51
|
Badshah SF, Minhas MU, Khan KU, Barkat K, Abdullah O, Munir A, Suhail M, Malik NS, Jan N, Chopra H. Structural and in-vitro characterization of highly swellable β-cyclodextrin polymeric nanogels fabricated by free radical polymerization for solubility enhancement of rosuvastatin. PARTICULATE SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1080/02726351.2023.2183161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
| | | | | | - Kashif Barkat
- Faculty of Pharmacy, University of Lahore, Punjab, Pakistan
| | - Orva Abdullah
- Hamdard Institute of Pharmaceutical Sciences, Hamdard University, Islamabad, Pakistan
| | - Abubakar Munir
- Faculty of Pharmacy, Superior University, Lahore, Punjab, Pakistan
| | - Muhammad Suhail
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Nadia Shamshad Malik
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | - Nasrullah Jan
- Akson College of Pharmacy, Mirpur University of Science and Technology, Mirpur, AJK, Pakistan
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
52
|
Hang L, Shen C, Xue Y, Wu W, Shen B, Yuan H. Exploring the translocation behaviours in vivo of herpetrione amorphous nanoparticles via oral delivery. J Drug Target 2023; 31:278-285. [PMID: 36322516 DOI: 10.1080/1061186x.2022.2141754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nanotechnology has been a primary strategy to enhance oral bioavailability of poorly water soluble drugs. However, the limited information in vivo fate of impedes the development of nanoparticles via the oral delivery, especially the amorphous nanoparticles with high energy states are rarely reported. This study is to track the translocation of oral herpetrione amorphous nanoparticles (HPE-ANPs). We prepare amorphous particles (ANPs) of various sizes (200 nm and 450 nm), which are embedded with an aggregation-caused quenching (ACQ) dyes for tracking the intact nanoparticles. Nanoparticles remain in the gastrointestinal tract (GIT) for 8 h following oral administration, suggesting that most ANPs was mainly degraded or absorbed in the small intestine. Ex vivo imaging shows that the fluorescent signals are observed in the GIT and liver but not in other organs, which attributed to low absorption of integral nanoparticles. Besides, HPE-ANPs may be directly interact with GIT epithelia, and ileum provides better absorption than the jejunum. Cellular studies prove that integral HPE-ANPs can be taken up by enterocyte, while it penetrates cell monolayers only small amounts. In conclusion, we speculate that the drug in the form of integral nanoparticles and small molecules may be co-absorbed to improve bioavailability in vivo.
Collapse
Affiliation(s)
- Lingyu Hang
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing, China
| | - Chengying Shen
- The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Yuye Xue
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of Ministry of Education and PLA, School of Pharmacy, Fudan University, Shanghai, China
| | - Baode Shen
- Key Laboratory of Modern Preparation of T CM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hailong Yuan
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing, China.,Key Laboratory of Modern Preparation of T CM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
53
|
Pandey P, Khan F, Upadhyay TK. Deciphering the modulatory role of apigenin targeting oncogenic pathways in human cancers. Chem Biol Drug Des 2023; 101:1446-1458. [PMID: 36746671 DOI: 10.1111/cbdd.14206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/14/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
Cancer is a complicated malignancy controlled by numerous intrinsic and extrinsic pathways. There has been a significant increase in interest in recent years in the elucidation of cancer treatments based on natural extracts that have fewer side effects. Numerous natural product-derived chemicals have been investigated for their anticancer effects in the search for an efficient chemotherapeutic method. Therefore, the rationale behind this review is to provide a detailed insights about the anticancerous potential of apigenin via modulating numerous cell signaling pathways. An ingestible plant-derived flavonoid called apigenin has been linked to numerous anticancerous potential in numerous experimental and biological studies. Apigenin has been reported to induce cell growth arrest and apoptotic induction by modulating multiple cell signaling pathways in a wider range of human tumors including those of the breast, lung, liver, skin, blood, colon, prostate, pancreatic, cervical, oral, and stomach. Oncogenic protein networks, abnormal cell signaling, and modulation of the apoptotic machinery are only a few examples of diverse molecular interactions and processes that have not yet been thoroughly addressed by scientific research. Thus, keeping this fact in mind, we tried to focus our review towards summarizing the apigenin-mediated modulation of oncogenic pathways in various malignancies that can be further utilized to develop a potent therapeutic alternative for the treatment of various cancers.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, Gujarat, India
| |
Collapse
|
54
|
Andrews GP, Qian K, Jacobs E, Jones DS, Tian Y. High drug loading nanosized amorphous solid dispersion (NASD) with enhanced in vitro solubility and permeability: Benchmarking conventional ASD. Int J Pharm 2023; 632:122551. [PMID: 36581107 DOI: 10.1016/j.ijpharm.2022.122551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/06/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
Through liquid-liquid phase separation (LLPS), it is possible to generate drug-rich nanoparticles during the dissolution of conventional amorphous solid dispersions (ASDs). These self-generated nanoparticles may improve the oral absorption of poorly water-soluble drugs by enhancing the drug's apparent solubility and effective membrane permeability. However, due to the high concentration threshold required for LLPS, conventional ASDs that can consistently generate drug-rich nanoparticles during dissolution are rare. More importantly, the quality of these meta-stable drug-rich nanoparticles is hard to control during dissolution, leading to inconsistency in formulation performances. This work has described a continuous twin-screw extrusion process capable of producing nanosized ASD (NASD) formulations that can offer better solubility and permeability enhancements over conventional ASD formulations. Two polymeric carriers, polyvinylpyrrolidone-co-vinyl acetate (PVPVA) and hydroxypropyl methylcellulose acetate succinate (HPMCAS), with a model hydrophobic drug celecoxib (BCS II), were formulated into both ASD and NASD formulations. Compared to the conventional ASD formulation, the prefabricated NASD (sizes ranging between 40 and 200 nm) embedded within a polyol matrix can be rapidly dispersed into a nanoparticle suspension in the presence of aqueous media. The resulting NASDs achieved drug loadings up to 80 % w/w and a maximum of 98 % encapsulation efficiency. Because of the TSE platform's high drug-loading capacity and high scalability, the developed method may be useful for continuously producing personalized nanomedicines.
Collapse
Affiliation(s)
- Gavin P Andrews
- School of Pharmacy, Queen's University Belfast, BT9 7BL, United Kingdom
| | - Kaijie Qian
- School of Pharmacy, Queen's University Belfast, BT9 7BL, United Kingdom
| | - Esther Jacobs
- School of Pharmacy, Queen's University Belfast, BT9 7BL, United Kingdom
| | - David S Jones
- School of Pharmacy, Queen's University Belfast, BT9 7BL, United Kingdom
| | - Yiwei Tian
- School of Pharmacy, Queen's University Belfast, BT9 7BL, United Kingdom.
| |
Collapse
|
55
|
Ma Z, Han H, Zhao Y. Mitochondrial dysfunction-targeted nanosystems for precise tumor therapeutics. Biomaterials 2023; 293:121947. [PMID: 36512861 DOI: 10.1016/j.biomaterials.2022.121947] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/16/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Mitochondria play critical roles in the regulation of the proliferation and apoptosis of cancerous cells. Targeted induction of mitochondrial dysfunction in cancer cells by multifunctional nanosystems for cancer treatment has attracted increasing attention in the past few years. Numerous therapeutic nanosystems have been designed for precise tumor therapy by inducing mitochondrial dysfunction, including reducing adenosine triphosphate, breaking redox homeostasis, inhibiting glycolysis, regulating proteins, membrane potential depolarization, mtDNA damage, mitophagy dysregulation and so on. Understanding the mechanisms of mitochondrial dysfunction would be helpful for efficient treatment of diseases and accelerating the translation of these therapeutic strategies into the clinic. Then, various strategies to construct mitochondria-targeted nanosystems and induce mitochondrial dysfunction are summarized, and the recent research progress regarding precise tumor therapeutics is highlighted. Finally, the major challenges and an outlook in this rapidly developing field are discussed. This review is expected to inspire further development of novel mitochondrial dysfunction-based strategies for precise treatments of cancer and other human diseases.
Collapse
Affiliation(s)
- Zhaoyu Ma
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Heyou Han
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| |
Collapse
|
56
|
Rana S, Tomar D, Kaushik P, Sharma P, Rani N, Guarve K. Targeted Approach to Enhance the Solubility of Weakly Soluble Drugs by Nanocrystal Technology. Pharm Nanotechnol 2023; 11:425-432. [PMID: 37150980 DOI: 10.2174/2211738511666230504115640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 02/16/2023] [Indexed: 05/09/2023]
Abstract
About 90% of the newly discovered drugs are poorly soluble in water, to overcome this problem, nanocrystal technology is used. Nanocrystal technology is a modern technique that is specially used to increase the solubility of less soluble drugs. Production of a nanocrystal on a large scale can be done by techniques like homogenization (high-pressure), precipitation, and milling methods. Using this technique, saturation solubility, the adhesiveness of a drug molecule to the surface cell, and the dissolution velocity is enhanced. This technology is better than the traditional method because it provides certain other benefits like increased drug loading capability, fantastic reproducibility of oral retention, further developed proportionality of portion bioavailability and expanded patient compliance. This audit makes sense of the various kinds of techniques for the arrangement of nanocrystals, benefits, drawbacks, a system of solvency improvement, clinical applications, and future imminent. This review article also provides further guidelines for studies about nanocrystal technology.
Collapse
Affiliation(s)
- Sangam Rana
- Chandigarh College of Pharmacy, Landran, Mohali, Punjab, India
| | - Deepali Tomar
- Geeta Institute of Pharmacy, Geeta University, Naultha, Panipat, Haryana, India
| | | | - Prerna Sharma
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, India
| | - Nidhi Rani
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Kumar Guarve
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, India
| |
Collapse
|
57
|
Thapa RK, Kim JO. Nanomedicine-based commercial formulations: current developments and future prospects. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2023; 53:19-33. [PMID: 36568502 PMCID: PMC9761651 DOI: 10.1007/s40005-022-00607-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Background In recent decades, there has been a considerable increase in the number of nanomedicine-based formulations, and their advantages, including controlled/targeted drug delivery with increased efficacy and reduced toxicity, make them ideal candidates for therapeutic delivery in the treatment of complex and difficult-to-treat diseases, such as cancer. Areas covered This review focuses on nanomedicine-based formulation development, approved and marketed nanomedicines, and the challenges faced in nanomedicine development as well as their future prospects. Expert opinion To date, the Food and Drug Administration and the European Medicines Agency have approved several nanomedicines, which are now commercially available. However, several critical challenges, including reproducibility, proper characterization, and biological evaluation, e.g., via assays, are still associated with their use. Therefore, rigorous studies alongside stringent guidelines for effective and safe nanomedicine development and use are still warranted. In this study, we provide an overview of currently available nanomedicine-based formulations. Thus, the findings here reported may serve as a basis for further studies regarding the use of these formulations for therapeutic purposes in near future.
Collapse
Affiliation(s)
- Raj Kumar Thapa
- Pharmacy Program, Gandaki University, Gyankunja, Pokhara-32, Kaski, Nepal
| | - Jong Oh Kim
- grid.413028.c0000 0001 0674 4447College of Pharmacy, Yeungnam University, 214-1 Dae-dong, Gyeongsan, 712-749 Republic of Korea
| |
Collapse
|
58
|
Verma V, Patel P, Ryan KM, Hudson S, Padrela L. Production of hydrochlorothiazide nanoparticles with increased permeability using top-spray coating process. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2022.105788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
59
|
da Igreja P, Klump D, Bartsch J, Thommes M. Reduction of submicron particle agglomeration via melt foaming in solid crystalline suspension. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2146707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Philip da Igreja
- INVITE GmbH, Leverkusen, Germany
- Laboratory of Solids Process Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Daniel Klump
- Laboratory of Solids Process Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Jens Bartsch
- Laboratory of Solids Process Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Markus Thommes
- Laboratory of Solids Process Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
60
|
Bianchi MB, Zhang C, Catlin E, Sandri G, Calderón M, Larrañeta E, Donnelly RF, Picchio ML, Paredes AJ. Bioadhesive eutectogels supporting drug nanocrystals for long-acting delivery to mucosal tissues. Mater Today Bio 2022; 17:100471. [PMID: 36345362 PMCID: PMC9636571 DOI: 10.1016/j.mtbio.2022.100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Eutectogels (Egels) are an emerging class of soft ionic materials outperforming traditional temperature-intolerant hydrogels and costly ionogels. Due to their excellent elasticity, non-volatile nature, and adhesion properties, Egels are attracting a great deal of interest in the biomedical space. Herein, we report the first example of adhesive Egels loading drug nanocrystals (Egel-NCs) for controlled delivery to mucosal tissues. These soft materials were prepared using gelatin, glycerine, a deep eutectic solvent (DES) based on choline hydrochloride and glycerol, and nanocrystallised curcumin, a model drug with potent antimicrobial and anti-inflammatory activities. We first explored the impact of the biopolymer concentration on the viscoelastic and mechanical properties of the networks. Thanks to the dynamic interactions between gelatin and the DES, the Egel showed excellent stretchability and elasticity (up to ≈160%), reversible gel-sol phase transition at mild temperature (≈50 °C), 3D-printing ability, and good adhesion to mucin protein (stickiness ≈40 kPa). In vitro release profiles demonstrated the ability of the NCs-based Egel to deliver curcumin for up to four weeks and deposit significantly higher drug amounts in excised porcine mucosa compared to the control cohort. All in all, this study opens new prospects in designing soft adhesive materials for long-acting drug delivery and paves the way to explore novel eutectic systems with multiple therapeutic applications.
Collapse
|
61
|
Improved enzyme thermal stability, loading and bioavailability using alginate encapsulation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
62
|
Corrie L, Gulati M, Awasthi A, Vishwas S, Kaur J, Khursheed R, Porwal O, Alam A, Parveen SR, Singh H, Chellappan DK, Gupta G, Kumbhar P, Disouza J, Patravale V, Adams J, Dua K, Singh SK. Harnessing the dual role of polysaccharides in treating gastrointestinal diseases: As therapeutics and polymers for drug delivery. Chem Biol Interact 2022; 368:110238. [DOI: 10.1016/j.cbi.2022.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/27/2022] [Accepted: 10/21/2022] [Indexed: 12/01/2022]
|
63
|
Alali AS, Kalam MA, Ahmed MM, Aboudzadeh MA, Alhudaithi SS, Anwer MK, Fatima F, Iqbal M. Nanocrystallization Improves the Solubilization and Cytotoxic Effect of a Poly (ADP-Ribose)-Polymerase-I Inhibitor. Polymers (Basel) 2022; 14:polym14224827. [PMID: 36432955 PMCID: PMC9696361 DOI: 10.3390/polym14224827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Olaparib (OLA) is an anticancer agent that acts by inhibiting the poly (ADP-ribose)-polymerase-I (PARP-I). Due to its low solubility and low permeability, it has been placed as a BCS Class-IV drug and hence its clinical use is limited. In this study, we develop the nanocrystals of OLA as a way to improve its solubility and other performances. The OLA-NCs were prepared by antisolvent precipitation method through homogenization and probe sonication technique using a novel amphiphilic polymeric stabilizer (Soluplus®). Particle characterization resulted approximately 103.13 nm, polydispersity-index was 0.104 with positive zeta-potential of +8.67 mV. The crystal morphology by SEM of OLA-NCs (with and without mannitol) exhibited nano-crystalline prism-like structures as compared to the elongated OLA-pure. The DSC, XRD and FTIR were performed to check the interaction of Soluplus, mannitol and OLA did not exhibit any physical interaction among the OLA, Soluplus® and mannitol that is indicated by the presence of parent wave number peak. Two-fold increased solubility of OLA was found in PBS with Soluplus® from the NCs (69.3 ± 6.2 µgmL−1) as compared to pure drug (35.6 ± 7.2 µgmL−1). In vitro release of drug from OLA-NCs was higher (78.2%) at 12 h at pH 6.8 and relatively lower (53.1%) at pH 1.2. In vitro cellular cytotoxicity and anticancer effects were examined on MCF-7 cells. OLA-NCs were found effectively potent to MCF-7 cells compared with OLA-pure with approximately less than half IC50 value during MTT assay. Estimation of p53, Caspase-3 and Caspase-9 in MCF-7 cells indicated that OLA-NCs have significantly (p < 0.05) increased their expressions. After single oral dose in rats, 12 h plasma drug concentration-time profile indicated approximately 2.06-, 2.29-, 2−25- and 2.62-folds increased Cmax, AUC0-12 h, AUC0-∞ and AUMC0-∞, respectively, from the NCs as compared to OLA-pure. Storage stability indicated that the OLA-NCs was physically and chemically stable at 4 °C, 25 °C and 40 °C up to 6-months. Overall, OLA-NCs were deliberated; its potential feasibility to overwhelm the formulation challenges related to poorly soluble drugs and its future clinical applications.
Collapse
Affiliation(s)
- Amer S. Alali
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohd Abul Kalam
- Nanobiotechnogy Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence:
| | - M. Ali Aboudzadeh
- CNRS, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, University Pau & Pays Adour, E2S UPPA, IPREM, UMR5254, 64000 Pau, France
| | - Sulaiman S. Alhudaithi
- Nanobiotechnogy Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Central Laboratory, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
64
|
Ma P, Seguin J, Ly KN, Henríquez LC, Plansart E, Hammad K, Gahoual R, Dhôtel H, Izabelle C, Saubamea B, Richard C, Escriou V, Mignet N, Corvis Y. Designing fisetin nanocrystals for enhanced in cellulo anti-angiogenic and anticancer efficacy. Int J Pharm X 2022; 4:100138. [DOI: 10.1016/j.ijpx.2022.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
|
65
|
Dalvi A, Ravi PR, Uppuluri CT. Design and evaluation of rufinamide nanocrystals loaded thermoresponsive nasal in situ gelling system for improved drug distribution to brain. Front Pharmacol 2022; 13:943772. [PMID: 36267292 PMCID: PMC9577085 DOI: 10.3389/fphar.2022.943772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Rufinamide (Rufi) is an antiepileptic drug used to manage Lennox-Gastaut Syndrome and partial seizures. The oral bioavailability of Rufi is less due to its poor solubility and low dissolution rate in the gastrointestinal fluids. This results in less amount of drug reaching the brain following the oral administration of drug. Oral formulations of Rufi are prescribed at a high dose and dosing frequency to increase its distribution to the brain. A Rufi loaded thermoresponsive nasal in situ gel which showed significantly high brain concentrations compared to aqueous suspension of Rufi administered through nasal route was developed by our research group and published. In the current work, we have formulated nanocrystals of Rufi and suspended them in a xyloglucan based thermoresponsive gel to improve the nose-to-brain distribution. The particle size, polydispersity index, and yield (%) of the optimized Rufi nanocrystals were 261.2 ± 2.1 nm, 0.28 ± 0.08, and 89.6 ± 2.0 respectively. The narrow PDI indicates that the manufacturing process is reproducible and reliable. Higher % yield suggested that the method of preparation is efficient. The sol-to-gel transition of in situ gel loaded with Rufi nanocrystals was at 32°C which suggested that the formulation transforms into gel at nasal epithelial temperatures. The nasal pharmacokinetic studies showed that Rufi nanocrystals loaded in situ gel produced higher concentration of the drug in brain (higher brain Cmax) and maintained the drug concentrations for longer duration (higher mean residence time) compared to aqueous suspension of Rufi nanocrystals as well aqueous suspension of Rufi and Rufi loaded in situ gel, reported previously. Nanometric size of the Rufi nanocrystals combined with the in situ gelling properties helped the optimized formulation achieve higher brain distribution and also sustain the drug concentrations in brain for longer duration compared to any of the formulations studied by our research group.
Collapse
|
66
|
Pandey M, Wen PX, Ning GM, Xing GJ, Wei LM, Kumar D, Mayuren J, Candasamy M, Gorain B, Jain N, Gupta G, Dua K. Intraductal delivery of nanocarriers for ductal carcinoma in situ treatment: a strategy to enhance localized delivery. Nanomedicine (Lond) 2022; 17:1871-1889. [PMID: 36695306 DOI: 10.2217/nnm-2022-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ductal carcinoma in situ describes the most commonly occurring, noninvasive malignant breast disease, which could be the leading factor in invasive breast cancer. Despite remarkable advancements in treatment options, poor specificity, low bioavailability and dose-induced toxicity of chemotherapy are the main constraint. A unique characteristic of nanocarriers may overcome these problems. Moreover, the intraductal route of administration serves as an alternative approach. The direct nanodrug delivery into mammary ducts results in the accumulation of anticancer agents at targeted tissue for a prolonged period with high permeability, significantly decreasing the tumor size and improving the survival rate. This review focuses mainly on the intraductal delivery of nanocarriers in treating ductal carcinoma in situ, together with potential clinical translational research.
Collapse
Affiliation(s)
- Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia.,Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Pung Xiau Wen
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Giam Mun Ning
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Gan Jia Xing
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Liu Man Wei
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Dinesh Kumar
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Jayashree Mayuren
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Bapi Gorain
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, 302017, India.,Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 602105, India.,Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.,Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
67
|
Orehek J, Teslić D, Likozar B. Mechanistic modeling of a continuous multi-segment multi-addition antisolvent crystallization of benzoic acid in a coiled flow inverter (CFI) crystallizer. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
68
|
Zothantluanga JH, Zonunmawii, Das P, Sarma H, Umar AK. Nanotherapeutics of Phytoantioxidants for Parasitic Diseases and Neglected Tropical Diseases. PHYTOANTIOXIDANTS AND NANOTHERAPEUTICS 2022:351-376. [DOI: 10.1002/9781119811794.ch16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
69
|
Kumar A, Valamla B, Thakor P, Chary PS, Rajana N, Mehra NK. Development and evaluation of nanocrystals loaded hydrogel for topical application. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
70
|
Lee J, Sah H. Preparation of PLGA Nanoparticles by Milling Spongelike PLGA Microspheres. Pharmaceutics 2022; 14:pharmaceutics14081540. [PMID: 35893796 PMCID: PMC9330877 DOI: 10.3390/pharmaceutics14081540] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 01/27/2023] Open
Abstract
Currently, emulsification-templated nanoencapsulation techniques (e.g., nanoprecipitation) have been most frequently used to prepare poly-d,l-lactide-co-glycolide (PLGA) nanoparticles. This study aimed to explore a new top-down process to produce PLGA nanoparticles. The fundamental strategy was to prepare spongelike PLGA microspheres with a highly porous texture and then crush them into submicron-sized particles via wet milling. Therefore, an ethyl formate-based ammonolysis method was developed to encapsulate progesterone into porous PLGA microspheres. Compared to a conventional solvent evaporation process, the ammonolysis technique helped reduce the tendency of drug crystallization and improved drug encapsulation efficiency accordingly (solvent evaporation, 27.6 ± 4.6%; ammonolysis, 65.1 ± 1.7%). Wet milling was performed on the highly porous microspheres with a D50 of 64.8 μm under various milling conditions. The size of the grinding medium was the most crucial factor for our wet milling. Milling using smaller zirconium oxide beads (0.3~1 mm) was simply ineffective. However, when larger beads with diameters of 3 and 5 mm were used, our porous microspheres were ground into submicron-sized particles. The quality of the resultant PLGA nanoparticles was demonstrated by size distribution measurement and field emission scanning electron microscopy. The present top-down process that contrasts with conventional bottom-up approaches might find application in manufacturing drug-loaded PLGA nanoparticles.
Collapse
|
71
|
Optimization, Characterization and In Vivo Evaluation of Mupirocin Nanocrystals for Topical Administration. Eur J Pharm Sci 2022; 176:106251. [PMID: 35788029 DOI: 10.1016/j.ejps.2022.106251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/14/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022]
Abstract
Treatment of infectious skin conditions resulting from wounds and burns with topical antibiotics is challenging, particularly those caused by methicillin-resistant Staphylococcus aureus bacteria (MRSA). This is due to the formation of bacterial biofilms characterized by antimicrobial resistance. Mupirocin (MP), a widely used topical antibiotic, is active against gram-positive bacteria including MRSA. However, MP suffers from sub-optimal therapeutic efficacy due to its poor water-solubility and the significant rise in MP-resistant S. aureus. In this study, the physico-chemical characteristics of MP were modified through nanocrystallization to improve its therapeutic efficacy for the treatment of skin infections. Mupirocin-nanocrystals (MP-NC) were prepared using a nanoprecipitation technique and optimized using a D-optimal response surface design. The optimization of MP-NC produced ultra-small monodisperse spherical particles with a mean diameter of 70 nm and a polydispersity index of 0.2. The design resulted in two optimal MP-NC formulations that were evaluated by performing series of in vitro, ex vivo, microbiological, and in vivo studies. In-vitro results showed a 10-fold increase in the saturation solubility and a 9-fold increase in the dissolution rate of MP-NC. Ex vivo permeation studies, using pig ears skin, showed a 2-fold increase in the dermal deposition of MP-NC with the highest drug deposition occurring at 500-µm skin depth. Moreover, the optimal MP-NC formulations were lyophilized and incorporated into a 2% w/w cream. Microbiological studies revealed a 16-fold decrease in the minimum inhibitory concentration and the minimum bactericidal concentration of MP-NC. In vivo studies, using a rat excision burn wound model, demonstrated rapid and complete healing of infected burn wounds in rats treated with MP-NC cream in comparison to marketed Avoban ointment. Our results suggest that nanocrystallization of MP may provide an avenue through which higher levels of a topically applied MP can be permeated into the skin to reach relevant infectious areas and exert potential local antibacterial effects.
Collapse
|
72
|
Fabrication and Characterization of Tedizolid Phosphate Nanocrystals for Topical Ocular Application: Improved Solubilization and In Vitro Drug Release. Pharmaceutics 2022; 14:pharmaceutics14071328. [PMID: 35890223 PMCID: PMC9320520 DOI: 10.3390/pharmaceutics14071328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 12/27/2022] Open
Abstract
Positively charged NCs of TZP (0.1%, w/v) for ocular use were prepared by the antisolvent precipitation method. TZP is a novel 5-Hydroxymethyl-Oxazolidinone class of antibiotic and is effective against many drug-resistant bacterial infections. Even the phosphate salt of this drug is poorly soluble, therefore the NCs were prepared for its better solubility and ocular availability. P188 was found better stabilizer than PVA for TZP-NCs. Characterization of the NCs including the particle-size, PDI, and ZP by Zeta-sizer, while morphology by SEM indicated that the preparation technique was successful to get the optimal sized (151.6 nm) TZP-NCs with good crystalline morphology. Mannitol (1%, w/v) prevented the crystal growth and provided good stabilization to NC1 during freeze-drying. FTIR spectroscopy confirmed the nano-crystallization did not alter the basic molecular structure of TZP. DSC and XRD studies indicated the reduced crystallinity of TZP-NC1, which potentiated its solubility. An increased solubility of TZP-NC1 (25.9 µgmL−1) as compared to pure TZP (18.4 µgmL−1) in STF with SLS. Addition of stearylamine (0.2%, w/v) and BKC (0.01%, w/v) have provided cationic (+29.4 mV) TZP-NCs. Redispersion of freeze-dried NCs in dextrose (5%, w/v) resulted in a clear transparent aqueous suspension of NC1 with osmolarity (298 mOsm·L−1) and viscosity (21.1 cps at 35 °C). Mannitol (cryoprotectant) during freeze-drying could also provide isotonicity to the nano-suspension at redispersion in dextrose solution. In vitro release in STF with SLS has shown relatively higher (78.8%) release of TZP from NC1 as compared to the conventional TZP-AqS (43.4%) at 12 h. TZP-NC1 was physically and chemically stable at three temperatures for 180 days. The above findings suggested that TZP-NC1 would be a promising alternative for ocular delivery of TZP with relatively improved performance.
Collapse
|
73
|
Wei F, Wang Q, Liu H, Yang X, Cao W, Zhao W, Li Y, Zheng L, Ma T, Wang Q. High Efficacy Combined Microneedles Array with Methotrexate Nanocrystals for Effective Anti-Rheumatoid Arthritis. Int J Nanomedicine 2022; 17:2397-2412. [PMID: 35637840 PMCID: PMC9148202 DOI: 10.2147/ijn.s365523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/13/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Methotrexate (MTX) is the first-line drug for the treatment of rheumatoid arthritis (RA) in several countries. However, MTX has an extremely low solubility in water, and the side effects caused by its delivery mode restrict its curative effect. In this study, we designed a dissolving microneedles array (DMNA) containing MTX nanocrystals (MTX-NCs) (MTX-NC@DMNA) to improve the treatment of RA. DMNA-based drug delivery combines the advantages of patient compliance with the use of transdermal drug delivery systems and high-efficiency injection administration; thus, it can mitigate the side effects that result from current administration routes. Carrier-free and surfactant-free MTX-NCs were prepared to overcome bioavailability limitations and poor drug loading problems. Methods The MTX-NCs prepared by reverse solvent precipitation method was encapsulated in the DMNA. The morphology, mechanical properties, safety, stability and in vivo dissolution were evaluated, and its pharmacodynamic characteristics were assessed in a rat model of RA. Results The particle size of the MTX-NCs was 148.1 ± 10.1 nm. The MTX-NC@DMNA were found to be rigid enough to penetrate the skin and deliver the drug successfully. The results indicated effective skin recovery after removal of the DMNA. It was found that the MTX-NC@DMNA significantly reduced foot swelling in the rats and regulated the balance in the levels of related cytokines. It also reduced pathological damage to the synovium, joint, and cartilage, and effectively alleviated organ injury in the rats. Conclusion Transdermal administration of MTX-NC@DMNA may be an effective approach for treating RA.
Collapse
Affiliation(s)
- Fang Wei
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, 233030, People's Republic of China
| | - Qiuyue Wang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, 233030, People's Republic of China
| | - Hang Liu
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, 233030, People's Republic of China
| | - Xuejing Yang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, 233030, People's Republic of China
| | - Wenyu Cao
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, 233030, People's Republic of China
| | - Weiman Zhao
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, 233030, People's Republic of China
| | - Yingying Li
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, 233030, People's Republic of China
| | - Lijie Zheng
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, 233030, People's Republic of China
| | - Tao Ma
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, 233030, People's Republic of China.,Engineering Research Center for Biochemical Pharmaceuticals of Anhui Province, Bengbu Medical College, Bengbu, Anhui Province, 233030, People's Republic of China
| | - Qingqing Wang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, 233030, People's Republic of China.,Engineering Research Center for Biochemical Pharmaceuticals of Anhui Province, Bengbu Medical College, Bengbu, Anhui Province, 233030, People's Republic of China.,Bengbu BBCA Medical Science Co., Ltd., Bengbu, Anhui Province, 233030, People's Republic of China
| |
Collapse
|
74
|
Alkilani AZ, Nasereddin J, Hamed R, Nimrawi S, Hussein G, Abo-Zour H, Donnelly RF. Beneath the Skin: A Review of Current Trends and Future Prospects of Transdermal Drug Delivery Systems. Pharmaceutics 2022; 14:1152. [PMID: 35745725 PMCID: PMC9231212 DOI: 10.3390/pharmaceutics14061152] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The ideal drug delivery system has a bioavailability comparable to parenteral dosage forms but is as convenient and easy to use for the patient as oral solid dosage forms. In recent years, there has been increased interest in transdermal drug delivery (TDD) as a non-invasive delivery approach that is generally regarded as being easy to administer to more vulnerable age groups, such as paediatric and geriatric patients, while avoiding certain bioavailability concerns that arise from oral drug delivery due to poor absorbability and metabolism concerns. However, despite its many merits, TDD remains restricted to a select few drugs. The physiology of the skin poses a barrier against the feasible delivery of many drugs, limiting its applicability to only those drugs that possess physicochemical properties allowing them to be successfully delivered transdermally. Several techniques have been developed to enhance the transdermal permeability of drugs. Both chemical (e.g., thermal and mechanical) and passive (vesicle, nanoparticle, nanoemulsion, solid dispersion, and nanocrystal) techniques have been investigated to enhance the permeability of drug substances across the skin. Furthermore, hybrid approaches combining chemical penetration enhancement technologies with physical technologies are being intensively researched to improve the skin permeation of drug substances. This review aims to summarize recent trends in TDD approaches and discuss the merits and drawbacks of the various chemical, physical, and hybrid approaches currently being investigated for improving drug permeability across the skin.
Collapse
Affiliation(s)
- Ahlam Zaid Alkilani
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Jehad Nasereddin
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Rania Hamed
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan;
| | - Sukaina Nimrawi
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Ghaid Hussein
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Hadeel Abo-Zour
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Ryan F. Donnelly
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK;
| |
Collapse
|
75
|
Alginate-Chitosan Coated Nanoliposomes as Effective Delivery Systems for Bamboo Leaf Flavonoids: Characterization, In Vitro Release, Skin Permeation and Anti-Senescence Activity. Antioxidants (Basel) 2022; 11:antiox11051024. [PMID: 35624888 PMCID: PMC9137723 DOI: 10.3390/antiox11051024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
The use of bamboo leaf flavonoids (BLF) as functional food and cosmetic ingredients is limited by low bioavailability and difficulty in being absorbed by the intestine or skin. The aim of this study was to prepare BLF-loaded alginate-chitosan coated nanoliposomes (AL-CH-BLF-Lip) to overcome these challenges. The nanocarriers were characterized by dynamic light scattering, high performance liquid chromatography, Fourier transform infrared spectroscopy and differential scanning calorimetry. The biological activity was analyzed by in vitro antioxidant activity, transdermal absorption, cytotoxicity and AAPH induced HaCaT cell senescence model. The results showed that the size of nanocarriers ranged from 152.13 to 228.90 nm and had a low polydispersity index (0.25−0.36). Chitosan (CH) and alginate (AL) were successfully coated on BLF-loaded nanoliposomes (BLF-Lip), the encapsulation efficiency of BLF-Lip, BLF-loaded chitosan coated nanoliposomes (CH-BLF-Lip) and AL-CH-BLF-Lip were 71.31%, 78.77% and 82.74%, respectively. In addition, BLF-Lip, CH-BLF-Lip and AL-CH-BLF-Lip showed better in vitro release and free radical scavenging ability compared with naked BLF. In particular, the skin permeability of BLF-Lip, CH-BLF-Lip, and AL-CH-BLF-Lip increased 2.1, 2.4 and 2.9 times after 24 h, respectively. Furthermore, the use of nanoliposomes could significantly improve the anti-senescence activity of BLF (p < 0.01). Conclusively, alginate-chitosan coated nanoliposomes are promising delivery systems for BLF that can be used in functional foods and cosmetics.
Collapse
|
76
|
Lipid-Coated Nanocrystals as a Tool for Improving the Antioxidant Activity of Resveratrol. Antioxidants (Basel) 2022; 11:antiox11051007. [PMID: 35624871 PMCID: PMC9137619 DOI: 10.3390/antiox11051007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/16/2023] Open
Abstract
Trans-resveratrol, a polyphenolic phytoalexin found in various plant sources, has been the focus of increasing attention in recent years because of its role in the prevention of many human diseases, and particularly because of its antioxidant properties. However, the in vivo effect of trans-resveratrol after oral administration is negligible when compared to its efficacy in vitro, due to its low bioavailability. Moreover, it presents stability issues as it is an extremely photosensitive compound when exposed to light. This work aims to develop lipid-coated nanocrystals in order to improve the antioxidant activity and bioavailability of trans-resveratrol. Lipid-coated trans-resveratrol nanocrystals with sizes lower than 500 nm, spherical shapes and smooth surfaces were obtained via a milling method. They showed a faster dissolution rate than the coarse trans-resveratrol powder. The antioxidant properties of trans-resveratrol were not impaired by the milling process. The in vivo pharmacokinetics of lipid-coated trans-resveratrol nanocrystals were evaluated after oral administration to rats, with a commercial Phytosome® formulation being used for comparison purposes. An increase in the trans-resveratrol area under the curve was observed and the lipid-coated nanocrystal formulation led to an enhancement in the oral bioavailability of the compound.
Collapse
|
77
|
Needle-Free Jet Injectors and Nanosuspensions: Exploring the Potential of an Unexpected Pair. Pharmaceutics 2022; 14:pharmaceutics14051085. [PMID: 35631674 PMCID: PMC9144479 DOI: 10.3390/pharmaceutics14051085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Needle-free liquid jet injectors are medical devices used to administer pharmaceutical solutions through the skin. Jet injectors generate a high-speed stream of liquid medication that can puncture the skin and deliver the drug to the underlying tissues. In this work, we investigated the feasibility of using liquid jet injectors to administer nanosuspensions, assessing the impact of the jet injection on their pharmaceutical and physicochemical properties. For this purpose, the model drug diclofenac was used to prepare a set of nanosuspensions, stabilized by poloxamer 188, and equilibrated at different pHs. The hydrodynamic diameter and morphology of the nanocrystals were analyzed before and after the jet injection across porcine skin in vitro, together with the solubility and release kinetics of diclofenac in a simulated subcutaneous environment. The efficacy of the jet injection (i.e., the amount of drug delivered across the skin) was evaluated for the nanosuspension and for a solution, which was used as a control. Finally, the nanosuspension was administered to rats by jet injector, and the plasma profile of diclofenac was evaluated and compared to the one obtained by jet injecting a solution with an equal concentration. The nanosuspension features were maintained after the jet injection in vitro, suggesting that no structural changes occur upon high-speed impact with the skin. Accordingly, in vivo studies demonstrated the feasibility of jet injecting a nanosuspension, reaching relevant plasma concentration of the drug. Overall, needle-free jet injectors proved to be a suitable alternative to conventional syringes for the administration of nanosuspensions.
Collapse
|
78
|
Sonodynamic Therapy Exciting the Herbal Nanocomposite with Spider-web-like Effect to Combat Otitis Media. Int J Pharm 2022; 621:121820. [DOI: 10.1016/j.ijpharm.2022.121820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/21/2022] [Accepted: 05/07/2022] [Indexed: 11/22/2022]
|
79
|
Chavda VP, Patel AB, Mistry KJ, Suthar SF, Wu ZX, Chen ZS, Hou K. Nano-Drug Delivery Systems Entrapping Natural Bioactive Compounds for Cancer: Recent Progress and Future Challenges. Front Oncol 2022; 12:867655. [PMID: 35425710 PMCID: PMC9004605 DOI: 10.3389/fonc.2022.867655] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/24/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer is a prominent cause of mortality globally, and it becomes fatal and incurable if it is delayed in diagnosis. Chemotherapy is a type of treatment that is used to eliminate, diminish, or restrict tumor progression. Chemotherapeutic medicines are available in various formulations. Some tumors require just one type of chemotherapy medication, while others may require a combination of surgery and/or radiotherapy. Treatments might last from a few minutes to many hours to several days. Each medication has potential adverse effects associated with it. Researchers have recently become interested in the use of natural bioactive compounds in anticancer therapy. Some phytochemicals have effects on cellular processes and signaling pathways with potential antitumor properties. Beneficial anticancer effects of phytochemicals were observed in both in vivo and in vitro investigations. Encapsulating natural bioactive compounds in different drug delivery methods may improve their anticancer efficacy. Greater in vivo stability and bioavailability, as well as a reduction in undesirable effects and an enhancement in target-specific activity, will increase the effectiveness of bioactive compounds. This review work focuses on a novel drug delivery system that entraps natural bioactive substances. It also provides an idea of the bioavailability of phytochemicals, challenges and limitations of standard cancer therapy. It also encompasses recent patents on nanoparticle formulations containing a natural anti-cancer molecule.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India
| | | | - Kavya J. Mistry
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad, India
| | | | - Zhuo-Xun Wu
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Kaijian Hou
- Department of Preventive Medicine,Shantou University Medical College, Shantou, China
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Afliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
80
|
Zingale E, Bonaccorso A, Carbone C, Musumeci T, Pignatello R. Drug Nanocrystals: Focus on Brain Delivery from Therapeutic to Diagnostic Applications. Pharmaceutics 2022; 14:691. [PMID: 35456525 PMCID: PMC9024479 DOI: 10.3390/pharmaceutics14040691] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
The development of new drugs is often hindered by low solubility in water, a problem common to nearly 90% of natural and/or synthetic molecules in the discovery pipeline. Nanocrystalline drug technology involves the reduction in the bulk particle size down to the nanosize range, thus modifying its physico-chemical properties with beneficial effects on drug bioavailability. Nanocrystals (NCs) are carrier-free drug particles surrounded by a stabilizer and suspended in an aqueous medium. Due to high drug loading, NCs maintain a potent therapeutic concentration to produce desirable pharmacological action, particularly useful in the treatment of central nervous system (CNS) diseases. In addition to the therapeutic purpose, NC technology can be applied for diagnostic scope. This review aims to provide an overview of NC application by different administration routes, especially focusing on brain targeting, and with a particular attention to therapeutic and diagnostic fields. NC therapeutic applications are analyzed for the most common CNS pathologies (i.e., Parkinson's disease, psychosis, Alzheimer's disease, etc.). Recently, a growing interest has emerged from the use of colloidal fluorescent NCs for brain diagnostics. Therefore, the use of NCs in the imaging of brain vessels and tumor cells is also discussed. Finally, the clinical effectiveness of NCs is leading to an increasing number of FDA-approved products, among which the NCs approved for neurological disorders have increased.
Collapse
Affiliation(s)
- Elide Zingale
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (E.Z.); (C.C.); (T.M.); (R.P.)
| | - Angela Bonaccorso
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (E.Z.); (C.C.); (T.M.); (R.P.)
- NANO-i—Research Centre on Ocular Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (E.Z.); (C.C.); (T.M.); (R.P.)
- NANO-i—Research Centre on Ocular Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (E.Z.); (C.C.); (T.M.); (R.P.)
- NANO-i—Research Centre on Ocular Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (E.Z.); (C.C.); (T.M.); (R.P.)
- NANO-i—Research Centre on Ocular Nanotechnology, University of Catania, 95125 Catania, Italy
| |
Collapse
|
81
|
Gupta V, Mohapatra S, Mishra H, Farooq U, Kumar K, Ansari MJ, Aldawsari MF, Alalaiwe AS, Mirza MA, Iqbal Z. Nanotechnology in Cosmetics and Cosmeceuticals-A Review of Latest Advancements. Gels 2022; 8:173. [PMID: 35323286 PMCID: PMC8951203 DOI: 10.3390/gels8030173] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Nanotechnology has the potential to generate advancements and innovations in formulations and delivery systems. This fast-developing technology has been widely exploited for diagnostic and therapeutic purposes. Today, cosmetic formulations incorporating nanotechnology are a relatively new yet very promising and highly researched area. The application of nanotechnology in cosmetics has been shown to overcome the drawbacks associated with traditional cosmetics and also to add more useful features to a formulation. Nanocosmetics and nanocosmeceuticals have been extensively explored for skin, hair, nails, lips, and teeth, and the inclusion of nanomaterials has been found to improve product efficacy and consumer satisfaction. This is leading to the replacement of many traditional cosmeceuticals with nanocosmeceuticals. However, nanotoxicological studies on nanocosmeceuticals have raised concerns in terms of health hazards due to their potential skin penetration, resulting in toxic effects. This review summarizes various nanotechnology-based approaches being utilized in the delivery of cosmetics as well as cosmeceutical products, along with relevant patents. It outlines their benefits, as well as potential health and environmental risks. Further, it highlights the regulatory status of cosmeceuticals and analyzes the different regulatory guidelines in India, Europe, and the USA and discusses the different guidelines and recommendations issued by various regulatory authorities. Finally, this article seeks to provide an overview of nanocosmetics and nanocosmeceuticals and their applications in cosmetic industries, which may help consumers and regulators to gain awareness about the benefits as well as the toxicity related to the continuous and long-term uses of these products, thus encouraging their judicious use.
Collapse
Affiliation(s)
- Vaibhav Gupta
- Nanotechnology Lab, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard University, New Delhi 110062, Delhi, India; (V.G.); (S.M.); (U.F.); (K.K.)
| | - Sradhanjali Mohapatra
- Nanotechnology Lab, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard University, New Delhi 110062, Delhi, India; (V.G.); (S.M.); (U.F.); (K.K.)
| | - Harshita Mishra
- Smart Society Research Team, Faculty of Business and Economics, Mendel University, 61300 Brno, Czech Republic;
| | - Uzma Farooq
- Nanotechnology Lab, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard University, New Delhi 110062, Delhi, India; (V.G.); (S.M.); (U.F.); (K.K.)
| | - Keshav Kumar
- Nanotechnology Lab, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard University, New Delhi 110062, Delhi, India; (V.G.); (S.M.); (U.F.); (K.K.)
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 16278, Saudi Arabia or (M.J.A.); (M.F.A.); (A.S.A.)
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 16278, Saudi Arabia or (M.J.A.); (M.F.A.); (A.S.A.)
| | - Ahmed S. Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 16278, Saudi Arabia or (M.J.A.); (M.F.A.); (A.S.A.)
| | - Mohd Aamir Mirza
- Nanotechnology Lab, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard University, New Delhi 110062, Delhi, India; (V.G.); (S.M.); (U.F.); (K.K.)
| | - Zeenat Iqbal
- Nanotechnology Lab, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard University, New Delhi 110062, Delhi, India; (V.G.); (S.M.); (U.F.); (K.K.)
| |
Collapse
|
82
|
Mengarda AC, Iles B, F Longo JP, de Moraes J. Recent trends in praziquantel nanoformulations for helminthiasis treatment. Expert Opin Drug Deliv 2022; 19:383-393. [PMID: 35264036 DOI: 10.1080/17425247.2022.2051477] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Infections caused by parasitic flatworms impose a considerable worldwide health burden. Recently, World Health Organization launched its roadmap for neglected diseases for the period 2021 to 2030 and oral treatment with praziquantel (PZQ) in tablet form is the main drug therapy for combating these diseases, but its use is limited by many drawbacks, including the high therapeutic dose due to the drug's low solubility and bioavailability. Among the strategies to improve PZQ performance, the use of drug nanocarriers has been cited as an interesting approach to overcome these pharmacological issues. AREAS COVERED This review focuses on the various types of nanomaterials (polymeric, lipidic, inorganic nanoparticles, and nanocrystals) which have been recently used to improve PZQ therapy. In addition, recent advances in PZQ nanoformulations, developed to overcome the barriers of the conventional drug are described. EXPERT OPINION Considering the poor rate of discovery in the anthelmintic segment observed in recent decades, the effective management of existing drugs has become essential. The application of new strategies based on nanotechnology can extend the useful life of PZQ in new and more effective formulations. Pharmaceutical nanotechnology can solve the pharmacokinetic challenges characteristic of PZQ and improve its solubility and bioavailability.
Collapse
Affiliation(s)
- Ana C Mengarda
- Research Center for Neglected Diseases, Guarulhos University, Guarulhos, SP, Brazil
| | - Bruno Iles
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - João Paulo F Longo
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - Josué de Moraes
- Research Center for Neglected Diseases, Guarulhos University, Guarulhos, SP, Brazil
| |
Collapse
|
83
|
Scherließ R, Bock S, Bungert N, Neustock A, Valentin L. Particle engineering in dry powders for inhalation. Eur J Pharm Sci 2022; 172:106158. [DOI: 10.1016/j.ejps.2022.106158] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022]
|
84
|
Topical nanocrystals of bioflavonoids: a new technology platform for skin ailments. Int J Pharm 2022; 619:121707. [DOI: 10.1016/j.ijpharm.2022.121707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/14/2022] [Accepted: 03/26/2022] [Indexed: 11/19/2022]
|
85
|
Hang L, Hu F, Shen C, Shen B, Zhu W, Yuan H. Development of herpetrione nanosuspensions stabilized by glycyrrhizin for enhancing bioavailability and synergistic hepatoprotective effect. Drug Dev Ind Pharm 2022; 47:1664-1673. [PMID: 35188016 DOI: 10.1080/03639045.2022.2045304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The objective of this study was to develop novel herpetrione (HPE) nanosuspensions stabilized by glycyrrhizin (HPE NSs/GL) for enhancing bioavailability and hepatoprotective effect of HPE. HPE NSs/GL were prepared by wet media milling method and then systemically evaluated by particle size analysis, scanning electronic microscopy (SEM), X-ray powder diffraction (XRPD), dissolution test, pharmacokinetics, and hepatoprotective effect. HPE-NSs stabilized by poloxamer 407 (HPE NSs/P407) were also prepared and used as a reference for comparison. HPE NSs/GL and HPE-NSs/P407 with similar particle sizes around 450 nm and PDI less than 0.2 were successfully prepared and both of them appeared to be spherical under SEM. The XRPD results demonstrated that HPE in both HPE NSs/GL and HPE NSs/P407 was presented in the amorphous state and the addition of GL or P407 and the milling process didn't alter the physical state of HPE. The dissolution and pharmacokinetic studies demonstrated that HPE NSs/GL exhibited significant enhancement in drug dissolution (72.44% within 24 h) and AUC0-t (24.91 ± 3.3 mg/L·h) as compared to HPE coarse suspensions (HPE CS, 34.19% & 13.07 ± 1.02 mg/L·h), but was similar with those of HPE NSs/P407 (80.06% & 26.75 ± 4.06 mg/L•h). Moreover, HPE NSs/GL exhibited significantly better hepatoprotective effect as compared to HPE CS and HPE NSs/P407 as indicated by the lowering of the elevated serum ALT and AST levels and the improvement of the hepatic morphology and architecture, which might be attributed to the improved bioavailability of HPE, and synergistic hepatoprotective effect of GL via alleviating inflammation evidenced by the significant decreased hepatic levels of inflammatory cytokines IL-1β, IL-6 and TNF-α. It could be concluded that GL might be an effective stabilizer for preparing HPE NSs, and HPE NSs/GL is a potential formulation strategy for improving oral bioavailability and hepatoprotective effect of HPE.
Collapse
Affiliation(s)
- Lingyu Hang
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China.,Department of Pharmacy, Air Force Medical Center, PLA, Beijing, China
| | - Fei Hu
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China.,Department of Pharmacy, Air Force Medical Center, PLA, Beijing, China
| | - Chengying Shen
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing, China
| | - Baode Shen
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China.,Department of Pharmacy, Air Force Medical Center, PLA, Beijing, China
| | - Weifeng Zhu
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hailong Yuan
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China.,Department of Pharmacy, Air Force Medical Center, PLA, Beijing, China
| |
Collapse
|
86
|
Nikdouz A, Namarvari N, Ghasemi Shayan R, Hosseini A. Comprehensive comparison of theranostic nanoparticles in breast cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2022; 11:1-27. [PMID: 35350450 PMCID: PMC8938632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Breast cancer is the most frequently happening cancer and the most typical cancer death among females. Despite the crucial progress in breast cancer therapy by using Chemotherapeutic agents, most anti-tumor drugs are insufficient to destroy exactly the breast cancer cells. The noble method of drug delivery using nanoparticles presents a great promise in treating breast cancer most sufficiently and with the least harm to the patient. Nanoparticles, with their spectacular characteristics, help overcome problems of this kind. Unique features of nanoparticles such as biocompatibility, bioavailability, biodegradability, sustained release, and, most importantly, site-specific targeting enables the Chemotherapeutic agents loaded in nanocarriers to differentiate between healthy tissue and cancer cells, leading to low toxicity and fewer side effects. This review focuses on evaluating and comprehending nanoparticles utilized in breast cancer treatment, including the most recent data related to the drugs they can carry. Also, this review covers all information related to each nanocarrier, such as their significant characteristics, subtypes, advantages, disadvantages, and chemical modification methods with recently published studies. This article discusses over 21 nanoparticles used in breast cancer treatment with possible chemical ligands such as monoclonal antibodies and chemotherapeutic agents binding to these carriers. These different nanoparticles and the unique features of each nanocarrier give the researchers all the data and insight to develop and use the brand-new drug delivery system.
Collapse
Affiliation(s)
- Amin Nikdouz
- Department of Medical Laboratory, Tabriz University of Medical Sciences5166/15731 Tabriz, Iran
| | - Nima Namarvari
- Department of Medical Laboratory, Tabriz University of Medical Sciences5166/15731 Tabriz, Iran
| | - Ramin Ghasemi Shayan
- Department of Radiology, Tabriz University of Medical Sciences5166/15731 Tabriz, Iran
| | - Arezoo Hosseini
- Department of Immunology, Tabriz University of Medical Sciences5166/15731 Tabriz, Iran
| |
Collapse
|
87
|
Mei H, Cai S, Huang D, Gao H, Cao J, He B. Carrier-free nanodrugs with efficient drug delivery and release for cancer therapy: From intrinsic physicochemical properties to external modification. Bioact Mater 2022; 8:220-240. [PMID: 34541398 PMCID: PMC8424425 DOI: 10.1016/j.bioactmat.2021.06.035] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
The considerable development of carrier-free nanodrugs has been achieved due to their high drug-loading capability, simple preparation method, and offering "all-in-one" functional platform features. However, the native defects of carrier-free nanodrugs limit their delivery and release behavior throughout the in vivo journey, which significantly compromise the therapeutic efficacy and hinder their further development in cancer treatment. In this review, we summarized and discussed the recent strategies to enhance drug delivery and release of carrier-free nanodrugs for improved cancer therapy, including optimizing the intrinsic physicochemical properties and external modification. Finally, the corresponding challenges that carrier-free nanodrugs faced are discussed and the future perspectives for its application are presented. We hope this review will provide constructive information for the rational design of more effective carrier-free nanodrugs to advance therapeutic treatment.
Collapse
Affiliation(s)
- Heng Mei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Shengsheng Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Dennis Huang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78731, USA
| | - Huile Gao
- West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Jun Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
88
|
Gani A, Noor N, Gani A, J.L.H J, Shah A, Ashraf ZU. Extraction of protein from churpi of yak milk origin: Size reduction, nutraceutical potential and as a wall material for resveratrol. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
89
|
Recent development in nanocrystal based drug delivery for neurodegenerative diseases: Scope, challenges, current and future prospects. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
90
|
Trousil J, Matějková J, Dai YS, Urbánek T, Šlouf M, Škorič M, Nejedlý T, Hrubý M, Fang JY. Nanocrystalline chloroxine possesses broad-spectrum antimicrobial activities and excellent skin tolerability in mice. Nanomedicine (Lond) 2022; 17:137-149. [PMID: 35012369 DOI: 10.2217/nnm-2021-0323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Antimicrobial submicrometer particles are being studied as promising interventions against a wide range of skin conditions, such as fungal or bacterial infections. Aims: To submicronize chloroxine, the crystalline compound 5,7-dichloro-8-hydroxyquinoline, by nanoprecipitation and characterize the resulting assemblies. Methods: The chloroxine particles were stabilized by a nonionic surfactant and were studied by a broth microdilution assay against 20 medically important bacteria and fungi. The intervention was studied using a murine model of skin irritation. Results & conclusions: Chloroxine nanoparticles with a diameter of 600-800 nm exhibit good tolerability in terms of skin irritation in vivo and good antimicrobial activity. Thus, the fabricated formulation shows great promise for interventions for both cutaneous infection control and prophylaxis.
Collapse
Affiliation(s)
- Jiří Trousil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague 6, Czechia
| | - Jana Matějková
- Department of Medical Microbiology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Úvalu 84, 150 06 Prague 5, Czechia.,Military Health Institute, Military Medical Agency, Tychonova 1, 160 00 Prague 6, Czechia
| | - You-Shan Dai
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan 333, Taiwan
| | - Tomáš Urbánek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague 6, Czechia
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague 6, Czechia
| | - Miša Škorič
- Department of Pathological Morphology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czechia
| | - Tomáš Nejedlý
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague 6, Czechia
| | - Martin Hrubý
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague 6, Czechia
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
91
|
Salas-Zúñiga R, Mondragón-Vásquez K, Alcalá-Alcalá S, Lima E, Höpfl H, Herrera-Ruiz D, Morales-Rojas H. Nanoconfinement of a Pharmaceutical Cocrystal with Praziquantel in Mesoporous Silica: The Influence of the Solid Form on Dissolution Enhancement. Mol Pharm 2021; 19:414-431. [PMID: 34967632 DOI: 10.1021/acs.molpharmaceut.1c00606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanoconfinement is a recent strategy to enhance solubility and dissolution of active pharmaceutical ingredients (APIs) with poor biopharmaceutical properties. In this work, we combine the advantage of cocrystals of racemic praziquantel (PZQ) containing a water-soluble coformer (i.e., increased solubility and supersaturation) and its confinement in a mesoporous silica material (i.e., increased dissolution rate). Among various potential cocrystalline phases of PZQ with dicarboxylic acid coformers, the cocrystal with glutaric acid (PZQ-GLU) was selected and successfully loaded by the melting method into nanopores of SBA-15 (experimental pore size of 5.6 nm) as suggested by physical and spectroscopic characterization using various complementary techniques like N2 adsorption, powder X-ray diffraction (PXRD), infrared spectroscopy (IR), solid-state NMR (ss-NMR), differential scanning calorimetry (DSC), and field emission-scanning electron microscopy (FE-SEM) analysis. The PZQ-GLU phase confined in SBA-15 presents more mobility according to ss-NMR studies but still retains its cocrystal-like features in the IR spectra, and it also shows depression of the melting transition temperature in DSC. On the contrary, pristine PZQ loaded into SBA-15 was found only in the amorphous state, according to the aforementioned studies. This dissimilar behavior of the composites was attributed to the larger crystal lattice of PZQ over the PZQ-GLU cocrystal (3320.1 vs 1167.9 Å3) and to stronger intermolecular interactions between PZQ and GLU, facilitating the confinement of a more mobile solid-like phase in the constrained channels. Powder dissolution studies under extremely nonsink conditions (SI = 0.014) of the confined PZQ-GLU and amorphous PZQ phases embedded in mesoporous silica showed transient supersaturation behavior when dissolving in simulated gastric fluid (HCl pH 1.2 at 37 ± 0.5 °C) in a similar fashion to the bare cocrystal PZQ-GLU. A comparison of the area under the curve (AUC0-90 min) of the dissolution profiles afforded a dissolution advantage of 2-fold (p < 0.05) of the new solid phases over pristine racemic PZQ after 90 min; under these conditions, the solubilized API reprecipitated as the recently discovered PZQ hemihydrate (PZQ-HH). In the presence of a cellulosic polymer, sustained solubilization of PZQ from composites SBA-15/PZQ or SBA-15/PZQ-GLU was observed, increasing AUC0-90 min up to 5.1-fold in comparison to pristine PZQ. The combination of a confined solid phase in mesoporous silica and a methylcellulose polymer in the dissolution medium effectively maintained the drug solubilized during times significant to promote absorption. Finally, powder dissolution studies under intermediate nonsink conditions (SI = 1.99) showed a fast release profile from the nanoconfined PZQ-GLU phase in SBA-15, which reached rapid saturation (95% drug dissolved at 30 min); the amorphous PZQ composite and bare PZQ-GLU also displayed an immediate release of the API but at a lower rate (69% drug dissolved at 30 min). In all of these cases, a large dissolution advantage was observed from any of the novel solid phases over PZQ.
Collapse
Affiliation(s)
- Reynaldo Salas-Zúñiga
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, México.,Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, México
| | | | - Sergio Alcalá-Alcalá
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, México
| | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Coyoacán, Ciudad de México 04510, México
| | - Herbert Höpfl
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, México
| | - Dea Herrera-Ruiz
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, México
| | - Hugo Morales-Rojas
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, México
| |
Collapse
|
92
|
Ančić D, Oršolić N, Odeh D, Tomašević M, Pepić I, Ramić S. Resveratrol and its nanocrystals: A promising approach for cancer therapy? Toxicol Appl Pharmacol 2021; 435:115851. [PMID: 34971666 DOI: 10.1016/j.taap.2021.115851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/22/2022]
Abstract
There has been a significant research interest in nanocrystals as a promising technology for improving the therapeutic efficacy of poorly water-soluble drugs, such as resveratrol. Little is known about the interaction of nanocrystals with biological tissue. The aim of this study was to investigate the potential use of resveratrol (RSV) and its nanocrystals (NANO-RSV) as antitumor agents in Ehrlich ascites tumour (EAT)-bearing mice and the interaction of nanocrystals with biological tissue through biochemical and histological changes of kidney, liver and EAT cells. After intraperitoneal injection of 2.5 × 106 cells into the abdominal cavity of mice, treatment of animals was started next day by injecting RSV or NANO-RSV at a dose of either 25 or 50 mg/kg every other day for 14 days. The results show that the administration of resveratrol and its nanocrystals lead to significant reductions in the proliferation of tumour cells in the abdominal cavity, and a reduction of the number of blood vessels in the peritoneum, with low systemic toxicity. In histopathological examinations, greater hepatocellular necrosis and apoptosis, hepatic fibrosis around the central vein and degeneration with minor fatty change were observed with RSV than with NANO-RSV. Inflammation with proximal tubular necrosis and renal glomerulus swelling were also observed, together with slight elevation of several biochemical parameters in both the RSV and NANO-RSV groups. In order to increase the beneficial effects and reduce risks associated with resveratrol nanocrystals, additional factors such as dose, genetic factors, health status, and the nature of the target cells should also be considered.
Collapse
Affiliation(s)
- Daniela Ančić
- Agency for Medicinal Products and Medical Devices, Ksaverska cesta 4, HR-10000 Zagreb, Croatia
| | - Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia.
| | - Dyana Odeh
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Matea Tomašević
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Ivan Pepić
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, HR-10000, Zagreb, Croatia
| | - Snježana Ramić
- Department of Pathology, University Cancer Hospital, Sestre Milosrdnice University Hospital Centre, Ilica 197, HR-10000 Zagreb, Croatia
| |
Collapse
|
93
|
Jiang S, Fu Y, Zhang X, Yu T, Lu B, Du J. Research Progress of Carrier-Free Antitumor Nanoparticles Based on Phytochemicals. Front Bioeng Biotechnol 2021; 9:799806. [PMID: 34957085 PMCID: PMC8692885 DOI: 10.3389/fbioe.2021.799806] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022] Open
Abstract
Cancer is a major worldwide public health issue, responsible for millions of deaths every year. Cancer cases and deaths are expected to increase rapidly with population growth, age, and lifestyle behaviors that increase cancer risk. Long-term chemotherapy results in acquired drug resistance. Traditional treatment methods have limitations and cannot effectively treat distal metastatic cancers. Application of nanocarriers in multi-chemotherapy must be promoted. With research progress, the shortcomings of traditional nanocarriers have gradually become evident. Carrier-free nanodrugs with desirable bioactivity have attracted considerable attention. In this review, we provide an overview of recent reports on several carrier-free nanodrug delivery systems based on phytochemicals. This review focuses on the advantages of carrier-free nanodrugs, and provides new insights for establishment of ideal cancer treatment nanosystems.
Collapse
Affiliation(s)
- Siliang Jiang
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yu Fu
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Xinyang Zhang
- School of Clinical Medicine, Jiamusi University, Jiamusi, China
| | - Tong Yu
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Bowen Lu
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Juan Du
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi, China
| |
Collapse
|
94
|
Arvapalli DM, Sheardy AT, Bang JJ, Wei J. Antiproliferative and ROS Regulation Activity of Photoluminescent Curcumin-Derived Nanodots. ACS APPLIED BIO MATERIALS 2021; 4:8477-8486. [PMID: 35005943 DOI: 10.1021/acsabm.1c00991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recently, various types of nanomaterials have been employed to design delivery vehicles for curcumin to address the problems of poor bioavailability, low aqueous solubility, and rapid metabolism. The present study focuses on a direct one-pot synthesis of curcumin-derived nanoparticles and exploits their potential therapeutic properties in cancer cells in vitro without additional delivery vehicles. The nanoparticles, named E-Curc-dots, are synthesized using three precursor molecules, ethylenediamine (EDA), curcumin, and citric acid. The structure, composition, and physichemical properties of the nanodots are characterized and identified by employing spectroscopic and microscopic techniques. The as-synthesized E-Curc-dots exhibit bright blue photoluminescence due to the incorporation of nitrogen from the EDA precursor molecule. The characterization studies show a uniform distribution of dots with an average size of 4.6 ± 1.7 nm and, notably, that the dots retain some of the major characteristics of native curcumin with much improved water solubility and bioavailability. The E-Curc-dots show antioxidation activity at low concentrations (<0.08 mg/mL) with low levels of reactive oxygen species (ROS) generation, i.e., 82% of the ROS level in cells without treatment for A549 cells; however, at high concentrations, the nanodots exhibit a pro-oxidant effect on both the cancer cells (A549) and normal cells (EA.hy926) by inducing more ROS generation and dose-dependent cytotoxicity. The E-Curc-dots demonstrate higher cytotoxicity toward cancer cells compared to native curcumin at a lower concentration. The results indicate the efficacy of E-Curc-dots as an antiproliferative and ROS regulator with the ability of cellular bioimaging.
Collapse
Affiliation(s)
- Durga M Arvapalli
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Alex T Sheardy
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - John J Bang
- Department of Environmental, Earth and Geospatial Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
| | - Jianjun Wei
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| |
Collapse
|
95
|
Yap KM, Sekar M, Wu YS, Gan SH, Rani NNIM, Seow LJ, Subramaniyan V, Fuloria NK, Fuloria S, Lum PT. Hesperidin and its aglycone hesperetin in breast cancer therapy: A review of recent developments and future prospects. Saudi J Biol Sci 2021; 28:6730-6747. [PMID: 34866972 PMCID: PMC8626310 DOI: 10.1016/j.sjbs.2021.07.046] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 01/05/2023] Open
Abstract
Breast cancer (BC) has high incidence and mortality rates, making it a major global health issue. BC treatment has been challenging due to the presence of drug resistance and the limited availability of therapeutic options for triple-negative and metastatic BC, thereby urging the exploration of more effective anti-cancer agents. Hesperidin and its aglycone hesperetin, two flavonoids from citrus species, have been extensively evaluated for their anti-cancer potentials. In this review, available literatures on the chemotherapeutic and chemosensitising activities of hesperidin and hesperetin in preclinical BC models are reported. The safety and bioavailability of hesperidin and hesperetin as well as the strategies to enhance their bioavailability are also discussed. Overall, hesperidin and hesperetin can inhibit cell proliferation, migration and BC stem cells as well as induce apoptosis and cell cycle arrest in vitro. They can also inhibit tumour growth, metastasis and neoplastic changes in tissue architecture in vivo. Moreover, the co-administration of hesperidin or hesperetin with doxorubicin, letrozole or tamoxifen can enhance the efficacies of these clinically available agents. These chemotherapeutic and chemosensitising activities of hesperidin and hesperetin have been linked to several mechanisms, including the modulation of signalling pathways, glucose uptake, enzymes, miRNA expression, oxidative status, cell cycle regulatory proteins, tumour suppressor p53, plasma and liver lipid profiles as well as DNA repair mechanisms. However, poor water solubility, extensive phase II metabolism and apical efflux have posed limitations to the bioavailability of hesperidin and hesperetin. Various strategies for bioavailability enhancement have been studied, including the utilisation of nano-based drug delivery systems and the co-administration of hesperetin with other flavonoids. In particular, nanoformulated hesperidin and hesperetin possess greater chemotherapeutic and chemosensitising activities than free compounds. Despite promising preclinical results, further safety and efficacy evaluation of hesperidin and hesperetin as well as their nanoformulations in clinical trials is required to ascertain their potentials to be developed as clinically useful agents for BC treatment.
Collapse
Affiliation(s)
- Kah Min Yap
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh – 30450, Perak, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh – 30450, Perak, Malaysia
| | - Yuan Seng Wu
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor - 42610, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway - 47500, Selangor Darul Ehsan, Malaysia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh – 30450, Perak, Malaysia
| | - Lay Jing Seow
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh – 30450, Perak, Malaysia
| | | | | | | | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh – 30450, Perak, Malaysia
| |
Collapse
|
96
|
Khan MA, Ansari MM, Arif ST, Raza A, Choi HI, Lim CW, Noh HY, Noh JS, Akram S, Nawaz HA, Ammad M, Alamro AA, Alghamdi AA, Kim JK, Zeb A. Eplerenone nanocrystals engineered by controlled crystallization for enhanced oral bioavailability. Drug Deliv 2021; 28:2510-2524. [PMID: 34842018 PMCID: PMC8635601 DOI: 10.1080/10717544.2021.2008051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Poor aqueous solubility of eplerenone (EPL) is a major obstacle to achieve sufficient bioavailability after oral administration. In this study, we aimed to develop and evaluate eplerenone nanocrystals (EPL-NCs) for solubility and dissolution enhancement. D-optimal combined mixture process using Design-Expert software was employed to generate different combinations for optimization. EPL-NCs were prepared by a bottom-up, controlled crystallization technique during freeze-drying. The optimized EPL-NCs were evaluated for their size, morphology, thermal behavior, crystalline structure, saturation solubility, dissolution profile, in vivo pharmacokinetics, and acute toxicity. The optimized EPL-NCs showed mean particle size of 46.8 nm. Scanning electron microscopy revealed the formation of elongated parallelepiped shaped NCs. DSC and PXRD analysis confirmed the crystalline structure and the absence of any polymorphic transition in EPL-NCs. Furthermore, EPL-NCs demonstrated a 17-fold prompt increase in the saturation solubility of EPL (8.96 vs. 155.85 µg/mL). The dissolution rate was also significantly higher as indicated by ∼95% dissolution from EPL-NCs in 10 min compared to only 29% from EPL powder. EPL-NCs improved the oral bioavailability as indicated by higher AUC, Cmax, and lower Tmax than EPL powder. Acute oral toxicity study showed that EPL-NCs do not pose any toxicity concern to the blood and vital organs. Consequently, NCs prepared by controlled crystallization technique present a promising strategy to improve solubility profile, dissolution velocity and bioavailability of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Muhammad Ayub Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Muhammad Mohsin Ansari
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Sadia Tabassam Arif
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Abida Raza
- Nanomedicine Research Laboratory, National Institute of Lasers and Optronics (NILOP), PIEAS, Islamabad, Pakistan
| | - Ho-Ik Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Chang-Wan Lim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Ha-Yeon Noh
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Jin-Su Noh
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Salman Akram
- Laboratory for the Study of Rheology and the Adhesion of Medical Adhesives, IPREM, University of Pau and Pays de l'Adour, Pau, France
| | - Hafiz Awais Nawaz
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | - Abir Abdullah Alamro
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Amani Ahmed Alghamdi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jin-Ki Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
97
|
Honciuc A, Negru OI. NanoTraPPED-A New Method for Determining the Surface Energy of Nanoparticles via Pickering Emulsion Polymerization. NANOMATERIALS 2021; 11:nano11123200. [PMID: 34947547 PMCID: PMC8709214 DOI: 10.3390/nano11123200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022]
Abstract
Surface energy with its polar and disperse components describes the physicochemical state of nanoparticles’ (NPs) surfaces, and can be a valuable parameter for predicting their bulk behavior in powders. Here, we introduce a new method, namely, Nanoparticles Trapped on Polymerized Pickering Emulsion Droplets (NanoTraPPED), for measuring the surface energy of a series of silica NPs bearing various surface functional groups. The method consists in creating Pickering emulsions from vinyl bearing monomers, immiscible with water, whereas NPs of interest have a stabilizing role, and in the process, become trapped at the monomer/water interface of emulsion droplets. The Pickering emulsion is polymerized, and polymer microspheres (colloidosomes) decorated with NPs are obtained. NanoTraPPED relies on measuring contact angles from the immersion depth of nanoparticles at the interface of various polymer colloidosomes with the electron microscope. The contact angle values are used as input for the Owens-Wendt-Rabel-Kaelble (OWRK) model, to quantitatively determine the total surface energy with water γNP/water, air γNP, and the corresponding polar and dispersive interaction components of NPs carrying -NH2, -SH, -OH, -CN and -C8 surface functional groups, ranking these according to their polarity. Our findings were confirmed independently by calculating the interfacial desorption energies of NPs from contact angles.
Collapse
|
98
|
Kim H, Song D, Ngo HV, Jin G, Park C, Park JB, Lee BJ. Modulation of the clinically accessible gelation time using glucono-d-lactone and pyridoxal 5'-phosphate for long-acting alginate in situ forming gel injectable. Carbohydr Polym 2021; 272:118453. [PMID: 34420713 DOI: 10.1016/j.carbpol.2021.118453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
The purpose of this study was to design alginate in situ forming gel (ISFG) injectable with clinically acceptable gelation time and controlled release of hydrophobic drug. Milled or unmilled paliperidone palmitate (PPP) was used. The gelation time was controlled by varying the ratios of glucono-d-lactone (GDL) and pyridoxal 5'-phosphate (PLP) in prefilled alginate solution mixtures (ASMs) containing PPP, CaCO3, GDL and PLP for clinically acceptable injectability. However, the gelation time was varied by the alginate type (M/G ratio), storage condition, and drug solubilizers. This ISFG exhibited 32.15 kPa of the maximal compressive stress without causing pain and stiffness. The ISFG containing conically milled PPP released PPP in a controlled manner without exhibiting any initial burst release for 4 weeks. The current alginate ISFG injectable using new combination of PLP and GDL could be used to deliver long-acting injectable drugs.
Collapse
Affiliation(s)
- Hyungtaek Kim
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Dahee Song
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Hai V Ngo
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Gang Jin
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Chulhun Park
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jun-Bom Park
- College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
99
|
Zhao C, Lv H, Tao S, Zhang T, Xu N, Zhu L. Exosomes: Promising nanocarrier for cancer therapy. NANO SELECT 2021. [DOI: 10.1002/nano.202100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Chen‐Chen Zhao
- College of Life Sciences and Health Wuhan University of Science and Technology Wuhan Hubei Province China
| | - Hui‐Zhong Lv
- College of Life Sciences and Health Wuhan University of Science and Technology Wuhan Hubei Province China
| | - Su‐Wan Tao
- College of Life Sciences and Health Wuhan University of Science and Technology Wuhan Hubei Province China
| | - Tong‐Cun Zhang
- College of Life Sciences and Health Wuhan University of Science and Technology Wuhan Hubei Province China
| | - Na Xu
- College of Life Sciences and Health Wuhan University of Science and Technology Wuhan Hubei Province China
| | - Lian Zhu
- College of Life Sciences and Health Wuhan University of Science and Technology Wuhan Hubei Province China
- School of Chemical and Environmental Engineering Wuhan Polytechnic University Wuhan Hubei China
| |
Collapse
|
100
|
Jia L, Zhang P, Sun H, Dai Y, Liang S, Bai X, Feng L. Optimization of Nanoparticles for Smart Drug Delivery: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2790. [PMID: 34835553 PMCID: PMC8622036 DOI: 10.3390/nano11112790] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022]
Abstract
Nanoparticle delivery systems have good application prospects in the treatment of various diseases, especially in cancer treatment. The effect of drug delivery is regulated by the properties of nanoparticles. There have been many studies focusing on optimizing the structure of nanoparticles in recent years, and a series of achievements have been made. This review summarizes the optimization strategies of nanoparticles from three aspects-improving biocompatibility, increasing the targeting efficiency of nanoparticles, and improving the drug loading rate of nanoparticles-aiming to provide some theoretical reference for the subsequent drug delivery of nanoparticles.
Collapse
Affiliation(s)
- Lina Jia
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (L.J.); (P.Z.); (H.S.); (Y.D.); (S.L.)
| | - Peng Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (L.J.); (P.Z.); (H.S.); (Y.D.); (S.L.)
| | - Hongyan Sun
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (L.J.); (P.Z.); (H.S.); (Y.D.); (S.L.)
| | - Yuguo Dai
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (L.J.); (P.Z.); (H.S.); (Y.D.); (S.L.)
| | - Shuzhang Liang
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (L.J.); (P.Z.); (H.S.); (Y.D.); (S.L.)
| | - Xue Bai
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (L.J.); (P.Z.); (H.S.); (Y.D.); (S.L.)
| | - Lin Feng
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (L.J.); (P.Z.); (H.S.); (Y.D.); (S.L.)
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|