51
|
Mosallam S, Albash R, Abdelbari MA. Advanced Vesicular Systems for Antifungal Drug Delivery. AAPS PharmSciTech 2022; 23:206. [PMID: 35896903 DOI: 10.1208/s12249-022-02357-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
Fungal infections are considered one of the most serious conditions as their occurrence has increased lately. Fungi like Candida, Fusarium, and Aspergillus species mostly affect immunocompromised patients as they are considered opportunistic pathogens. These infections can be superficial, cutaneous, subcutaneous, or systemic fungal infections that require specific treatment. There is a wide variety of antifungal drugs that can be used to cure fungal infections; however, most of them have many systemic side effects due to their physicochemical characteristics and high toxicity profile. Hence, the current review focuses on various advanced vesicular carriers with high biocompatibility that can encapsulate the antifungal drugs owing to increase their efficacy and limit the undesirable side effects. These advanced systems can manage stability, solubility, bioavailability, safety, and effectiveness issues present in conventional systems.
Collapse
Affiliation(s)
- Shaimaa Mosallam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, 12585, Egypt.
| | - Rofida Albash
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Manar Adel Abdelbari
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, 12585, Egypt
| |
Collapse
|
52
|
Jamadar AT, Peram MR, Chandrasekhar N, Kanshide A, Kumbar VM, Diwan PV. Formulation, Optimization, and Evaluation of Ultradeformable Nanovesicles for Effective Topical Delivery of Hydroquinone. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09657-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
53
|
Hassan SU, Khalid I, Hussain L, Barkat K, Khan IU. Development and Evaluation of pH-Responsive Pluronic F 127 Co-Poly- (Acrylic Acid) Biodegradable Nanogels for Topical Delivery of Terbinafine HCL. Dose Response 2022; 20:15593258221095977. [PMID: 35558872 PMCID: PMC9087256 DOI: 10.1177/15593258221095977] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 11/29/2022] Open
Abstract
Research aimed to develop and evaluate biodegradable, pH-responsive chemically
cross-linked Pluronic F127 co-poly- (acrylic acid) nanogels for dermal delivery
of Terbinafine HCL (TBH) to increase its permeability and as a new approach to
treat skin fungal infections. TBH-loaded nanogels were successfully synthesized
from acrylic acid (AA) and Pluronic F127 by free-radical copolymerization
technique using N,N′-methylene bisacrylamide (MBA) as crosslinker and ammonium
persulphate (APS) as initiator. Prepared nanogels exhibited 93.51% drug
entrapment efficiency (DEE), 45 nm particle size, pH-dependent swelling and
release behavior. Nanogels were characterized using different physicochemical
techniques. The ex-vivo skin retention studies through rat skin
showed about 42.34% drug retention from nanogels while 1% Lamisil cream
(marketed product) showed about 26.56% drug retention. Moreover, skin irritation
studies showed that nanogels were not irritating. Nanogels showed improved
in-vitro antifungal activity against Candida
albicans compared to commercial product. In-vivo
studies on rats infected with Candida albicans confirmed
superiority of nanogels over 1% Lamisil for eradication of fungal infection.
This confirms that TBH loaded in Pluronic F127 co-poly-(acrylic acid) nanogels
provided greater targetibility and cure rates of poorly soluble TBH in animal
model and hence nanogels could be a potential carrier for effective topical
delivery of TBH for skin fungal infection treatment.
Collapse
Affiliation(s)
- Shams ul Hassan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| | - Ikrima Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| | - Liaqat Hussain
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| | - Kashif Barkat
- Faculty of Pharmacy, The University of Lahore, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| |
Collapse
|
54
|
Transdermal Glipizide Delivery System Based on Chitosan-Coated Deformable Liposomes: Development, Ex Vivo, and In Vivo Studies. Pharmaceutics 2022; 14:pharmaceutics14040826. [PMID: 35456660 PMCID: PMC9032436 DOI: 10.3390/pharmaceutics14040826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
The current study aimed to develop and evaluate a sustained-release transdermal Glipizide (GLP) film to overcome its oral administration problems. Chitosan (CS)-coated deformable liposomes (DLs) were utilized to enhance the drug transdermal delivery. The formulations were characterized in terms of particle size, zeta potential, entrapment efficiency (EE%), vesicle deformability, morphology, stability, and in vitro release. Transdermal films of chosen formulations were prepared by the solvent casting technique, and an ex vivo study throughout rat skin was also performed. Moreover, a pharmacokinetics (PK) study was carried out and blood glucose levels were estimated. All the liposomes were in the nanometer range and a high EE% was obtained from DLs compared to conventional liposomes (CL). The prepared formulations showed a high stability and the DLs exhibited a high deformability compared to CL. The in vitro release study confirmed the sustained release of GLP from both CL and DL and a more pronounced sustained release of GLP was detected after coating with CS. Moreover, GLP was shown to efficiently permeate through the rat skin from transdermal films by an ex vivo permeation test. The transdermal films showed a promising PK profile in the rat as compared with oral GLP. Most importantly, GLP-CS-DL1 demonstrated a higher hypoglycemic effect, confirming the possibility of systemic action by the local topical delivery of GLP.
Collapse
|
55
|
A quality by design (QbD) approach in pharmaceutical development of lipid-based nanosystems: A systematic review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
56
|
Development of Stable Nano-Sized Transfersomes as a Rectal Colloid for Enhanced Delivery of Cannabidiol. Pharmaceutics 2022; 14:pharmaceutics14040703. [PMID: 35456536 PMCID: PMC9032849 DOI: 10.3390/pharmaceutics14040703] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 01/15/2023] Open
Abstract
Current cannabidiol (CBD) formulations are challenged with unpredictable release and absorption. Rational design of a rectal colloid delivery system can provide a practical alternative. In this study the inherent physiochemical properties of transferosomes were harnessed for the development of a nano-sized transfersomes to yield more stable release, absorption, and bioavailability of CBD as a rectal colloid. Transfersomes composed of soya lecithin, cholesterol, and polysorbate 80 were synthesized via thin film evaporation and characterized for size, entrapment efficiency (%), morphology, CBD release, ex vivo permeation, and physicochemical stability. The optimized formulation for rectal delivery entrapped up to 80.0 ± 0.077% of CBD with a hydrodynamic particle size of 130 nm, a PDI value of 0.285, and zeta potential of −15.97 mV. The morphological investigation via SEM and TEM revealed that the transfersomes were spherical and unilamellar vesicles coinciding with the enhanced ex vivo permeation across the excised rat colorectal membrane. Furthermore, transfersomes improved the stability of the encapsulated CBD for up to 6 months at room temperature and showed significant promise that the transfersomes promoted rectal tissue permeation with superior stability and afforded tunable release kinetics of CBD as a botanical therapeutic with inherent poor bioavailability.
Collapse
|
57
|
Elshaer EE, Elwakil BH, Eskandrani A, Elshewemi SS, Olama ZA. Novel Clotrimazole and Vitis vinifera loaded chitosan nanoparticles: Antifungal and wound healing efficiencies. Saudi J Biol Sci 2022; 29:1832-1841. [PMID: 35280562 PMCID: PMC8913394 DOI: 10.1016/j.sjbs.2021.10.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 11/24/2022] Open
Abstract
Chitosan integrated nanoparticles of clotrimazole and Egyptian Vitis vinifera juice extract was evaluated in order to maximize the antifungal activity and reduce the gross side effects. In the present study Egyptian Thompson Seedless Vitis vinifera and Clotrimazole (Cz) loaded chitosan nanoparticles (NCs/VJ/Cz) showed a promising antifungal effect with average inhibition zone diameters of 74 and 72 mm against Candida albicans and Aspergillus niger respectively. NCs/VJ /Cz was stable with significant drug entrapment efficiency reached 94.7%; PDI 0.24; zeta potential value + 31 and average size 35.4 nm diameter. Ex vivo and in vivo evaluation of skin retention, permeation and wound repair potentialities of NCs/VJ /Cz ointment was examined by experimental rats with wounded skin fungal infection. Data proved the ability of NCs/VJ /Cz to gradually release the drugs in a sustained manner with complete wound healing effect and tissue repair after 7 days administration. As a conclusion NCs/VJ /Cz ointment can be used as a novel anti-dermatophytic agent with high wound healing capacity.
Collapse
Affiliation(s)
- Esraa E Elshaer
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria 21500, Egypt
| | - Bassma H Elwakil
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria 21500, Egypt
| | - Areej Eskandrani
- Chemistry Department, College of Science, Taibah University, Madinah 30002, Kingdom of Saudi Arabia
| | - Salma S Elshewemi
- Zoology Department, Faculty of Science, Alexandria University, Alexandria 21500, Egypt
| | - Zakia A Olama
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria 21500, Egypt
| |
Collapse
|
58
|
Abdel-Rashid RS, Helal DA, Alaa-Eldin AA, Abdel-Monem R. Polymeric versus lipid nanocapsules for miconazole nitrate enhanced topical delivery: in vitro and ex vivo evaluation. Drug Deliv 2022; 29:294-304. [PMID: 35037528 PMCID: PMC8765242 DOI: 10.1080/10717544.2022.2026535] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nanocapsules can be equated to other nanovesicular systems in which a drug is entrapped in a void containing liquid core surrounded by a coat. The objective of the present study was to investigate the potential of polymeric and lipid nanocapsules (LNCs) as innovative carrier systems for miconazole nitrate (MN) topical delivery. Polymeric nanocapsules and LNCs were prepared using emulsification/nanoprecipitation technique where the effect of poly(ε-caprolactone (PCL) and lipid matrix concentrations with respect to MN were assessed. The resulted nanocapsules were examined for their average particle size, zeta potential, %EE, and in vitro drug release. Optimum formulation in both polymeric and lipidic nanocapsules was further subjected to anti-fungal activity and ex vivo permeation tests. Based on the previous results, nanoencapsulation strategy into polymeric and LNCs created formulations of MN with slow biphasic release, high %EE, and improved stability, representing a good approach for the delivery of MN. PNCs were best fitted to Higuchi’s diffusion while LNCs followed Baker and Lonsdale model in release kinetics. The encapsulated MN either in PNCs or LNCs showed higher cell viability in WISH amniotic cells in comparison with free MN. PNCs showed less ex vivo permeation. PNCs were accompanied by high stability and more amount drug deposition (32.2 ± 3.52 µg/cm2) than LNCs (12.7 ± 1.52 µg/cm2). The antifungal activity of the PNCs was high 19.07 mm compared to 11.4 mm for LNCs. In conclusion, PNCs may have an advantage over LNCs by offering dual action for both superficial and deep fungal infections.
Collapse
Affiliation(s)
- Rania S. Abdel-Rashid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Ain Helwan, Cairo, Egypt
| | - Doaa A. Helal
- Department of Pharmaceutics, Faculty of Pharmacy, Fayoum University, Faiyum, Egypt
| | | | - Raghda Abdel-Monem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Ain Helwan, Cairo, Egypt
| |
Collapse
|
59
|
Abdelwahd A, Abdul Rasool BK. Optimizing and Evaluating the Transdermal Permeation of Hydrocortisone Transfersomes Formulation Based on Digital Analysis of the In Vitro Drug Release and Ex Vivo Studies. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2022; 16:122-144. [PMID: 35676851 DOI: 10.2174/2667387816666220608115605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/12/2022] [Accepted: 03/10/2022] [Indexed: 05/18/2023]
Abstract
BACKGROUND Transfersomes can be used to enhance transdermal drug delivery due to their flexibility and ability to incorporate various molecules. For example, hydrocortisone (HC), a corticosteroid, is taken by different routes and serves as immunosuppressive, anticancer, and antiallergenic; however, it is poorly absorbed by the skin. OBJECTIVE Therefore, the current study suggested HC-loaded transfersomes as an alternative route of administration for reaching deeper skin layers or systemic circulation, to reduce the side effects of HC and improve its bioavailability. METHODS HC transfersomes were prepared by the thin-film hydration method and characterized for their vesicular size, zeta potential, drug entrapment efficiency, elasticity, FTIR spectroscopy, in vitro drug release, ex vivo permeation, and irritancy in rabbits. The optimized formulation, F15 (containing HC 20 mg, egg phosphatidylcholine (EPC) 400 mg, and 75 mg of Span 80), was chosen because it showed the highest (p< 0.05) EE% (60.4±0.80) and optimized sustained in vitro drug release (Q8 = 87.9±0.6%). RESULTS Extensive analysis of the drug release data from all formulas was performed using the DDSolver software which quantitatively confirmed the successful formulation. The Weibull equation was the best model to fit the release data compared to others, and the release mechanism was Fickian diffusion. CONCLUSION The simulated pharmacokinetic parameters showed that F15 had the highest AUC, MDT, and DE. Furthermore, F15 significantly enhanced HC permeation by 12-folds compared to the control through the excised rat's skin. The skin irritancy test has proven F15 safety and skin compatibility.
Collapse
Affiliation(s)
- Asmae Abdelwahd
- Pharmaceutics Department, Dubai Pharmacy College for Girls, Muhaisnah-1, Dubai, United Arab Emirates
| | - Bazigha K Abdul Rasool
- Pharmaceutics Department, Dubai Pharmacy College For Girls, Muhaisnah-1, Dubai, United Arab Emirates
| |
Collapse
|
60
|
Hady MA, Darwish AB, Abdel-Aziz MS, Sayed OM. Design of transfersomal nanocarriers of nystatin for combating vulvovaginal candidiasis; A different prospective. Colloids Surf B Biointerfaces 2021; 211:112304. [PMID: 34959094 DOI: 10.1016/j.colsurfb.2021.112304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/26/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022]
Abstract
The objective of this study was to prepare and evaluate Nystatin (NYS) loaded transfersomes to achieve better treatment of vulvovaginal candidiasis. Nystatin transferosomes were formulated utilizing thin film hydration method. A 32 full factorial design was employed to evaluate the effect of different formulation variables. Two independent variables were chosen; the ratio between lecithin surfactant (X1) was set at three levels (10-40), and the type of surfactants (X2) was set at three levels (Span 60, Span 85 and Pluronic F-127). The dependent responses were; entrapment efficiency (Y1: EE %), vesicles size (Y2: VS) and release rate (Y3: RR). Design Expert® software was utilized to statistically optimize formulation variables. The vesicles revealed high NYS encapsulation efficiency ranging from 97.35 ± 0.03 to 98.01 ± 0.20% whereas vesicle size ranged from 194.8 ± 20.42 to 400.8 ± 42.09 nm. High negative zeta potential values indicated good stability of the prepared formulations. NYS release from transfersomes was biphasic and the release pattern followed Higuchi's model. The optimized formulation (F7) exhibited spherical morphology under transmission electron microscopy (TEM). In-vitro and in-vivo antifungal efficiency studies revealed that the optimized formula F7 exhibited significant eradication of candida infestation in comparison to free NYS. The results revealed that the developed NYS transfersomes could be a promising drug delivery system to enhance antifungal efficacy of NYS.
Collapse
Affiliation(s)
- Mayssa Abdel Hady
- Department of Pharmaceutical Technology, National Research Centre, El Bohouth Street, Cairo12622, Egypt
| | - Asmaa B Darwish
- Department of Pharmaceutical Technology, National Research Centre, El Bohouth Street, Cairo12622, Egypt.
| | - Mohamed S Abdel-Aziz
- Microbial Chemistry Department, Genetic Engineering and Biotechnology Division, National Research Centre, El Bohouth Street, Cairo 12622, Egypt
| | - Ossama M Sayed
- Department of Pharmaceutics Industrial Pharmacy, Faculty of Pharmacy, Sinai University - Kantara Branch, Egypt.
| |
Collapse
|
61
|
Akram MW, Jamshaid H, Rehman FU, Zaeem M, Khan JZ, Zeb A. Transfersomes: a Revolutionary Nanosystem for Efficient Transdermal Drug Delivery. AAPS PharmSciTech 2021; 23:7. [PMID: 34853906 DOI: 10.1208/s12249-021-02166-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
Transdermal delivery system has gained significance in drug delivery owing to its advantages over the conventional delivery systems. However, the barriers of stratum corneum along with skin irritation are its major limitations. Various physical and chemical techniques have been employed to alleviate these impediments. Among all these, transfersomes have shown potential for overcoming the associated limitations and successfully delivering therapeutic agents into systemic circulation. These amphipathic vesicles are composed of phospholipids and edge activators. Along with providing elasticity, edge activator also affects the vesicular size and entrapment efficiency of transfersomes. The mechanism behind the enhanced permeation of transfersomes through the skin involves their deformability and osmotic gradient across the application site. Permeation enhancers can further enhance their permeability. Biocompatibility; capacity for carrying hydrophilic, lipophilic as well as high molecular weight therapeutics; deformability; lesser toxicity; enhanced permeability; and scalability along with potential for surface modification, active targeting, and controlled release render them ideal designs for efficient drug delivery. The current review provides a brief account of the discovery, advantages, composition, synthesis, comparison with other cutaneous nano-drug delivery systems, applications, and recent developments in this area.
Collapse
|
62
|
Oyarzún P, Gallardo-Toledo E, Morales J, Arriagada F. Transfersomes as alternative topical nanodosage forms for the treatment of skin disorders. Nanomedicine (Lond) 2021; 16:2465-2489. [PMID: 34706575 DOI: 10.2217/nnm-2021-0335] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Topical drug delivery is a promising approach to treat different skin disorders. However, it remains a challenge mainly due to the nature and rigidity of the nanosystems, which limit deep skin penetration, and the unsuccessful demonstration of clinical benefits; greater penetration by itself, does not ensure pharmacological success. In this context, transfersomes have appeared as promising nanosystems; deformability, their unique characteristic, allows them to pass through the epidermal microenvironment, improving the skin drug delivery. This review focuses on the comparison of transfersomes with other nanosystems (e.g., liposomes), discusses recent therapeutic applications for the topical treatment of different skin disorders and highlights the need for further studies to demonstrate significant clinical benefits of transfersomes compared with conventional therapies.
Collapse
Affiliation(s)
- Pablo Oyarzún
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile
| | - Eduardo Gallardo-Toledo
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, 8380494, Chile
| | - Javier Morales
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, 8380494, Chile
| | - Francisco Arriagada
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile
| |
Collapse
|
63
|
Kammoun AK, Khedr A, Hegazy MA, Almalki AJ, Hosny KM, Abualsunun WA, Murshid SSA, Bakhaidar RB. Formulation, optimization, and nephrotoxicity evaluation of an antifungal in situ nasal gel loaded with voriconazole‒clove oil transferosomal nanoparticles. Drug Deliv 2021; 28:2229-2240. [PMID: 34668818 PMCID: PMC8530484 DOI: 10.1080/10717544.2021.1992040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fungal infections of the paranasal cavity are among the most widely spread illnesses nowadays. The aim of the current study was to estimate the effectiveness of an in situ gel loaded with voriconazole‒clove oil nano-transferosomes (VRC-CO-NT) in enhancing the activity of voriconazole against Aspergillus flavus, which causes rhinosinusitis. The nephrotoxic side effects of voriconazole may be reduced through the incorporation of the clove oil, which has antioxidant activity that protects tissue. The Box‒Behnken design was applied to formulate the VRC-CO-NT. The particle size, entrapment efficiency, antifungal inhibition zone, and serum creatinine concentration were considered dependent variables, and the soybean lecithin, VRC, and CO concentrations were considered independent ones. The final optimized formulation was loaded into a deacetylated gellan gum base and evaluated for its gelation, rheological properties, drug release profile, permeation capabilities, and in vivo nephrotoxicity. The optimum formulation was determined to be composed of 50 mg/mL lecithin, 18 mg/mL VRC, and 75 mg/mL CO, with a minimum particle size of 102.96 nm, an entrapment efficiency of 71.70%, an inhibition zone of 21.76 mm, and a serum creatinine level of 0.119 mmol/L. The optimized loaded in situ gel released 82.5% VRC after 12 hours and resulted in a 5.4-fold increase in drug permeation. The in vivo results obtained using rabbits resulted in a nonsignificant differentiation among the renal function parameters compared with the negative control group. In conclusion, nasal in situ gel loaded with VRC-CO-NT is considered an efficient novel carrier with enhanced antifungal properties with no signs of nephrotoxicity.
Collapse
Affiliation(s)
- Ahmed K Kammoun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alaa Khedr
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maha A Hegazy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed J Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khaled M Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of pharmaceutics and industrial pharmacy, Beni Suef University, Ben-Suef, Egypt
| | - Walaa A Abualsunun
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samar S A Murshid
- Department of Natural products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rana B Bakhaidar
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
64
|
Yadav K, Singh D, Singh MR. Nanovesicles delivery approach for targeting steroid mediated mechanism of antipsoriatic therapeutics. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
65
|
Sudhakar K, Fuloria S, Subramaniyan V, Sathasivam KV, Azad AK, Swain SS, Sekar M, Karupiah S, Porwal O, Sahoo A, Meenakshi DU, Sharma VK, Jain S, Charyulu RN, Fuloria NK. Ultraflexible Liposome Nanocargo as a Dermal and Transdermal Drug Delivery System. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2557. [PMID: 34685005 PMCID: PMC8537378 DOI: 10.3390/nano11102557] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/17/2021] [Accepted: 09/25/2021] [Indexed: 12/11/2022]
Abstract
A selected active pharmaceutical ingredient must be incorporated into a cargo carrier in a particular manner so that it achieves its goal. An amalgamation of active pharmaceutical ingredients (APIs) should be conducted in such a manner that it is simple, professional, and more beneficial. Lipids/polymers that are known to be used in nanocarriers for APIs can be transformed into a vesicular formulation, which offers elegant solutions to many problems. Phospholipids with other ingredients, such as ethanol and water, form suitable vesicular carriers for many drugs, overcoming many problems related to poor bioavailability, poor solubility, etc. Ultraflexible liposomes are novel carriers and new frontiers of drug delivery for transdermal systems. Auxiliary advances in vesicular carrier research have been made, enabling polymer-coated ethanolic liposomes to avoid detection by the body's immune system-specifically, the cells of the reticuloendothelial system. Ultraflexible liposomes act as a cargo system and a nanotherapeutic approach for the transport of therapeutic drugs and bioactive agents. Various applications of liposome derivatives in different diseases are emphasized in this review.
Collapse
Affiliation(s)
- Kalvatala Sudhakar
- School of Pharmaceutical Sciences (LIT-Pharmacy), Lovely Professional University, Jalandhar 144411, India;
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia;
- Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Kedah, Malaysia;
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia;
| | - Kathiresan V. Sathasivam
- Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Kedah, Malaysia;
- Faculty of Applied Science, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Abul Kalam Azad
- Advanced Drug Delivery Laboratory, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia;
| | - Shasank S. Swain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar 751023, India;
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh 30450, Perak, Malaysia;
| | - Sundram Karupiah
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia;
| | - Omji Porwal
- Department of Pharmacognosy, Tishk International University, Erbil 44001, KRG, Iraq;
| | - Alaka Sahoo
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar 751003, India;
| | | | - Vipin Kumar Sharma
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar 249404, Uttarakhand, India;
| | - Sanjay Jain
- Faculty of Pharmacy, Medicaps University, Indore 453331, MP, India;
| | - R. Narayana Charyulu
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE Deemed to be University, Mangalore 575018, India;
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia;
- Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Kedah, Malaysia;
| |
Collapse
|
66
|
Ezzeldeen Y, Swidan S, ElMeshad A, Sebak A. Green Synthesized Honokiol Transfersomes Relieve the Immunosuppressive and Stem-Like Cell Characteristics of the Aggressive B16F10 Melanoma. Int J Nanomedicine 2021; 16:5693-5712. [PMID: 34465990 PMCID: PMC8402984 DOI: 10.2147/ijn.s314472] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/17/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Honokiol (HK) is a natural bioactive compound with proven antineoplastic properties against melanoma. However, it shows very low bioavailability when administered orally. Alternatively, topical administration may offer a promising route. The objective of the current study was to fabricate HK transfersomes (HKTs) for topical treatment of melanoma. As an ultradeformable carrier system, transfersomes can overcome the physiological barriers to topical treatment of melanoma: the stratum corneum and the anomalous tumor microenvironment. Moreover, the immunomodulatory and stemness-regulation roles of HKTs were the main interest of this study. METHODS TFs were prepared using the modified scalable heating method. A three-factor, three-level Box-Behnken design was utilized for the optimization of the process and formulation variables. Intracellular uptake and cytotoxicity of HKTs were evaluated in nonactivated and stromal cell-activated B16F10 melanoma cells to investigate the influence of the complex tumor microenvironment on the efficacy of HK. Finally, ELISA and Western blot were performed to evaluate the expression levels of TGF-β and clusters of differentiation (CD47 and CD133, respectively). RESULTS The optimized formula exhibited a mean size of 190 nm, highly negative surface charge, high entrapment efficiency, and sustained release profile. HKTs showed potential to alleviate the immunosuppressive characteristics of B16F10 melanoma in vitro via downregulation of TGF-β signaling. In addition, HKTs reduced expression of the "do not eat me" signal - CD47. Moreover, HKTs possessed additional interesting potential to reduce the expression of the stem-like cell marker CD133. These outcomes were boosted upon combination with metformin, an antihyperglycemic drug recently reported to possess different functions in cancer, while combination with collagenase, an extracellular matrix-depleting enzyme, produced detrimental effects. CONCLUSION HKTs represent a promising scalable formulation for treatment of the aggressive B16F10 melanoma, which is jam-packed with immunosuppressive and stem-like cell markers.
Collapse
Affiliation(s)
- Yasmeen Ezzeldeen
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Cairo, 11837, Egypt
| | - Shady Swidan
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Cairo, 11837, Egypt
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt
| | - Aliaa ElMeshad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Bio Nano, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, El-Sheikh Zayed, Giza, 12588, Egypt
| | - Aya Sebak
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo, Egypt
| |
Collapse
|
67
|
Nayak D, Tippavajhala VK. A Comprehensive Review on Preparation, Evaluation and Applications of Deformable Liposomes. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:186-205. [PMID: 34400952 PMCID: PMC8170744 DOI: 10.22037/ijpr.2020.112878.13997] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Elastic or deformable liposomes are phospholipid-based vesicular drug delivery systems that help improve the delivery of therapeutic agents through the intact skin membrane due to their deformable characteristics that overcome the problems of conventional liposomes. In the present review, different types of deformable liposomes such as transfersomes, ethosomes, menthosomes, invasomes and transethosome are studied, and their mechanism of action, characterization, preparation methods, and applications in pharmaceutical technology through topical, transdermal, nasal and oral routes for effective drug delivery are compared for their potential transdermal delivery of poorly permeable drugs. Due to the deformable characteristics of these vehicles, it resulted in modulation of increased drug encapsulation efficiency, permeation and penetration of the drug into or through the skin membrane and are found to be more effective than conventional drug delivery systems. So deformable liposomes can, therefore, be considered as a promising way of delivering the drugs transdermally.
Collapse
Affiliation(s)
- Devika Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vamshi Krishna Tippavajhala
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
68
|
Maji R, Omolo CA, Jaglal Y, Singh S, Devnarain N, Mocktar C, Govender T. A transferosome-loaded bigel for enhanced transdermal delivery and antibacterial activity of vancomycin hydrochloride. Int J Pharm 2021; 607:120990. [PMID: 34389419 DOI: 10.1016/j.ijpharm.2021.120990] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/16/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022]
Abstract
Transdermal drug delivery is an attractive route of administration relative to other routes as it offers enhanced therapeutic efficacy. However, due to poor skin permeability of certain drugs, their application in transdermal delivery is limited. The ultra-deformable nature of transferosomes makes them suitable vehicles for transdermal delivery of drugs that have high molecular weights and hydrophilicity. However, their low viscosity, which leads to low contact time on the surface of the skin, has restricted their application in transdermal delivery. Therefore, this study aimed to deliver transferosomes loaded with a highly water-soluble and high molecular weight vancomycin hydrochloride (VCM-HCl) via a bigel for systemic delivery and treatment of microbial infections. VCM-HCl-loaded transferosomal formulations (TNFs) were prepared using a reverse-phase evaporation method and then loaded into a bigel. Both the TNFs and TNFs-loaded bigel (TNF-L-B) were characterized by a range of in vitro and ex vivo techniques. TNFs and TNF-L-B were tested for biosafety via the MTT assay and found to be biosafe. Prepared TNFs had sizes, zeta potential and entrapment efficiency of 63.02 ± 5.34 nm, -20.93 ± 6.13 mV and 84.48 ± 1.22% respectively. VCM-HCl release from TNF-L-B showed a prolonged release profile with 39.76 ± 1.6% after 24hrs when compared to bare VCM-HCl loaded in the bigel (74.81 ± 8.84%). Ex-vivo permeation of prepared TNF-L-B showed a higher permeation flux of 0.56 µg/cm2/h compared to the bare VCM-HCl-loaded bigel of 0.23 µg/cm2/h, indicating superior permeation and bioavailability of the drug. Additionally, the prepared TNF-L-B demonstrated improved antimicrobial activity. The TNF-L-B showed minimum inhibitory concentrations (MIC) of 0.97 μg/ml against Staphylococcus aureus (SA) and 1.95 μg/ml against methicillin-resistant SA (MRSA), which were 2-fold lower MIC values than the bare drug. The time-kill assay showed that both TNFs and TNF-L-B systems caused a 5.6-log reduction (100%) in MRSA compared to bare VCM-HCl after 24 hrs of incubation. Furthermore, as opposed to the bare VCM-HCl solution, the degree of biofilm reduction caused by TNFs (55.72%) and TNF-L-B (34.58%) suggests their dominance in eradicating MRSA biofilm. These findings indicate that TNF-L-B is a promising system for transdermal delivery of hydrophilic and high molecular weight drugs.
Collapse
Affiliation(s)
- Ruma Maji
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; United States International University-Africa, School of Pharmacy and Health Sciences, Department of Pharmaceutics, P.O. Box 14634-00800, Nairobi, Kenya.
| | - Yajna Jaglal
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Sanil Singh
- Biomedical Research Unit, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
69
|
Pandey R, Bhairam M, Shukla SS, Gidwani B. Colloidal and vesicular delivery system for herbal bioactive constituents. ACTA ACUST UNITED AC 2021; 29:415-438. [PMID: 34327650 DOI: 10.1007/s40199-021-00403-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The main objective of the present review is to explore and examine the effectiveness of currently developed novel techniques to resolve the issues which are associated with the herbal constituents/extract. METHODS A systematic thorough search and collection of reviewed information from Science direct, PubMed and Google Scholar databases based on various sets of key phrases have been performed. All the findings from these data have been studied and briefed based on their relevant and irrelevant information. RESULT Herbal drugs are gaining more popularity in the modern world due to their applications in curing various ailments with minimum toxic effects, side effect or adverse effect. However, various challenges exist with herbal extracts/plant actives such as poor solubility (water/lipid), poor permeation, lack of targeting specificity, instability in highly acidic pH, and liver metabolism, etc. Nowadays with the expansion in the technology, novel drug delivery system provides avenues and newer opportunity towards the delivery of herbal drugs with improved physical chemical properties, pharmacokinetic and pharmacodynamic. Developing nano-strategies like Polymeric nanoparticles, Liposomes, Niosomes, Microspheres, Phytosomes, Nanoemulsion and Self Nano Emulsifying Drug Delivery System, etc. imparts benefits for delivery of phyto formulation and herbal bioactives. Nano formulation of phytoconstituents/ herbal extract could lead to enhancement of aqueous solubility, dissolution, bioavailability, stability, reduce toxicity, permeation, sustained delivery, protection from enzymatic degradation, etc. CONCLUSION: Based on the above findings, the conclusion can be drawn that the nano sized novel drug delivery systems of herbal and herbal bioactives have a potential future for upgrading the pharmacological action and defeating or overcoming the issues related with these constituents. The aims of the present review was to summarize and critically analyze the recent development of nano sized strategies for promising phytochemicals delivery systems along with their therapeutic applications supported by experimental evidence and discussing the opportunities for further aspects.
Collapse
Affiliation(s)
- Ravindra Pandey
- Columbia Institute of Pharmacy Raipur, Raipur, Chhattisgarh, India.
| | - Monika Bhairam
- Columbia Institute of Pharmacy Raipur, Raipur, Chhattisgarh, India
| | | | - Bina Gidwani
- Columbia Institute of Pharmacy Raipur, Raipur, Chhattisgarh, India
| |
Collapse
|
70
|
Taymouri S, Shahnamnia S, Mesripour A, Varshosaz J. In vitro and in vivo evaluation of an ionic sensitive in situ gel containing nanotransfersomes for aripiprazole nasal delivery. Pharm Dev Technol 2021; 26:867-879. [PMID: 34193009 DOI: 10.1080/10837450.2021.1948571] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In the current study, a composite in-situ gel formulation containing aripiprazole (APZ) loaded transfersomes (TFS) was developed for the intranasal brain targeting of APZ. APZ loaded TFS were prepared by applying the film hydration method and optimized using an irregular factorial design. The prepared formulations were optimized based on different parameters including particle size, polydispersity index (PdI), zeta potential, encapsulation efficiency (EE) and release efficiency (RE). The optimized APZ-TFS were distributed in an ion-triggered deacetylated gellan gum solution (APZ-TFS-Gel) and evaluated in terms of pH, gelling time, rheological properties and in-vitro release study. The therapeutic efficacy of the best APZ-TFS-Gel was then tested in the mice model of schizophrenia induced by ketamine by evaluating various behavioral parameters. The optimized formulation showed the particle size of 72.12 ± 0.72 nm, the PdI of 0.19 ± 0.07, the zeta potential of -55.56 ± 1.9 mV, the EE of 97.06 ± 0.10%, and the RE of 70.84 ± 1.54%. The in-vivo results showed that compared with the other treatment groups, there was a considerable increase in swimming and climbing time and a decrease in locomotors activity and immobility time in the group receiving APZ-TFS-Gel. Thus, APZ-TFS-Gel was found to have desirable characteristics for therapeutic improvement.
Collapse
Affiliation(s)
- Somayeh Taymouri
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shabnam Shahnamnia
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azadeh Mesripour
- Department of Pharmacology & Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
71
|
Ramkanth S, Anitha P, Gayathri R, Mohan S, Babu D. Formulation and design optimization of nano-transferosomes using pioglitazone and eprosartan mesylate for concomitant therapy against diabetes and hypertension. Eur J Pharm Sci 2021; 162:105811. [PMID: 33757828 DOI: 10.1016/j.ejps.2021.105811] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/28/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022]
Abstract
Hypertension, a form of cardiovascular diseases, is considered a major risk factor associated with deaths in type 2 diabetes patients. The current medication systems for treating such chronic coexisting diseases are limited and challenging due to the difficulties in overcoming the side effects from complex therapeutic and treatment regimen. The objective of the present study is to design and optimize pioglitazone (PIO) and eprosartan mesylate (EM)-loaded nano-transferosomes (NTs) using Design-Expert software, aiming its transdermal delivery as a novel combination therapy for concomitant treatment of hypertensive diabetic patients. The developed formulations were characterized for various parameters, including in-vitro skin permeation, skin irritation, in-vivo antidiabetic, and antihypertensive activities. NTs were prepared using PIO and EM as the two model drugs and optimized using Box-Behnken design by considering phospholipid (X1), surfactant (X2), ratio of solvents (X3), and sonication time (X4), as independent variables, each at three levels. Entrapment efficiency (Y1 and Y2) and flux (Y3 and Y4) of PIO and EM, respectively, were selected as dependent variables. Among all the prepared formulations, one optimized formulation was chosen by the point prediction method and evaluated for drug-polymer compatibility, particle size, and surface charge analysis, followed by skin permeation and pharmacodynamic studies. The optimized nano-transferosomal gel (ONTF) showed all responses which confirm with the values predicted by the design. Pharmacodynamic studies showed improved and prolonged management of diabetes and hypertension in Wistar rats after the ONTF was applied, compared to oral and drug-loaded NT formulations. Results of the current study suggest that the development of such combinational delivery system can result in a rational therapeutic regimen for effective treatment of concomitant disease conditions of diabetic hypertensive patients.
Collapse
Affiliation(s)
- S Ramkanth
- Department of Pharmaceutics, Karpagam College of Pharmacy, Coimbatore, 641032, Tamilnadu, India.
| | - P Anitha
- Department of Pharmaceutics, Annamacharya College of Pharmacy, Rajampet, 516126, Andhra Pradesh, India
| | - R Gayathri
- Department of Pharmaceutics, Karpagam College of Pharmacy, Coimbatore, 641032, Tamilnadu, India
| | - S Mohan
- Department of Pharmaceutics, Karpagam College of Pharmacy, Coimbatore, 641032, Tamilnadu, India
| | - Dinesh Babu
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Group Centre for Pharmacy & Health Research, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
72
|
Patel D, Chatterjee B. Identifying Underlying Issues Related to the Inactive Excipients of Transfersomes based Drug Delivery System. Curr Pharm Des 2021; 27:971-980. [PMID: 33069192 DOI: 10.2174/1381612826666201016144354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/02/2020] [Indexed: 11/22/2022]
Abstract
Transfersomes are bilayer vesicles composed of phospholipid and edge activators, which are mostly surfactant. Transfersomes based drug delivery system has gained a lot of interest of the pharmaceutical researchers for their ability to improve drug penetration and permeation through the skin. Transdermal drug delivery via transfersomes has the potential to overcome the challenge of low systemic availability. However, this complex vesicular system has different issues to consider for developing a successful transdermal delivery system. One of the major ingredients, phospholipid, has versatile sources and variable effect on the vesicle size and drug entrapment in transfersomes. The other one, termed as edge activators or surfactant, has some crucial consideration of skin damage and toxicity depending upon its type and concentration. A complex interaction between type and concentration of phospholipid and surfactant was observed, which affect the physicochemical properties of transfersomes. This review focuses on the practical factors related to these two major ingredients, such as phospholipid and surfactant. The origin, purity, desired concentration, the susceptibility of degradation, etc. are the important factors for selecting phospholipid. Regarding surfactants, the major aspects are type and desired concentration. A successful development of transfersomes based drug delivery system depends on the proper considerations of these factors and practical aspects.
Collapse
Affiliation(s)
- Drashti Patel
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Bappaditya Chatterjee
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
73
|
|
74
|
Batool S, Zahid F, Ud-Din F, Naz SS, Dar MJ, Khan MW, Zeb A, Khan GM. Macrophage targeting with the novel carbopol-based miltefosine-loaded transfersomal gel for the treatment of cutaneous leishmaniasis: in vitro and in vivo analyses. Drug Dev Ind Pharm 2021; 47:440-453. [PMID: 33615936 DOI: 10.1080/03639045.2021.1890768] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The purpose of this study was to develop novel carbopol-based miltefosine-loaded transfersomal gel (HePCTG) for the treatment of cutaneous leishmaniasis (CL) via efficient targeting of leishmania infected macrophages. METHODS Miltefosine-loaded transfersomes (HePCT) were prepared by ethanol injection method followed by their incorporation into carbopol gel to form HePCTG. The prepared HePCT were assessed for physicochemical properties including mean particle size, polydispersity index, zeta potential, entrapment efficiency, morphology, and deformability. Similarly, HePCTG was evaluated for physiochemical and rheological attributes. The in vitro release, skin permeation, skin irritation, anti-leishmanial activity, and in vivo efficacy in BALB/c mice against infected macrophages were also performed for HePCT. RESULTS The optimized HePCT displayed a particle size of 168 nm with entrapment efficiency of 92%. HePCTG showed suitable viscosity, pH, and sustained release of the incorporated drug. Furthermore, HePCT and HePCTG demonstrated higher skin permeation than drug solution. The results of macrophage uptake study indicated improved drug intake by passive diffusion. The lower half maximal inhibitory concentration value, selectivity index and higher 50% cytotoxic concentration value of HePCT compared to that of HePC solution demonstrated the improved anti-leishmanial efficacy and non-toxicity of the formulation. This was further confirmed by the notable reduction in parasite load and lesion size observed in in vivo anti-leishmanial study. CONCLUSION It can be stated that the formulated HePCTG can effectively be used for the treatment of CL.
Collapse
Affiliation(s)
- Sibgha Batool
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-e-Azam University, Islamabad, Pakistan
| | - Fatima Zahid
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-e-Azam University, Islamabad, Pakistan
| | - Fakhar- Ud-Din
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-e-Azam University, Islamabad, Pakistan
| | - Syeda Sohaila Naz
- Department of Nanosciences & Technology, National Centre for Physics, Quaid-e-Azam University, Islamabad, Pakistan
| | - Muhammad Junaid Dar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-e-Azam University, Islamabad, Pakistan
| | | | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Gul Majid Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-e-Azam University, Islamabad, Pakistan
| |
Collapse
|
75
|
Peram MR, Patil SR, Kumbar VM, Kugaji MS, Bhat KG, Diwan PV, Jalalpure S. An RP-HPLC Method for Quantitative Analysis of Linagliptin Entrapped in Nanotransfersomes and its Application to Skin Permeation Studies. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916666191116103615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Linagliptin (LNG) is an oral hypoglycemic agent that acts by inhibiting
the enzyme dipeptidyl peptidase - 4 (DPP-4) and reduces blood sugar levels in type-II diabetic patients.
To date, the literature presents few analytical methods for the determination of LNG. However,
no reversed phase-high performance liquid chromatography (RP-HPLC) method has been reported
for the determination of LNG in nanotransfersomes and in vitro skin permeation samples.
Objective:
The present study involves the development and validation of RP-HPLC method to
quantify LNG in both nanotransfersomes and in vitro skin permeation and deposition samples.
Methods:
The chromatographic analysis was performed on Luna C18 (2) column (250 x 4.6 mm,
5μm particle size) with a mobile phase consisting of a mixture of methanol: 0.2% orthophosphoric
acid (50:50, v/v) at a flow rate of 1.0 mL/min, detection wavelength of 227 nm, and column temperature
of 40 °C.
Results:
The method was found to be specific, linear (r2 ≥ 0.999; 2-12 μg/mL), precise at both
intra and inter-day levels (percentage relative standard deviation; % RSD < 2.00), accurate (percentage
recovery 100.21-103.83%), and robust. The detection and quantification limits were 0.27
and 0.82 μg/mL, respectively. The mean % entrapment efficiency and the cumulative amount of
LNG permeated across the rat skin from different transfersomal formulations ranged between
40.78 ± 2.54 % to 52.26 ± 2.15 % and 79.54 ± 16.67 to 200.74 ± 35.13 μg/cm2 respectively.
Conclusion:
The method was successfully applied to determine the entThe method was successfully applied to determine the entrapment efficiency, in vitro
skin permeation and deposition behavior of LNG-nanotransfersomes.rapment efficiency, in vitro skin permeation and deposition behavior of LNG-nanotransfersomes.
Collapse
Affiliation(s)
- Malleswara Rao Peram
- Central Research Laboratory, Maratha Mandal’s NGH Institute of Dental Sciences and Research Centre, Belagavi, Karnataka 590010, India
| | - Sachin R. Patil
- Department of Pharmaceutics, College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, Karnataka 590010, India
| | - Vijay M. Kumbar
- Central Research Laboratory, Maratha Mandal’s NGH Institute of Dental Sciences and Research Centre, Belagavi, Karnataka 590010, India
| | - Manohar S. Kugaji
- Central Research Laboratory, Maratha Mandal’s NGH Institute of Dental Sciences and Research Centre, Belagavi, Karnataka 590010, India
| | - Kishore G. Bhat
- Central Research Laboratory, Maratha Mandal’s NGH Institute of Dental Sciences and Research Centre, Belagavi, Karnataka 590010, India
| | - Prakash V. Diwan
- Central Research Laboratory, Maratha Mandal’s NGH Institute of Dental Sciences and Research Centre, Belagavi, Karnataka 590010, Indonesia
| | - Sunil Jalalpure
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India
| |
Collapse
|
76
|
Taymouri S, Hajhashemi V, Tabbakhian M, Torkashvand M. Preparation and Evaluation of Imatinib Loaded Transfersomal gel for the Treatment of Rheumatoid Arthritis. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:33-46. [PMID: 35194426 PMCID: PMC8842615 DOI: 10.22037/ijpr.2021.115481.15394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In the present study, imatinib-loaded transfersomal gel (imatinib-TFS-Gel) was developed to minimize the oral dosing frequency and side effects during rheumatoid arthritis (RA) therapy. Imatinib-loaded transfersomes (imatinib-TFS) were prepared by the film-hydration method. The effects of lecithin content, lecithin/ EA ratio, and the type of EA on the characteristics of the imatinib-TFS were studied using a D-optimal design. Morphology of imatinib-TFS was investigated using scanning electron microscopy. The optimized imatinib-TFS formulation was used to prepare imatinib-TFS-Gel with the aid of Carbopol 940 as the gelling agent. The Optimized imatinib-TFS had a spherical shape with the particle size of 140.53 ± 0.87 nm, polydispersity index of 0.44 ± 0.01, the zeta potential of -17.63 ± 0.65 mV, encapsulation efficiency of 98.70 ± 0.38%, and release efficiency of 81.26 ± 0.70 %. Ex-vivo skin permeation studies through the rat skin showed that the cumulative amount of imatinib permeated from imatinib-TFS-Gel was significantly higher than that from imatinib-Gel. The RA rat model indicated a substantial reduction in paw edema during the 14 days study following the application of imatinib-TFS-Gel as compared with imatinib-Gel. Therefore, imatinib-TFS-Gel can be considered as a promising drug delivery system for the treatment of RA.
Collapse
Affiliation(s)
- Somayeh Taymouri
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran.,Corresponding author: E-mail:
| | - Valiollah Hajhashemi
- Department of Pharmacology, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Majid Tabbakhian
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Massoud Torkashvand
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
77
|
Nasal Gel Loaded with Amphotericin Nanotransferosomes as Antifungal Treatment for Fungal Sinusitis. Pharmaceutics 2020; 13:pharmaceutics13010035. [PMID: 33379314 PMCID: PMC7824183 DOI: 10.3390/pharmaceutics13010035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
On the basis of fungal involvement, rhinosinusitis is categorized into allergic, mycetoma, chronic, and acute invasive types. The aim of the current study was to evaluate the efficacy of an amphotericin gel in situ loaded with nanotransferosomes against Aspergillus flavus, which causes allergic rhinosinusitis. A Box–Behnken design was utilized to study the interaction among the nanotransferosomes and optimize independent variables in formulating them, in order to match the prerequisites of selected responses. The optimal formulation was determined to be 300 mg/mL soybean lecithin, 200 mg/mL amphotericin B (AMP), and 150 mg/mL clove oil, resulting in a particle size of 155.09 nm, 84.30% entrapment efficacy (EE), inhibition zone of 16.0 mm, and 0.1197 mmol serum creatinine. The optimized batch was further prepared into an in situ gel and evaluated for various parameters. The optimized formulation released 79.25% AMP and enhanced permeation through the nasal membrane, while the other formulations did not achieve complete absorption. According to in vivo tests using rabbits as animal models, the optimized AMP-nanotransferosomal formulations (NT) in in situ gel result in a non-significant difference among the various kidney function parameters. In conclusion, nasal in situ gel loaded with AMP-clove oil nanotreansfersomes can act as a promising novel carrier that enhances antifungal activity and decreases AMP nephrotoxicity.
Collapse
|
78
|
Balata GF, Faisal MM, Elghamry HA, Sabry SA. Preparation and Characterization of Ivabradine HCl Transfersomes for Enhanced Transdermal Delivery. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101921] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
79
|
Singh A, Thakur S, Singh H, Singh H, Kaur S, Kaur S, Dudi R, Mondhe DM, Jain SK. Novel Vitamin E TPGS based docetaxel nanovesicle formulation for its safe and effective parenteral delivery: Toxicological, pharmacokinetic and pharmacodynamic evaluation. J Liposome Res 2020; 31:365-380. [PMID: 33050745 DOI: 10.1080/08982104.2020.1835955] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Docetaxel (DTX) is a highly lipophilic, BCS class IV drug with poor aqueous solubility (12.7 µg/mL). Presently, only injectable formulation is available in the market which uses a large amount of surfactant (Tween 80) and dehydrated alcohol as a solubilizer. High concentrations of Tween 80 in injectable formulations are associated with severe consequences i.e. nephrotoxicity, fluid retention, and hypersensitivity reactions. The present study aims to eliminate Tween 80, thus novel biocompatible surfactant Vitamin E TPGS based nanovesicle formulation of DTX (20 mg/mL) was developed and evaluated for different quality control parameters. Optimized nanovesicular formulation (NV-TPGS-3) showed nanometric size (102.9 ± 2.9 nm), spherical vesicular shape, high drug encapsulation efficiency (95.2 ± 0.5%), sustained-release profile and high dilution integrity with normal saline. In vitro cytotoxicity assay, showed threefold elevation in the IC50 value of the optimized formulation in comparison to the commercial formulation. Further, no mortality and toxicity were observed during 28 days repeated dose sub-acute toxicity studies in Swiss albino mice up to the dose of 138 mg/kg, whereas, commercial formulation showed toxicity at 40 mg/kg. In addition, in vivo anticancer activity on Ehrlich Ascites Carcinoma induced mice showed a significant tumour growth inhibition of 76.3 ± 5.3% with the NV-TPGS-3 treatment when compared to Ehrlich Ascites Carcinoma control. Results demonstrated that the developed Vitamin E TPGS based nanovesicular formulation of DTX could be a better alternative to increase its clinical uses with improved therapeutic efficacy, reduced toxicity and dosing frequency, and sustained drug release behaviour.
Collapse
Affiliation(s)
- Amrinder Singh
- Department of Pharmaceutical sciences, Guru Nanak Dev University, Amritsar, India
| | - Shubham Thakur
- Department of Pharmaceutical sciences, Guru Nanak Dev University, Amritsar, India
| | - Harmanpreet Singh
- Department of Pharmaceutical sciences, Guru Nanak Dev University, Amritsar, India
| | - Harjeet Singh
- Department of Pharmaceutical sciences, Guru Nanak Dev University, Amritsar, India
| | - Sandeep Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Satwinderjeet Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Rajesh Dudi
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Dilip Manikrao Mondhe
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
80
|
Sousa F, Ferreira D, Reis S, Costa P. Current Insights on Antifungal Therapy: Novel Nanotechnology Approaches for Drug Delivery Systems and New Drugs from Natural Sources. Pharmaceuticals (Basel) 2020; 13:ph13090248. [PMID: 32942693 PMCID: PMC7558771 DOI: 10.3390/ph13090248] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 01/18/2023] Open
Abstract
The high incidence of fungal infections has become a worrisome public health issue, having been aggravated by an increase in host predisposition factors. Despite all the drugs available on the market to treat these diseases, their efficiency is questionable, and their side effects cannot be neglected. Bearing that in mind, it is of upmost importance to synthetize new and innovative carriers for these medicines not only to fight emerging fungal infections but also to avert the increase in drug-resistant strains. Although it has revealed to be a difficult job, new nano-based drug delivery systems and even new cellular targets and compounds with antifungal potential are now being investigated. This article will provide a summary of the state-of-the-art strategies that have been studied in order to improve antifungal therapy and reduce adverse effects of conventional drugs. The bidirectional relationship between Mycology and Nanotechnology will be also explained. Furthermore, the article will focus on new compounds from the marine environment which have a proven antifungal potential and may act as platforms to discover drug-like characteristics, highlighting the challenges of the translation of these natural compounds into the clinical pipeline.
Collapse
Affiliation(s)
- Filipa Sousa
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal;
- Correspondence: (F.S.); (P.C.)
| | - Domingos Ferreira
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal;
| | - Salette Reis
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal;
| | - Paulo Costa
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal;
- Correspondence: (F.S.); (P.C.)
| |
Collapse
|
81
|
Opatha SAT, Titapiwatanakun V, Chutoprapat R. Transfersomes: A Promising Nanoencapsulation Technique for Transdermal Drug Delivery. Pharmaceutics 2020; 12:E855. [PMID: 32916782 PMCID: PMC7559928 DOI: 10.3390/pharmaceutics12090855] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 12/11/2022] Open
Abstract
Transdermal delivery systems have gained much interest in recent years owing to their advantages compared to conventional oral and parenteral delivery systems. They are noninvasive and self-administered delivery systems that can improve patient compliance and provide a controlled release of the therapeutic agents. The greatest challenge of transdermal delivery systems is the barrier function of the skin's outermost layer. Molecules with molecular weights greater than 500 Da and ionized compounds generally do not pass through the skin. Therefore, only a limited number of drugs are capable of being administered by this route. Encapsulating the drugs in transfersomes are one of the potential approaches to overcome this problem. They have a bilayered structure that facilitates the encapsulation of lipophilic and hydrophilic, as well as amphiphilic, drug with higher permeation efficiencies compared to conventional liposomes. Transfersomes are elastic in nature, which can deform and squeeze themselves as an intact vesicle through narrow pores that are significantly smaller than its size. This review aims to describe the concept of transfersomes, the mechanism of action, different methods of preparation and characterization and factors affecting the properties of transfersomes, along with their recent applications in the transdermal administration of drugs.
Collapse
Affiliation(s)
| | | | - Romchat Chutoprapat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.A.T.O.); (V.T.)
| |
Collapse
|
82
|
Al-Maghrabi PM, Khafagy ES, Ghorab MM, Gad S. Influence of formulation variables on miconazole nitrate-loaded lipid based nanocarrier for topical delivery. Colloids Surf B Biointerfaces 2020; 193:111046. [PMID: 32416518 DOI: 10.1016/j.colsurfb.2020.111046] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/24/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022]
Abstract
The purpose of this study was to develop miconazole nitrate (MN) based solid lipid nano-carrier formulae for topical delivery to enhance its antifungal effectiveness. Miconazole nitrate loaded Solid lipid nanoparticles (MN-SLNs) were formulated using a high shear homogenization technique characterized by particle size, polydispersity index (PI), trapping efficiency (EE percent), drug loading (DL percent) and zeta potential (ZP) characteristics. Furthermore, the optimized formulae were investigated for in-vitro release, ex-vivo study, skin toxicity test, and antifungal activity. With a particle size range of 244.2 ± 27.2 nm to 493.6 ± 35.3 nm, the selected MN-SLNs were spherical shaped. A high EE product percentage ranging from 79.38 ± 2.35 percent to 95.92 ± 6.12 percent and Zeta potential ZP values ranging from-21.6 ± 7.05 mV to-31.4 ± 6.84 mV suggesting strong stability was achieved. A controlled release of MN from the SLNs up to 48 h was shown in-vitro release study. The ex-vivo study showed that the selected MN-SLN (F4) mixture exhibited higher MN flux in the skin than a 1% MN solution. Moreover, selected MN-SLN (F4) has demonstrated a higher zone of inhibition against Candida albicans than a simple drug solution. MN-SLN (F4) had the lowest toxicity value for the skin. Besides, the MN-SLNs (F4) substantially reported antifungal activity with the least histopathological improvements compared to MN-solution utilizing immune-suppressing albino rats with induced candidiasis fungal infection. It can be fulfilled that SLNs can be acquired as a promising carrier for topical delivery of poorly soluble MN.
Collapse
Affiliation(s)
- Passant M Al-Maghrabi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - El-Sayed Khafagy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt; Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia
| | - Mamdouh M Ghorab
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Shadeed Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
83
|
Piumitali B, Neeraj U, Rupal D, Kumar PA. A Comparative Formulation Development and Evaluation of Tazarotene Ethosomal and Transfersomal Gel for Effective Management of Acne. INTERNATIONAL JOURNAL OF NANOSCIENCE 2020. [DOI: 10.1142/s0219581x20500052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Acne vulgaris is the most prevalent disorder in the period before puberty when increased adrenal androgen level causes enlargement of the sebaceous glands and it increased the production of sebum on the face, chest, and back. This disease is caused due to interaction between many causative agents or pathogenic components which lead to formation of the acne and those are seborrhea, follicular hyper keratinization, microbial formation of pilosebaceous unit by Propionibacterium acne and arrival of inflammatory mediators. Tazarotene is a well-known retinoid related to vitamin A that belongs to an acetylenic class of retinoid, used in the management of acne. Oral administration of Tazarotene causes changes in bone morphology after prolonged exposure to high doses, which also exhibit teratogenicity but this does not occur with topical delivery. Ethosomes are non-invasive delivery carriers enabling drugs to reach to the bottom of the skin layers and/or the system and transfersomes are the self-adaptable ultra-deformable flexible elastic bilayer vesicles composed of phospholipids able to penetrate through the pores of skin even smaller than its size. Present research aims the comparative evaluation of ethosomal and transfersomal gels loaded with Tazarotene in the treatment of acne. In the present study, ethosomes and transfersomes were formulated by the cold method and hand-shaking method, respectively, followed by loading of Tazarotene and development into gel formulation. The formulated gel samples were evaluated for in vitro release study, in vitro permeation study, in vitro anti-acne study, in vivo percutaneous permeation study by CLSM, and in vivo anti-acne study. The results proved that both the formulated ethosomal and transfersomal gels have better permeation through the skin but ethosomal gel showed better release in comparison to transfersomal gel, also final gels exhibited the anti-acne potentiality.
Collapse
Affiliation(s)
- Bera Piumitali
- School of Pharmacy and Research, People’s University, Bhanpur, Bhopal, Madhya Pradesh 462037, India
| | - Upmanyu Neeraj
- School of Pharmacy and Research, People’s University, Bhanpur, Bhopal, Madhya Pradesh 462037, India
| | - Dubey Rupal
- School of Pharmacy and Research, People’s University, Bhanpur, Bhopal, Madhya Pradesh 462037, India
| | - Pandey Arun Kumar
- Alkem Research and Development, C-17/7, MIDC Taloja Dist. Raigad, Navi Mumbai 410208, India
| |
Collapse
|
84
|
Abdelmonem R, Hamed RR, Abdelhalim SA, ElMiligi MF, El-Nabarawi MA. Formulation and Characterization of Cinnarizine Targeted Aural Transfersomal Gel for Vertigo Treatment: A Pharmacokinetic Study on Rabbits. Int J Nanomedicine 2020; 15:6211-6223. [PMID: 32904111 PMCID: PMC7450212 DOI: 10.2147/ijn.s258764] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/08/2020] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION AND AIM Cinnarizine is indicated orally for treating vertigo associated with Ménière's syndrome and has a local anesthetic effect as well. The present study aims to develop an aural Cinnarizine mucoadhesive transfersomal gel to overcome the first-pass metabolism. METHODS Eighteen Cinnarizine transfersomes were prepared by the thin-film hydration technique using different types of phosphatidylcholine and edge activators in different ratios. Formulae were tested for their appearance, entrapment efficiency, and in-vitro drug release after eight hours. F1, F4, F7, F9, F10, and F12 were selected to be examined for particle size, polydispersity index, and zeta potential. According to the previous parameters, F1 and F10 were incorporated into gels using different polymers according to factorial design 23. The eight gels were tested for appearance, pH, mucoadhesion, spreadability, drug content, in-vitro drug release after eight hours, and rheology. The transfersomal gel F1A was subjected to FTIR analysis and in-vivo pharmacokinetic study. RESULTS The transfersomal dispersion colors were ranging between the white and yellow. Their EE % ranged from 64.36±1.985% to 94.09±1.74%, and their in-vitro release percentages were between 61.82±1.92% and 95.92±1.18%. Also, the vesicles PS ranged from 212.3±30.05nm to 2150±35.35nm, DI from 0.238±0.134 to 1±0.00 and zeta potential from -57.5±2.54 to +4.73±1.57 mV. The transfersomal gels showed pseudoplastic behavior, pH range of 5.5 to 8, a mucoadhesive force of 169.188±1.26 to 321.212±6.94 (dyne/cm2×102), spreadability of 40 ±7.03mm to 138 ±3.77mm, and in-vitro drug release of 81.63±1.128% to 97.78±0.102%. The IR spectra of the (drug-excipients) physical mixture revealed that there were no shifts of incompatibility. The in-vivo pharmacokinetic study illustrated that [AUC]0-24 of F1A was significantly higher than that of tablets at (P< 0.05), equivalent to 703.563±26.470 and 494.256±9.621ɲg.hr/mL respectively. CONCLUSION The study revealed that Cinnarizine aural mucoadhesive targeted delivery provides an improved systemic bioavailability over the conventional oral route.
Collapse
Affiliation(s)
- Rehab Abdelmonem
- Department of Industrial Pharmacy, College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, Cairo, Egypt
| | - Raghda Rabe Hamed
- Department of Industrial Pharmacy, College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, Cairo, Egypt
| | - Sally A Abdelhalim
- Department of Pharmaceutics, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed F ElMiligi
- Department of Industrial Pharmacy, College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, Cairo, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | |
Collapse
|
85
|
Gupta R, Kumar A. Transfersomes: The Ultra-Deformable Carrier System for Non-Invasive Delivery of Drug. Curr Drug Deliv 2020; 18:408-420. [PMID: 32753015 DOI: 10.2174/1567201817666200804105416] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/11/2020] [Accepted: 04/18/2020] [Indexed: 11/22/2022]
Abstract
Vesicular systems have many advantages like prolonging the existence of the drug in the systemic circulation, minimizing the undesirable side-effects and helping the active moieties to reach their target sites using the carriers. However, the main drawback related to transdermal delivery is to cross stratum corneum, which can be overcome by the utilization of novel carrier systems e.g., transfersomes, which are ultra-deformable carrier systems composed of phospholipid (phosphatidylcholine) and edge activators (surfactants). Edge activators are responsible for the flexibility of the bilayer membranes of transfersomes. Different edge activators used in transfersomes include tween, span, bile salts (sodium cholate and sodium deoxycholate) and dipotassium glycyrrhizinate. These activators decrease the interfacial tension, thereby, increasing the deformability of the carrier system. Transfersomes can encapsulate both hydrophilic and hydrophobic drugs into a vesicular structure, which consists of one or more concentric bilayers. Due to the elastic nature of transfersomes, they can easily cross the natural physiological barriers i.e., skin and deliver the drug to its active site. The main benefit of using transfersomes as a carrier is the delivery of macromolecules through the skin by non-invasive route thereby increasing the patient's compliance. The transfersomal formulations can be used in the treatment of ocular diseases, alopecia, vulvovaginal candidiasis, osteoporosis, atopic dermatitis, tumor, leishmaniasis. It is also used in the delivery of growth hormones, anaesthesia, insulin, proteins, and herbal drugs. This review also focuses on the patents and clinical studies for various transfersomal products.
Collapse
Affiliation(s)
- Ritika Gupta
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Uttar Pradesh, 201310, India
| | - Amrish Kumar
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Uttar Pradesh, 201310, India
| |
Collapse
|
86
|
El-Gizawy SA, Nouh A, Saber S, Kira AY. Deferoxamine-loaded transfersomes accelerates healing of pressure ulcers in streptozotocin-induced diabetic rats. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101732] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
87
|
Development, optimization, and evaluation of tamsulosin nanotransfersomes to enhance its permeation and bioavailability. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
88
|
Hosny KM, Alharbi WS, Almehmady AM, Bakhaidar RB, Alkhalidi HM, Sindi AM, Hariri AH, Shadab M, Zaki RM. Preparation and optimization of pravastatin-naringenin nanotransfersomes to enhance bioavailability and reduce hepatic side effects. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
89
|
Prabahar K, Udhumansha U, Qushawy M. Optimization of Thiolated Chitosan Nanoparticles for the Enhancement of in Vivo Hypoglycemic Efficacy of Sitagliptin in Streptozotocin-Induced Diabetic Rats. Pharmaceutics 2020; 12:300. [PMID: 32224875 PMCID: PMC7238266 DOI: 10.3390/pharmaceutics12040300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
Sitagliptin (SGN) is an antidiabetic drug used for treatment of diabetes mellitus type II. The objectives of this study were to formulate SGN in form of thiolated chitosan (TC) nanoparticles to enhance the mucoadhesion properties of SGN to the gastrointestinal tract, prolong drug release, decrease side effects, and enhance patient compliance. Seventeen batches of SGN-TC nanoparticles were designed by Box-Behnken design and prepared using the ionic gelation method using tripolyphosphate (TPP) as crosslinking agent. The prepared formulations were evaluated for particle size, entrapment efficiency %, and in vitro drug release. Based on the results of optimization, three formulations (F1-F3) were prepared with different drug polymer ratios (1:1, 1:2, and 1:3). The mucoadhesion study and in vivo hypoglycemic activity of three formulations were evaluated in comparison to free SGN in streptozotocin (STZ)-induced diabetic rats. The seventeen SGN-TC nanoparticles showed small particle sizes, high entrapment efficiency, and prolonged drug release. The concentration of TC polymers had highest effect on these responses. The percentage of SGN-TC nanoparticles adhered to tissue was increased and the release was prolonged as the concentration of TC polymer increased (F3 > F2 > F1). The hypoglycemic effect of SGN-TC nanoparticles was significantly higher than resulted by free SGN. It was concluded that TC nanoparticles had the ability to enhance the mucoadhesion properties of SGN and prolong the drug release. SGN-TC nanoparticles significantly reduced plasma glucose levels compared to free SGN in STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Kousalya Prabahar
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ubaidulla Udhumansha
- Department of Pharmaceutics, C.L.Baid Metha College of Pharmacy, Chennai 600097, India;
| | - Mona Qushawy
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish, North Sinai 45511, Egypt
| |
Collapse
|
90
|
Pandey P, Satija S, Wadhwa R, Mehta M, Purohit D, Gupta G, Prasher P, Chellappan DK, Awasthi R, Dureja H, Dua K. Emerging trends in nanomedicine for topical delivery in skin disorders: Current and translational approaches. Dermatol Ther 2020; 33:e13292. [DOI: 10.1111/dth.13292] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/12/2020] [Accepted: 02/26/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Parijat Pandey
- Shri Baba Mastnath Institute of Pharmaceutical Sciences and Research Baba Mastnath University Rohtak Haryana India
| | - Saurabh Satija
- School of Pharmaceutical Sciences Lovely Professional University Phagwara Punjab India
| | - Ridhima Wadhwa
- Faculty of Life Science and Biotechnology South Asian University Akbar Bhawan, Chanakyapuri New Delhi India
- Discipline of Pharmacy, Graduate School of Health University of Technology Sydney Sydney Australia
| | - Meenu Mehta
- School of Pharmaceutical Sciences Lovely Professional University Phagwara Punjab India
- Discipline of Pharmacy, Graduate School of Health University of Technology Sydney Sydney Australia
- Centre for Inflammation Centenary Institute Sydney New South Wales Australia
| | - Deepika Purohit
- Department of Pharmaceutical Sciences Indira Gandhi University Rewari Haryana India
| | - Gaurav Gupta
- School of Pharmaceutical Sciences Jaipur National University Jaipur Rajasthan India
| | - Parteek Prasher
- Department of Chemistry University of Petroleum and Energy Studies Dehradun India
| | - Dinesh K. Chellappan
- Departmental Sciences, School of Pharmacy International Medical University Kuala Lumpur Malaysia
| | - Rajendra Awasthi
- Amity Institute of Pharmacy Amity University Uttar Pradesh Noida Uttar Pradesh India
| | - Harish Dureja
- Department of Pharmaceutical Sciences Maharshi Dayanand University Rohtak Haryana India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health University of Technology Sydney Sydney Australia
- Centre for Inflammation Centenary Institute Sydney New South Wales Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, The University of Newcastle (UoN) Callaghan New South Wales Australia
| |
Collapse
|
91
|
Hosny KM, Rizg WY, Khallaf RA. Preparation and Optimization of In Situ Gel Loaded with Rosuvastatin-Ellagic Acid Nanotransfersomes to Enhance the Anti-Proliferative Activity. Pharmaceutics 2020; 12:pharmaceutics12030263. [PMID: 32183144 PMCID: PMC7151021 DOI: 10.3390/pharmaceutics12030263] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 12/18/2022] Open
Abstract
The objective of this study was to develop an optimized sustained-release nanotransfersomes (NTS) based in situ gel formulation of rosuvastatin (RO) combined with ellagic acid (EA) antioxidant, to enhance cytotoxic and anti-proliferative activity against tongue carcinoma. The concentrations of lecithin, Tween 80, and d-tocopherol polyethylene glycol succinate (TPGS) were considered as independent variables. Particle size, entrapment, and stability were selected as dependent variables. The obtained formulation containing 25% lecithin, 20% Tween 80, and TPGS 15% fulfilled the prerequisites of the optimum formulation. RO-NTS loaded in situ gel was prepared and optimized for concentrations of Poloxamer 407, and Carbopol, using statistical design. Drug release from in situ gel showed a sustained release profile. The RO IC50 was decreased by half for the in situ gel in comparison to plain RO and RO-EA-NTS. A significant amount of caspase-3 was detected in all the formulation treatments. The studies indicated that EA’s synergistic anti-oxidant effect owing to a high affinity to the PGP efflux transporter and higher penetration in the RO-NTS formulation led to a higher inhibition against human chondrosarcome-3 cancer cell lines. RO-EA NTS–loaded in situ gel had a sustained release that could be significant in localized therapy as an alternative to surgery in the treatment of aggressive tongue carcinoma.
Collapse
Affiliation(s)
- Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt;
- Correspondence:
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Rasha A. Khallaf
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt;
| |
Collapse
|
92
|
Piumitali B, Neeraj U, Jyotivardhan J. Transfersomes — A Nanoscience in Transdermal Drug Delivery and Its Clinical Advancements. INTERNATIONAL JOURNAL OF NANOSCIENCE 2020. [DOI: 10.1142/s0219581x19500339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The convenient nanotransdermal delivery system is always likely to have some ideal and unique characteristics, predominantly for safety, desired actions, clinical efficacy, enriched with a therapeutic index with minimal adverse occurrence. One of the most challenging tasks for the formulators is to transfer the medicament, especially macromolecules, through the skin. Some of the ways to achieve this is the use of a painful needle or some other methods which also have economical constraints. A new technology has been developed, that is ultradeformable liposomes, also called as transfersomes. These are an elastic type of lipid vesicle aggregates capable of delivering wide range of active moieties including various biomolecules. It can be manufactured by evaporation, vortexing, reverse-phase evaporation, ethanol injection or freeze-thaw methods, where phospholipids and edge activators are the major ingredients that contribute the main role in their unique mechanism of permeation through less permeable stratum corneum. This review mainly focuses on the clinical trial studies and patents accessible on transfersomal products worldwide, highlights the recent work on transfersomes with various therapeutic agents. An effort to explain the deeper penetration of transfersomes across the epidermis layer by its pharmacokinetics and dynamic properties has been taken.
Collapse
Affiliation(s)
- Bera Piumitali
- School of Pharmacy and Research, People’s University, Bhanpur, Bhopal, Madhya Pradesh 462037, India
| | - Upmanyu Neeraj
- School of Pharmacy and Research, People’s University, Bhanpur, Bhopal, Madhya Pradesh 462037, India
| | - Jaiswal Jyotivardhan
- Alkem Research Center, MIDC Industrial Estate, Taloja, Navi Mumbai, Maharashtra 410208, India
| |
Collapse
|
93
|
Vasanth S, Dubey A, G S R, Lewis SA, Ghate VM, El-Zahaby SA, Hebbar S. Development and Investigation of Vitamin C-Enriched Adapalene-Loaded Transfersome Gel: a Collegial Approach for the Treatment of Acne Vulgaris. AAPS PharmSciTech 2020; 21:61. [PMID: 31915948 DOI: 10.1208/s12249-019-1518-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Adapalene-loaded transfersome gel containing vitamin C as a combination therapy for the management of acne vulgaris was developed in the present study. The transfersome was prepared by reverse-phase evaporation, and the effect of various process parameters were investigated by the Design of Experiment (DOE) approach and optimized based on the particle size (PS), polydispersity index (PDI), zeta potential (ZP), and entrapment efficiency (EE). The selected tranfersomes were further evaluated for their thermal behavior and morphology by transmission electron microscopy and turbidity measurements and incorporated into a gel with/without vitamin C. The gel was evaluated and compared with the marketed product (Adiff gel) for various physicochemical parameters, and in vivo studies in testosterone-induced rat models of acne. The prepared transfersomes had PS in the range of 280 to 400 nm, PDI values of 0.416 to 0.8, ZP of - 38 to - 20 mV, and % EE of 32 to 70%. DSC studies confirmed a positive interaction of the components in the transfersome. Surface morphology confirmed that the vesicles were spherical, unilamellar, and discrete. A relative deformability study showed higher elasticity of the transfersomes compared with Adiff aqs gel. Ascorbyl-6-palmitate in adapalene-loaded transfersome gel containing vitamin C (ADVTG) was found to have a good antioxidant free radical-scavenging activity. An in vitro drug release study showed that the sustained release of the transfersomal formulations was attributed to the flexibility of the vesicles by which penetration was increased. ADVTG was found to be promising in treating acne compared with the marketed product. Graphical Abstract.
Collapse
Affiliation(s)
- Sandhya Vasanth
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Akhilesh Dubey
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, 575018, India.
| | - Ravi G S
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, 576104, Manipal, Karnataka, India
| | - Vivek M Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, 576104, Manipal, Karnataka, India
| | - Sally A El-Zahaby
- Department of Pharmaceutics, Faculty of Pharmacy and Drug manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Srinivas Hebbar
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, 575018, India
| |
Collapse
|
94
|
Vasanth S, Dubey A, G.S. R, Lewis SA, Ghate VM, El-Zahaby SA, Hebbar S. Development and Investigation of Vitamin C-Enriched Adapalene-Loaded Transfersome Gel: a Collegial Approach for the Treatment of Acne Vulgaris. AAPS PharmSciTech 2020. [DOI: https://doi.org/10.1208/s12249-019-1518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
95
|
Thakur K, Sharma G, Singh B, Katare OP. Topical Drug Delivery of Anti-infectives Employing Lipid-Based Nanocarriers: Dermatokinetics as an Important Tool. Curr Pharm Des 2019; 24:5108-5128. [PMID: 30657036 DOI: 10.2174/1381612825666190118155843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/11/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND The therapeutic approaches for the management of topical infections have always been a difficult approach due to lack of efficacy of conventional topical formulations, high frequency of topical applications and non-patient compliance. The major challenge in the management of topical infections lies in antibiotic resistance which leads to severe complications and hospitalizations resulting in economic burden and high mortality rates. METHODS Topical delivery employing lipid-based carriers has been a promising strategy to overcome the challenges of poor skin permeation and retention along with large doses which need to be administered systemically. The use of lipid-based delivery systems is a promising strategy for the effective topical delivery of antibiotics and overcoming drug-resistant strains in the skin. The major systems include transfersomes, niosomes, ethosomes, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion and nanoemulsion as the most promising drug delivery approaches to treat infectious disorders. The main advantages of these systems include lipid bilayer structure which mimics the cell membrane and can fuse with infectious microbes. The numerous advantages associated with nanocarriers like enhanced efficacy, improvement in bioavailability, controlled drug release and ability to target the desired infectious pathogen have made these carriers successful. CONCLUSION Despite the number of strides taken in the field of topical drug delivery in infectious diseases, it still requires extensive research efforts to have a better perspective of the factors that influence drug permeation along with the mechanism of action with regard to skin penetration and deposition. The final objective of the therapy is to provide a safe and effective therapeutic approach for the management of infectious diseases affecting topical sites leading to enhanced therapeutic efficacy and patient-compliance.
Collapse
Affiliation(s)
- Kanika Thakur
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - Bhupindar Singh
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - Om Prakash Katare
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| |
Collapse
|
96
|
Qushawy M, Prabahar K, Abd-Alhaseeb M, Swidan S, Nasr A. Preparation and Evaluation of Carbamazepine Solid Lipid Nanoparticle for Alleviating Seizure Activity in Pentylenetetrazole-Kindled Mice. Molecules 2019; 24:3971. [PMID: 31684021 PMCID: PMC6864770 DOI: 10.3390/molecules24213971] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 02/01/2023] Open
Abstract
Objectives: The study aimed to prepare carbamazepine in solid lipid nanoparticle form (CBZ-SLN) in order to enhance its anticonvulsant effect. Method: Eight formulations of CBZ-SLNs were prepared by homogenization and ultra-sonication techniques. Results: The prepared CBZ-SLN showed a high entrapment efficiency% (39.66 ± 2.42%-71.91 ± 1.21%), a small particle size (45.11 ± 6.72-760.7 ± 5.25 nm), and a negative zeta potential (from -21.5 ± 1.02 to -38.4 ± 1.32 mv). The in vitro release study showed the slow release of CBZ from SLNs compared to CBZ aqueous dispersion (p < 0.05). The infrared spectroscopy and the thermal analysis revealed the compatibility of the drug with other ingredients and the presence of drug in the more soluble amorphous estate, respectively. The in vivo study on mice revealed that the CBZ-SLN had a higher anticonvulsant efficacy than CBZ aqueous dispersion after a lethal and chronic dose of pentylenetetrazole (PTZ) (p < 0.05). The histopathological examination of the hippocampus revealed a decrease in the percentage of degeneration in mice treated with the CBZ-SLN compared to the PTZ and CBZ groups. Conclusion: CBZ can be formulated as SLN with higher anticonvulsant activity than free CBZ aqueous dispersion.
Collapse
Affiliation(s)
- Mona Qushawy
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 471, Saudi Arabia.
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish, North Sinai 45511, Egypt.
| | - Kousalya Prabahar
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 471, Saudi Arabia.
| | - Mohammed Abd-Alhaseeb
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt.
| | - Shady Swidan
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo 11837, Egypt.
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo 11837, Egypt.
| | - Ali Nasr
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish, North Sinai 45511, Egypt.
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt.
| |
Collapse
|
97
|
Transferosomes as nanocarriers for drugs across the skin: Quality by design from lab to industrial scale. Int J Pharm 2019; 573:118817. [PMID: 31678520 DOI: 10.1016/j.ijpharm.2019.118817] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 11/20/2022]
Abstract
Transferosomes, also known as transfersomes, are ultradeformable vesicles for transdermal applications consisting of a lipid bilayer with phospholipids and an edge activator and an ethanol/aqueous core. Depending on the lipophilicity of the active substance, it can be encapsulated within the core or amongst the lipid bilayer. Compared to liposomes, transferosomes are able to reach intact deeper regions of the skin after topical administration delivering higher concentrations of active substances making them a successful drug delivery carrier for transdermal applications. Most transferosomes contain phosphatidylcholine (C18) as it is the most abundant lipid component of the cell membrane, and hence, it is highly tolerated for the skin, decreasing the risk of undesirable effects, such as hypersensitive reactions. The most common edge activators are surfactants such as sodium deoxycholate, Tween® 80 and Span® 80. Their chain length is optimal for intercalation within the C18 phospholipid bilayer. A wide variety of drugs has been successfully encapsulated within transferosomes such as phytocompounds like sinomenine or apigenin for rheumatoid arthritis and leukaemia respectively, small hydrophobic drugs but also macromolecules like insulin. The main factors to develop optimal transferosomal formulations (with high drug loading and nanometric size) are the optimal ratio between the main components as well as the critical process parameters for their manufacture. Application of quality by design (QbD), specifically design of experiments (DoE), is crucial to understand the interplay among all these factors not only during the preparation at lab scale but also in the scale-up process. Clinical trials of a licensed topical ketoprofen transferosomal gel have shown promising results in the alleviation of symptons in orthreothritis with non-severe skin and subcutaneous tissue disorders. However, the product was withdrawn from the market which probably was related to the higher cost of the medicine linked to the expensive manufacturing process required in the production of transferosomes compared to other conventional gel formulations. This example brings out the need for a careful formulation design to exploit the best properties of this drug delivery system as well as the development of manufacturing processes easily scalable at industrial level.
Collapse
|
98
|
Huang Z, Du Y, Li X, Sun X, Feng Z, Ma X. Enantioseparation of basic drugs by capillary electrochromatography using a stationary phase of transfersomes. SEPARATION SCIENCE PLUS 2019. [DOI: 10.1002/sscp.201900013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Zhifeng Huang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)China Pharmaceutical University Nanjing P. R. China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical University Nanjing P. R. China
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)China Pharmaceutical University Nanjing P. R. China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical University Nanjing P. R. China
| | - Xiaoqi Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)China Pharmaceutical University Nanjing P. R. China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical University Nanjing P. R. China
| | - Xiaodong Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)China Pharmaceutical University Nanjing P. R. China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical University Nanjing P. R. China
| | - Zijie Feng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)China Pharmaceutical University Nanjing P. R. China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical University Nanjing P. R. China
| | - Xiaofei Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)China Pharmaceutical University Nanjing P. R. China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical University Nanjing P. R. China
| |
Collapse
|
99
|
Younes NF, Abdel-Halim SA, Elassasy AI. Solutol HS15 based binary mixed micelles with penetration enhancers for augmented corneal delivery of sertaconazole nitrate: optimization, in vitro, ex vivo and in vivo characterization. Drug Deliv 2019; 25:1706-1717. [PMID: 30442039 PMCID: PMC6249589 DOI: 10.1080/10717544.2018.1497107] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Keratomycosis is a serious corneal disease that can cause a permanent visual disability if not treated effectively. Sertaconazole nitrate (STZ), a novel broad spectrum antifungal drug, was suggested as a promising treatment. However, its utility in the ocular route is restricted by its poor solubility, along with other problems facing the ocular delivery like short residence time, and the existing corneal barrier. Therefore, the objective of this study was to formulate STZ loaded binary mixed micelles (STZ-MMs) enriched with different penetration enhancers using thin-film hydration method, based on a 31.22 mixed factorial design. Different formulation variables were examined, namely, type of auxiliary surfactant, type of penetration enhancer, and total surfactants: drug ratio, and their effects on the solubility of STZ in MMs (SM), particle size (PS), polydispersity index (PDI), and zeta potential (ZP) were evaluated. STZ-MMs enhanced STZ aqueous solubility up to 338.82-fold compared to free STZ. Two optimized formulations (MM-8 and MM-11) based on the desirability factor (0.891 and 0.866) were selected by Design expert® software for further investigations. The optimized formulations were imaged by TEM which revealed nanosized spherical micelles. Moreover, they were examined for corneal mucoadhesion, stability upon dilution, storage effect, and ex vivo corneal permeation studies. Finally, both in vivo corneal uptake and in vivo corneal tolerance were investigated. MM-8 showed superiority in the ex vivo and in vivo permeation studies when compared to the STZ-suspension. The obtained results suggest that the aforementioned STZ loaded mixed micellar system could be an effective candidate for Keratomycosis-targeted therapy.
Collapse
Affiliation(s)
- Nihal Farid Younes
- a Department of Pharmaceutics and industrial pharmacy, Faculty of pharmacy , Cairo University , Cairo , Egypt
| | - Sally Adel Abdel-Halim
- a Department of Pharmaceutics and industrial pharmacy, Faculty of pharmacy , Cairo University , Cairo , Egypt
| | - Abdelhalim I Elassasy
- a Department of Pharmaceutics and industrial pharmacy, Faculty of pharmacy , Cairo University , Cairo , Egypt
| |
Collapse
|
100
|
Development and investigation of timolol maleate niosomal formulations for the treatment of glaucoma. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00427-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|