51
|
Gowtham H, Revanasiddappa PD, Murali M, Singh SB, Abhilash M, Pradeep S, Shivamallu C, Achar RR, Silina E, Stupin V, Manturova N, Shati AA, Alfaifi MY, Elbehairi SEI, Kollur SP. Secondary metabolites of Trichoderma spp. as EGFR tyrosine kinase inhibitors: Evaluation of anticancer efficacy through computational approach. PLoS One 2024; 19:e0296010. [PMID: 38266021 PMCID: PMC10824427 DOI: 10.1371/journal.pone.0296010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024] Open
Abstract
The present study explores the epidermal growth factor receptor (EGFR) tyrosine kinase inhibition efficacy of secondary metabolites in Trichoderma spp. through molecular docking, molecular dynamics (MD) simulation and MM-PBSA approach. The result of molecular docking confirmed that out of 200 metabolites screened, three metabolites such as Harzianelactone A, Pretrichodermamide G and Aspochalasin M, potentially bound with the active binding site of EGFR tyrosine kinase domain(PDB ID: 1M17) with a threshold docking score of ≤- 9.0 kcal/mol when compared with the standard EGFR inhibitor (Erlotinib). The MD simulation was run to investigate the potential for stable complex formation in EGFR tyrosine kinase domain-unbound/lead metabolite (Aspochalasin M)-bound/standard inhibitor (Erlotinib)-bound complex. The MD simulation analysis at 100 ns revealed that Aspochalasin M formed the stable complex with EGFR. Besides, the in silico predication of pharmacokinetic properties further confirmed that Aspochalasin M qualified the drug-likeness rules with no harmful side effects (viz., hERG toxicity, hepatotoxicity and skin sensitization), non-mutagenicity and favourable logBB value. Moreover, the BOILED-Egg model predicted that Aspochalasin M showed a higher gastrointestinal absorption with improved bioavailability when administered orally and removed from the central nervous system (CNS). The results of the computational studies concluded that Aspochalasin M possessed significant efficacy in binding EGFR's active sites compared to the known standard inhibitor (Erlotinib). Therefore, Aspochalasin M can be used as a possible anticancer drug candidate and further in vitro and in vivo experimental validation of Aspochalasin M of Trichoderma spp. are required to determine its anticancer potential.
Collapse
Affiliation(s)
- H.G. Gowtham
- Department of PG Studies in Biotechnology, Nrupathunga University, Bangalore, Karnataka, India
| | | | | | | | - M.R. Abhilash
- Department of Studies in Environmental Science, University of Mysore, Mysore, India
| | - Sushma Pradeep
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ekaterina Silina
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Victor Stupin
- Department of Hospital Surgery, NI. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Natalia Manturova
- Department of Hospital Surgery, NI. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | | | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, Karnataka, India
| |
Collapse
|
52
|
Shumliakivska M, Luxán G, Hemmerling I, Scheller M, Li X, Müller-Tidow C, Schuhmacher B, Sun Z, Dendorfer A, Debes A, Glaser SF, Muhly-Reinholz M, Kirschbaum K, Hoffmann J, Nagel E, Puntmann VO, Cremer S, Leuschner F, Abplanalp WT, John D, Zeiher AM, Dimmeler S. DNMT3A clonal hematopoiesis-driver mutations induce cardiac fibrosis by paracrine activation of fibroblasts. Nat Commun 2024; 15:606. [PMID: 38242884 PMCID: PMC10799021 DOI: 10.1038/s41467-023-43003-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 10/27/2023] [Indexed: 01/21/2024] Open
Abstract
Hematopoietic mutations in epigenetic regulators like DNA methyltransferase 3 alpha (DNMT3A), play a pivotal role in driving clonal hematopoiesis of indeterminate potential (CHIP), and are associated with unfavorable outcomes in patients suffering from heart failure (HF). However, the precise interactions between CHIP-mutated cells and other cardiac cell types remain unknown. Here, we identify fibroblasts as potential partners in interactions with CHIP-mutated monocytes. We used combined transcriptomic data derived from peripheral blood mononuclear cells of HF patients, both with and without CHIP, and cardiac tissue. We demonstrate that inactivation of DNMT3A in macrophages intensifies interactions with cardiac fibroblasts and increases cardiac fibrosis. DNMT3A inactivation amplifies the release of heparin-binding epidermal growth factor-like growth factor, thereby facilitating activation of cardiac fibroblasts. These findings identify a potential pathway of DNMT3A CHIP-driver mutations to the initiation and progression of HF and may also provide a compelling basis for the development of innovative anti-fibrotic strategies.
Collapse
Affiliation(s)
- Mariana Shumliakivska
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany
| | - Guillermo Luxán
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany
| | - Inga Hemmerling
- Department of Internal Medicine III, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Marina Scheller
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Xue Li
- Department of Internal Medicine III, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Bianca Schuhmacher
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Zhengwu Sun
- Walter-Brendel-Centre of Experimental Medicine, Hospital of the Ludwig-Maximilians-University Munich, Marchioninistraße 68, 81377, München, Germany
| | - Andreas Dendorfer
- Walter-Brendel-Centre of Experimental Medicine, Hospital of the Ludwig-Maximilians-University Munich, Marchioninistraße 68, 81377, München, Germany
| | - Alisa Debes
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Simone-Franziska Glaser
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany
| | - Marion Muhly-Reinholz
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Klara Kirschbaum
- Department of Medicine, Cardiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Jedrzej Hoffmann
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Institute of Experimental and Translational Cardiovascular Imaging, Centre for Cardiovascular Imaging, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Eike Nagel
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Institute of Experimental and Translational Cardiovascular Imaging, Centre for Cardiovascular Imaging, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Valentina O Puntmann
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Institute of Experimental and Translational Cardiovascular Imaging, Centre for Cardiovascular Imaging, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Sebastian Cremer
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany
- Department of Medicine, Cardiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Florian Leuschner
- Department of Internal Medicine III, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Wesley Tyler Abplanalp
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany
| | - David John
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany
| | - Andreas M Zeiher
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany.
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany.
| |
Collapse
|
53
|
Ahmad A, Tiwari RK, Siddiqui S, Chadha M, Shukla R, Srivastava V. Emerging trends in gastrointestinal cancers: Targeting developmental pathways in carcinogenesis and tumor progression. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:41-99. [PMID: 38663962 DOI: 10.1016/bs.ircmb.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Gastrointestinal carcinomas are a group of cancers associated with the digestive system and its accessory organs. The most prevalent cancers related to the gastrointestinal tract are colorectal, gall bladder, gastric, hepatocellular, and esophageal cancers, respectively. Molecular aberrations in different signaling pathways, such as signal transduction systems or developmental pathways are the chief triggering mechanisms in different cancers Though a massive advancement in diagnostic and therapeutic interventions results in improved survival of patients with gastrointestinal cancer; the lower malignancy stages of these carcinomas are comparatively asymptomatic. Various gastrointestinal-related cancers are detected at advanced stages, leading to deplorable prognoses and increased rates of recurrence. Recent molecular studies have elucidated the imperative roles of several signaling pathways, namely Wnt, Hedgehog, and Notch signaling pathways, play in the progression, therapeutic responsiveness, and metastasis of gastrointestinal-related cancers. This book chapter gives an interesting update on recent findings on the involvement of developmental signaling pathways their mechanistic insight in gastrointestinalcancer. Subsequently, evidences supporting the exploration of gastrointestinal cancer related molecular mechanisms have also been discussed for developing novel therapeutic strategies against these debilitating carcinomas.
Collapse
Affiliation(s)
- Afza Ahmad
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Rohit Kumar Tiwari
- Department of Clinical Research, Sharda School of Allied Health Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Saleha Siddiqui
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Muskan Chadha
- Department of Nutrition and Dietetics, Sharda School of Allied Health Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Ratnakar Shukla
- Department of Clinical Research, Sharda School of Allied Health Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Vivek Srivastava
- Department of Chemistry & Biochemistry, Sharda School of Basic Sciences & Research, Sharda University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
54
|
Makhija R, Sharma A, Dubey R, Asati V. Structural Perspectives in the Development of Novel EGFR Inhibitors for the Treatment of NSCLC. Mini Rev Med Chem 2024; 24:1746-1783. [PMID: 38584547 DOI: 10.2174/0113895575296174240323172754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 04/09/2024]
Abstract
Non-small cell Lung cancer (NSCLC) is the most common type of lung cancer, which is caused by high consumption of tobacco and smoking. It is an epithelial lung cancer that affects about 2.2 million people across the globe, according to International Agency for Research on Cancer (IARC). Non-small cell lung cancer is a malignant tumor caused by EGFR mutation that occurs in the in-frame deletion of exon 19 and L858R point mutation in exon 21. Presently, clinically available inhibitors of EGFR (including erlotinib, lapatinib, gefitinib, selumetinib, etc.) are not specific and responsible for undesirable adverse effects. Moreover, to solve this problem search for newer EGFR inhibitors is the utmost need for the treatment and/or management of increasing lung cancer burden. The discovery of therapeutic agents that inhibit the specific target in tumorous cells, such as EGFR, is one of the successful strategies in treating many cancer therapies, including lung cancer. The exhaustive literature survey (2018-2023) has shown the importance of medicinally privileged pyrimidine derivatives together, fused and/or clubbed with other heterocyclic rings to design and develop novel EGFR inhibitors. Pyrimidine derivatives substituted with phenylamine, indole, pyrrole, piperazine, pyrazole, thiophene, pyridine and quinazoline derivatives substituted with phenylamine, pyrimidine, morpholine, pyrrole, dioxane, acrylamide, indole, pyridine, furan, pyrimidine, pyrazole etc. are privileged heterocyclic rings shown promising activity by inhibiting EGFR and TKIs. The present review summarizes the structure-activity relationship (SAR) and enzyme inhibitory activity, including IC50 values, percentage inhibition, and kinetic studies of potential compounds from various literature. The review also includes various aspects of molecular docking studies with compounds under clinical trials and patents filed on pyrimidine-based EGFR inhibitors in treating non-small cell lung cancer. The present review may benefit the medicinal chemist for developing novel compounds such as EGFR inhibitors.
Collapse
Affiliation(s)
- Rahul Makhija
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Anushka Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Rahul Dubey
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
55
|
Mishra S, Sahu A, Kaur A, Kaur M, Kumar J, Wal P. Recent Development in the Search for Epidermal Growth Factor Receptor (EGFR) Inhibitors based on the Indole Pharmacophore. Curr Top Med Chem 2024; 24:581-613. [PMID: 37909440 DOI: 10.2174/0115680266264206231020111820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 11/03/2023]
Abstract
The signal transduction and cell proliferation are regulated by the epidermal growth factor receptor. The proliferation of tumor cells, apoptosis, invasion, and angiogenesis is inhibited by the epidermal growth factor receptor. Thus, breast cancer, non-small cell lung cancer, cervical cancer, glioma, and bladder cancer can be treated by targeting the epidermal growth factor receptor. Although third-generation epidermal growth factor receptor inhibitors are potent drugs, patients exhibit drug resistance after treatment. Thus, the search for new drugs is being continued. Among the different potent epidermal growth factor receptor inhibitors, we have reviewed the indole-based inhibitors. We have discussed the structure-activity relationship of the compounds with the active sites of the epidermal growth factor receptor receptors, their synthesis, and molecular docking studies.
Collapse
Affiliation(s)
- Shweta Mishra
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, 122505, India
| | - Adarsh Sahu
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Vishwavidyalaya (A Central University), Sagar, 473003, Madhya Pradesh, India
- Amity Institute of Pharmacy, Amity University Rajasthan, NH11C Kant Kanwar Jaipur, 300202, India
| | - Avneet Kaur
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, 122505, India
| | | | - Jayendra Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology, Delhi-NCR Campus, Ghaziabad, UP, 201204, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology, Pharmacy, Kanpur, UP, India
| |
Collapse
|
56
|
Wang C, Zhang Y, Zhang T, Xu J, Yan S, Liang B, Xing D. Epidermal growth factor receptor dual-target inhibitors as a novel therapy for cancer: A review. Int J Biol Macromol 2023; 253:127440. [PMID: 37839594 DOI: 10.1016/j.ijbiomac.2023.127440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Overexpression of the epidermal growth factor receptor (EGFR) has been linked to several human cancers, including esophageal cancer, pancreatic cancer, anal cancer, breast cancer, and lung cancer, particularly non-small cell lung cancer (NSCLC). Therefore, EGFR has emerged as a critical target for treating solid tumors. Many 1st-, 2nd-, 3rd-, and 4th-generation EGFR single-target inhibitors with clinical efficacy have been designed and synthesized in recent years. Drug resistance caused by EGFR mutations has posed a significant challenge to the large-scale clinical application of EGFR single-target inhibitors and the discovery of novel EGFR inhibitors. Therapeutic methods for overcoming multipoint EGFR mutations are still needed in medicine. EGFR dual-target inhibitors are more promising than single-target inhibitors as they have a lower risk of drug resistance, higher efficacy, lower dosage, and fewer adverse events. EGFR dual-target inhibitors have been developed sequentially to date, providing new options for remission in patients with previously untreatable malignancies and laying the groundwork for a future generation of compounds. This paper introduces the EGFR family proteins and their synergistic effects with other anticancer targets, and provides a comprehensive review of the development of EGFR dual-target inhibitors in cancer, as well as the opportunities and challenges associated with those fields.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao 266071, Shandong, China.
| | - Tingting Zhang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China
| | - Saisai Yan
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China.
| | - Bing Liang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
57
|
Balachandran AA, Raguraman P, Rahimizadeh K, Veedu RN. Splice-Switching Antisense Oligonucleotides Targeting Extra- and Intracellular Domains of Epidermal Growth Factor Receptor in Cancer Cells. Biomedicines 2023; 11:3299. [PMID: 38137520 PMCID: PMC10741442 DOI: 10.3390/biomedicines11123299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer is one of the leading causes of death globally. Epidermal growth factor receptor is one of the proteins involved in cancer cell proliferation, differentiation, and invasion. Antisense oligonucleotides are chemical nucleic acids that bind to target messenger ribonucleic acid and modulate its expression. Herein, we demonstrate the efficacy of splice-modulating antisense oligonucleotides to target specific exons in the extracellular (exon 3) and intracellular (exon 18, 21) domains of epidermal growth factor receptor. These antisense oligonucleotides were synthesized as 25mer 2'-O methyl phosphorothioate-modified ribonucleic acids that bind to complementary specific regions in respective exons. We found that PNAT524, PNAT525, PNAT576, and PNAT578 effectively skipped exon 3, exon 18, and exon 21 in glioblastoma, liver cancer, and breast cancer cell lines. PNAT578 treatment also skipped partial exon 19, complete exon 20, and partial exon 21 in addition to complete exon 21 skipping. We also found that a cocktail of PNAT576 and PNAT578 antisense oligonucleotides performed better than their individual counterparts. The migration potential of glioblastoma cancer cells was reduced to a greater extent after treatment with these antisense oligonucleotides. We firmly believe that using these splice-modulating antisense oligonucleotides in combination with existing EGFR-targeted therapies could improve therapeutic outcomes.
Collapse
Affiliation(s)
- Akilandeswari Ashwini Balachandran
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| | - Prithi Raguraman
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| | - Kamal Rahimizadeh
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| | - Rakesh N. Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| |
Collapse
|
58
|
Leylek O, Honeywell ME, Lee MJ, Hemann MT, Ozcan G. Functional genomics reveals an off-target dependency of drug synergy in gastric cancer therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.07.561351. [PMID: 37873383 PMCID: PMC10592690 DOI: 10.1101/2023.10.07.561351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The rational combination of anticancer agents is critical to improving patient outcomes in cancer. Nonetheless, most combination regimens in the clinic result from empirical methodologies disregarding insight into the mechanism of action and missing the opportunity to improve therapy outcomes incrementally. Deciphering the genetic dependencies and vulnerabilities responsible for synergistic interactions is crucial for rationally developing effective anticancer drug combinations. Hence, we screened pairwise pharmacological interactions between molecular-targeted agents and conventional chemotherapeutics and examined the genome-scale genetic dependencies in gastric adenocarcinoma cell models. Since this type of cancer is mainly chemoresistant and incurable, clinical situations demand effective combination strategies. Our pairwise combination screen revealed SN38/erlotinib as the drug pair with the most robust synergism. Genome-wide CRISPR screening and a shRNA-based signature assay indicated that the genetic dependency/vulnerability signature of SN38/erlotinib is the same as SN38 alone. Additional investigation revealed that the enhanced cell death with improved death kinetics caused by the SN38/erlotinib combination is surprisingly due to erlotinib's off-target effect that inhibits ABCG2 but not its on-target effect on EGFR. Our results confirm that a genetic dependency signature different from the single-drug application may not be necessary for the synergistic interaction of molecular-targeted agents with conventional chemotherapeutics in gastric adenocarcinoma. The findings also demonstrated the efficacy of functional genomics approaches in unveiling biologically validated mechanisms of pharmacological interactions.
Collapse
Affiliation(s)
- Ozen Leylek
- Koç University Research Center for Translational Medicine, Istanbul, 34450 Turkiye
| | - Megan E Honeywell
- Department of Systems Biology, UMass Chan Medical School, Worcester, MA, 01605 USA
| | - Michael J Lee
- Department of Systems Biology, UMass Chan Medical School, Worcester, MA, 01605 USA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, 01605 USA
| | - Michael T Hemann
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
- MIT Koch Institute for Integrative Cancer Research, Cambridge, MA, 02139 USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02139 USA
| | - Gulnihal Ozcan
- Koç University Research Center for Translational Medicine, Istanbul, 34450 Turkiye
- Department of Medical Pharmacology, Koç University School of Medicine, Istanbul, 34450 Turkiye
| |
Collapse
|
59
|
Zhang Y. Targeting Epidermal Growth Factor Receptor for Cancer Treatment: Abolishing Both Kinase-Dependent and Kinase-Independent Functions of the Receptor. Pharmacol Rev 2023; 75:1218-1232. [PMID: 37339882 PMCID: PMC10595022 DOI: 10.1124/pharmrev.123.000906] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
Epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, is activated by ligand binding, overexpression, or mutation. It is well known for its tyrosine kinase-dependent oncogenic activities in a variety of human cancers. A large number of EGFR inhibitors have been developed for cancer treatment, including monoclonal antibodies, tyrosine kinase inhibitors, and a vaccine. The EGFR inhibitors are aimed at inhibiting the activation or the activity of EGFR tyrosine kinase. However, these agents have shown efficacy in only a few types of cancers. Drug resistance, both intrinsic and acquired, is common even in cancers where the inhibitors have shown efficacy. The drug resistance mechanism is complex and not fully known. The key vulnerability of cancer cells that are resistant to EGFR inhibitors has not been identified. Nevertheless, it has been increasingly recognized in recent years that EGFR also possesses kinase-independent oncogenic functions and that these noncanonical functions may play a crucial role in cancer resistance to EGFR inhibitors. In this review, both kinase-dependent and -independent activities of EGFR are discussed. Also discussed are the mechanisms of actions and therapeutic activities of clinically used EGFR inhibitors and sustained EGFR overexpression and EGFR interaction with other receptor tyrosine kinases to counter the EGFR inhibitors. Moreover, this review discusses emerging experimental therapeutics that have shown potential for overcoming the limitation of the current EGFR inhibitors in preclinical studies. The findings underscore the importance and feasibility of targeting both kinase-dependent and -independent functions of EGFR to enhance therapeutic efficacy and minimize drug resistance. SIGNIFICANCE STATEMENT: EGFR is a major oncogenic driver and therapeutic target, but cancer resistance to current EGFR inhibitors remains a significant unmet clinical problem. This article reviews the cancer biology of EGFR as well as the mechanisms of actions and the therapeutic efficacies of current and emerging EGFR inhibitors. The findings could potentially lead to development of more effective treatments for EGFR-positive cancers.
Collapse
Affiliation(s)
- Yuesheng Zhang
- Department of Pharmacology and Toxicology, School of Medicine, and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
60
|
Maldonado J, Oliva A, Molinari A, Acevedo W. 2-Acetyl-5,8-dihydro-6-(4-methyl-3-pentenyl)-1,4-naphthohydroquinone-Derived Chalcones as Potential Anticancer Agents. Molecules 2023; 28:7172. [PMID: 37894650 PMCID: PMC10609043 DOI: 10.3390/molecules28207172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/29/2023] Open
Abstract
Based on previous results with benzoindazolequinone (BIZQ) and 3-methylnaphtho [2,3-d]isoxazole-4,9-quinone (NIQ) derivatives, a novel series of chalcone-1,4-naphthoquinone/benzohydroquinone (CNQ and CBHQ) compounds were synthesized from 2-acetyl-5,8-dihydro-6-(4-methyl-3-pentenyl)-1,4-naphthohydroquinone. Their structures were elucidated via spectroscopy. These hybrids were assessed in vivo for their antiproliferative activity on MCF-7 breast adenocarcinoma and HT-29 colorectal carcinoma cells, revealing cytotoxicity with IC50 values between 6.0 and 110.5 µM. CBHQ hybrids 5e and 5f displayed enhanced cytotoxicity against both cell lines, whereas CNQ hybrids 6a-c and 6e exhibited higher cytotoxic activity against MCF-7 cells. Docking studies showed strong binding energies (ΔGbin) of CNQs to kinase proteins involved in carcinogenic pathways. Furthermore, our in silico analysis of drug absorption, distribution, metabolism, and excretion (ADME) properties suggests their potential as candidates for cancer pre-clinical assays.
Collapse
Affiliation(s)
| | | | - Aurora Molinari
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 23732223, Chile; (J.M.); (A.O.)
| | - Waldo Acevedo
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 23732223, Chile; (J.M.); (A.O.)
| |
Collapse
|
61
|
AbdelSamad AL, El-Saadi MT, Gouda AM, AboulMagd AM. Pyrrolizine/indolizine-bearing (un)substituted isoindole moiety: design, synthesis, antiproliferative and MDR reversal activities, and in silico studies. RSC Adv 2023; 13:30753-30770. [PMID: 37869384 PMCID: PMC10587743 DOI: 10.1039/d3ra05310e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023] Open
Abstract
Two new series of pyrrolizine/indolizine derivative-bearing (un)substituted isoindole moiety were designed and synthesized. The anticancer potential of the new compounds was evaluated against hepatocellular carcinoma (HepG-2), colorectal carcinoma, colon cancer (HCT-116), and breast cancer (MCF-7) cell lines. Compounds 6d and 6o were the most potent derivatives with IC50 values ranging from 6.02 to 13.87 μM against HePG-2, HCT-116, and MCF-7 cell lines. Moreover, methyl analog of the fluoro-substituted indolizine derivative 6m revealed significant antiproliferative activity against HePG-2, HCT-116, and MCF-7 cancer cell lines with IC50 values of 11.97, 28.37, and 19.87 μM, respectively. The most active anticancer analogs, 6d, 6m, and 6o, were inspected for their putative mechanism of action by estimating their epidermal growth factor receptor (EGFR) and cyclin-dependent kinase (CDK 2) inhibitory activities. Thus, compound 6o displayed the most inhibitory activity against EGFR and CDK 2 with IC50 values of 62 and 118 nM, respectively. Additionally, the quantitative real-time PCR analysis for the P-glycoprotein effect of compounds 6d, 6m, and 6o was performed, in which compound 6o illustrated significant down-regulation of P-gp against the HepG-2 cell line by 0.2732 fold. Mechanistic studies for the most active compounds involving the reversal doxorubicin (DOX) effect of compounds 6d, 6m, and 6o were performed, which illustrated cytotoxic activity with IC50 22.27, 3.88, and 8.79 μM, respectively. Moreover, the apoptotic activity of the most active derivative 6o on HCT-116 cancer cells showed accumulation in the G1 and S phases of the cell cycle.
Collapse
Affiliation(s)
- Amr L AbdelSamad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB) Beni-Suef 62513 Egypt
| | - Mohammed T El-Saadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62514 Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University-Kantra Branch Ismailia Egypt
| | - Ahmed M Gouda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62514 Egypt
| | - Asmaa M AboulMagd
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB) Beni-Suef 62513 Egypt
| |
Collapse
|
62
|
Onnis V. Special Issue "Novel Anti-Proliferative Agents". Pharmaceuticals (Basel) 2023; 16:1437. [PMID: 37895908 PMCID: PMC10610072 DOI: 10.3390/ph16101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer is a disease that can affect any organ and spread to other nearby or distant organs [...].
Collapse
Affiliation(s)
- Valentina Onnis
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, CA, Italy
| |
Collapse
|
63
|
Zhang JJ, Long ZB, Luo LL, Li LH, Yang H, Cao Y, Wang L, Wang WP. Feasibility analysis of rapid gene detection using intraoperative frozen tissues: comparison of intraoperative frozen tissues with paraffin-embedded tissues in epidermal growth factor receptor gene mutation detection of lung adenocarcinoma. J Cancer Res Clin Oncol 2023; 149:12025-12032. [PMID: 37421459 DOI: 10.1007/s00432-023-05056-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) is the driver gene with the highest frequency of mutations in lung adenocarcinoma and can guide the development of targeted therapies. The detection of routine gene mutations must be performed after the preparation of paraffin samples in a standard polymerase chain reaction (PCR) laboratory, which is time-consuming. The Idylla™ EGFR fully automatic PCR system for rapid detection requires no special detection environment and completes the process in only 2.5 h. It has been applied to tissues embedded in paraffin. METHODS The Idylla™ EGFR automated PCR system was used to detect EGFR gene mutations in intraoperative frozen fresh tissues and paraffin-embedded tissues from 47 enrolled patients with lung adenocarcinoma. The gold standard amplification refractory mutation system (ARMS) method for gene mutation detection was used for verification, and the concordance between the three detection results was compared, to investigate the feasibility of detecting rapid gene mutations in intraoperative frozen samples. RESULTS The EGFR mutation rate in 47 fresh samples of lung adenocarcinoma was 61.7% (29/47), which is consistent with the mutation level of lung adenocarcinoma in the Asian population (38.8-64.0%). The concordance rate between the Idylla™ frozen tissues and paraffin-embedded tissues was 91.4% (43/47) when compared to the ARMS method, while the coincidence rate between the two methods was 93.6% (44/47). The three methods had a total consistency rate of 89.4% (42/47). CONCLUSIONS The Idylla™ EGFR fully automatic PCR system directly detects EGFR mutations in fresh tissues. The operation is simple, the detection time is short, and the accuracy is high. The detection time is reduced to 1/4-1/3 of the original time while meeting clinical standards for detecting the gene status of patients, thus saving crucial time for individualized and accurate treatment of patients. The method has promising clinical application prospects.
Collapse
Affiliation(s)
- Juan-Juan Zhang
- Department of Pathology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Xishan District, Kunming, 650032, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Zheng-Bo Long
- Kunming University of Science and Technology, Kunming, 650031, Yunnan, China
| | - Li-Lin Luo
- Department of Pathology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Xishan District, Kunming, 650032, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Lin-Hui Li
- Department of Pathology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Xishan District, Kunming, 650032, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Hui Yang
- Department of Pathology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Xishan District, Kunming, 650032, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Yue Cao
- Kunming University of Science and Technology, Kunming, 650031, Yunnan, China
| | - Li Wang
- Department of Pathology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Xishan District, Kunming, 650032, Yunnan, China.
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China.
| | - Wan-Pu Wang
- Department of Pathology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Xishan District, Kunming, 650032, Yunnan, China.
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China.
| |
Collapse
|
64
|
Rehman ZU, Najmi A. Exploring EGFR inhibitors with the aid of virtual screening, docking, and dynamics simulation studies. J Biomol Struct Dyn 2023; 42:10489-10509. [PMID: 37707987 DOI: 10.1080/07391102.2023.2256887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
In humans, Epidermal Growth Factor Receptor (EGFR) is linked to small-cell lung cancer, breast cancer, and glioblastoma. Receptor kinase inhibitors against EGFR have become a standard treatment option for non-small cell lung cancer (NSCLC), breast cancer patients, and even for those with EGFR mutations or resistance. About 2734 FDA-approved medication compounds were subjected to virtual screening for EGFR kinase inhibitory activity. The top 30 molecules were chosen based on the binding affinity scores and subjected to extra-precision docking and binding free energy analysis. The ADMET profile of the top three hit molecules was verified to confirm their druggability nature. Top three hits- compound 1047 (ZINC000001550477), 1302 (ZINC00003781952), and 2332 (ZINC000019632618) were identified on account of their MMGBSA binding affinity values. The top three hit compounds were subjected to molecular dynamics (MD) simulation for 100 ns. The dynamic nature of the ligand-protein complex was analyzed which corroborated the results of molecular docking and MMGBSA analysis studies. All the top three hits were further subjected to steered MD studies for testing the strength of these ligand-receptor binding in the presence of an external force. Compound 2332 (ZINC000019632618) was identified as the best hit molecule that can be used as a lead to develop newer derivatives of EGFR kinase inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zia Ur Rehman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
65
|
Ahmadi A, Mohammadnejadi E, Razzaghi-Asl N. Gefitinib derivatives and drug-resistance: A perspective from molecular dynamics simulations. Comput Biol Med 2023; 163:107204. [PMID: 37421739 DOI: 10.1016/j.compbiomed.2023.107204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/14/2023] [Accepted: 06/25/2023] [Indexed: 07/10/2023]
Abstract
Epidermal-growth factor receptor (EGFR) is a transmembrane tyrosine kinase (TK) with a significant role in cell survival. EGFR is upregulated in various cancer cells and known as a druggable target. Gefitinib is a first-line TK inhibitor used against metastatic non-small cell lung cancer (NSCLC). Despite initial clinical response, a conserved therapeutic effect could not be achieved due to the occurrence of resistance mechanisms. Point mutations in EGFR genes are one of the major causes of rendered tumor sensitivity. To aid in the development of more efficient TKIs, chemical structures of prevailing drugs and their target binding patterns are very important. The aim of the present study was to propose synthetically-accessible gefitinib congeners with enhanced binding fitness to clinically frequent EGFR mutants. Docking simulations of intended molecules identified 1-(4-(3-chloro-4-fluorophenylamino)-7-methoxyquinazolin-6-yl)-3-(oxazolidin-2-ylmethyl) thiourea (23) as a top-binder structure inside G719S, T790 M, L858R and T790 M/L858R-EGFR active sites. Superior docked complexes were subjected to the entire 400 ns molecular dynamics (MD) simulations. Analysis of data revealed the stability of mutant enzymes upon binding to molecule 23. All mutant complexes with the exception of a T790 M/L858R-EGFR, were majorly stabilized through cooperative hydrophobic contacts. Pairwise analysis of H-bonds proved Met793 as the conserved residue with stable H-bond participations as hydrogen bond donor (Frequency 63-96%). Amino acid decomposition analysis confirmed the probable role of Met793 in complex stabilization. Estimated binding free energies indicated the proper accommodation of molecule 23 inside target active sites. Pairwise energy decompositions of stable binding modes revealed the energetic contribution of key residues. Although wet lab experiments are required to unravel the mechanistic details of mEGFR inhibition, MD results provide structural basis for those events that are difficult to address experimentally. The outputs of the current study may assist to design small molecules with high potency to mEGFRs.
Collapse
Affiliation(s)
- A Ahmadi
- Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - E Mohammadnejadi
- Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - N Razzaghi-Asl
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
66
|
More P, Ngaffo JAM, Goedtel-Armbrust U, Hähnel PS, Hartwig UF, Kindler T, Wojnowski L. Transcriptional Response to Standard AML Drugs Identifies Synergistic Combinations. Int J Mol Sci 2023; 24:12926. [PMID: 37629110 PMCID: PMC10455220 DOI: 10.3390/ijms241612926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Unlike genomic alterations, gene expression profiles have not been widely used to refine cancer therapies. We analyzed transcriptional changes in acute myeloid leukemia (AML) cell lines in response to standard first-line AML drugs cytarabine and daunorubicin by means of RNA sequencing. Those changes were highly cell- and treatment-specific. By comparing the changes unique to treatment-sensitive and treatment-resistant AML cells, we enriched for treatment-relevant genes. Those genes were associated with drug response-specific pathways, including calcium ion-dependent exocytosis and chromatin remodeling. Pharmacological mimicking of those changes using EGFR and MEK inhibitors enhanced the response to daunorubicin with minimum standalone cytotoxicity. The synergistic response was observed even in the cell lines beyond those used for the discovery, including a primary AML sample. Additionally, publicly available cytotoxicity data confirmed the synergistic effect of EGFR inhibitors in combination with daunorubicin in all 60 investigated cancer cell lines. In conclusion, we demonstrate the utility of treatment-evoked gene expression changes to formulate rational drug combinations. This approach could improve the standard AML therapy, especially in older patients.
Collapse
Affiliation(s)
- Piyush More
- Department of Pharmacology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany; (J.A.M.N.); (U.G.-A.); (L.W.)
| | - Joëlle Aurelie Mekontso Ngaffo
- Department of Pharmacology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany; (J.A.M.N.); (U.G.-A.); (L.W.)
- Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
| | - Ute Goedtel-Armbrust
- Department of Pharmacology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany; (J.A.M.N.); (U.G.-A.); (L.W.)
| | - Patricia S. Hähnel
- University Cancer Center (UCT) Mainz, Johannes Gutenberg-University, 55131 Mainz, Germany; (P.S.H.); (T.K.)
- Department of Hematology & Medical Oncology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany;
| | - Udo F. Hartwig
- Department of Hematology & Medical Oncology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany;
- Research Center of Immunotherapy, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Thomas Kindler
- University Cancer Center (UCT) Mainz, Johannes Gutenberg-University, 55131 Mainz, Germany; (P.S.H.); (T.K.)
- Department of Hematology & Medical Oncology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany;
| | - Leszek Wojnowski
- Department of Pharmacology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany; (J.A.M.N.); (U.G.-A.); (L.W.)
| |
Collapse
|
67
|
Shama Bhat G, Shaik Mohammad F. Computational Fragment-Based Design of Phytochemical Derivatives as EGFR Inhibitors. Chem Biodivers 2023; 20:e202300681. [PMID: 37399183 DOI: 10.1002/cbdv.202300681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023]
Abstract
Epidermal growth factor receptor (EGFR) is a potential target with disease modifying benefits against Alzheimer's disease (AD). Repurposing of FDA approved drugs against EGFR have shown beneficial effect against AD but are confined to quinazoline, quinoline and aminopyrimidines. Futuristically, the possibility of acquiring drug resistance mutation as seen in the case of cancer could also hamper AD treatment. To identify novel chemical scaffolds, we rooted on phytochemicals identified from plants such as Acorus calamus, Bacopa monnieri, Convolvulus pluricaulis, Tinospora cordifloia, and Withania somnifera that have well-established records in the treatment of brain disorders. The rationale was to mimic the biosynthetic metabolite extension process observed in the plants for synthesizing new phytochemical derivates. Thus, novel compounds were designed computationally by fragment-based method followed by extensive in silico analysis to pick potential phytochemical derivates. PCD1, 8 and 10 were predicted to have better blood brain barrier permeability. ADMET and SoM analysis suggested that these PCDs exhibited druglike properties. Further simulation studies showed that PCD1 and PCD8 stably interact with EGFR and have the potential to be used even in cases of drug-resistance mutations. With further experimental evidence, these PCDs could be leveraged as potential inhibitors of EGFR.
Collapse
Affiliation(s)
- Gayathri Shama Bhat
- Department of Biotechnology, Manipal Institute of Technology, Manipal, 576104, Karnataka, India
| | - Fayaz Shaik Mohammad
- Department of Biotechnology, Manipal Institute of Technology, Manipal, 576104, Karnataka, India
| |
Collapse
|
68
|
Hasan G, Hassan MI, Sohal SS, Shamsi A, Alam M. Therapeutic Targeting of Regulated Signaling Pathways of Non-Small Cell Lung Carcinoma. ACS OMEGA 2023; 8:26685-26698. [PMID: 37546685 PMCID: PMC10398694 DOI: 10.1021/acsomega.3c02424] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/15/2023] [Indexed: 08/08/2023]
Abstract
Non-small cell lung carcinoma (NSCLC) is the most common cancer globally. Phytochemicals and small molecule inhibitors significantly prevent varying types of cancers, including NSCLC. These therapeutic molecules serve as important sources for new drugs that interfere with cellular proliferation, apoptosis, metastasis, and angiogenesis by regulating signaling pathways. These molecules affect several cellular signaling cascades, including p53, NF-κB, STAT3, RAS, MAPK/ERK, Wnt, and AKT/PI3K, and are thus implicated in the therapeutic management of cancers. This review aims to describe the bioactive compounds and small-molecule inhibitors, their anticancer action, and targeting cellular signaling cascades in NSCLC. We highlighted the therapeutic potential of Epigallocatechin gallate (EGCG), Perifosine, ABT-737, Thymoquinine, Quercetin, Venetoclax, Gefitinib, and Genistein. These compounds are implicated in the therapeutic management of NSCLC. This review further offers deeper mechanistic insights into different signaling pathways that could be targeted for NSCLC therapy by phytochemicals and small-molecule inhibitors.
Collapse
Affiliation(s)
- Gulam
Mustafa Hasan
- Department
of Biochemistry, College of Medicine, Prince
Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Sukhwinder Singh Sohal
- Respiratory
Translational Research Group, Department of Laboratory Medicine, School
of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7001, Tasmania, Australia
| | - Anas Shamsi
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab
Emirates
| | - Manzar Alam
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
69
|
Nitulescu GM, Stancov G, Seremet OC, Nitulescu G, Mihai DP, Duta-Bratu CG, Barbuceanu SF, Olaru OT. The Importance of the Pyrazole Scaffold in the Design of Protein Kinases Inhibitors as Targeted Anticancer Therapies. Molecules 2023; 28:5359. [PMID: 37513232 PMCID: PMC10385367 DOI: 10.3390/molecules28145359] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The altered activation or overexpression of protein kinases (PKs) is a major subject of research in oncology and their inhibition using small molecules, protein kinases inhibitors (PKI) is the best available option for the cure of cancer. The pyrazole ring is extensively employed in the field of medicinal chemistry and drug development strategies, playing a vital role as a fundamental framework in the structure of various PKIs. This scaffold holds major importance and is considered a privileged structure based on its synthetic accessibility, drug-like properties, and its versatile bioisosteric replacement function. It has proven to play a key role in many PKI, such as the inhibitors of Akt, Aurora kinases, MAPK, B-raf, JAK, Bcr-Abl, c-Met, PDGFR, FGFRT, and RET. Of the 74 small molecule PKI approved by the US FDA, 8 contain a pyrazole ring: Avapritinib, Asciminib, Crizotinib, Encorafenib, Erdafitinib, Pralsetinib, Pirtobrutinib, and Ruxolitinib. The focus of this review is on the importance of the unfused pyrazole ring within the clinically tested PKI and on the additional required elements of their chemical structures. Related important pyrazole fused scaffolds like indazole, pyrrolo[1,2-b]pyrazole, pyrazolo[4,3-b]pyridine, pyrazolo[1,5-a]pyrimidine, or pyrazolo[3,4-d]pyrimidine are beyond the subject of this work.
Collapse
Affiliation(s)
| | | | | | - Georgiana Nitulescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (G.M.N.)
| | | | | | | | | |
Collapse
|
70
|
Shen X, Jin X, Fang S, Chen J. EFEMP2 upregulates PD-L1 expression via EGFR/ERK1/2/c-Jun signaling to promote the invasion of ovarian cancer cells. Cell Mol Biol Lett 2023; 28:53. [PMID: 37420173 DOI: 10.1186/s11658-023-00471-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/24/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Fibulin-like extracellular matrix protein 2 (EFEMP2) has been reported to be related to the progression of various cancers. We have previously reported that EFEMP2 was highly expressed in ovarian cancer and was strongly associated with poor prognosis in patients. This study intends to further explore its interacting proteins and possible downstream signaling pathways. METHOD The expression of EFEMP2 was detected by RT-qPCR, ICC and western blot in 4 kinds of ovarian cancer cells with different migration and invasion ability. Cell models with strong or weak EFEMP2 expression were constructed by lentivirus transfection. The effects of the down-regulation and up-regulation of EFEMP2 on the biological behavior of ovarian cancer cells were studied through in-vitro and in-vivo functional tests. The phosphorylation pathway profiling array and KEGG database analyses identified the downstream EGFR/ERK1/2/c-Jun signaling pathway and the programmed death-1 (PD-L1) pathway enrichment. Additionally, the protein interaction between EFEMP2 and EGFR was detected by immunoprecipitation. RESULT EFEMP2 was positively correlated with the invasion ability of ovarian cancer cells, its down-regulation inhibited the migrative, invasive and cloning capacity of cancer cells in vitro and suppressed the tumor proliferation and intraperitoneal diffusion in vivo, while its up-regulation did the opposite. Moreover, EFEMP2 could bind to EGFR to induce PD-L1 regulation in ovarian cancer, which was caused by the activation of EGFR/ERK1/2/c-Jun signaling. Similar to EFEMP2, PD-L1 was also highly expressed in aggressive cells and had the ability to promote the invasion and metastasis of ovarian cancer cells both in vitro and in vivo, and PD-L1 upregulation was partly caused by EFEMP2 activation. Afatinib combined with trametinib had an obvious effect of inhibiting the intraperitoneal diffusion of ovarian cancer cells, especially in the group with low expression of EFEMP2, while overexpression of PD-L1 could reverse this phenomenon. CONCLUSION EFEMP2 could bind to EGFR to activate ERK1/2/c-Jun pathway and regulate PD-L1 expression, furthermore PD-L1 was extremely essential for EFEMP2 to promote ovarian cancer cells invasion and dissemination in vitro and in vivo. Targeted therapy against the source gene EFEMP2 is our future research direction, which may better inhibit the invasion and metastasis of ovarian cancer cells.
Collapse
Affiliation(s)
- Xin Shen
- Department of Maternal and Child Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xuli Jin
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Shuang Fang
- Jinan Medical Center Management Committee, Jinan, 250000, China
| | - Jie Chen
- Department of Maternal and Child Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
71
|
Wang C, Zhang Y, Chen W, Wang Y, Xing D. Epidermal growth factor receptor PROTACs as an effective strategy for cancer therapy: A review. Biochim Biophys Acta Rev Cancer 2023; 1878:188927. [PMID: 37245798 DOI: 10.1016/j.bbcan.2023.188927] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Epidermal growth factor receptor (EGFR), a transmembrane glycoprotein that mediates cellular signaling pathways involved in cell proliferation, angiogenesis, apoptosis, and metastatic spread, is an important oncogenic drug target. Targeting the intracellular and extracellular domains of the EGFR has been authorized for a number of small-molecule TKIs and mAbs, respectively. However, their clinical application is limited by EGFR catalytic structural domain alterations, cancer heterogeneity, and persistent drug resistance. To bypass these limitations, protease-targeted chimeras (PROTACs) are emerging as an emerging and promising anti-EGFR therapy. PROTACs compensate for the limitations of traditional occupancy-driven small molecules by exploiting intracellular protein destruction processes. Recently, a mushrooming number of heterobifunctional EGFR PROTACs have been created using wild-type (WT) and mutated EGFR TKIs. PROTACs outperformed EGFR TKIs in terms of cellular inhibition, potency, toxicity profiles, and anti-drug resistance. Herein, we present a comprehensive overview of the development of PROTACs targeting EGFR for cancer therapy, while also highlighting the challenges and opportunities associated with the field.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao 266071, Shandong, China.
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China
| | - Yanhong Wang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
72
|
Zheng Y, Peng H, Hu X, Ou Y, Wang D, Wang H, Ren S. Progress and prospects of targeted therapy and immunotherapy for urachal carcinoma. Front Pharmacol 2023; 14:1199395. [PMID: 37324454 PMCID: PMC10267743 DOI: 10.3389/fphar.2023.1199395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: Urachal carcinoma (UrC) is a rare and aggressive disease. Systematic chemotherapy shows limited efficacy in patients with advanced disease, while targeted therapy and immunotherapy may provide a reasonable alternative for specific populations. The molecular pattern of colorectal cancer (CRC) have recently been identified; this understanding has significantly influenced the clinical management of CRC in terms of molecular-targeted therapy. Although some genetic alterations have been associated with UrC, there is still no systematic overview of the molecular profile of this rare malignancy. Methods: In this review, we comprehensively discuss the molecular profile of UrC and further identify potential targets for the personalized treatment of UrC as well as immune checkpoint inhibitors that represent underlying biomarkers. A systematic literature search was carried out by searching the PubMed, EMBASE, and Web of Science databases to identify all literature related to targeted therapy and immunotherapy in urachal carcinoma from inception to February 2023. Results: A total of 28 articles were eligible, and most studies included were case report sand retrospective case series. Furthermore, 420 cases of UrC were identified to analyze the association between mutations and UrC. The most commonly mutated gene in UrC was TP53 with the prevalence of 70%, followed by KRAS mutations in 28.3%, MYC mutations in 20.3%, SMAD4 mutations in 18.2% and GNAS mutations in 18%, amongst other genes. Discussion: The molecular patterns of UrC and CRC are similar yet distinct. Notably, targeted therapy, especially EGFR-targeting therapy, might provide curative efficacy for patients with UrC by applying specific molecular markers. Additional potential biomarkers for the immunotherapy of UrC are mismatch repair (MMR) status and PD-L1 expression profile. In addition, combined regimens featuring targeted agents and immune checkpoint blockers might increase antitumor activity and exert better efficacy in UrC patients with specific mutational burden.
Collapse
Affiliation(s)
- Yang Zheng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Robotic Minimally Invasive Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Heling Peng
- Medical Administration Department, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - Xu Hu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Ou
- Robotic Minimally Invasive Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Dong Wang
- Robotic Minimally Invasive Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Han Wang
- Department of Gastroenterology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - Shangqing Ren
- Robotic Minimally Invasive Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| |
Collapse
|
73
|
Dabral S, Khan IA, Pant T, Khan S, Prakash P, Parvez S, Saha N. Deciphering the Precise Target for Saroglitazar Associated Antiangiogenic Effect: A Computational Synergistic Approach. ACS OMEGA 2023; 8:14985-15002. [PMID: 37151537 PMCID: PMC10157850 DOI: 10.1021/acsomega.2c07570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/13/2023] [Indexed: 05/09/2023]
Abstract
Antidiabetic drugs that have a secondary pharmacological effect on angiogenesis inhibition may help diabetic patients delay or avoid comorbidities caused by angiogenesis including malignancies. In recent studies, saroglitazar has exhibited antiangiogenic effects in diabetic retinopathy. The current study investigates the antiangiogenic effects of saroglitazar utilizing the chicken chorioallantoic membrane (CAM) assay and then identifies its precise mode of action on system-level protein networks. To determine the regulatory effect of saroglitazar on the protein-protein interaction network (PIN), 104 target genes were retrieved and tested using an acid server and Swiss target prediction tools. A string-based interactome was created and analyzed using Cytoscape. It was determined that the constructed network was scale-free, making it biologically relevant. Upon topological analysis of the network, 37 targets were screened on the basis of centrality values. Submodularization of the interactome resulted in the formation of four clusters. A total of 20 common targets identified in topological analysis and modular analysis were filtered. A total of 20 targets were compiled and were integrated into the pathway enrichment analysis using ShinyGO. The majority of hub genes were associated with cancer and PI3-AKT signaling pathways. Molecular docking was utilized to reveal the most potent target, which was validated by using molecular dynamic simulations and immunohistochemical staining on the chicken CAM. The comprehensive study offers an alternate research paradigm for the investigation of antiangiogenic effects using CAM assays. This was followed by the identification of the precise off-target use of saroglitazar using system biology and network pharmacology to inhibit angiogenesis.
Collapse
Affiliation(s)
- Swarna Dabral
- Department
of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Imran Ahmd Khan
- Department
of Chemistry, School of Chemical and Life Science, Jamia Hamdard, New Delhi 110062, India
| | - Tarun Pant
- Department
of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Sabina Khan
- Department
of Pathology, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi 110062, India
| | - Prem Prakash
- Protein
Assembly Laboratory, JH-Institute of Molecular Medicine, Jamia Hamdard University, New Delhi 110062, India
| | - Suhel Parvez
- Department
of Medical Elementology and Toxicology, School of Chemical and Life
Science, Jamia Hamdard University, New Delhi 110062, India
| | - Nilanjan Saha
- Centre
for Translational and Clinical Research, School of Chemical and Life
Science, Jamia Hamdard UniversityNew Delhi 110062, India
- . Phone: 9873013366
| |
Collapse
|
74
|
Dragnev KH, Dragnev CPC, Lubet RA. Major hurdles to the use of tyrosine kinase inhibitors in clinical prevention/interception studies: Do preclinical studies with EGFR inhibitors suggest approaches to overcome some of the limitations. Front Cell Dev Biol 2023; 11:1170444. [PMID: 37169023 PMCID: PMC10165497 DOI: 10.3389/fcell.2023.1170444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
There are major hurdles to the use of tyrosine kinase inhibitors (TKIs) and any other agents with significant toxicities (which means practically the preponderance of potential effective agents) in the context of prevention/anti-progression (interception) studies. We will discuss epidermal growth factor receptor (EGFR) inhibitors as examples, both in a primary prevention setting, where agent(s) are administered to individuals with no cancer but who might be considered at higher risk due to a variety of factors, and in anti-progression/interception studies, where agent(s) are administered to persons with known preinvasive lesions (e.g., colon adenomas, lung nodules, ductal carcinoma in situ (DCIS), or pancreatic intraepithelial neoplasia (PanIN) lesions in the pancreas) in an attempt to reverse or inhibit progression of these lesions. Multiple potential hurdles will be examined, including: a) toxicity of agents, b) the likely range of subtypes of cancers affected by a given treatment (e.g., EGFR inhibitors against EGFR mutant lung adenocarcinomas), c) the availability of practical endpoints besides the blocking of cancer formation or pharmacokinetics related to the agents administered in a primary prevention study, and d) the interpretation of the regression or blockage of new preinvasive lesions in the anti-progression study. Such an anti-progression approach may help address some of the factors commented on regarding primary prevention (toxicity, potential target organ cancer subtypes) but still leaves major questions regarding interpretation of modulation of preinvasive endpoints when it may not be clear how frequently they progress to clinical cancer. Additionally, we address whether certain recent preclinical findings might be able to reduce the toxicities associated with these agents and perhaps even increase their potential efficacy. Antibodies and TKIs other than the EGFR inhibitors are not discussed because few if any had been tested as monotherapies in humans, making their efficacy harder to predict, and because a number have relatively rare but quite striking toxicities. Furthermore, most of the practical hurdles raised regarding the EGFR inhibitors are relevant to the other TKIs. Finally, we briefly discuss whether early detection employing blood or serum samples may allow identification of high-risk groups more amenable to agents with greater toxicity.
Collapse
Affiliation(s)
| | | | - Ronald A. Lubet
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, MD, United States
| |
Collapse
|
75
|
Lisiak N, Dzikowska P, Wisniewska U, Kaczmarek M, Bednarczyk-Cwynar B, Zaprutko L, Rubis B. Biological Activity of Oleanolic Acid Derivatives HIMOXOL and Br-HIMOLID in Breast Cancer Cells Is Mediated by ER and EGFR. Int J Mol Sci 2023; 24:5099. [PMID: 36982173 PMCID: PMC10048893 DOI: 10.3390/ijms24065099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
Breast cancer is one of the most frequently observed malignancies worldwide and represents a heterogeneous group of cancers. For this reason, it is crucial to properly diagnose every single case so a specific and efficient therapy can be adjusted. One of the most critical diagnostic parameters evaluated in cancer tissue is the status of the estrogen receptor (ER) and epidermal growth factor receptor (EGFR). Interestingly, the expression of the indicated receptors may be used in a personalized therapy approach. Importantly, the promising role of phytochemicals in the modulation of pathways controlled by ER and EGFR was also demonstrated in several types of cancer. One such biologically active compound is oleanolic acid, but due to poor water solubility and cell membrane permeability that limits its use, alternative derivative compounds were developed. These are HIMOXOL and Br-HIMOLID, which were demonstrated to be capable of inducing apoptosis and autophagy or diminishing the migratory and invasive potential of breast cancer cells in vitro. In our study, we revealed that proliferation, cell cycle, apoptosis, autophagy, and also the migratory potential of HIMOXOL and Br-HIMOLID in breast cancer cells are mediated by ER (MCF7) and EGFR (MDA-MB-231) receptors. These observations make the studied compounds interesting in the context of anticancer strategies.
Collapse
Affiliation(s)
- Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806 Poznan, Poland
| | - Patrycja Dzikowska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806 Poznan, Poland
| | - Urszula Wisniewska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806 Poznan, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Garbary 15 St., 61-866 Poznan, Poland
| | - Barbara Bednarczyk-Cwynar
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 St., 60-780 Poznan, Poland
| | - Lucjusz Zaprutko
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 St., 60-780 Poznan, Poland
| | - Blazej Rubis
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806 Poznan, Poland
| |
Collapse
|
76
|
Alam M, Hasan GM, Eldin SM, Adnan M, Riaz MB, Islam A, Khan I, Hassan MI. Investigating regulated signaling pathways in therapeutic targeting of non-small cell lung carcinoma. Biomed Pharmacother 2023; 161:114452. [PMID: 36878052 DOI: 10.1016/j.biopha.2023.114452] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Non-small cell lung carcinoma (NSCLC) is the most common malignancy worldwide. The signaling cascades are stimulated via genetic modifications in upstream signaling molecules, which affect apoptotic, proliferative, and differentiation pathways. Dysregulation of these signaling cascades causes cancer-initiating cell proliferation, cancer development, and drug resistance. Numerous efforts in the treatment of NSCLC have been undertaken in the past few decades, enhancing our understanding of the mechanisms of cancer development and moving forward to develop effective therapeutic approaches. Modifications of transcription factors and connected pathways are utilized to develop new treatment options for NSCLC. Developing designed inhibitors targeting specific cellular signaling pathways in tumor progression has been recommended for the therapeutic management of NSCLC. This comprehensive review provided deeper mechanistic insights into the molecular mechanism of action of various signaling molecules and their targeting in the clinical management of NSCLC.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Sayed M Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo 11835, Egypt
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Muhammad Bilal Riaz
- Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdnask, Poland; Department of Computer Science and Mathematics, Lebanese American University, Byblos, Lebanon
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
77
|
Cao Y, Lu X, Fu L, Shi T, Zhang C, Zeng L, Zhang J, Shao J, Xi J, Pan Z, Liu S, Zhu H. Exploration of novel dihydroquinoxalinone derivatives as EGFRL858R/T790M tyrosine kinase inhibitors for the treatment of non-small-cell lung cancer. Bioorg Chem 2023; 135:106494. [PMID: 37011522 DOI: 10.1016/j.bioorg.2023.106494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/28/2023]
Abstract
To overcome or delay the drug-resistance of first-generation epidermal growth factor receptor (EGFR) kinase inhibitors and non-selectivity toxicity mediated by second-generation inhibitors, splicing principle was employed to design and synthesize a series of Osimertinib derivatives containing dihydroquinoxalinone (8-30) as the novel third-generation inhibitors against double mutant L858R/T790M in EGFR. Among them, compound 29 showed excellent kinase inhibitory activity against EGFRL858R/T790M with an IC50 value of 0.55 ± 0.02 nM and potent anti-proliferative activity against H1975 cells with an IC50 value of 5.88 ± 0.07 nM. Moreover, the strong down-regulation effect of EGFR-mediated signaling pathways and the promotion of apoptosis in H1975 cells confirmed its potent antitumor activities. Compound 29 was also demonstrated with good ADME profile in various in vitro assays. Further in vivo studies confirmed that compound 29 could suppress the growth of xenograft tumors. These results verified that compound 29 would be a promising lead compound for targeting drug-resistant EGFR mutations.
Collapse
Affiliation(s)
- Yu Cao
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China; Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou 310023, China
| | - Xixuan Lu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
| | - Liping Fu
- Department of Pharmacy, Shaoxing TCM Hospital Affiliated to Zhejiang Chinese Medical University, Shaoxing 312000, China
| | - Tao Shi
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Chong Zhang
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Linghui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Jiankang Zhang
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Jiaan Shao
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Jianjun Xi
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou 310023, China
| | - Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China.
| | - Shourong Liu
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou 310023, China.
| | - Huajian Zhu
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China.
| |
Collapse
|
78
|
Li MC, Coumar MS, Lin SY, Lin YS, Huang GL, Chen CH, Lien TW, Wu YW, Chen YT, Chen CP, Huang YC, Yeh KC, Yang CM, Kalita B, Pan SL, Hsu TA, Yeh TK, Chen CT, Hsieh HP. Development of Furanopyrimidine-Based Orally Active Third-Generation EGFR Inhibitors for the Treatment of Non-Small Cell Lung Cancer. J Med Chem 2023; 66:2566-2588. [PMID: 36749735 PMCID: PMC9969398 DOI: 10.1021/acs.jmedchem.2c01434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of orally bioavailable, furanopyrimidine-based double-mutant (L858R/T790M) EGFR inhibitors is described. First, selectivity for mutant EGFR was accomplished by replacing the (S)-2-phenylglycinol moiety of 12 with either an ethanol or an alkyl substituent. Then, the cellular potency and physicochemical properties were optimized through insights from molecular modeling studies by implanting various solubilizing groups in phenyl rings A and B. Optimized lead 52 shows 8-fold selective inhibition of H1975 (EGFRL858R/T790M overexpressing) cancer cells over A431 (EGFRWT overexpressing) cancer cells; western blot analysis further confirmed EGFR mutant-selective target modulation inside the cancer cells by 52. Notably, 52 displayed in vivo antitumor effects in two different mouse xenograft models (BaF3 transfected with mutant EGFR and H1975 tumors) with TGI = 74.9 and 97.5% after oral administration (F = 27%), respectively. With an extraordinary kinome selectivity (S(10) score of 0.017), 52 undergoes detailed preclinical development.
Collapse
Affiliation(s)
- Mu-Chun Li
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
- Biomedical
Translation Research Center, Academia Sinica, Taipei City 115202, Taiwan, ROC
| | - Mohane Selvaraj Coumar
- Department
of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet 605014, Pondicherry, India
| | - Shu-Yu Lin
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Yih-Shyan Lin
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Guan-Lin Huang
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Chun-Hwa Chen
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Tzu-Wen Lien
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Yi-Wen Wu
- Graduate
Institute of Cancer Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei City 110301, Taiwan, ROC
| | - Yen-Ting Chen
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Ching-Ping Chen
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Yu-Chen Huang
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Kai-Chia Yeh
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Chen-Ming Yang
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Bikashita Kalita
- Department
of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet 605014, Pondicherry, India
| | - Shiow-Lin Pan
- Graduate
Institute of Cancer Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei City 110301, Taiwan, ROC
- Ph.D.
Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei City 110301, Taiwan, ROC
| | - Tsu-An Hsu
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Teng-Kuang Yeh
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Chiung-Tong Chen
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Hsing-Pang Hsieh
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
- Biomedical
Translation Research Center, Academia Sinica, Taipei City 115202, Taiwan, ROC
- Department
of Chemistry, National Tsing Hua University, Hsinchu City 300044, Taiwan, ROC
- , . Phone: +886-37-206-166
| |
Collapse
|
79
|
Choudhary R, Walhekar V, Muthal A, Kumar D, Bagul C, Kulkarni R. Machine learning facilitated structural activity relationship approach for the discovery of novel inhibitors targeting EGFR. J Biomol Struct Dyn 2023; 41:12445-12463. [PMID: 36762704 DOI: 10.1080/07391102.2023.2175263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/03/2023] [Indexed: 02/11/2023]
Abstract
This research manuscript aims to find the most effective epidermal growth factor receptor (EGFR) inhibitors from millions of in house compounds through Machine Learning (ML) techniques. ML-based structure activity relationship (SAR) models were validated to predict biological activity of untested novel molecules. Six ML algorithms, including k nearest neighbour (KNN), decision tree (DT), Logistic Regression, support vector machine (SVM), multilinear regression (MLR), and random forest (RF), were used to build for activity prediction. Among these, RF classifier (accuracy for train and test set is 90% and 81%) and RF regressor (R2 and MSE for trainset is 0.83 and 0.29 and for test set, 0.69 and 0.46) showed good predictive performance. Also, the six most essential features that affect the biological activity parameter and highly contribute to model development were successfully selected by the variable importance technique. RF regression model was used to predict the biological activity expressed as pIC50 of nearly ten million molecules while RF classification model classifies those molecules into active, moderately active, and least active according to their predicted pIC50. Based on two models, thousand molecules from million molecules with higher predicted pIC50 values and classified as active were selected for molecular docking. Based on the docking scores, predicted pIC50, and binding interactions with MET769 residue, compounds, i.e., Zinc257233137, Zinc257232249, and Zinc101379788, were identified as potential EGFR inhibitors with predicted pIC50 7.72, 7.85, and 7.70. Dynamics studies were also performed on Zinc257233137 to illustrate that it has good binding free energy and stable hydrogen bonding interactions with EGFR. These molecules can be used for further research and proved to be the novel drugs for EGFR in cancer treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rekha Choudhary
- Department of Pharmaceutical Chemistry, BVDU'S Poona College of Pharmacy, Pune, Maharashtra, India
| | - Vinayak Walhekar
- Department of Pharmaceutical Chemistry, BVDU'S Poona College of Pharmacy, Pune, Maharashtra, India
| | - Amol Muthal
- Department of Pharmacology, BVDU'S Poona College of Pharmacy, Pune, Maharashtra, India
| | - Dilip Kumar
- Department of Pharmaceutical Chemistry, BVDU'S Poona College of Pharmacy, Pune, Maharashtra, India
- Department of Entomology, University of California, Davis, Davis, California, USA
- UC Davis Comprehensive Cancer Centre, University of California, Davis, Davis, California, USA
| | - Chandrakant Bagul
- Department of Pharmaceutical Chemistry, BVDU'S Poona College of Pharmacy, Pune, Maharashtra, India
| | - Ravindra Kulkarni
- Department of Pharmaceutical Chemistry, BVDU'S Poona College of Pharmacy, Pune, Maharashtra, India
| |
Collapse
|
80
|
DNA Damage Response Mechanisms in Head and Neck Cancer: Significant Implications for Therapy and Survival. Int J Mol Sci 2023; 24:ijms24032760. [PMID: 36769087 PMCID: PMC9917521 DOI: 10.3390/ijms24032760] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Head and neck cancer (HNC) is a term collectively used to describe a heterogeneous group of tumors that arise in the oral cavity, larynx, nasopharynx, oropharynx, and hypopharynx, and represents the sixth most common type of malignancy worldwide. Despite advances in multimodality treatment, the disease has a recurrence rate of around 50%, and the prognosis of metastatic patients remains poor. HNCs are characterized by a high degree of genomic instability, which involves a vicious circle of accumulating DNA damage, defective DNA damage repair (DDR), and replication stress. Nonetheless, the damage that is induced on tumor cells by chemo and radiotherapy relies on defective DDR processes for a successful response to treatment, and may play an important role in the development of novel and more effective therapies. This review summarizes the current knowledge on the genes and proteins that appear to be deregulated in DDR pathways, their implication in HNC pathogenesis, and the rationale behind targeting these genes and pathways for the development of new therapies. We give particular emphasis on the therapeutic targets that have shown promising results at the pre-clinical stage and on those that have so far been associated with a therapeutic advantage in the clinical setting.
Collapse
|
81
|
Ishikawa E, Yokoyama Y, Chishima H, Kasai H, Kuniyoshi O, Kimura M, Hakamata J, Nakada H, Suehiro N, Nakaya N, Nakajima H, Ikemura S, Kawada I, Yasuda H, Terai H, Jibiki A, Kawazoe H, Soejima K, Muramatsu H, Suzuki S, Nakamura T. Population Pharmacokinetics, Pharmacogenomics, and Adverse Events of Osimertinib and its Two Active Metabolites, AZ5104 and AZ7550, in Japanese Patients with Advanced Non-small Cell Lung Cancer: a Prospective Observational Study. Invest New Drugs 2023; 41:122-133. [PMID: 36637703 PMCID: PMC10030409 DOI: 10.1007/s10637-023-01328-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023]
Abstract
BACKGROUND Potential novel strategies for adverse event (AE) management of osimertinib therapy, including therapeutic drug monitoring and the use of biomarkers, have not yet been fully investigated. This study aimed to evaluate (1) the relationship between exposure to osimertinib, especially its active metabolites (AZ5104 and AZ7550), and AEs, and (2) the relationship between germline polymorphisms and AEs. METHODS We conducted a prospective, longitudinal observational study of 53 patients with advanced non-small cell lung cancer receiving osimertinib therapy from February 2019 to April 2022. A population pharmacokinetic model was developed to estimate the area under the serum concentration-time curve from 0 to 24 h (AUC0-24) of osimertinib and its metabolites. Germline polymorphisms were analyzed using TaqMan® SNP genotyping and CycleavePCR® assays. RESULTS There was a significant association between the AUC0-24 of AZ7550 and grade ≥ 2 paronychia (p = 0.043) or anorexia (p = 0.011) and between that of osimertinib or AZ5104 and grade ≥ 2 diarrhea (p = 0.026 and p = 0.049, respectively). Furthermore, the AUC0-24 of AZ5104 was significantly associated with any grade ≥ 2 AEs (p = 0.046). EGFR rs2293348 and rs4947492 were associated with severe AEs (p = 0.019 and p = 0.050, respectively), and ABCG2 rs2231137 and ABCB1 rs1128503 were associated with grade ≥ 2 AEs (p = 0.008 and p = 0.038, respectively). CONCLUSION Higher exposures to osimertinib, AZ5104, and AZ7550 and polymorphisms in EGFR, ABCG2, and ABCB1 were related to higher severity of AEs; therefore, monitoring these may be beneficial for osimertinib AE management.
Collapse
Affiliation(s)
- Emi Ishikawa
- Division of Pharmaceutical Care Sciences, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| | - Yuta Yokoyama
- Division of Pharmaceutical Care Sciences, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan.
- Division of Pharmaceutical Care Sciences, Center for Social Pharmacy and Pharmaceutical Care Sciences, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, 105-8512, Tokyo, Japan.
| | - Haruna Chishima
- Division of Pharmaceutical Care Sciences, Center for Social Pharmacy and Pharmaceutical Care Sciences, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, 105-8512, Tokyo, Japan
| | - Hidefumi Kasai
- Laboratory of Pharmacometrics and Systems Pharmacology, Keio Frontier Research and Education Collaboration Square (K-FRECS) at Tonomachi, Keio University, Kawasaki, Kanagawa, Japan
| | - Ouki Kuniyoshi
- Department of Pharmacy, Ageo Central General Hospital, Ageo, Japan
| | - Motonori Kimura
- Department of Pharmacy, Keio University Hospital, Tokyo, Japan
| | - Jun Hakamata
- Department of Pharmacy, Keio University Hospital, Tokyo, Japan
| | - Hideo Nakada
- Department of Pharmacy, Keio University Hospital, Tokyo, Japan
| | - Naoya Suehiro
- Department of Pharmacy, Keio University Hospital, Tokyo, Japan
| | - Naoki Nakaya
- Department of Oncology, Ageo Central General Hospital, Ageo, Japan
| | - Hideo Nakajima
- Department of Oncology, Ageo Central General Hospital, Ageo, Japan
| | - Shinnosuke Ikemura
- Department of Respiratory Medicine, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Ichiro Kawada
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
- Health Center, Keio University, Yokohama, Japan
| | - Hiroyuki Yasuda
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hideki Terai
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
- Keio Cancer Center, School of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Aya Jibiki
- Division of Pharmaceutical Care Sciences, Center for Social Pharmacy and Pharmaceutical Care Sciences, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, 105-8512, Tokyo, Japan
| | - Hitoshi Kawazoe
- Division of Pharmaceutical Care Sciences, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
- Division of Pharmaceutical Care Sciences, Center for Social Pharmacy and Pharmaceutical Care Sciences, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, 105-8512, Tokyo, Japan
| | - Kenzo Soejima
- Department of Respiratory Medicine, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | | | - Sayo Suzuki
- Division of Pharmaceutical Care Sciences, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
- Division of Pharmaceutical Care Sciences, Center for Social Pharmacy and Pharmaceutical Care Sciences, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, 105-8512, Tokyo, Japan
| | - Tomonori Nakamura
- Division of Pharmaceutical Care Sciences, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
- Division of Pharmaceutical Care Sciences, Center for Social Pharmacy and Pharmaceutical Care Sciences, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, 105-8512, Tokyo, Japan
| |
Collapse
|
82
|
Zubair T, Bandyopadhyay D. Small Molecule EGFR Inhibitors as Anti-Cancer Agents: Discovery, Mechanisms of Action, and Opportunities. Int J Mol Sci 2023; 24:ijms24032651. [PMID: 36768973 PMCID: PMC9916655 DOI: 10.3390/ijms24032651] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
Epidermal growth factor receptors (EGFRs) are a class of receptor tyrosine kinase that are also called ErbB1 and HER1. EGFR tyrosine kinase activity inhibition is considered a promising therapeutic strategy for the treatment of cancer. Many small-molecule inhibitors of EGFR tyrosine kinase (EGFR-TK), from medicinally privileged molecules to commercial drugs, have been overviewed. Particular attention has been paid to the structure of the molecule and its mechanism of action if reported. Subsequent classification of the molecules under discussion has been carried out. Both natural and synthetic and reversible and irreversible EGFR-tyrosine kinase inhibitors have been discussed. Various types of cancers that are caused by overexpression of the EGFR gene, their possible molecular origins, and their natures have also been counted in this article. Because the EGFR signaling pathway controls the proliferation, growth, survival, and differentiation of cells, and the mutated EGFR gene overproduces EGFR protein, which ultimately causes several types of cancer, proper understanding of the molecular dynamics between the protein structure and its inhibitors will lead to more effective and selective EGFR-TKIs, which in turn will be able to save more lives in the battle against cancer.
Collapse
Affiliation(s)
- Tanzida Zubair
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| | - Debasish Bandyopadhyay
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
- School of Earth Environment & Marine Sciences (SEEMS), The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
- Correspondence:
| |
Collapse
|
83
|
Al-Wahaibi LH, Mohammed AF, Abdelrahman MH, Trembleau L, Youssif BGM. Design, Synthesis, and Antiproliferative Activity of New 5-Chloro-indole-2-carboxylate and Pyrrolo[3,4- b]indol-3-one Derivatives as Potent Inhibitors of EGFR T790M/BRAF V600E Pathways. Molecules 2023; 28:1269. [PMID: 36770936 PMCID: PMC9921301 DOI: 10.3390/molecules28031269] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Mutant EGFR/BRAF pathways are thought to be crucial targets for the development of anticancer drugs since they are over-activated in several malignancies. We present here the development of a novel series of 5-chloro-indole-2-carboxylate 3a-e, 4a-c and pyrrolo[3,4-b]indol-3-ones 5a-c derivatives as potent inhibitors of mutant EGFR/BRAF pathways with antiproliferative activity. The cell viability assay results of 3a-e, 4a-c, and 5a-c revealed that none of the compounds tested were cytotoxic, and that the majority of those tested at 50 µM had cell viability levels greater than 87%. Compounds 3a-e, 4a-c, and 5a-c had significant antiproliferative activity with GI50 values ranging from 29 nM to 78 nM, with 3a-e outperforming 4a-c and 5a-c in their inhibitory actions against the tested cancer cell lines. Compounds 3a-e were tested for EGFR inhibition, with IC50 values ranging from 68 nM to 89 nM. The most potent derivative was found to be the m-piperidinyl derivative 3e (R = m-piperidin-1-yl), with an IC50 value of 68 nM, which was 1.2-fold more potent than erlotinib (IC50 = 80 nM). Interestingly, all the tested compounds 3a-e had higher anti-BRAFV600E activity than the reference erlotinib but were less potent than vemurafenib, with compound 3e having the most potent activity. Moreover, compounds 3b and 3e showed an 8-fold selectivity index toward EGFRT790M protein over wild-type. Additionally, molecular docking of 3a and 3b against BRAFV600E and EGFRT790M enzymes revealed high binding affinity and active site interactions compared to the co-crystalized ligands. The pharmacokinetics properties (ADME) of 3a-e revealed safety and good pharmacokinetic profile.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Anber F. Mohammed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mostafa H. Abdelrahman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Laurent Trembleau
- School of Natural and Computing Sciences, University of Aberdeen, Meston Building, Aberdeen AB24 3UE, UK
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
84
|
Varadi M, Nagy N, Reis H, Hadaschik B, Niedworok C, Modos O, Szendroi A, Ablat J, Black PC, Keresztes D, Csizmarik A, Olah C, Gaisa NT, Kiss A, Timar J, Toth E, Csernak E, Gerstner A, Mittal V, Karkampouna S, Kruithof de Julio M, Gyorffy B, Bedics G, Rink M, Fisch M, Nyirady P, Szarvas T. Clinical sequencing identifies potential actionable alterations in a high rate of urachal and primary bladder adenocarcinomas. Cancer Med 2023; 12:9041-9054. [PMID: 36670542 PMCID: PMC10134276 DOI: 10.1002/cam4.5639] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Administration of targeted therapies provides a promising treatment strategy for urachal adenocarcinoma (UrC) or primary bladder adenocarcinoma (PBAC); however, the selection of appropriate drugs remains difficult. Here, we aimed to establish a routine compatible methodological pipeline for the identification of the most important therapeutic targets and potentially effective drugs for UrC and PBAC. METHODS Next-generation sequencing, using a 161 cancer driver gene panel, was performed on 41 UrC and 13 PBAC samples. Clinically relevant alterations were filtered, and therapeutic interpretation was performed by in silico evaluation of drug-gene interactions. RESULTS After data processing, 45/54 samples passed the quality control. Sequencing analysis revealed 191 pathogenic mutations in 68 genes. The most frequent gain-of-function mutations in UrC were found in KRAS (33%), and MYC (15%), while in PBAC KRAS (25%), MYC (25%), FLT3 (17%) and TERT (17%) were recurrently affected. The most frequently affected pathways were the cell cycle regulation, and the DNA damage control pathway. Actionable mutations with at least one available approved drug were identified in 31/33 (94%) UrC and 8/12 (67%) PBAC patients. CONCLUSIONS In this study, we developed a data-processing pipeline for the detection and therapeutic interpretation of genetic alterations in two rare cancers. Our analyses revealed actionable mutations in a high rate of cases, suggesting that this approach is a potentially feasible strategy for both UrC and PBAC treatments.
Collapse
Affiliation(s)
- Melinda Varadi
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Nikolett Nagy
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Henning Reis
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany.,Institute of Pathology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Boris Hadaschik
- Department of Urology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Christian Niedworok
- Department of Urology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Orsolya Modos
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Attila Szendroi
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Jason Ablat
- Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Peter C Black
- Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - David Keresztes
- Department of Urology, Semmelweis University, Budapest, Hungary.,Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Anita Csizmarik
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Csilla Olah
- Department of Urology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Nadine T Gaisa
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Andras Kiss
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Jozsef Timar
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Erika Toth
- National Institute of Oncology, Budapest, Hungary
| | | | | | - Vinay Mittal
- Thermo Fisher Scientific, Ann Arbor, Michigan, USA
| | - Sofia Karkampouna
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Marianna Kruithof de Julio
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland.,Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Balazs Gyorffy
- Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary.,2nd Department of Pediatrics and Department of Bioinformatics, Semmelweis University, Budapest, Hungary
| | - Gabor Bedics
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Michael Rink
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Margit Fisch
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Nyirady
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Tibor Szarvas
- Department of Urology, Semmelweis University, Budapest, Hungary.,Department of Urology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| |
Collapse
|
85
|
Kauerová T, Pérez-Pérez MJ, Kollar P. Salicylanilides and Their Anticancer Properties. Int J Mol Sci 2023; 24:ijms24021728. [PMID: 36675241 PMCID: PMC9861143 DOI: 10.3390/ijms24021728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
Salicylanilides are pharmacologically active compounds with a wide spectrum of biological effects. Halogenated salicylanilides, which have been used for decades in human and veterinary medicine as anthelmintics, have recently emerged as candidates for drug repurposing in oncology. The most prominent example of salicylanilide anthelmintic, that is intensively studied for its potential anticancer properties, is niclosamide. Nevertheless, recent studies have discovered extensive anticancer potential in a number of other salicylanilides. This potential of their anticancer action is mediated most likely by diverse mechanisms of action such as uncoupling of oxidative phosphorylation, inhibition of protein tyrosine kinase epidermal growth factor receptor, modulation of different signaling pathways as Wnt/β-catenin, mTORC1, STAT3, NF-κB and Notch signaling pathways or induction of B-Raf V600E inhibition. Here we provide a comprehensive overview of the current knowledge about the proposed mechanisms of action of anticancer activity of salicylanilides based on preclinical in vitro and in vivo studies, or structural requirements for such an activity.
Collapse
Affiliation(s)
- Tereza Kauerová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | | | - Peter Kollar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
- Correspondence: ; Tel.: +420-541-562-892
| |
Collapse
|
86
|
Basu D, Pal R, Sarkar M, Barma S, Halder S, Roy H, Nandi S, Samadder A. To Investigate Growth Factor Receptor Targets and Generate Cancer Targeting Inhibitors. Curr Top Med Chem 2023; 23:2877-2972. [PMID: 38164722 DOI: 10.2174/0115680266261150231110053650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 01/03/2024]
Abstract
Receptor tyrosine kinase (RTK) regulates multiple pathways, including Mitogenactivated protein kinases (MAPKs), PI3/AKT, JAK/STAT pathway, etc. which has a significant role in the progression and metastasis of tumor. As RTK activation regulates numerous essential bodily processes, including cell proliferation and division, RTK dysregulation has been identified in many types of cancers. Targeting RTK is a significant challenge in cancer due to the abnormal upregulation and downregulation of RTK receptors subfamily EGFR, FGFR, PDGFR, VEGFR, and HGFR in the progression of cancer, which is governed by multiple RTK receptor signalling pathways and impacts treatment response and disease progression. In this review, an extensive focus has been carried out on the normal and abnormal signalling pathways of EGFR, FGFR, PDGFR, VEGFR, and HGFR and their association with cancer initiation and progression. These are explored as potential therapeutic cancer targets and therefore, the inhibitors were evaluated alone and merged with additional therapies in clinical trials aimed at combating global cancer.
Collapse
Affiliation(s)
- Debroop Basu
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Riya Pal
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, IndiaIndia
| | - Maitrayee Sarkar
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Soubhik Barma
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sumit Halder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Harekrishna Roy
- Nirmala College of Pharmacy, Vijayawada, Guntur, Andhra Pradesh, India
| | - Sisir Nandi
- Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur, 244713, India
| | - Asmita Samadder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| |
Collapse
|
87
|
Fabrizio FP, Sparaneo A, Muscarella LA. Monitoring EGFR-lung cancer evolution: a possible beginning of a "methylation era" in TKI resistance prediction. Front Oncol 2023; 13:1137384. [PMID: 37152062 PMCID: PMC10157092 DOI: 10.3389/fonc.2023.1137384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
The advances in scientific knowledge on biological therapies of the last two decades have impressively oriented the clinical management of non-small-cell lung cancer (NSCLC) patients. The treatment with tyrosine kinase inhibitors (TKIs) in patients harboring Epidermal Growth Factor Receptor (EGFR)-activating mutations is dramatically associated with an improvement in disease control. Anyhow, the prognosis for this selected group of patients remains unfavorable, due to the innate and/or acquired resistance to biological therapies. The methylome analysis of many tumors revealed multiple patterns of methylation at single/multiple cytosine-phosphate-guanine (CpG) sites that are linked to the modulation of several cellular pathways involved in cancer onset and progression. In lung cancer patients, ever increasing evidences also suggest that the association between DNA methylation changes at promoter/intergenic regions and the consequent alteration of gene-expression signatures could be related to the acquisition of resistance to biological therapies. Despite this intriguing hypothesis, large confirmatory studies are demanded to consolidate and finalize many preliminary observations made in this field. In this review, we will summarize the available knowledge about the dynamic role of DNA methylation in EGFR-mutated NSCLC patients.
Collapse
|
88
|
Dosquet H, Neirinckx V, Meyrath M, Wantz M, Haan S, Niclou SP, Szpakowska M, Chevigné A. Nanoluciferase-based complementation assays to monitor activation, modulation and signaling of receptor tyrosine kinases (RTKs). Methods Enzymol 2023; 682:1-16. [PMID: 36948698 DOI: 10.1016/bs.mie.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Receptor tyrosine kinases (RTKs) are transmembrane receptors activated by a wide diversity of growth factors, cytokines or hormones. They ensure multiple roles in cellular processes, including proliferation, differentiation and survival. They are also crucial drivers of development and progression of multiple cancer types, and represent important drug targets. Generally, ligand binding induces dimerization of RTK monomers, which induces auto-/transphosphorylation of tyrosine residues on the intracellular tails leading to the recruitment of adaptor proteins and modifying enzymes to promote and modulate various downstream signaling pathways. This chapter details easy, rapid, sensitive and versatile methods based on split Nanoluciferase complementation technology (NanoBiT) to monitor activation and modulation of two models of RTKs (EGFR and AXL) through the measurement of their dimerization and the recruitment of the adaptor protein Grb2 (SH2 domain-containing growth factor receptor-bound protein 2) and the receptor-modifying enzyme, the ubiquitin ligase Cbl.
Collapse
Affiliation(s)
- Hugo Dosquet
- Department of Cancer Research, NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Virginie Neirinckx
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
| | - Max Meyrath
- Department of Infection and Immunity, Immunopharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - May Wantz
- Department of Infection and Immunity, Immunopharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Serge Haan
- Faculty of Science, Technology and Medicine, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Simone P Niclou
- Department of Cancer Research, NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg; Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Martyna Szpakowska
- Department of Infection and Immunity, Immunopharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Andy Chevigné
- Department of Infection and Immunity, Immunopharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
89
|
Abou‐Zied HA, Beshr EAM, Gomaa HAM, Mostafa YA, Youssif BGM, Hayallah AM, Abdel‐Aziz M. Discovery of new cyanopyridine/chalcone hybrids as dual inhibitors of EGFR/BRAF
V600E
with promising antiproliferative properties. Arch Pharm (Weinheim) 2022; 356:e2200464. [PMID: 36526595 DOI: 10.1002/ardp.202200464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022]
Abstract
As dual EGFR and BRAFV600E inhibitors, 2-(3-cyano-4,6-bis(aryl)-2-oxo-1,2-dihydropyridine-1-yl)-N-(4-cinnamoylphenyl) acetamide derivatives 8-20 were developed. Compounds 8, 12, and 13 showed strong antiproliferative activity when the target compounds were synthesized and tested in vitro against four cancer cell lines. These hybrids have a dual inhibition activity on EGFR and BRAFV600E , according to in vitro studies. The EGFR was inhibited by compounds 8, 12, and 13 with IC50 values between 89 and 110 nM, which were equivalent to those of erlotinib (IC50 = 80 nm). Compound 13 was found to be an effective inhibitor of the proliferation of cancer cells (GI50 = 0.72 µM) and demonstrated hopeful inhibitory activity of BRAFV600E (IC50 = 58 nm), which is superior to erlotinib (IC50 = 65 nm). Compound 13 caused apoptosis and showed cell cycle arrest in the G0/G1phase in a study on the MCF-7 cell line. The new compounds can fit tightly into the active sites of EGFR and BRAFV600E kinases, according to molecular docking analyses.
Collapse
Affiliation(s)
- Hesham A. Abou‐Zied
- Medicinal Chemistry Department, Faculty of Pharmacy Deraya University Minia Egypt
| | - Eman A. M. Beshr
- Medicinal Chemistry Department, Faculty of Pharmacy Minia University Minia Egypt
| | - Hesham A. M. Gomaa
- Pharmacology Department, College of Pharmacy Jouf University Sakaka Saudi Arabia
| | - Yaser A. Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy Assiut University Assiut Egypt
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy Assiut University Assiut Egypt
| | - Alaa M. Hayallah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy Assiut University Assiut Egypt
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy Sphinx University Assiut Egypt
| | - Mohamed Abdel‐Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy Minia University Minia Egypt
| |
Collapse
|
90
|
Zhou S, Li C, Yuan Y, Jiang L, Chen W, Jiang X. Dendritic lipopeptide liposomes decorated with dual-targeted proteins. Biomater Sci 2022; 10:7032-7041. [PMID: 36318065 DOI: 10.1039/d2bm00952h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Due to their homing effects, cell and cell membrane-derived nanocarriers have been widely used to enhance drug target delivery. Inspired by the protein-anchored cell membrane architecture, we here report a tumor-targeted liposome, dtDLP, which was constructed through the electrostatic interaction between dendritic lipopeptide liposomes and a dual-targeted recombinant protein, achieving superior tumor homing, cellular endocytotic and penetration abilities. The dual-targeted recombinant protein consists of an anti-epidermal growth factor receptor single domain antibody and a peptide ligand for the integrin αvβ3. dtDLPs substantially reduced macrophage phagocytosis and increased drug internalization in both 4T1 cells and HeLa cells by providing more endocytic pathways. In addition, the dtDLPs showed great penetration ability in both multicellular spheroids and tumor tissues. Due to the improved cancer cellular uptake and tumor penetration, the dtDLPs exhibited a superior anticancer effect in both HeLa and 4T1 tumor-bearing mice. This work will be helpful for the design of cell-specific liposomes with admirable tumor targeting, endocytotic and penetration abilities.
Collapse
Affiliation(s)
- Sensen Zhou
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, and Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210093, P.R. China.
| | - Cheng Li
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, and Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210093, P.R. China.
| | - Yang Yuan
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, and Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210093, P.R. China.
| | - Lei Jiang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, and Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210093, P.R. China. .,State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Weizhi Chen
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, and Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210093, P.R. China.
| | - Xiqun Jiang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, and Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210093, P.R. China.
| |
Collapse
|
91
|
Gupta N, Qayum A, Singh S, Mujwar S, Sangwan PL. Isolation, Cytotoxicity Evaluation, Docking, ADMET and Drug Likeness Studies of Secondary Metabolites from the Stem Bark of
Anthocephalus cadamba
(Roxb.). ChemistrySelect 2022. [DOI: 10.1002/slct.202202950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Nidhi Gupta
- Natural Product and Medicinal Chemistry (NPMC) Division CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Department of Pharmaceutical Chemistry M. M. College of Pharmacy Maharishi Markandeshwar (Deemed to be University) Mullana Ambala Haryana India 133207
| | - Arem Qayum
- Cancer Pharmacology Division CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
| | - Shashank Singh
- Cancer Pharmacology Division CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy Chitkara University, Rajpura Punjab India 140401
| | - Payare L. Sangwan
- Natural Product and Medicinal Chemistry (NPMC) Division CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
| |
Collapse
|
92
|
Opo FADM, Moulay M, Zari A, Alqaderi A, Alkarim S, Zari T, Bhuiyan MA, Mahmoud MM, Aljoud F, Suhail M, Edris S, Ramadan WS, Kamal MA, Nemmiche S, Ahammad F. Pharmacophore-based virtual screening approaches to identify novel molecular candidates against EGFR through comprehensive computational approaches and in-vitro studies. Front Pharmacol 2022; 13:1027890. [PMID: 36457709 PMCID: PMC9707641 DOI: 10.3389/fphar.2022.1027890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/20/2022] [Indexed: 09/06/2023] Open
Abstract
Alterations to the EGFR (epidermal growth factor receptor) gene, which primarily occur in the axon 18-21 position, have been linked to a variety of cancers, including ovarian, breast, colon, and lung cancer. The use of TK inhibitors (gefitinib, erlotinib, lapatinib, and afatinib) and monoclonal antibodies (cetuximab, panitumumab, and matuzumab) in the treatment of advanced-stage cancer is very common. These drugs are becoming less effective in EGFR targeted cancer treatment and developing resistance to cancer cell eradication, which sometimes necessitates stopping treatment due to the side effects. One in silico study has been conducted to identify EGFR antagonists using other compounds, databases without providing the toxicity profile, comparative analyses, or morphological cell death pattern. The goal of our study was to identify potential lead compounds, and we identified seven compounds based on the docking score and four compounds that were chosen for our study, utilizing toxicity analysis. Molecular docking, virtual screening, dynamic simulation, and in-vitro screening indicated that these compounds' effects were superior to those of already marketed medication (gefitinib). The four compounds obtained, ZINC96937394, ZINC14611940, ZINC103239230, and ZINC96933670, demonstrated improved binding affinity (-9.9 kcal/mol, -9.6 kcal/mol, -9.5 kcal/mol, and -9.2 kcal/mol, respectively), interaction stability, and a lower toxicity profile. In silico toxicity analysis showed that our compounds have a lower toxicity profile and a higher LD50 value. At the same time, a selected compound, i.e., ZINC103239230, was revealed to attach to a particular active site and bind more tightly to the protein, as well as show better in-vitro results when compared to our selected gefitinib medication. MTT assay, gene expression analysis (BAX, BCL-2, and β-catenin), apoptosis analysis, TEM, cell cycle assay, ELISA, and cell migration assays were conducted to perform the cell death analysis of lung cancer and breast cancer, compared to the marketed product. The MTT assay exhibited 80% cell death for 75 µM and 100µM; however, flow cytometry analysis with the IC50 value demonstrated that the selected compound induced higher apoptosis in MCF-7 (30.8%) than in A549.
Collapse
Affiliation(s)
- F A Dain Md Opo
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Moulay
- Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Embryonic and Cancer Stem Cell Research Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biology, Abdelhamid ibn Badis University, Mostaganem, Algeria
| | - Ali Zari
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Embryonic and Cancer Stem Cell Research Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Afnan Alqaderi
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleh Alkarim
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Embryonic and Cancer Stem Cell Research Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Talal Zari
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Maged Mostafa Mahmoud
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Molecular Genetics and Enzymology Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fadwa Aljoud
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherif Edris
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Embryonic and Cancer Stem Cell Research Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wafaa S. Ramadan
- Embryonic and Cancer Stem Cell Research Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Saïd Nemmiche
- Department of Biology, Abdelhamid ibn Badis University, Mostaganem, Algeria
| | - Foysal Ahammad
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
93
|
Wang J, Huang Z, Ji L, Chen C, Wan Q, Xin Y, Pu Z, Li K, Jiao J, Yin Y, Hu Y, Gong L, Zhang R, Yang X, Fang X, Wang M, Zhang B, Shao J, Zou J. SHF Acts as a Novel Tumor Suppressor in Glioblastoma Multiforme by Disrupting STAT3 Dimerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200169. [PMID: 35843865 PMCID: PMC9475553 DOI: 10.1002/advs.202200169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/28/2022] [Indexed: 05/28/2023]
Abstract
Sustained activation of signal transducer and activator of transcription 3 (STAT3) is a critical contributor in tumorigenesis and chemoresistance, thus making it an attractive cancer therapeutic target. Here, SH2 domain-containing adapter protein F (SHF) is identified as a tumor suppressor in glioblastoma Multiforme (GBM) and its negative regulation of STAT3 activity is characterized. Mechanically, SHF selectively binds and inhibits acetylated STAT3 dimerization without affecting STAT3 phosphorylation or acetylation. Additionally, by blocking STAT3-DNMT1 (DNA Methyltransferase 1) interaction, SHF relieves methylation of tumor suppressor genes. The SH2 domain is documented to be essential for SHF's actions on STAT3, and almost entirely replaces the functions of SHF on STAT3 independently. Moreover, the peptide C16 a peptide derived from the STAT3-binding sites of SHF inhibits STAT3 dimerization and STAT3/DNMT1 interaction, and achieves remarkable growth inhibition in GBM cells in vitro and in vivo. These findings strongly identify targeting of the SHF/STAT3 interaction as a promising strategy for developing an optimal STAT3 inhibitor and provide early evidence of the potential clinical efficacy of STAT3 inhibitors such as C16 in GBM.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Zixuan Huang
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Li Ji
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Cheng Chen
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Quan Wan
- Department of NeurosurgeryThe Affiliated Wuxi Second Hospital of Nanjing Medical UniversityWuxiJiangsu214002P. R. China
| | - Yu Xin
- Key Laboratory of Industry BiotechnologySchool of BiotechnologyJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Zhening Pu
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Koukou Li
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Jiantong Jiao
- Department of NeurosurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Ying Yin
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Yaling Hu
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Lingli Gong
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Rui Zhang
- Department of NeurosurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Xusheng Yang
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Xiangming Fang
- Department of RadiologyWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Mei Wang
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Bo Zhang
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Junfei Shao
- Department of NeurosurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Jian Zou
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| |
Collapse
|
94
|
Challenges for the application of EGFR-targeting peptide GE11 in tumor diagnosis and treatment. J Control Release 2022; 349:592-605. [PMID: 35872181 DOI: 10.1016/j.jconrel.2022.07.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/20/2022]
Abstract
Abnormal regulation of cell signaling pathways on cell survival, proliferation and migration contributes to the development of malignant tumors. Among them, epidermal growth factor receptor (EGFR) is one of the most important biomarkers in many types of malignant solid tumors. Its over-expression and mutation status can be served as a biomarker to identify patients who can be benifit from EGFR tyrosine kinase inhibitors and anti-EGFR monocloncal antibody (mAb) therapy. For decades, researches on EGFR targeted ligands were actively carried out to identify potent candidates for cancer therapy. An ideal EGFR ligand can competitively inhibit the binding of endogenous growth factor, such as epidermal growth factor (EGF) and transforming growth factor-α(TGF-α) to EGFR, thus block EGFR signaling pathway and downregulate EGFR expression. Alternatively, conjugation of EGFR ligands on drug delivery systems (DDS) can facilitate targeting delivery of therapeutics or diagnostic agents to EGFR over-expression tumors via EGFR-mediated endocytosis. GE11 peptide is one of the potent EGFR ligand screened from a phage display peptide library. It is a dodecapeptide that can specifically binds to EGFR with high affinity and selectivity. GE11 has been widely used in the diagnosis and targeted delivery of drugs for radiotherapy, genetherapy and chemotherpy against EGFR positive tumors. In this review, the critical factors affecting the in vivo and in vitro targeting performance of GE11 peptide, including ligand-receptor intermolecular force, linker bond properties and physiochemical properties of carrier materials, are detailedly interpreted. This review provides a valuable vision for the rational design and optimization of GE11-based active targeting strategies for cancer treatment, and it will promote the translation studies of GE11 from lab research to clinical application.
Collapse
|
95
|
Targeting EGFR in melanoma - The sea of possibilities to overcome drug resistance. Biochim Biophys Acta Rev Cancer 2022; 1877:188754. [PMID: 35772580 DOI: 10.1016/j.bbcan.2022.188754] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/15/2022] [Accepted: 06/23/2022] [Indexed: 12/21/2022]
Abstract
Melanoma is considered one of the most aggressive skin cancers. It spreads and metastasizes quickly and is intrinsically resistant to most conventional chemotherapeutics, thereby presenting a challenge to researchers and clinicians searching for effective therapeutic strategies to treat patients with melanoma. The use of inhibitors of mutated serine/threonine-protein kinase B-RAF (BRAF), e.g., vemurafenib and dabrafenib, has revolutionized melanoma chemotherapy. Unfortunately, the response to these drugs lasts a limited time due to the development of acquired resistance. One of the proteins responsible for this process is epidermal growth factor receptor (EGFR). In this review, we summarize the role of EGFR signaling in the multidrug resistance of melanomas and discuss possible applications of EGFR inhibitors to overcome the development of drug resistance in melanoma cells during therapy.
Collapse
|
96
|
Ang GCK, Gupta A, Surana U, Yap SXL, Taneja R. Potential Therapeutics Targeting Upstream Regulators and Interactors of EHMT1/2. Cancers (Basel) 2022; 14:2855. [PMID: 35740522 PMCID: PMC9221123 DOI: 10.3390/cancers14122855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Euchromatin histone lysine methyltransferases (EHMTs) are epigenetic regulators responsible for silencing gene transcription by catalyzing H3K9 dimethylation. Dysregulation of EHMT1/2 has been reported in multiple cancers and is associated with poor clinical outcomes. Although substantial insights have been gleaned into the downstream targets and pathways regulated by EHMT1/2, few studies have uncovered mechanisms responsible for their dysregulated expression. Moreover, EHMT1/2 interacting partners, which can influence their function and, therefore, the expression of target genes, have not been extensively explored. As none of the currently available EHMT inhibitors have made it past clinical trials, understanding upstream regulators and EHMT protein complexes may provide unique insights into novel therapeutic avenues in EHMT-overexpressing cancers. Here, we review our current understanding of the regulators and interacting partners of EHMTs. We also discuss available therapeutic drugs that target the upstream regulators and binding partners of EHMTs and could potentially modulate EHMT function in cancer progression.
Collapse
Affiliation(s)
- Gareth Chin Khye Ang
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Amogh Gupta
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
| | - Uttam Surana
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Shirlyn Xue Ling Yap
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Reshma Taneja
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
| |
Collapse
|
97
|
A Comprehensive Overview of Globally Approved JAK Inhibitors. Pharmaceutics 2022; 14:pharmaceutics14051001. [PMID: 35631587 PMCID: PMC9146299 DOI: 10.3390/pharmaceutics14051001] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Janus kinase (JAK) is a family of cytoplasmic non-receptor tyrosine kinases that includes four members, namely JAK1, JAK2, JAK3, and TYK2. The JAKs transduce cytokine signaling through the JAK-STAT pathway, which regulates the transcription of several genes involved in inflammatory, immune, and cancer conditions. Targeting the JAK family kinases with small-molecule inhibitors has proved to be effective in the treatment of different types of diseases. In the current review, eleven of the JAK inhibitors that received approval for clinical use have been discussed. These drugs are abrocitinib, baricitinib, delgocitinib, fedratinib, filgotinib, oclacitinib, pacritinib, peficitinib, ruxolitinib, tofacitinib, and upadacitinib. The aim of the current review was to provide an integrated overview of the chemical and pharmacological data of the globally approved JAK inhibitors. The synthetic routes of the eleven drugs were described. In addition, their inhibitory activities against different kinases and their pharmacological uses have also been explained. Moreover, their crystal structures with different kinases were summarized, with a primary focus on their binding modes and interactions. The proposed metabolic pathways and metabolites of these drugs were also illustrated. To sum up, the data in the current review could help in the design of new JAK inhibitors with potential therapeutic benefits in inflammatory and autoimmune diseases.
Collapse
|
98
|
Alam M, Alam S, Shamsi A, Adnan M, Elasbali AM, Al-Soud WA, Alreshidi M, Hawsawi YM, Tippana A, Pasupuleti VR, Hassan MI. Bax/Bcl-2 Cascade Is Regulated by the EGFR Pathway: Therapeutic Targeting of Non-Small Cell Lung Cancer. Front Oncol 2022; 12:869672. [PMID: 35402265 PMCID: PMC8990771 DOI: 10.3389/fonc.2022.869672] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung carcinoma (NSCLC) comprises 80%-85% of lung cancer cases. EGFR is involved in several cancer developments, including NSCLC. The EGFR pathway regulates the Bax/Bcl-2 cascade in NSCLC. Increasing understanding of the molecular mechanisms of fundamental tumor progression has guided the development of numerous antitumor drugs. The development and improvement of rationally planned inhibitors and agents targeting particular cellular and biological pathways in cancer have been signified as a most important paradigm shift in the strategy to treat and manage lung cancer. Newer approaches and novel chemotherapeutic agents are required to accompany present cancer therapies for improving efficiency. Using natural products as a drug with an effective delivery system may benefit therapeutics. Naturally originated compounds such as phytochemicals provide crucial sources for novel agents/drugs and resources for tumor therapy. Applying the small-molecule inhibitors (SMIs)/phytochemicals has led to potent preclinical discoveries in various human tumor preclinical models, including lung cancer. In this review, we summarize recent information on the molecular mechanisms of the Bax/Bcl-2 cascade and EGFR pathway in NSCLC and target them for therapeutic implications. We further described the therapeutic potential of Bax/Bcl-2/EGFR SMIs, mainly those with more potent and selectivity, including gefitinib, EGCG, ABT-737, thymoquinone, quercetin, and venetoclax. In addition, we explained the targeting EGFR pathway and ongoing in vitro and in vivo and clinical investigations in NSCLC. Exploration of such inhibitors facilitates the future treatment and management of NSCLC.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| | - Shoaib Alam
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka, Saudi Arabia
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Health Sciences Research Unit, Jouf University, Sakaka, Saudi Arabia
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
| | | | - Anitha Tippana
- Regional Agricultural Research Station, Acharya N. G. Ranga Agricultural University (ANGRAU), Tirupati, India
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine & Health Sciences, University Malaysia Sabah, Kota Kinabalu, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Indonesia
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Bangalore, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| |
Collapse
|