizing phytochemistry and pharmacological data with their molecular mechanisms of action. A search was performed in databases such as PubMed, Science Direct, and Google Scholar using the keywords: "Lasia spinosa," then combined with "ethnopharmacological use," "phytochemistry," and "pharmacological activity." This updated review included studies with in vitro, ex vivo, and in vivo experiments with compounds of known concentration and highlighted pharmacological mechanisms. The research results showed that L. spinosa contains many important nutritional and phytochemical components such as alkanes, aldehydes, alkaloids, carotenoids, flavonoids, fatty acids, ketones, lignans, phenolics, terpenoids, steroids, and volatile oil with excellent bioactivity. The importance of this review lies in the fact that scientific pharmacological evidence supports the fact that the plant has antioxidant, anti-inflammatory, antimicrobial, cytotoxic, antidiarrheal, antihelminthic, antidiabetic, antihyperlipidemic, and antinociceptive effects, while protecting the gastrointestinal system and reproductive. Regarding future toxicological and safety data, more research is needed, including studies on human subjects. In light of these data, L. spinosa can be considered a medicinal plant with effective bioactives for the adjuvant treatment of various diseases in humans.
Collapse
Affiliation(s)
- Rajib Hossain
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Md. Shahazul Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Chandan Sarkar
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, And Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción 4070386, Chile
| | - Natália Cruz-Martins
- Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
- TOXRUN – Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Almouz, 616, Oman
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Almouz, 616, Oman
| | | | - Manshuk Ibrayeva
- Faculty of Science and Technology, The Caspian University of Technology and Engineering Named after Sh. Yessenov, Aktau, Kazakhstan
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
59
|
Akram M, Ali SA, Behare P, Kaul G. Dietary intake of probiotic fermented milk benefits the gut and reproductive health in mice fed with an obesogenic diet. Food Funct 2021; 13:737-752. [PMID: 34939079 DOI: 10.1039/d1fo02501e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Probiotics have been suggested as alternatives to pharmacological drugs in the treatment of a variety of medical problems, including obesity management, which is often linked to low sperm production. Also, probiotic fermented products are known to boost host immune response, immunosenescence, infection tolerance, and redox homeostasis, but their direct role in male fertility has been less investigated. This study assessed the effect of two probiotic strains, L. fermentum NCDC 400 and L. rhamnosus NCDC 610, and fructooligosaccharide (FOS) fermented milk supplementation. We identified the significantly reduced oxidative stress markers in the plasma and liver of HF diet-fed animals. We determined the role of key testicular enzymes of steroidogenic pathway genes StAR, P450scc, and 17βHSD in maintaining the testosterone concentration and restoring testicular structures. In conclusion, the present work illustrated the ability of both probiotics L. fermentum NCDC 400 and L. rhamnosus NCDC 610 as regulatory agents with beneficial effects on weight loss and endogenous testosterone with substantially improved sperm motility in male diet-induced obesity (DIO) models. Our findings indicate that fermented milk supplementation may be an alternative treatment for preventing obesity and other related metabolic syndromes.
Collapse
Affiliation(s)
- Mohd Akram
- Semen Biology Lab, Animal Biochemistry Division, National Dairy Research Institute, Haryana, India
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, National Dairy Research Institute, Haryana, India
| | - Pradip Behare
- National Collection of Dairy Cultures (NCDC) Lab, Dairy Microbiology Division, ICAR, National Dairy Research Institute, Karnal, Haryana, India
| | - Gautam Kaul
- Semen Biology Lab, Animal Biochemistry Division, National Dairy Research Institute, Haryana, India
| |
Collapse
|
60
|
Islam MT, Quispe C, El-Kersh DM, Shill MC, Bhardwaj K, Bhardwaj P, Sharifi-Rad J, Martorell M, Hossain R, Al-Harrasi A, Al-Rawahi A, Butnariu M, Rotariu LS, Suleria HAR, Taheri Y, Docea AO, Calina D, Cho WC. A Literature-Based Update on Benincasa hispida (Thunb.) Cogn.: Traditional Uses, Nutraceutical, and Phytopharmacological Profiles. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6349041. [PMID: 34925698 PMCID: PMC8683187 DOI: 10.1155/2021/6349041] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/29/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022]
Abstract
Benincasa hispida (Thunb.) Cogn. (Cucurbitaceae) is an annual climbing plant, native to Asia with multiple therapeutic uses in traditional medicine. This updated review is aimed at discussing the ethnopharmacological, phytochemical, pharmacological properties, and molecular mechanisms highlighted in preclinical experimental studies and toxicological safety to evaluate the therapeutic potential of this genus. The literature from PubMed, Google Scholar, Elsevier, Springer, Science Direct, and database was analyzed using the basic keyword "Benincasa hispida." Other searching strategies, including online resources, books, and journals, were used. The taxonomy of the plant has been made by consulting "The Plant List". The results showed that B. hispida has been used in traditional medicine to treat neurological diseases, kidney disease, fever, and cough accompanied by thick mucus and to fight intestinal worms. The main bioactive compounds contained in Benincasa hispida have cytotoxic, anti-inflammatory, and anticancer properties. Further safety and efficacy investigations are needed to confirm these beneficial therapeutic effects and also future human clinical studies.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (Dhaka) 8100, Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Dina M. El-Kersh
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt (BUE), El Sherouk, Cairo Governorate, Egypt
| | - Manik Chandra Shill
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Kanchan Bhardwaj
- Department of Botany, Shoolini University of Biotechnology and Management Sciences, Solan-173229, H. P., India
| | - Prerna Bhardwaj
- Department of Botany, Shoolini University of Biotechnology and Management Sciences, Solan-173229, H. P., India
| | | | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Rajib Hossain
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (Dhaka) 8100, Bangladesh
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Almouz, 616, Oman
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Almouz, 616, Oman
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, 300645, Calea Aradului 119, Timis, Romania
| | - Lia Sanda Rotariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, 300645, Calea Aradului 119, Timis, Romania
| | | | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 42 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
61
|
Kostoff RN, Calina D, Kanduc D, Briggs MB, Vlachoyiannopoulos P, Svistunov AA, Tsatsakis A. Why are we vaccinating children against COVID-19? Toxicol Rep 2021; 8:1665-1684. [PMID: 34540594 PMCID: PMC8437699 DOI: 10.1016/j.toxrep.2021.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/11/2021] [Accepted: 08/29/2021] [Indexed: 12/20/2022] Open
Abstract
This article examines issues related to COVID-19 inoculations for children. The bulk of the official COVID-19-attributed deaths per capita occur in the elderly with high comorbidities, and the COVID-19 attributed deaths per capita are negligible in children. The bulk of the normalized post-inoculation deaths also occur in the elderly with high comorbidities, while the normalized post-inoculation deaths are small, but not negligible, in children. Clinical trials for these inoculations were very short-term (a few months), had samples not representative of the total population, and for adolescents/children, had poor predictive power because of their small size. Further, the clinical trials did not address changes in biomarkers that could serve as early warning indicators of elevated predisposition to serious diseases. Most importantly, the clinical trials did not address long-term effects that, if serious, would be borne by children/adolescents for potentially decades. A novel best-case scenario cost-benefit analysis showed very conservatively that there are five times the number of deaths attributable to each inoculation vs those attributable to COVID-19 in the most vulnerable 65+ demographic. The risk of death from COVID-19 decreases drastically as age decreases, and the longer-term effects of the inoculations on lower age groups will increase their risk-benefit ratio, perhaps substantially.
Collapse
Affiliation(s)
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Italy
| | | | | | - Andrey A. Svistunov
- Department of Pharmacology, I.M.Sechenov First Moscow State Medical University (Sechenov University), 119146, Moscow, Russia
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003, Heraklion, Greece
| |
Collapse
|
62
|
Sharifi-Rad J, Cruz-Martins N, López-Jornet P, Lopez EPF, Harun N, Yeskaliyeva B, Beyatli A, Sytar O, Shaheen S, Sharopov F, Taheri Y, Docea AO, Calina D, Cho WC. Natural Coumarins: Exploring the Pharmacological Complexity and Underlying Molecular Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6492346. [PMID: 34531939 PMCID: PMC8440074 DOI: 10.1155/2021/6492346] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 11/25/2022]
Abstract
Coumarins belong to the benzopyrone family commonly found in many medicinal plants. Natural coumarins demonstrated a wide spectrum of pharmacological activities, including anti-inflammatory, anticoagulant, anticancer, antibacterial, antimalarial, casein kinase-2 (CK2) inhibitory, antifungal, antiviral, Alzheimer's disease inhibition, neuroprotective, anticonvulsant, phytoalexins, ulcerogenic, and antihypertensive. There are very few studies on the bioavailability of coumarins; therefore, further investigations are necessitated to study the bioavailability of different coumarins which already showed good biological activities in previous studies. On the evidence of varied pharmacological properties, the present work presents an overall review of the derivation, availability, and biological capacities of coumarins with further consideration of the essential mode of their therapeutic actions. In conclusion, a wide variety of coumarins are available, and their pharmacological activities are of current interest thanks to their synthetic accessibility and riches in medicinal plants. Coumarins perform the valuable function as therapeutic agents in a range of medical fields.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116, Gandra, PRD, Portugal
| | - Pía López-Jornet
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca-UMU), Clínica Odontológica Universitaria Hospital Morales Meseguer, Adv. Marques de los Velez s/n, 30008 Murcia, Spain
| | - Eduardo Pons-Fuster Lopez
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca-UMU), Clínica Odontológica Universitaria Hospital Morales Meseguer, Adv. Marques de los Velez s/n, 30008 Murcia, Spain
| | - Nidaa Harun
- Lahore College for Women University, Lahore, Pakistan
| | - Balakyz Yeskaliyeva
- Al-Farabi Kazakh National University, Faculty of Chemistry and Chemical Technology, Almaty 050040, Kazakhstan
| | - Ahmet Beyatli
- University of Health Sciences, Department of Medicinal and Aromatic Plants, Istanbul 34668, Turkey
| | - Oksana Sytar
- Department of Plant Biology Department, Taras Shevchenko National University of Kyiv, Institute of Biology, Volodymyrska Str., 64, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, A. Hlinku 2, 94976 Nitra, Slovakia
| | | | - Farukh Sharopov
- Research Institution “Chinese-Tajik Innovation Center for Natural Products”, Academy of Sciences of the Republic of Tajikistan, Ayni 299/2, Dushanbe 734063, Tajikistan
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
63
|
Novel insights on gut microbiota manipulation and immune checkpoint inhibition in cancer (Review). Int J Oncol 2021; 59:75. [PMID: 34396439 PMCID: PMC8360620 DOI: 10.3892/ijo.2021.5255] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer affects millions of individuals worldwide. Thus, there is an increased need for the development of novel effective therapeutic approaches. Tumorigenesis is often coupled with immunosuppression which defeats the anticancer immune defense mechanisms activated by the host. Novel anticancer therapies based on the use of immune checkpoint inhibitors (ICIs) are very promising against both solid and hematological tumors, although still exhibiting heterogeneous efficacy, as well as tolerability. Such a differential response seems to derive from individual diversity, including the gut microbiota (GM) composition of specific patients. Experimental evidence supports the key role played by the GM in the activation of the immune system response against malignancies. This observation suggests to aim for patient-tailored complementary therapies able to modulate the GM, enabling the selective enrichment in microbial species, which can improve the positive outcome of ICI-based immunotherapy. Moreover, the research of GM-derived predictive biomarkers may help to identify the selected cancer population, which can benefit from ICI-based therapy, without the occurrence of adverse reactions and/or cancer relapse. The present review summarizes the landmark studies published to date, which have contributed to uncovering the tight link existing between GM composition, cancer development and the host immune system. Bridging this triangle of interactions may ultimately guide towards the identification of novel biomarkers, as well as integrated and patient-tailored anticancer approaches with greater efficacy.
Collapse
|
64
|
Sharifi-Rad J, Quispe C, Imran M, Rauf A, Nadeem M, Gondal TA, Ahmad B, Atif M, Mubarak MS, Sytar O, Zhilina OM, Garsiya ER, Smeriglio A, Trombetta D, Pons DG, Martorell M, Cardoso SM, Razis AFA, Sunusi U, Kamal RM, Rotariu LS, Butnariu M, Docea AO, Calina D. Genistein: An Integrative Overview of Its Mode of Action, Pharmacological Properties, and Health Benefits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3268136. [PMID: 34336089 PMCID: PMC8315847 DOI: 10.1155/2021/3268136] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022]
Abstract
Genistein is an isoflavone first isolated from the brooming plant Dyer's Genista tinctoria L. and is widely distributed in the Fabaceae family. As an isoflavone, mammalian genistein exerts estrogen-like functions. Several biological effects of genistein have been reported in preclinical studies, such as the antioxidant, anti-inflammatory, antibacterial, and antiviral activities, the effects of angiogenesis and estrogen, and the pharmacological activities on diabetes and lipid metabolism. The purpose of this review is to provide up-to-date evidence of preclinical pharmacological activities with mechanisms of action, bioavailability, and clinical evidence of genistein. The literature was researched using the most important keyword "genistein" from the PubMed, Science, and Google Scholar databases, and the taxonomy was validated using The Plant List. Data were also collected from specialized books and other online resources. The main positive effects of genistein refer to the protection against cardiovascular diseases and to the decrease of the incidence of some types of cancer, especially breast cancer. Although the mechanism of protection against cancer involves several aspects of genistein metabolism, the researchers attribute this effect to the similarity between the structure of soy genistein and that of estrogen. This structural similarity allows genistein to displace estrogen from cellular receptors, thus blocking their hormonal activity. The pharmacological activities resulting from the experimental studies of this review support the traditional uses of genistein, but in the future, further investigations are needed on the efficacy, safety, and use of nanotechnologies to increase bioavailability and therapeutic efficacy.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar-, 23561 Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari-, Pakistan
| | | | - Bashir Ahmad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar-, 25120 KPK, Pakistan
| | - Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia
| | | | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovakia
| | - Oxana Mihailovna Zhilina
- Department of Organic Chemistry, Pyatigorsk Medical-Pharmaceutical Institute (PMPI), Branch of Volgograd State Medical University, Ministry of Health of Russia, Pyatigorsk 357532, Russia
| | - Ekaterina Robertovna Garsiya
- Department of Pharmacognosy, Botany and Technology of Phytopreparations, Pyatigorsk Medical-Pharmaceutical Institute (PMPI), Branch of Volgograd State Medical University, Ministry of Health of Russia, Pyatigorsk 357532, Russia
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional (GMOT), Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears (UIB), Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma 07122, Spain
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepción 4070386, Chile
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Usman Sunusi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Bayero University Kano, PMB 3011 Kano, Nigeria
| | - Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Pharmacology, Federal University Dutse, PMB 7156 Dutse Jigawa State, Nigeria
| | - Lia Sanda Rotariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Romania
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Romania
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
65
|
Bielik V, Kolisek M. Bioaccessibility and Bioavailability of Minerals in Relation to a Healthy Gut Microbiome. Int J Mol Sci 2021; 22:ijms22136803. [PMID: 34202712 PMCID: PMC8268569 DOI: 10.3390/ijms22136803] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Adequate amounts of a wide range of micronutrients are needed by body tissues to maintain health. Dietary intake must be sufficient to meet these micronutrient requirements. Mineral deficiency does not seem to be the result of a physically active life or of athletic training but is more likely to arise from disturbances in the quality and quantity of ingested food. The lack of some minerals in the body appears to be symbolic of the modern era reflecting either the excessive intake of empty calories or a negative energy balance from drastic weight-loss diets. Several animal studies provide convincing evidence for an association between dietary micronutrient availability and microbial composition in the gut. However, the influence of human gut microbiota on the bioaccessibility and bioavailability of trace elements in human food has rarely been studied. Bacteria play a role by effecting mineral bioavailability and bioaccessibility, which are further increased through the fermentation of cereals and the soaking and germination of crops. Moreover, probiotics have a positive effect on iron, calcium, selenium, and zinc in relation to gut microbiome composition and metabolism. The current literature reveals the beneficial effects of bacteria on mineral bioaccessibility and bioavailability in supporting both the human gut microbiome and overall health. This review focuses on interactions between the gut microbiota and several minerals in sport nutrition, as related to a physically active lifestyle.
Collapse
Affiliation(s)
- Viktor Bielik
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, 81469 Bratislava, Slovakia
- Correspondence:
| | - Martin Kolisek
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| |
Collapse
|
66
|
Staniszewski A, Kordowska-Wiater M. Probiotic and Potentially Probiotic Yeasts-Characteristics and Food Application. Foods 2021; 10:1306. [PMID: 34200217 PMCID: PMC8228341 DOI: 10.3390/foods10061306] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Besides the well-known and tested lactic acid bacteria, yeasts may also be probiotics. The subject of probiotic and potentially probiotic yeasts has been developing and arising potential for new probiotic products with novel properties, which are not offered by bacteria-based probiotics available on the current market. The paper reviews the first probiotic yeast Saccharomyces cerevisiae var. boulardii, its characteristics, pro-healthy activities and application in functional food production. This species offers such abilities as improving digestion of certain food ingredients, antimicrobial activities and even therapeutic properties. Besides Saccharomyces cerevisiae var. boulardii, on this background, novel yeasts with potentially probiotic features are presented. They have been intensively investigated for the last decade and some species have been observed to possess probiotic characteristics and abilities. There are yeasts from the genera Debaryomyces, Hanseniaspora, Pichia, Meyerozyma, Torulaspora, etc. isolated from food and environmental habitats. These potentially probiotic yeasts can be used for production of various fermented foods, enhancing its nutritional and sensory properties. Because of the intensively developing research on probiotic yeasts in the coming years, we can expect many discoveries and possibly even evolution in the segment of probiotics available on the market.
Collapse
Affiliation(s)
| | - Monika Kordowska-Wiater
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland;
| |
Collapse
|
67
|
Hernández-Ceballos W, Cordova-Gallardo J, Mendez-Sanchez N. Gut Microbiota in Metabolic-associated Fatty Liver Disease and in Other Chronic Metabolic Diseases. J Clin Transl Hepatol 2021; 9:227-238. [PMID: 34007805 PMCID: PMC8111113 DOI: 10.14218/jcth.2020.00131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
The gut microbiome plays a key role in the health-disease balance in the human body. Although its composition is unique for each person and tends to remain stable throughout lifetime, it has been shown that certain bacterial patterns may be determining factors in the onset of certain chronic metabolic diseases, such as type 2 diabetes mellitus (T2DM), obesity, metabolic-associated fatty liver disease (MAFLD), and metabolic syndrome. The gut-liver axis embodies the close relationship between the gut and the liver; disturbance of the normal gut microbiota, also known as dysbiosis, may lead to a cascade of mechanisms that modify the epithelial properties and facilitate bacterial translocation. Regulation of gut microbiota is fundamental to maintaining gut integrity, as well as the bile acids composition. In the present review, we summarize the current knowledge regarding the microbiota, bile acids composition and their association with MAFLD, obesity, T2DM and metabolic syndrome.
Collapse
Affiliation(s)
- Winston Hernández-Ceballos
- Plan of Combined Studies in Medicine (PECEM-MD/PhD), Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Jacqueline Cordova-Gallardo
- Department of Hepatology, Service of Surgery and Obesity Clinic, General Hospital “Dr. Manuel Gea González”, Mexico City, Mexico
- Faculty of Medicine. National Autonomous University of Mexico, Mexico City, Mexico
| | - Nahum Mendez-Sanchez
- Faculty of Medicine. National Autonomous University of Mexico, Mexico City, Mexico
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| |
Collapse
|
68
|
Nonalcoholic Fatty Liver Disease: Focus on New Biomarkers and Lifestyle Interventions. Int J Mol Sci 2021; 22:ijms22083899. [PMID: 33918878 PMCID: PMC8069944 DOI: 10.3390/ijms22083899] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is considered a hepatic manifestation of metabolic syndrome, characterized from pathological changes in lipid and carbohydrate metabolism. Its main characteristics are excessive lipid accumulation and oxidative stress, which create a lipotoxic environment in hepatocytes leading to liver injury. Recently, many studies have focused on the identification of the genetic and epigenetic modifications that also contribute to NAFLD pathogenesis and their prognostic implications. The present review is aimed to discuss on cellular and metabolic alterations associated with NAFLD, which can be helpful to identify new noninvasive biomarkers. The identification of accumulated lipids in the cell membranes, as well as circulating cytokeratins and exosomes, provides new insights in understanding of NAFLD. This review also suggests that lifestyle modifications remain the main prevention and/or treatment for NAFLD.
Collapse
|
69
|
Hossain MN, Ranadheera CS, Fang Z, Ajlouni S. Impact of encapsulating probiotics with cocoa powder on the viability of probiotics during chocolate processing, storage, and in vitro gastrointestinal digestion. J Food Sci 2021; 86:1629-1641. [PMID: 33822381 DOI: 10.1111/1750-3841.15695] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 11/30/2022]
Abstract
Chocolates can be formulated as a functional food via enrichment with probiotics. However, the added probiotics must overcome the challenges of processing and storage conditions and the harsh gastrointestinal environment. The study aimed to overcome these challenges using two different formulations of cocoa powder as alternative encapsulants along with Na-alginate (A1 ) and Na-alginate and fructooligosaccharides (A2 ). Seven different probiotic strains were encapsulated individually using the new formulations and viabilities of these encapsulated probiotics were assessed prior to and after they were added to chocolates. The highest achieved encapsulation efficiencies were 93.40% for formulation A1 (with Lactobacillus casei) and 95.36% for formulation A2 (with Lactobacillus acidophilus La5). The encapsulated probiotics with the new formulations maintained higher viability than the recommended therapeutic level (107 colony forming unit [CFU]/g) for up to 180 and 120 days of storage at 4 and 25 °C, respectively. The tested encapsulants improved probiotics survival when subjected to thermal stress and maintained about 9.0 Logs CFU/g at 60 °C. Additionally, the viable numbers of probiotics in fortified chocolates showed higher than 7 Logs CFU/g after 90 days of storage at 25 °C. Both formulations exhibited significantly (P < 0.05) high survivability of probiotics (8.0 Logs CFU/g) during the in vitro gastrointestinal digestion. This study demonstrated that cocoa powder along with Na-alginate and FOS has the potential to be used as a probiotic encapsulating material, and chocolates could be an excellent carrier for the development of healthy probiotic chocolate products. PRACTICAL APPLICATION: The introduction of cocoa powder as an effective encapsulating agent to deliver probiotics could help the chocolate industry to develop healthy and attractive functional snacks for health-conscious consumers.
Collapse
Affiliation(s)
- Md Nur Hossain
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia.,Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka, 1205, Bangladesh
| | - Chaminda Senaka Ranadheera
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Zhongxiang Fang
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Said Ajlouni
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
70
|
Yenuganti VR, Yadala R, Azad R, Singh S, Chiluka V, Ahire J, Reddanna P. In vitro evaluation of anticancer effects of different probiotic strains on HCT-116 cell line. J Appl Microbiol 2021; 131:1958-1969. [PMID: 33694215 DOI: 10.1111/jam.15060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/11/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022]
Abstract
AIM Since the evolution of man, microbes are associated with humans, playing a vital role in the maintenance of good health. However, an imbalance in the gut microbial ecosystem is associated with several diseases including colorectal cancer (CRC). The supplementation with probiotics has been proven to be beneficial in improving CRC. In this study, we have evaluated the anticancer effects of 11 probiotic strains on human colorectal carcinoma cell line (HCT-116). METHODS AND RESULTS In this study, HCT-116 cells were treated with various concentrations (0·5, 5, 10, 20 and 200 million CFU per ml) of probiotic strains. The viability was analysed using a MTT assay and IC50 values were determined. Besides this, we evaluated the expression of multiple genes involved in the apoptosis and stress tolerance by real-time PCR. Lactobacillus reuteri (UBLRu-87), Saccharomyces boulardii (Unique-28), Bacillus clausii (UBBC-07), Bacillus coagulans (Unique-IS2), Streptococcus salivarius (UBSS-01), Lactobacillus fermentum (UBLF-31), Lactobacillus salivarius (UBLS-22), Bifidobacterium bifidum (UBBB-55) and Lactobacillus plantarum (UBLP-40) exhibited potent cytotoxicity on HCT 116 cells. Furthermore, UBLF-31 and Unique-28 induced the expression of CJUN, CFOS and CASP-9, and downregulated the expression of BCL6. UBLRu-87 and UBBB-55 induced the expression of CJUN, CFOS and CASP-9 but not BCL-6. UBLP-40, UBBC-07, UBLS-22, and Unique-IS2 induced the expression of CJUN and CASP-9 and downregulated the expression of BCL-6. CONCLUSION These studies indicate the anticancer effects of selected probiotic strains by inducing apoptosis. SIGNIFICANCE AND IMPACT OF THE STUDY The probiotic strains with the anticancer effects identified in this study can be proposed as potential candidates in the treatment of CRCs.
Collapse
Affiliation(s)
- V R Yenuganti
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - R Yadala
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - R Azad
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - S Singh
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - V Chiluka
- Department of Biological Sciences, School of Applied Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - J Ahire
- Centre for Research & Development, Unique Biotech Ltd, Hyderabad, Telangana, India
| | - P Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
71
|
Tsoukalas D, Zlatian O, Mitroi M, Renieri E, Tsatsakis A, Izotov BN, Burada F, Sosoi S, Burada E, Buga AM, Rogoveanu I, Docea AO, Calina D. A Novel Nutraceutical Formulation Can Improve Motor Activity and Decrease the Stress Level in a Murine Model of Middle-Age Animals. J Clin Med 2021; 10:624. [PMID: 33562115 PMCID: PMC7915416 DOI: 10.3390/jcm10040624] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Ageing is a genetically programmed physiological process that is modulated by numerous environmental factors, associated with decreasing physiological function, decreasing reproductive rate and increasing age-related mortality rate. Maintaining mobility performance and physical function in the elderly is the main objective of the successful ageing concept. In this study, we aimed to evaluate the beneficial effect of a novel nutraceutical formulation containing Centella asiatica L. extract, vitamin C, zinc and vitamin D3 (as cholecalciferol) on motor activity and anxiety with the use of a murine model of old animals, as a means of providing proof for clinical use in the elderly, for enhancing physical strength and improving life quality. Eighteen Sprague Dawley 18 months old male rats were divided into three groups and received corn oil (the control group) or 1 capsule/kg bw Reverse supplement (treatment group 1) or 2 capsules/kg bw Reverse supplement (treatment group 2), for a period of 3 months. The Reverse supplement (Natural Doctor S.A, Athens, Greece) contains 9 mg Centella asiatica L. extract, vitamin C (200 mg as magnesium ascorbate), zinc (5 mg as zinc citrate), vitamin D3 (50 µg as cholecalciferol) per capsule. Before and after the treatment, the motor function and behavioral changes for anxiety and depression were evaluated using the open-field test, elevated plus-maze test and rotarod test. The supplementation with Reverse (Natural Doctor S.A) supplement can improve the locomotor activity in old rats in a dose-dependent manner, as demonstrated by an increase in the latency to leave from the middle square, in the number of rearings in the open field test, in the time spent in the open arms and time spent in the center in the elevated plus-maze test and the latency to all in all three consecutive trials in the rotarod test. Stress also decreased significantly in a dose-dependent manner, following the treatment with Reverse supplement, as was demonstrated by the decrease in the number of groomings at the open field test and time spent in the dark and the number of groomings at the elevated plus-maze test.
Collapse
Affiliation(s)
- Dimitris Tsoukalas
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Metabolomic Medicine, Health Clinic for Autoimmune and Chronic Diseases, 10674 Athens, Greece
- European Institute of Nutritional Medicine (E.I.Nu.M.), 00198 Rome, Italy
| | - Ovidiu Zlatian
- Department of Microbiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Mihaela Mitroi
- ENT Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Elisavet Renieri
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece; (E.R.); (A.T.)
| | - Aristidis Tsatsakis
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece; (E.R.); (A.T.)
- Department of Analytical and Forensic Medical Toxicology, Sechenov University, 119991 Moscow, Russia;
| | - Boris Nikolaevich Izotov
- Department of Analytical and Forensic Medical Toxicology, Sechenov University, 119991 Moscow, Russia;
| | - Florin Burada
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (F.B.); (S.S.)
| | - Simona Sosoi
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (F.B.); (S.S.)
| | - Emilia Burada
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Ana Maria Buga
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Ion Rogoveanu
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
72
|
Wang R, Luo X, Liu F, Luo S. Confronting the threat of SARS-CoV-2: Realities, challenges and therapeutic strategies (Review). Exp Ther Med 2021; 21:155. [PMID: 33456522 PMCID: PMC7807638 DOI: 10.3892/etm.2020.9587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
The novel coronavirus (SARS-CoV-2) appeared in2019 in Wuhan, China, and rapidly developed into a global pandemic. The disease has affected not only health care systems and economies worldwide but has also changed the lifestyles and habits of the majority of the world's population. Among the potential targets for SARS-CoV-2 therapy, the viral spike glycoprotein has been studied most intensely, due to its key role in mediating viral entry into target cells and inducing a protective antibody response in infected individuals. In the present manuscript the molecular mechanisms that are responsible for SARS-CoV-2 infection are described and a progress report on the status of SARS-CoV-2 research is provided. A brief review of the clinical symptoms of the condition and current diagnostic methods and treatment plans for SARS-CoV-2 are also presented and the progress of preclinical research into medical intervention against SARS-CoV-2 infection are discussed.
Collapse
Affiliation(s)
- Ruixue Wang
- Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong 528000, P.R. China
| | - Xiaoshan Luo
- Department of Laboratory Medicine, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong 528000, P.R. China
| | - Fang Liu
- Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong 528000, P.R. China
| | - Shuhong Luo
- Department of Laboratory Medicine, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong 528000, P.R. China
| |
Collapse
|
73
|
Obesity and gut microbiome: review of potential role of probiotics. Porto Biomed J 2021; 6:e111. [PMID: 33490703 PMCID: PMC7817278 DOI: 10.1097/j.pbj.0000000000000111] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
Obesity prevalence has increased worldwide over the years, with pandemic levels being already reached, besides to its huge economic and health impacts. The multifactorial pathogenesis of obesity partly explains the important challenge posed to health policy regarding its clinical treatment, with increasing evidences have shown that obesity and metabolic disturbances are closely linked to variations in gut microbiota (GM) function and composition. Indeed, GM play a key contribution in energy metabolism, with GM modulation being increasingly linked to changes in body weight and body mass index. In such matter, probiotics have been proposed as a promising new therapeutic strategy to treat/prevent obesity. Thus, this review aims to provide an overview on the clinical impact and effectiveness of probiotics in obese individuals.
Collapse
|
74
|
Rives C, Fougerat A, Ellero-Simatos S, Loiseau N, Guillou H, Gamet-Payrastre L, Wahli W. Oxidative Stress in NAFLD: Role of Nutrients and Food Contaminants. Biomolecules 2020; 10:E1702. [PMID: 33371482 PMCID: PMC7767499 DOI: 10.3390/biom10121702] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is often the hepatic expression of metabolic syndrome and its comorbidities that comprise, among others, obesity and insulin-resistance. NAFLD involves a large spectrum of clinical conditions. These range from steatosis, a benign liver disorder characterized by the accumulation of fat in hepatocytes, to non-alcoholic steatohepatitis (NASH), which is characterized by inflammation, hepatocyte damage, and liver fibrosis. NASH can further progress to cirrhosis and hepatocellular carcinoma. The etiology of NAFLD involves both genetic and environmental factors, including an unhealthy lifestyle. Of note, unhealthy eating is clearly associated with NAFLD development and progression to NASH. Both macronutrients (sugars, lipids, proteins) and micronutrients (vitamins, phytoingredients, antioxidants) affect NAFLD pathogenesis. Furthermore, some evidence indicates disruption of metabolic homeostasis by food contaminants, some of which are risk factor candidates in NAFLD. At the molecular level, several models have been proposed for the pathogenesis of NAFLD. Most importantly, oxidative stress and mitochondrial damage have been reported to be causative in NAFLD initiation and progression. The aim of this review is to provide an overview of the contribution of nutrients and food contaminants, especially pesticides, to oxidative stress and how they may influence NAFLD pathogenesis.
Collapse
Affiliation(s)
- Clémence Rives
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Anne Fougerat
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Sandrine Ellero-Simatos
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Nicolas Loiseau
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Laurence Gamet-Payrastre
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Walter Wahli
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
| |
Collapse
|
75
|
Polito R, Di Meo I, Barbieri M, Daniele A, Paolisso G, Rizzo MR. Adiponectin Role in Neurodegenerative Diseases: Focus on Nutrition Review. Int J Mol Sci 2020; 21:ijms21239255. [PMID: 33291597 PMCID: PMC7729837 DOI: 10.3390/ijms21239255] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Adiponectin is an adipokine produced by adipose tissue. It has numerous beneficial effects. In particular, it improves metabolic effects and glucose homeostasis, lipid profile, and is involved in the regulation of cytokine profile and immune cell production, having anti-inflammatory and immune-regulatory effects. Adiponectin’s role is already known in immune diseases and also in neurodegenerative diseases. Neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease, are a set of diseases of the central nervous system, characterized by a chronic and selective process of neuron cell death, which occurs mainly in relation to oxidative stress and neuroinflammation. Lifestyle is able to influence the development of these diseases. In particular, unhealthy nutrition on gut microbiota, influences its composition and predisposition to develop many diseases such as neurodegenerative diseases, given the importance of the “gut-brain” axis. There is a strong interplay between Adiponectin, gut microbiota, and brain-gut axis. For these reasons, a healthy diet composed of healthy nutrients such as probiotics, prebiotics, polyphenols, can prevent many metabolic and inflammatory diseases such as neurodegenerative diseases and obesity. The special Adiponectin role should be taken into account also, in order to be able to use this component as a therapeutic molecule.
Collapse
Affiliation(s)
- Rita Polito
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (R.P.); (I.D.M.); (M.B.); (G.P.)
- CEINGE-Advanced Biotechnologies Scarl, Via G. Salvatore 486, 80145 Naples, Italy
| | - Irene Di Meo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (R.P.); (I.D.M.); (M.B.); (G.P.)
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (R.P.); (I.D.M.); (M.B.); (G.P.)
| | - Aurora Daniele
- Department of Environmental Biological Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via G. Vivaldi 42, 81100 Caserta, Italy;
- CEINGE-Advanced Biotechnologies Scarl, Via G. Salvatore 486, 80145 Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (R.P.); (I.D.M.); (M.B.); (G.P.)
| | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (R.P.); (I.D.M.); (M.B.); (G.P.)
- Correspondence: ; Tel.: +39-081-566-5135; Fax: +39-081-566-5303
| |
Collapse
|
76
|
Śliżewska K, Chlebicz-Wójcik A. Growth Kinetics of Probiotic Lactobacillus Strains in the Alternative, Cost-Efficient Semi-Solid Fermentation Medium. BIOLOGY 2020; 9:E423. [PMID: 33260858 PMCID: PMC7760101 DOI: 10.3390/biology9120423] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
The growing need for Lactobacillus bacteria usage in industry and the expending probiotic market led to a search for new cost-efficient fermentation media from which a high yield of these bacteria could be obtained. The following study aimed to elaborate cultivation medium, for Lactobacillus spp. growth, which main components would be wheat, maize, barley, and rye flours. The optimal temperature for Lactobacillus growth in new semi-solid fermentation (SSF) medium, water content, and pH of the medium were analyzed by the plate count method. It was established, that the highest bacteria counts were obtained from cultures conducted in the SSF medium with flours to water ratio of 1:1.5 with a natural pH of 6.0 at 37 °C. Subsequently, the growth kinetics of analyzed strains, in both MRS and the SSF media, were studied. The newly designed media contributed to the increased duration of selected Lactobacillus strains lag phase, which varied from 1.98 to 5.64; nevertheless, the maximum growth rate of the strains was two times higher in the SSF medium rather than in MRS, which also resulted in shorter generation time. The developed medium has the potential to become a new cost-efficient fermentation medium for Lactobacillus spp.
Collapse
Affiliation(s)
- Katarzyna Śliżewska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90−924 Łódź, Poland
| | - Agnieszka Chlebicz-Wójcik
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90−924 Łódź, Poland
| |
Collapse
|
77
|
Lopes N, Vernuccio F, Costantino C, Imburgia C, Gregoretti C, Salomone S, Drago F, Lo Bianco G. An Italian Guidance Model for the Management of Suspected or Confirmed COVID-19 Patients in the Primary Care Setting. Front Public Health 2020; 8:572042. [PMID: 33330317 PMCID: PMC7732472 DOI: 10.3389/fpubh.2020.572042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
An outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 started in China's Hubei province at the end of 2019 has rapidly become a pandemic. In Italy, a great number of patients was managed in primary care setting and the role of general practitioners and physicians working in the first-aid emergency medical service has become of utmost importance to coordinate the network between the territory and hospitals during the pandemic. Aim of this manuscript is to provide a guidance model for the management of suspected, probable, or confirmed cases of SARS-CoV-2 infection in the primary care setting, from diagnosis to treatment, applying also the recommendations of the Italian Society of General Medicine. Moreover, this multidisciplinary contribution would analyze and synthetize the preventive measures to limit the spread of SARS-CoV-2 infection in the general population as well as the perspective for vaccines.
Collapse
Affiliation(s)
- Noemi Lopes
- Provincial Health Authority of Palermo, Palermo, Italy
| | - Federica Vernuccio
- Centro Neurolesi Bonino Pulejo Istituto di Ricovero e Cura a Carattere Scientifico - Scientific Institutes of Hospitalization and Care (IRCCS), Messina, Italy
- Department of Science for Health Promotion and Mother to Child Care, University of Palermo, Palermo, Italy
- Section of Radiology - Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Claudio Costantino
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Excellence Specialties “G. D'Alessandro”, University of Palermo, Palermo, Italy
| | - Claudia Imburgia
- Infectious Disease Unit, National Relevance Hospital Trust, Azienda Ospedaliera di Rilievo Nazionale e di Alta Specializzazione Civico Di Cristina e Benfratelli, Palermo, Italy
| | - Cesare Gregoretti
- Department of Surgical, Oncological, and Stomatological Sciences, University of Palermo, Palermo, Italy
- Anesthesiology and Pain Department, Fondazione Istituto G. Giglio, Cefalù, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuliano Lo Bianco
- Anesthesiology and Pain Department, Fondazione Istituto G. Giglio, Cefalù, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
78
|
Kostoff RN, Kanduc D, Porter AL, Shoenfeld Y, Calina D, Briggs MB, Spandidos DA, Tsatsakis A. Vaccine- and natural infection-induced mechanisms that could modulate vaccine safety. Toxicol Rep 2020; 7:1448-1458. [PMID: 33110761 PMCID: PMC7581376 DOI: 10.1016/j.toxrep.2020.10.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 12/20/2022] Open
Abstract
A degraded/dysfunctional immune system appears to be the main determinant of serious/fatal reaction to viral infection (for COVID-19, SARS, and influenza alike). There are four major approaches being employed or considered presently to augment or strengthen the immune system, in order to reduce adverse effects of viral exposure. The three approaches that are focused mainly on augmenting the immune system are based on the concept that pandemics/outbreaks can be controlled/prevented while maintaining the immune-degrading lifestyles followed by much of the global population. The fourth approach is based on identifying and introducing measures aimed at strengthening the immune system intrinsically in order to minimize future pandemics/outbreaks. Specifically, the four measures are: 1) restricting exposure to virus; 2) providing reactive/tactical treatments to reduce viral load; 3) developing vaccines to prevent, or at least attenuate, the infection; 4) strengthening the immune system intrinsically, by a) identifying those factors that contribute to degrading the immune system, then eliminating/reducing them as comprehensively, thoroughly, and rapidly as possible, and b) replacing the eliminated factors with immune-strengthening factors. This paper focuses on vaccine safety. A future COVID-19 vaccine appears to be the treatment of choice at the national/international level. Vaccine development has been accelerated to achieve this goal in the relatively near-term, and questions have arisen whether vaccine safety has been/is being/will be compromised in pursuit of a shortened vaccine development time. There are myriad mechanisms related to vaccine-induced, and natural infection-induced, infections that could adversely impact vaccine effectiveness and safety. This paper summarizes many of those mechanisms.
Collapse
Affiliation(s)
- Ronald N. Kostoff
- Research Affiliate, School of Public Policy, Georgia Institute of Technology, Gainesville, VA, 20155, USA
| | - Darja Kanduc
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Alan L. Porter
- School of Public Policy, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Search Technology, Inc., Peachtree Corners, GA, 30092, USA
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer 5265601, Israel
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Sechenov University, Moscow, Russia
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71409, Heraklion, Greece
| | - Aristidis Tsatsakis
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Sechenov University, Moscow, Russia
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
79
|
Li E, Lin N, Hao R, Fan X, Lin L, Hu G, Lin S, He J, Zhu Q, Jin H. 5-HMF induces anaphylactoid reactions in vivo and in vitro. Toxicol Rep 2020; 7:1402-1411. [PMID: 33102144 PMCID: PMC7578535 DOI: 10.1016/j.toxrep.2020.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 01/22/2023] Open
Abstract
AIM Excessive exposure to 5-hydroxymethylfurfural (5-HMF), which is a common impurity in various sugar-containing products, induces serious side effects. Our previous study revealed that 5-HMF exerted immune sensitizing potential when injected into rodents. In this study, we explored 5-HMF mediated anaphylactoid reactions and its underlying molecular mechanisms. METHODS We investigated anaphylactoid reactions in Brown Norway (BN) rats and Institute of Cancer Research (ICR) mice to identify 5-HMF mediated in vivo anaphylactoid reactions. RBL-2H3 and P815 cell degranulation models were also established, and degranulation, enzyme-linked immunosorbent, filamentous actin (F-actin) microfilament staining, and western blot assays were performed in these cells. RESULTS We showed that 5-HMF induced anaphylactoid reactions by increasing blood vessel permeability in mice, and significantly elevating histamine (His) and glutathione peroxidase-1 (Gpx-1) levels in rat serum. Moreover, after incubation with 5-HMF, β-hexosaminidase (β-Hex), His, IL-4 and IL-6 levels were all significantly increased, thereby inducing cellular degranulation in RBL-2H3 and P815 cells. Finally, 5-HMF also upregulated Lyn, Syk, p38 and JNK protein phosphorylation levels. CONCLUSIONS Our findings suggest that 5-HMF induces anaphylactoid reactions both in vivo and in vitro, therefore 5-HMF limits in sugar-containing products should receive more regulatory attention.
Collapse
Affiliation(s)
- Encan Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ni Lin
- Beijing Institute for Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, 25 Science Park Road, Changping District, Beijing, 102206, China
| | - Ruirui Hao
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiaoyu Fan
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lin Lin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Guang Hu
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Sheng Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qingfen Zhu
- Shandong Institute for Food and Drug Control, Jinan, 250101, China
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing, 100050, China
| |
Collapse
|