51
|
Derman ID, Rivera T, Garriga Cerda L, Singh YP, Saini S, Abaci HE, Ozbolat IT. Advancements in 3D skin bioprinting: processes, bioinks, applications and sensor integration. INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING 2025; 7:012009. [PMID: 39569402 PMCID: PMC11574952 DOI: 10.1088/2631-7990/ad878c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/23/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024]
Abstract
This comprehensive review explores the multifaceted landscape of skin bioprinting, revolutionizing dermatological research. The applications of skin bioprinting utilizing techniques like extrusion-, droplet-, laser- and light-based methods, with specialized bioinks for skin biofabrication have been critically reviewed along with the intricate aspects of bioprinting hair follicles, sweat glands, and achieving skin pigmentation. Challenges remain with the need for vascularization, safety concerns, and the integration of automated processes for effective clinical translation. The review further investigates the incorporation of biosensor technologies, emphasizing their role in monitoring and enhancing the wound healing process. While highlighting the remarkable progress in the field, critical limitations and concerns are critically examined to provide a balanced perspective. This synthesis aims to guide scientists, engineers, and healthcare providers, fostering a deeper understanding of the current state, challenges, and future directions in skin bioprinting for transformative applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- I Deniz Derman
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, United States of America
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, United States of America
| | - Taino Rivera
- Biomedical Engineering Department, Penn State University, University Park, PA, United States of America
| | - Laura Garriga Cerda
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Yogendra Pratap Singh
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, United States of America
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, United States of America
| | - Shweta Saini
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, United States of America
| | - Hasan Erbil Abaci
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, United States of America
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | - Ibrahim T Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, United States of America
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, United States of America
- Biomedical Engineering Department, Penn State University, University Park, PA, United States of America
- Materials Research Institute, Penn State University, University Park, PA, United States of America
- Cancer Institute, Penn State University, University Park, PA, United States of America
- Neurosurgery Department, Penn State University, University Park, PA, United States of America
- Department of Medical Oncology, Cukurova University, Adana, Turkey
| |
Collapse
|
52
|
Kanoujia J, Raina N, Kishore A, Kaurav M, Tuli HS, Kumar A, Gupta M. Revealing the promising era of silk-based nanotherapeutics: a ray of hope for chronic wound healing treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03761-w. [PMID: 39888364 DOI: 10.1007/s00210-024-03761-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/23/2024] [Indexed: 02/01/2025]
Abstract
Chronic wounds significantly contribute to disability and affect the mortality rate in diabetic patients. In addition, pressure ulcers, diabetic foot ulcers, arterial ulcers, and venous ulcers pose a significant health burden due to their associated morbidity and death. The complex healing process, environmental factors, and genetic factors have been identified as the rate-limiting stages of chronic wound healing. Changes in temperature, moisture content, mechanical strain, and genetics can result in slow wound healing, increased susceptibility to bacterial infections, and poor matrix remodelling. These obstacles can be addressed with natural biomaterials exhibiting antimicrobial, collagen synthesis, and granulation tissue formation properties. Recently, silk proteins have gained significant attention as a natural biomaterial owing to good biocompatibility, biodegradability, reduced immunogenicity, ease of sterilization, and promote the wound healing process. The silk components such as sericin and fibroin in combination with nano(platforms) effectively promote wound repair. This review emphasises the potential of sericin and fibroin when combined with nano(platforms) like nanoparticles, nanofibers, and nanoparticles-embedded films, membranes, gels, and nanofibers.
Collapse
Affiliation(s)
- Jovita Kanoujia
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, 474005, Madhya Pradesh, India
| | - Neha Raina
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| | - Ankita Kishore
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, 474005, Madhya Pradesh, India
| | - Monika Kaurav
- KIET School of Pharmacy, KIET Group of Institution, Ghaziabad, Uttar Pradesh, 201206, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Akhilesh Kumar
- Division of Medicine, ICAR Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India.
| |
Collapse
|
53
|
Huang J, Li H, Mei Y, Yi P, Ren Y, Wang Y, Han L, Tang Q, Liu D, Chen W, An Y, Hu C. An Injectable Hydrogel Bioimplant Loaded with Engineered Exosomes and Triple Anti-Tuberculosis Drugs with Potential for Treating Bone and Joint Tuberculosis. Int J Nanomedicine 2025; 20:1285-1302. [PMID: 39911262 PMCID: PMC11794387 DOI: 10.2147/ijn.s480288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/12/2024] [Indexed: 02/07/2025] Open
Abstract
Purpose Treatment for bone and joint tuberculosis (BJTB) is challenging due to its refractory and recurrent nature. This study aimed to develop a bioimplantable scaffold with osteoinductive and antituberculosis characteristics to treat BJTB. Methods This scaffold is built on oxidized hyaluronic acid and carboxymethyl chitosan hydrogel mixed with hydroxyapatite as a bone tissue engineered material. In order to make the scaffold have the biological activity of promoting tissue repair, the engineered exosomes (Exoeng) were added innovatively. In addition, drug-loaded liposomes equipped with an aldehyde group on the surface are cross-linked with the amine group of the hydrogel skeleton to participate in the Schiff base reaction. Results The designed scaffold has characteristics of self-healing and injectability exhibit excellent anti-tuberculosis and promoting bone repair activities. Exoeng strongly stimulates cellular angiogenesis and osteogenic differentiation. The liposomes coated in hydrogel can release three kinds of anti-tuberculosis drugs smoothly and slowly, achieving a long term anti-tuberculosis. Conclusion The composite bio-scaffold shows good tissue repair and long-term anti-tuberculosis abilities, which expected to provide a viable treatment plan for bone-related BJTB.
Collapse
Affiliation(s)
- Jiayan Huang
- Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Han Li
- Department of Pharmacy, Central Hospital of Guangdong Provincial Nongken, Zhanjiang, Guangdong, People’s Republic of China
| | - Yuting Mei
- Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Pengcheng Yi
- Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yunyao Ren
- Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yunjuan Wang
- Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Limei Han
- Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Qiusha Tang
- Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Dongfang Liu
- Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Wei Chen
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yanli An
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Medical School, Zhong da Hospital, Southeast University, Nanjing, JiangsuPeople’s Republic of China
| | - Chunmei Hu
- Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
54
|
Kakiuchi K, Borden MA. Effect of Lipid Composition and Stirring Dynamics on Oxygen Microbubble Stability and Oxygen Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1745-1755. [PMID: 39814569 PMCID: PMC12039959 DOI: 10.1021/acs.langmuir.4c04104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Lipid-coated oxygen microbubbles (OMBs) are being investigated for biomedical applications to alleviate hypoxia such as systemic oxygenation and image-guided radiosensitization therapy. Additionally, they hold potential for boarder application as oxygen carriers beyond the biomedical filed. Understanding the stability and oxygen release properties of OMBs in dynamic aqueous environments is critical for these applications. In this study, we found that OMBs composed of longer acyl chain phospholipids (DSPC and DBPC) were stable in storage for at least 1 week, unlike the shorter acyl chain phospholipid (DPPC). OMBs were also more stable with a diacyl PEG-PE emulsifier compared with single-chain PEG-40 stearate. Dilution of OMBs did not alter the average diameter. While previous studies have examined the theoretical and experimental aspects of oxygen release from OMBs under static conditions, quantitative evaluations of OMB dispersions under dynamic stirring conditions remain limited. Here, we introduce a novel oxygen measurement method that quantitatively tracks the transition of the dissolved oxygen concentration in an aqueous medium upon mixing with a bolus of OMBs. Our results indicate that a 50 vol % OMB dispersion releases more than 330 mg/L of oxygen, surpassing arterial oxygen levels, and that more than 95% of this oxygen is released within 30 s. The rate of oxygenation of the OMB dispersions was comparable to that of a bolus injection of oxygen-saturated water under sufficient agitation, indicating that convection in the aqueous medium is the limiting transport mechanism. However, the lipid shell had a measurable effect on the oxygen release rate, which correlated with its oxygen permeability. Increasing the stirring speed increased both oxygen release rate and total amount of oxygen released. Overall, this study elucidates the fundamental stability and mass transport properties of the OMB dispersions under practical stirring conditions.
Collapse
Affiliation(s)
- Kenta Kakiuchi
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Mark Andrew Borden
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Mechanical Engineering Department, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
55
|
Wei Y, Yu Q, Zhan Y, Wu H, Sun Q. Piezoelectric hydrogels for accelerating healing of diverse wound types. Biomater Sci 2025; 13:568-586. [PMID: 39714223 DOI: 10.1039/d4bm01347f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The skin, as the body's largest organ, plays a crucial role in protecting against mechanical forces and infections, maintaining fluid balance, and regulating body temperature. Therefore, skin wounds can significantly threaten human health and cause a heavy economic burden on society. Recently, bioelectric fields and electrical stimulation (ES) have been recognized as a promising pathway for modulating tissue engineering and regeneration of wounded skin. However, conventional hydrogel dressing lacks electrical generation capabilities and usually requires external stimuli to initiate the cell regeneration process, and the role of ES in different stages of healing is not fully understood. Therefore, to endow hydrogel-based wound dressings with piezoelectric properties, which can accelerate wound healing and potentially suppress infection via introducing ES, piezoelectric hydrogels (PHs) have emerged recently, combining the advantages of both piezoelectric nanomaterials and hydrogels beneficial for wound healing. Given the scarcity of systematic literature on the application of PHs in wound healing, this paper systematically discusses the principles of the piezoelectric effects, the design and fabrication of PHs, their piezoelectric properties, the way PHs trigger ES and the mechanisms by which they promote wound healing. Additionally, it summarizes the recent applications of PHs in various types of wounds, including traumatic wounds, pressure injuries, diabetic wounds, and infected wounds. Finally, the paper proposes future directions and challenges for the development of PH wound dressings for wound healing.
Collapse
Affiliation(s)
- Yanxing Wei
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qiwei Yu
- The First Clinical College, Changsha Medical University, Changsha, Hunan, 410005, China
| | - Yuxi Zhan
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Hao Wu
- Department of Stomatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Qiang Sun
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
56
|
Martinelli C, Bocconi A, Milone S, Baldissera T, Cherubin L, Buccioli G, Perottoni S, Conci C, Cerullo G, Osellame R, Chirico G, Jacchetti E, Raimondi MT. A 3D millifluidic model of a dermal perivascular microenvironment on a chip. LAB ON A CHIP 2025; 25:423-439. [PMID: 39757968 PMCID: PMC11701800 DOI: 10.1039/d4lc00898g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/16/2024] [Indexed: 01/07/2025]
Abstract
The process of angiogenesis plays a pivotal role in skin regeneration, ensuring the provision of nutrients and oxygen to the nascent tissue, thanks to the formation of novel microvascular networks supporting functional tissue regeneration. Unfortunately, most of the current therapeutic approaches for skin regeneration lack vascularization, required to promote effective angiogenesis. Thus, in vitro tridimensional models, complemented with specific biochemical signals, can be a valuable tool to unravel the neovascularization mechanisms and develop novel clinical strategies. In this work, we designed and validated a tridimensional microstructured dynamic model of the dermal perivascular microenvironment on a chip. We carried out the fabrication of an array of microstructures by two-photon laser polymerization, then used as a 3D substrate for co-culture of human dermal fibroblasts and endothelial cells. We included the substrate in a miniaturized optically accessible bioreactor (MOAB) which provides the physiological interstitial flow, upon perfusion in the presence or absence of the pro-angiogenic stimuli VEGF and TGF-β1. We determined the parameters to be applied under dynamic conditions by an in silico model simulating individual 3D microenvironments within the bioreactor's chambers. We computed the fluid velocity and wall shear stress acting on endothelial cells along with the oxygen concentration profile, and we chose the most suitable flow rate for maintaining dermal physiological conditions. Experimental results showed the effectiveness of the developed platform as a 3D dynamic model of angiogenesis. This is the first combined experimental and computational study involving chemically stimulated 3D co-cultures for successfully simulating the physiological dermal perivascular microenvironment.
Collapse
Affiliation(s)
- Chiara Martinelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milan, Italy.
| | - Alberto Bocconi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milan, Italy.
| | - Sofia Milone
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milan, Italy.
| | - Teresa Baldissera
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milan, Italy.
| | - Leonardo Cherubin
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milan, Italy.
| | - Giovanni Buccioli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milan, Italy.
| | - Simone Perottoni
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milan, Italy.
| | - Claudio Conci
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milan, Italy.
| | - Giulio Cerullo
- Institute for Photonics and Nanotechnologies (IFN), CNR and Department of Physics, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy.
| | - Roberto Osellame
- Institute for Photonics and Nanotechnologies (IFN), CNR and Department of Physics, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy.
| | - Giuseppe Chirico
- Department of Physics, Università di Milano-Bicocca, Piazza della Scienza, 3, 20126 Milan, Italy.
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milan, Italy.
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milan, Italy.
| |
Collapse
|
57
|
Qu L, Jiao M, Zhang Z, Ou Y, Zhao X, Zhang Y, Zhao X. A strategy for selective screening of dual-target bioactive compounds against hypertrophic scar through inhibiting angiotensin II type 1 receptor while stimulating type 2 receptor from Chinese herbs. Chin Med 2025; 20:15. [PMID: 39871267 PMCID: PMC11771114 DOI: 10.1186/s13020-025-01065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/10/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Cutaneous hypertrophic scar is a fibro-proliferative hard-curing disease. Recent studies have proved that antagonists of angiotensin II type 1 receptor (AT1R) and agonists of type 2 receptor (AT2R) were able to relieve hypertrophic scar. Therefore, establishing new methods to pursue dual-target lead compounds from Chinese herbs is in much demand for treating scar. METHODS To this end, we immobilized AT1R or AT2R onto the surface of silica gel from cell lysates through a specific covalent bond by bioorthogonal chemistry. The columns containing immobilized AT1R or AT2R were jointly utilized to pursue potential bioactive compounds simultaneously binding to AT1R and AT2R from the extract of Rhei Radix et Rhizoma. Their functions on AT1R and AT2R expressions were investigated by in vitro and in vivo experiments. RESULTS Aloe-emodin and emodin were identified as the potential bioactive compounds binding to both of the two receptors, thereby improving the appearance and pathomorphology of hypertrophic scar. They blocked the AT1R pathway to down-regulate the expression of transforming growth factor-β1 (TGF-β1) and stimulate matrix metalloproteinase-1 (MMP-1) expression. As such, the expression of collagen I/III reduced. Conversely, the bindings of the two compounds to AT2R reduced the production of nuclear factor-кB1 (NF-кB1), whereby the generation of interleukin-6 (IL-6) was blocked. CONCLUSION We reasoned that aloe-emodin and emodin had the potential to become dual-target candidates against hypertrophic scar through the regulation of AT1R and AT2R signaling pathways. It showed considerable potential to become a universal strategy for pursuing multi-target bioactive compounds from Chinese herbs by the utilization of diverse immobilized receptors in a desired order.
Collapse
Affiliation(s)
- Lejing Qu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
- The Second Affiliated Hospital of Xi'an Medical University, Xi'an Medical University, Xi'an, China
| | - Meizhi Jiao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Zilong Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yuanyuan Ou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xue Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yajun Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| | - Xinfeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| |
Collapse
|
58
|
Soares CS, Dias IR, Barros LC, Carvalho PP, Pires MDA. Translational Clinical Research: Use of Allogeneic Platelet-Rich Fibrin (PRF) for Wound Regeneration in Two Small-Sized Dogs. Animals (Basel) 2025; 15:367. [PMID: 39943137 PMCID: PMC11816182 DOI: 10.3390/ani15030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Platelet-rich fibrin (PRF) is a recent regenerative biomaterial applied in clinical wound healing. This study aims to evaluate the safety and efficacy of allogeneic PRF therapy as a regenerative methodology for treating skin wounds in two small dogs. A Miniature Pinscher and a mixed breed dog weighing 3.6 and 9.5 kg, aged 5 and 10 years, with extensive skin wounds implicating significant tissue loss and with abundant yellow exudate were allocated to this study. Each allogenic PRF treatment was derived from screened donors and consisted of grafting PRFs at the wound recipient area. Nevertheless, the blood group of the donor or recipient was not considered. The wound from case 1 received three PRF treatments during the initial two weeks of treatment, and case 2 received four PRF treatments, followed by single weekly ones. The utilization of PRFs was suspended as soon as relevant wound contraction and epithelization were observed. Both animals received systemic antibiotics prescribed at the emergency room by the first clinician. The wounds were cleaned using sterile saline only. Two weeks later, the lesions had reduced by more than 80%. All lesions exhibited aesthetic and uneventful healing. No rejection, necrosis, or infection signs were observed. PRF acted as a regenerative biomaterial, forming vascularized granulation tissue, followed by epithelization and wound resolution.
Collapse
Affiliation(s)
- Carla S. Soares
- Animal and Veterinary Research Centre (CECAV), AL4AnimaLS, Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (C.S.S.); (I.R.D.)
- VetLamaçães Veterinary Clinic, 4715-303 Braga, Portugal;
| | - Isabel R. Dias
- Animal and Veterinary Research Centre (CECAV), AL4AnimaLS, Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (C.S.S.); (I.R.D.)
| | - Luís C. Barros
- VetLamaçães Veterinary Clinic, 4715-303 Braga, Portugal;
| | - Pedro P. Carvalho
- Vetherapy—Research and Development in Biotechnology, 3030-509 Coimbra, Portugal;
| | - Maria dos Anjos Pires
- Animal and Veterinary Research Centre (CECAV), AL4AnimaLS, Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (C.S.S.); (I.R.D.)
| |
Collapse
|
59
|
Al Mamun A, Shao C, Geng P, Wang S, Xiao J. Recent advances in the role of neuroregulation in skin wound healing. BURNS & TRAUMA 2025; 13:tkae072. [PMID: 39872039 PMCID: PMC11770601 DOI: 10.1093/burnst/tkae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 01/29/2025]
Abstract
Neuroregulation during skin wound healing involves complex interactions between the nervous system and intricate tissue repair processes. The skin, the largest organ, depends on a complex system of nerves to manage responses to injury. Recent research has emphasized the crucial role of neuroregulation in maximizing wound healing outcomes. Recently, researchers have also explained the interactive contact between the peripheral nervous system and skin cells during the different phases of wound healing. Neurotransmitters and neuropeptides, once observed as simple signalling molecules, have since been recognized as effective regulators of inflammation, angiogenesis, and cell proliferation. The significance of skin innervation and neuromodulators is underscored by the delayed wound healing observed in patients with diabetes and the regenerative capabilities of foetal skin. Foetal skin regeneration is influenced by the neuroregulatory environment, immature immune system, abundant growth factors, and increased pluripotency of cells. Foetal skin cells exhibit greater flexibility and specialized cell types, and the extracellular matrix composition promotes regeneration. The extracellular matrix composition of foetal skin promotes regeneration, making it more capable than adult skin because neuroregulatory signals affect skin regeneration. The understanding of these systems can facilitate the development of therapeutic strategies to alter the nerve supply to the skin to enhance the process of wound healing. Neuroregulation is being explored as a potential therapeutic strategy for enhancing skin wound repair. Bioelectronic strategies and neuromodulation techniques can manipulate neural signalling, optimize the neuroimmune axis, and modulate inflammation. This review describes the function of skin innervation in wound healing, emphasizing the importance of neuropeptides released by sensory and autonomic nerve fibres. This article discusses significant discoveries related to neuroregulation and its impact on skin wound healing.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
60
|
Kulka-Kamińska K, Kurzawa M, Sionkowska A. Films Based on Chitosan/Konjac Glucomannan Blend Containing Resveratrol for Potential Skin Application. MATERIALS (BASEL, SWITZERLAND) 2025; 18:457. [PMID: 39859927 PMCID: PMC11766734 DOI: 10.3390/ma18020457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Biopolymers represent a significant class of materials with potential applications in skin care due to their beneficial properties. Resveratrol is a natural substance that exhibits a range of biological activities, including the scavenging of free radicals and anti-inflammatory and anti-aging effects. In this study, chitosan/konjac glucomannan resveratrol-enriched thin films were prepared. The enrichment of biomaterials with active ingredients is a common practice, as it allows the desired properties to be obtained in the final product. To characterize the films, several analyses were performed, including infrared spectroscopy, imaging of the samples by SEM and AFM techniques, swelling analysis in pH 5.5 and 7.4, mechanical and antioxidant assays, contact angle measurements, and determination of the resveratrol release profile under the skin mimicking conditions. Resveratrol incorporation into the matrices resulted in modifications to the chemical structure and film morphology. The mechanical characteristics of films with additives were found to undergo deterioration. The sample containing 10% of resveratrol exhibited a higher swelling degree than other films. The resveratrol-modified films demonstrated a notable antioxidant capacity, a reduced contact angle, and enhanced wettability. The resveratrol release occurred rapidly initially, with a maximum of 84% and 56% of the substance released depending on the sample type. Thus, the proposed formulations have promising properties, in particular good swelling capacity, high antioxidant potential, and improved wettability, and may serve as skin dressings after further investigation.
Collapse
Affiliation(s)
- Karolina Kulka-Kamińska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Street, 87-100 Torun, Poland
| | - Marzanna Kurzawa
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Street, 87-100 Torun, Poland;
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Street, 87-100 Torun, Poland
| |
Collapse
|
61
|
Alsulami KA, Bakr AA, Sirwi A, Elfaky MA, Shaik RA, Alshehri BY, Aodah AH, Al Fayez N, Alshehri AA, Almughem FA, Halwani AA, Tawfik EA. Fusidic Acid and Lidocaine-Loaded Electrospun Nanofibers as a Dressing for Accelerated Healing of Infected Wounds. Int J Nanomedicine 2025; 20:849-869. [PMID: 39867309 PMCID: PMC11760276 DOI: 10.2147/ijn.s467469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/28/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction Wound treatment is a significant health burden in any healthcare system, which requires proper management to minimize pain and prevent bacterial infections that can complicate the wound healing process. Rationale There is a need to develop innovative therapies to accelerate wound healing cost-effectively. Herein, two polymer-based nanofibrous systems were developed using poly-lactic-co-glycolic-acid (PLGA) and polyvinylpyrrolidone (PVP) loaded with a combination of an antibiotic (Fusidic acid, FA) and a local anesthetic (Lidocaine, LDC) via electrospinning technique for an expedited healing process by preventing bacterial infections while reducing the pain sensation. Results The fabricated nanofibers showed an excellent morphology with an average fiber diameter of 556 ± 71 nm and 291 ± 87 nm for the dual drug-loaded PLGA/PVP and PVP nanofibers, respectively. The encapsulation efficiency (EE%) and drug loading (DL) studies revealed that PLGA/PVP loaded with FA and LDC exhibited EE% of 92% and 75%, respectively, while the DL was measured at 40 ± 8 µg/mg for FA and 32 ± 7 µg/mg for LDC. Furthermore, both drugs were fully released from the nanofibers within 48 hours. In contrast, FA/LDC-loaded PVP nanofibers exhibited EE% of 100% for FA and 84% for LDC; DL was measured at 85 ± 3 µg/mg for FA and 70 ± 3 µg/mg for LDC, while both drugs were completely released within 24 hours. The in vitro cytotoxicity study demonstrated a safe concentration of FA and LDC at ≤ 125 μg/mL. The prepared nanofibers were tested in vivo in an S. aureus-infected wound mice model to assess their efficacy, and the results showed that the FA/LDC-PVP had a faster wound closure and the lowest bacterial counts compared to other groups. Conclusion These findings showed the potential application of the fabricated dual drug-loaded nanofibers as a wound-healing plaster against infected acute wounds.
Collapse
Affiliation(s)
- Khulud A Alsulami
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Abrar A Bakr
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Alaa Sirwi
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mahmoud A Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rasheed A Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Bayan Y Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Alhassan H Aodah
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Nojoud Al Fayez
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Abdullah A Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Fahad A Almughem
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Abdulrahman A Halwani
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Essam A Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| |
Collapse
|
62
|
Al-Timimi Z, Haddawi SF, Nukhailawi SAH. Comparative Histological Assessment of Zinc Oxide Nanoparticles and Low-Power Laser Treatment at 810nm Wavelength on the Recovery of Second-Degree Burn Wounds in Rat Models. INT J LOW EXTR WOUND 2025:15347346241313009. [PMID: 39819192 DOI: 10.1177/15347346241313009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Background: The utilization of zinc oxide nanoparticles is thought to augment wound healing because of their antibacterial characteristics and capacity to stimulate cellular regeneration, especially in instances of minor burn injuries. On the other hand, it has been shown that tissue regeneration is aided by low-power laser therapy via photobiomodulation. Zinc oxide nanoparticles and low-power laser therapy are the two therapeutic modalities that will be compared in this study in order to assess how well they promote healing after burn injury and provide important new information on improved wound care techniques. Methods: For this investigation, thirty male Wistar rats weighing 230 ± 25 grams each were split into three groups. Every rat received general anesthesia before the experiment. A stainless-steel rod was put to the rats' skin after being heated for 20 min in a boiling water bath to cause superficial second-degree burns. The control group functioned as a reference point for comparison and did not receive any treatment intervention. Over the course of a week, zinc oxide nanoparticles were applied topically to the second group. For one week, the third group received daily therapy with a diode laser at a dosage of 10 J/cm.1 Histological and clinical exams were performed after the therapy period to evaluate the impact of the therapies. Results: The experimental groups that received low-power laser therapy (third group) and zinc oxide nanoparticles (second group) showed a substantial increase in wound contraction in relation to the control group, based on macroscopic observations. One rat from the second group showed notable indications of full wound healing on day 21. The treated rats showed the highest rate of lesion contraction, indicating that wound treatment happened at least 7 days faster in these rats than in the other groups. After 21 days, the third group's epidermis fully epithelized and formed a layer of keratinization. Furthermore, there was enhanced angiogenesis and significant fibroblast proliferation; large-scale fibrosis was also commonly seen. Conclusion: Zinc oxide nanoparticles promoted wound healing and accelerated connective tissue regeneration faster than other groups when applied to second-degree superficial burns. This research implies that the use of zinc oxide nanoparticles may be a therapeutic approach that shows promise for treating burn injuries and improving patient outcomes.
Collapse
Affiliation(s)
- Zahra Al-Timimi
- Laser Physics Department, College of Science for Women, University of Babylon, Hillah, Iraq
| | - S F Haddawi
- Laser Physics Department, College of Science for Women, University of Babylon, Hillah, Iraq
| | | |
Collapse
|
63
|
Moradifar F, Sepahdoost N, Tavakoli P, Mirzapoor A. Multi-functional dressings for recovery and screenable treatment of wounds: A review. Heliyon 2025; 11:e41465. [PMID: 39831167 PMCID: PMC11742314 DOI: 10.1016/j.heliyon.2024.e41465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
Considerable research has focused on advanced wound dressing technology over the past decade. The increasing emphasis on health and medical treatment is crucial to the modern healthcare system. Consequently, high-quality wound dressings with advanced standards are essential for superior medical care. Next-generation multifunctional wound dressings feature antibacterial properties, pain relief, biocompatibility, drug delivery, flexibility, and exudate absorption. Today, biomimetic models, tissue engineering, and synthetic skin are integrated with emerging wound healing technologies, offering a new perspective on wound management. Based on the classification model of multifunctional and advanced wound dressings, various AI-assisted wound management technologies are also highly efficient. The primary goals of advanced wound dressing technologies include faster wound healing, prevention of microbial contamination, preservation of skin aesthetics, reduction of treatment costs, and increased patient comfort. The latest technologies in this field not only promote faster healing and the treatment of deep wounds but also emphasize continuous control and monitoring of the healing process. These screenable wound dressings can be smart sensors to detect wound status based on parameters such as pH, moisture, temperature, and oxygen levels. This enables wound status monitoring and appropriate treatment responses. These technologies facilitate wound observation and monitoring, as well as the evaluation and control of the healing process through various models and strategies, such as the fabrication of functional nanomaterials, computer algorithms, and artificial intelligence. This review presents an overview of the most prominent new technologies in wound dressings, along with their innovative approaches.
Collapse
Affiliation(s)
- F. Moradifar
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
- Advanced and Smart Nanobiosystems Lab, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - N. Sepahdoost
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - P. Tavakoli
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - A. Mirzapoor
- Research Center for Emergency and Disaster Resilience, Red Crescent Society of the Islamic Republic of Iran, Tehran, Iran
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
- Advanced and Smart Nanobiosystems Lab, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Wearable Nanobiosensors Lab, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
64
|
Li X, Xu Y, Zhou Z, Tang M, Cui J, Han W, Li J, Dai J, Ren X, Jiang H, Yu Y, Liu Q, Tang H, Xiao M. Self-Cross-Linked Collagen Sponge from the Alosa sapidissima Scale for Hemostasis and Wound Healing Applications. Biomacromolecules 2025; 26:405-414. [PMID: 39680041 DOI: 10.1021/acs.biomac.4c01211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Type I collagen, a crucial component maintaining the structural integrity and physiological function of various tissues, is widely regarded as one of the most suitable biomaterials for healthcare applications. In this study, shad scales, used for treating ulcers, scalds, and burns in traditional Chinese medicine, were exploited for type I collagen extraction. After self-assembly into hydrogels, the extracted collagen was subsequently freeze-dried to form collagen sponges. The collagen sponge promoted rapid hemostasis, neovascularization, and immune regulation. Additionally, it accelerated the formation of granulation tissue, re-epithelialization, and collagen remodeling at the wound site in full-thickness skin wound rat models. Consequently, the shad scale collagen sponge holds great promise for the treatment of chronic wounds and skin regeneration. Notably, the shad was sourced from sustainably recirculating aquaculture systems (RAS) farms that adhere to the Traceable Management of Animal Products Safety, ensuring that the derived collagen possesses potential in the medical apparatus market.
Collapse
Affiliation(s)
- Xiaoyun Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Yue Xu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou 215000, China
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 211166, China
| | - Zijun Zhou
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Mingliang Tang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Jinjia Cui
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Wenjing Han
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Jingyi Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Jing Dai
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Xiaoyi Ren
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Huihui Jiang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Yanzhen Yu
- Department of Biophysics, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Qinghua Liu
- Suzhou Fishseeds Bio-Technology, LTD, Suzhou 215138, China
| | - Hongmei Tang
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Miao Xiao
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou 215000, China
- Suzhou Fishseeds Bio-Technology, LTD, Suzhou 215138, China
| |
Collapse
|
65
|
Soleimani Z, Baharifar H, Najmoddin N, Khoshnevisan K. Evaluation of Carboxymethyl Cellulose/Gelatin Hydrogel-Based Dressing Containing Cefdinir for Wound Healing Promotion in Animal Model. Gels 2025; 11:38. [PMID: 39852009 PMCID: PMC11765047 DOI: 10.3390/gels11010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
The skin serves as a critical barrier against external pathogens, and its wound healing is a complex biological process that requires careful management to ensure optimal tissue regeneration. Hydrogels, a class of hydrophilic polymers, have emerged as promising materials for wound dressings due to their biocompatibility, biodegradability, and ability to create a moist wound environment conducive to cell proliferation and migration. In this research, a hydrogel dressing containing cefdinir (Cef) was made from a combination of carboxymethyl cellulose (CMC) and gelatin (Gel) by a physical crosslinking method, and their physicochemical, mechanical, and biological properties were investigated. Results show that the addition of Cef does not cause a significant change in the morphology or the tensile strength of the wound dressing. The swelling and degradation rate of the hydrogel slightly increased in the presence of Cef. The presence of Cef enhanced antibacterial effects up to 2.5-fold against P. aeruginosa (35 mm), S. aureus (36 mm), and S. pyogenes (35 mm). The results of the cytotoxicity test showed the absence of cytotoxicity in both drug-containing and drug-free wound dressings, as well as a survival rate of over 75% in cells after 48 h. The drug-containing wound dressing accelerates the formation of the epidermis layer and the production of fibroblast cells, and as a result, accelerates the wound healing process. The percentage of wound healing on the ninth day of treatment for an untreated wound was 30%, while this percentage was 40% with a wound dressing without medicine and 60% with a wound dressing containing medicine, and on the fifteenth day of treatment, the wound treated with both wound dressings had more than 85% healing. As a result, it is possible to use CMC/Gel hydrogel polymeric wound dressing containing Cef as a wound dressing for wound healing, according to the desired physicochemical properties and biocompatibility.
Collapse
Affiliation(s)
- Zahra Soleimani
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Hadi Baharifar
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
- Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Najmeh Najmoddin
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Kamyar Khoshnevisan
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran 1983963113, Iran
| |
Collapse
|
66
|
Wang J, Wang W, Li K, Wu Y, Yang X, Zhou J, Zhang Z, Jiang Y. A functional hydrogel dressing based on glycyrrhizic acid with low-swelling and moisturizing properties for enhancing infected wound repair. J Mater Chem B 2025; 13:656-667. [PMID: 39618390 DOI: 10.1039/d4tb01572j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Wound healing is a challenging due to the presence of bacterial infection, excessive inflammation and angiogenesis disorders. While traditional therapies struggle, a functional hydrogel can effectively repair wounds. However, the use of hydrogels is limited due to their high swelling and excessive dehydration characteristics. Herein, an interpenetrating polymer network hydrogel (HGP@EGCG) based on hyaluronic acid methacrylate (HAMA), glycyrrhizic acid (GA), polyvinyl alcohol (PVA), epigallocatechin-3-gallate (EGCG), and glycerin/water binary solvent was developed by self-assembly, physical entanglement and chemical crosslinking for infected wound healing. GA forms a primary network through self-assembly induced by Zn2+ and HAMA forms a more robust network structure through free radical polymerization as a rigid backbone, followed by the physical entanglement of PVA, which provides additional crosslinks within the network. The robust network structure conferred the HGP hydrogel with low swelling properties. HGP@EGCG hydrogels could adhere to the wound surface, exhibiting adequate tensile and compressive strength to withstand deformations induced by external forces. Then HGP@EGCG hydrogels with good moisture retention could facilitate the maintenance of wound hydration and prolong usage. Moreover, HGP@EGCG hydrogels could release the drug rapidly in an acidic environment and eliminate bacteria. The designed hydrogels demonstrated multifaceted functionality, including suitable adhesion, low swelling, good moisture retention, and efficient antibacterial properties. Both in vitro and in vivo investigations confirmed that HGP@EGCG hydrogels had good biocompatibility and promoted human umbilical vein endothelial cell migration and tube formation, which markedly expedited wound healing. Consequently, HGP@EGCG hydrogels present a broad spectrum of potential applications in the clinical treatment of infected wounds.
Collapse
Affiliation(s)
- Ji Wang
- Department of Rehabilitation, Shenzhen Dapeng New District Nan'ao People's Hospital, Shenzhen, 518000, P. R. China
| | - Wei Wang
- Department of Rehabilitation, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan District Hospital of Traditional Chinese Medicine), Shenzhen, 518000, P. R. China.
| | - Kejun Li
- Department of Rehabilitation, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan District Hospital of Traditional Chinese Medicine), Shenzhen, 518000, P. R. China.
| | - Yanhua Wu
- Department of Rehabilitation, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan District Hospital of Traditional Chinese Medicine), Shenzhen, 518000, P. R. China.
| | - Xiaoting Yang
- Department of Rehabilitation, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan District Hospital of Traditional Chinese Medicine), Shenzhen, 518000, P. R. China.
| | - Jiping Zhou
- Department of Rehabilitation, Shenzhen Dapeng New District Nan'ao People's Hospital, Shenzhen, 518000, P. R. China
| | - Zhijie Zhang
- Rehabilitation Therapy Center, Luoyang Orhtopedic-Traumatological Hospital of Henan Province (Henan Province Orthopedic Hospital), Luoyang, 471000, P. R. China.
| | - Yongjun Jiang
- Department of Rehabilitation, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan District Hospital of Traditional Chinese Medicine), Shenzhen, 518000, P. R. China.
| |
Collapse
|
67
|
Mgwenya TN, Abrahamse H, Houreld NN. Photobiomodulation studies on diabetic wound healing: An insight into the inflammatory pathway in diabetic wound healing. Wound Repair Regen 2025; 33:e13239. [PMID: 39610015 PMCID: PMC11628774 DOI: 10.1111/wrr.13239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 11/30/2024]
Abstract
Diabetes mellitus remains a global challenge to public health as it results in non-healing chronic ulcers of the lower limb. These wounds are challenging to heal, and despite the different treatments available to improve healing, there is still a high rate of failure and relapse, often necessitating amputation. Chronic diabetic ulcers do not follow an orderly progression through the wound healing process and are associated with a persistent inflammatory state characterised by the accumulation of pro-inflammatory macrophages, cytokines and proteases. Photobiomodulation has been successfully utilised in diabetic wound healing and involves illuminating wounds at specific wavelengths using predominantly light-emitting diodes or lasers. Photobiomodulation induces wound healing through diminishing inflammation and oxidative stress, among others. Research into the application of photobiomodulation for wound healing is current and ongoing and has drawn the attention of many researchers in the healthcare sector. This review focuses on the inflammatory pathway in diabetic wound healing and the influence photobiomodulation has on this pathway using different wavelengths.
Collapse
Affiliation(s)
- Tintswalo N. Mgwenya
- Laser Research Centre, Faculty of Health SciencesUniversity of JohannesburgJohannesburgGautengSouth Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health SciencesUniversity of JohannesburgJohannesburgGautengSouth Africa
| | - Nicolette N. Houreld
- Laser Research Centre, Faculty of Health SciencesUniversity of JohannesburgJohannesburgGautengSouth Africa
| |
Collapse
|
68
|
Kumoro AC, Wardhani DH, Kusworo TD, Djaeni M, Azis YMF, Alhanif M, Ping TC. Ultrasound pretreatment and solvent extraction parameters effects on the nutritional characteristics of Indonesian shortfin eel ( Anguilla bicolor bicolor) protein concentrate. Food Chem X 2025; 25:102103. [PMID: 39810951 PMCID: PMC11732468 DOI: 10.1016/j.fochx.2024.102103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Protein concentrate (PC) is a potential solution to address the global protein shortage, with Indonesian shortfin eel being a suitable raw material. This research investigates the impact of ultrasound pretreatment and extraction parameters on the nutritional quality of eel protein concentrate (EPC). The study involved ultrasonic pretreatment at different times and power, and solvent extraction with different solvents, temperature, and solvent-solid-feed-ratio (SSFR). The results showed that the recommended conditions for EPC preparation were a mixture of ethanol-hexane, ultrasonic pretreatment at 250 W for 25 min, extraction temperature and SSFR of 40 °C and 6:1 v/w. The protein content of EPC increased gradually with the increase of SSFR until it reached a ratio of 6:1, further increase in SSFR promoted the development of a pseudo-homogeneous system, leading to a reduction in the solvent-eel flesh contact and the relative velocity between the extracting solvent and eel flesh, and consequently decreased the extraction yield. The prepared EPC is classified as type B EPC, with a protein content of 89.62 %w.b. and a lipid content of 2.21 %w.b. The EPC contains five types of peptides with a molecular weight of 5.00-76.00 kDa, with the main fraction having a MW ranging from 10.00 to 15.00 kDa, indicating potential for functional food products.
Collapse
Affiliation(s)
- Andri Cahyo Kumoro
- Department of Chemical Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
| | - Dyah Hesti Wardhani
- Department of Chemical Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
| | - Tutuk Djoko Kusworo
- Department of Chemical Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
| | - Mohamad Djaeni
- Department of Chemical Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
| | | | - Misbahudin Alhanif
- Chemical Engineering Study Program, Faculty of Industrial Technology, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia
| | - Tan Chin Ping
- Department of Food Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
69
|
Wu Y, Wang Y, Li W, Li D, Song P, Kang Y, Han X, Wang X, Tian H, Rauf A, Yan J, Zhang H, Li X. Construction of piezoelectric, conductive and injectable hydrogels to promote wound healing through electrical stimulation. Acta Biomater 2025; 191:205-215. [PMID: 39577481 DOI: 10.1016/j.actbio.2024.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Piezoelectric, conductive, and injectable hydrogel (SPG hydrogel) is constructed to rapidly close wounds, efficiently harvest biomechanical energy from animal motion, and generate electrical stimulation for electrotherapy of wound healing. 3-amino-4-methoxybenzoic acid (AMB) monomer was polymerized and grafted onto the gelatin, which was further crosslinked using EDC/NHS and embedded with strontium titanate nanoparticles (80.5 wt%), forming SPG hydrogel. This SPG hydrogel had high tissue adhesion ability, and could generate the output voltage (maximum output voltage 1 V) and current (maximum output current 0.5 nA) upon mechanical bending, promoting NIH-3T3 cell migration and proliferation. Upon application to the mice wound model, the SPG hydrogel rapidly closed the skin wound, smoothed the wound's appearance, reduced the remaining wound size, and increased epidermal thickness, demonstrating remarkable wound healing capabilities. This study suggests that the body motion-promoted electrotherapy offers a promising strategy for wound healing. STATEMENT OF SIGNIFICANCE: Piezoelectric nanomaterials are often incorporated into hydrogels to create piezoelectric hydrogels for wound healing. However, piezoelectric nanomaterials tend to agglomerate within the hydrogel matrix, and the hydrogel's low conductivity hinders efficient electron transfer. Together, both factors significantly reduce the piezoelectric effect. In this study, we developed an SPG hydrogel to improve the homogeneity and conductivity of the piezoelectric hydrogel. We first designed a conductive PG hydrogel and then immoblized piezoelectric STO nanoparticles within its matrix through coordination chemistry. Upon mechanical deformation, the uniformly distributed STO nanoparticles can generate electricity, which can efficiently transfer through the conductive matrix to the hydrogel's surface. This design shows great potential for wound healing applications.
Collapse
Affiliation(s)
- Yunyun Wu
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China; Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China
| | - Yanjing Wang
- School of Biomedical Engineering & The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Weili Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, China
| | - Diyi Li
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Panpan Song
- School of Biomedical Engineering & The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yaqing Kang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China
| | - Xiaoqing Han
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China
| | - Xinbo Wang
- School of Biomedical Engineering & The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, China
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Ambar, Khyber Pakhtunkhwa 23430, Pakistan
| | - Jiao Yan
- School of Biomedical Engineering & The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Haiyuan Zhang
- School of Biomedical Engineering & The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Xi Li
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China.
| |
Collapse
|
70
|
Cetin FN, Mignon A, Van Vlierberghe S, Kolouchova K. Polymer- and Lipid-Based Nanostructures Serving Wound Healing Applications: A Review. Adv Healthc Mater 2025; 14:e2402699. [PMID: 39543796 DOI: 10.1002/adhm.202402699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Management of hard-to-heal wounds often requires specialized care that surpasses the capabilities of conventional treatments. Even the most advanced commercial products lack the functionality to meet the needs of hard-to-heal wounds, especially those complicated by active infection, extreme bleeding, and chronic inflammation. The review explores how supramolecular nanovesicles and nanoparticles-such as dendrimers, micelles, polymersomes, and lipid-based nanocarriers-can be key to introducing advanced wound healing and monitoring properties to address the complex needs of hard-to-heal wounds. Their potential to enable advanced functions essential for next-generation wound healing products-such as hemostatic functions, transdermal penetration, macrophage polarization, targeted delivery, and controlled release of active pharmaceutical ingredients (antibiotics, gaseous products, anti-inflammatory drugs, growth factors)-is discussed via an extensive overview of the recent reports. These studies highlight that the integration of supramolecular systems in wound care is crucial for advancing toward a new generation of wound healing products and addressing significant gaps in current wound management practices. Current strategies and potential improvements regarding personalized therapies, transdermal delivery, and the promising critically evaluated but underexplored polymer-based nanovesicles, including polymersomes and proteinosomes, for wound healing.
Collapse
Affiliation(s)
- Fatma N Cetin
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Gent, 9000, Belgium
| | - Arn Mignon
- Department of Engineering Technology, KU Leuven, Andreas Vesaliusstraat 13, Leuven, 3000, Belgium
| | - Sandra Van Vlierberghe
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Gent, 9000, Belgium
| | - Kristyna Kolouchova
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Gent, 9000, Belgium
| |
Collapse
|
71
|
Sadeghi-Avalshahr A, Nazarnezhad S, Hassanzadeh H, Kazemi Noughabi M, Namaei-Ghasemnia N, Jalali M. Synergistic effects of incorporated additives in multifunctional dressings for chronic wound healing: An updated comprehensive review. Wound Repair Regen 2025; 33:e13238. [PMID: 39682073 DOI: 10.1111/wrr.13238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024]
Abstract
Detailed reviewing of the complicated process of wound healing reveals that it resembles an orchestrated symphony via a precise and calculated collaboration of relevant cells at the wound site. The domino-like function of various cytokines, chemokines, growth factors and small biological molecules such as antibacterial peptides all come together to successfully execute the wound healing process. Therefore, it appears that the use of a wound dressing containing only a single additive with specific properties and capabilities may not be particularly effective in treating the complex conditions that are usual in the environment of chronic wounds. The use of multifunctional dressings incorporating various additives has shown promising results in enhancing wound healing processes. This comprehensive review article explores the synergistic effects of integrated additives in such dressings, aiming to provide an updated understanding of their combined therapeutic potential. By analysing recent advancements and research findings, this review sheds light on the intricate interactions between different additives, their mechanisms of action and their cumulative impact on wound healing outcomes. Moreover, the review discusses the importance of utilising combined therapies in wound care and highlights the potential future directions and implications for research and clinical practice in the field of wound healing management.
Collapse
Affiliation(s)
- Alireza Sadeghi-Avalshahr
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Materials Research, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Halimeh Hassanzadeh
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Mahboubeh Kazemi Noughabi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Negar Namaei-Ghasemnia
- Department of Materials Research, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Mehdi Jalali
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
72
|
Dutta D, Nuntapramote T, Rehders M, Brix K, Brüggemann D. Topography-Mediated Induction of Epithelial Mesenchymal Transition via Alumina Textiles for Potential Wound Healing Applications. J Biomed Mater Res A 2025; 113:e37826. [PMID: 39529481 DOI: 10.1002/jbm.a.37826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/18/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Substrate topography is vital in determining cell growth and fate of cellular behavior. Although current in vitro studies of the underlying cellular signaling pathways mostly rely on their induction by specific growth factors or chemicals, the influence of substrate topography on specific changes in cells has been explored less often. This study explores the impact of substrate topography, specifically the tricot knit microfibrous structure of alumina textiles, on cell behavior, focusing on fibroblasts and keratinocytes for potential wound healing applications. The textiles, studied for the first time as in vitro substrates, demonstrated support for keratinocyte adhesion, leading to alterations in cell morphology and the expression of E-cadherin and fibronectin. These topography-induced changes resembled the epithelial-to-mesenchymal transition (EMT), crucial for wound healing, and were specific to keratinocytes and absent in identically treated fibroblasts. Biochemically induced EMT in keratinocytes cultured on flat alumina substrates mirrored the changes seen with alumina textiles alone, suggesting the tricot knit microfibrous topography could serve as an in vitro model system to induce EMT-like mechanisms. These results enhance our understanding of how substrate topography influences EMT-related processes in wound healing, paving the way for further evaluation of microfibrous alumina textiles as innovative wound dressings.
Collapse
Affiliation(s)
| | | | - Maren Rehders
- School of Science, Constructor University, Bremen, Germany
| | - Klaudia Brix
- School of Science, Constructor University, Bremen, Germany
| | - Dorothea Brüggemann
- Institute for Biophysics, University of Bremen, Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, Bremen, Germany
- Biophysics and Applied Biomaterials, University of Applied Sciences, Hochschule Bremen, Germany
| |
Collapse
|
73
|
Kanyora MG, Kegode TM, Kurgat J, Kibogo H, Asudi G, Tanga CM, Ayalew W, Sevgan S, Ndungu N. Evaluating antibacterial and antioxidant properties of sericin recovered from cocoons of Bombyx mori, Gonometa postica and Samia ricini in Kenya. PLoS One 2024; 19:e0316259. [PMID: 39739913 DOI: 10.1371/journal.pone.0316259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/06/2024] [Indexed: 01/02/2025] Open
Abstract
Microbial infections and excessive reactive oxygen species are the primary contributors to delays in wound healing with Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus as the common wound infection causing bacteria. In fact, wound management has become more challenging since most of these microbes have developed resistance against commonly used conventional antibiotics thus making it necessary to develop natural products with both antibacterial and antioxidant activities. Increasing attention has been paid to silk sericin in the last decade, with limited research focus in Africa. Therefore, this work focus on evaluating antibacterial and antioxidant capacity of sericin recovered from cocoons of domesticated (Bombyx mori, Samia ricini) and wild (Gonometa postica) silkworms in Kenya. Sericin recovery was achieved using high temperature-high pressure method. Results revealed significance interspecies variation in all the parameters. Total flavonoid content ranged between 270±60.1 and 603.3±44.1 mg GAE/100g with S. ricini demonstrating the highest whereas G. postica exhibited the least content. Moreover, S. ricini showed the highest total phenolic content at 780.0±67.6 mg QE/100g while G. postica had the least phenolic content at 330.6±14.6 mg QE/100g. Samia ricini revealed the highest radical scavenging capacity at 40.47 ± 3.76% whereas B. mori sericin extract showed the least radical scavenging ability at 24.6± 2.96%. Furthermore, S. ricini silk sericin extract demonstrated the highest inhibitory activity against Staphylococcus aureus, Pseudomonas aeruginosa and Klebsiella pneumonia which translated to 70.79 ± 11.28%, 93.86 ± 1.92%, 94.77 ± 7.07% when compared to streptomycin, chloramphenicol and oxytetracycline respectively. Bombyx mori and Gonometa postica showed the highest inhibitory activity against S. pyogene and E. coli respectively. These findings uncovered sufficient antibacterial efficacy of all three silk sericin extracts against both Gram-positive and negative bacteria, however, in depth research is still required to guarantee the aforementioned bioactivities to boost the therapeutic potential of silk sericin-based biomaterials.
Collapse
Affiliation(s)
- Mwangi G Kanyora
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Biochemistry, Microbiology and Biotechnology Kenyatta University, Nairobi, Kenya
| | - Timothy M Kegode
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Justus Kurgat
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Harrison Kibogo
- Department of Biochemistry, Microbiology and Biotechnology Kenyatta University, Nairobi, Kenya
| | - George Asudi
- Department of Biochemistry, Microbiology and Biotechnology Kenyatta University, Nairobi, Kenya
| | - Chrysantus M Tanga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Workneh Ayalew
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Subramanian Sevgan
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Nelly Ndungu
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
74
|
Zubair M, Hussain S, Ur-Rehman M, Hussain A, Akram ME, Shahzad S, Rauf Z, Mujahid M, Ullah A. Trends in protein derived materials for wound care applications. Biomater Sci 2024; 13:130-160. [PMID: 39569610 DOI: 10.1039/d4bm01099j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Natural resource based polymers, especially those derived from proteins, have attracted significant attention for their potential utilization in advanced wound care applications. Protein based wound care materials provide superior biocompatibility, biodegradability, and other functionalities compared to conventional dressings. The effectiveness of various fabrication techniques, such as electrospinning, phase separation, self-assembly, and ball milling, is examined in the context of developing protein-based materials for wound healing. These methods produce a wide range of forms, including hydrogels, scaffolds, sponges, films, and bioinspired nanomaterials, each designed for specific types of wounds and different stages of healing. This review presents a comprehensive analysis of recent research that investigates the transformation of proteins into materials for wound healing applications. Our focus is on essential proteins, such as keratin, collagen, gelatin, silk, zein, and albumin, and we emphasize their distinct traits and roles in wound care management. Protein-based wound care materials show promising potential in biomedical engineering, offering improved healing capabilities and reduced risks of infection. It is crucial to explore the potential use of these materials in clinical settings while also addressing the challenges that may arise from their commercialization in the future.
Collapse
Affiliation(s)
- Muhammad Zubair
- Lipids Utilization Lab, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| | - Saadat Hussain
- LEJ Nanotechnology Center, HEJ Research Institute of Chemistry, ICCBS, University of Karachi, Karachi-75270, Pakistan
| | - Mujeeb- Ur-Rehman
- LEJ Nanotechnology Center, HEJ Research Institute of Chemistry, ICCBS, University of Karachi, Karachi-75270, Pakistan
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Muhammad Ehtisham Akram
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Sohail Shahzad
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Zahid Rauf
- Pakistan Forest Institute (PFI), Peshawar 25130, Khyber Pakhtunkhwa, Pakistan
| | - Maria Mujahid
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Aman Ullah
- Lipids Utilization Lab, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| |
Collapse
|
75
|
Sakthivel S, Thangavel P, Saravanakumar I, Muthuvijayan V. Fabrication of Thymol-loaded Isabgol/Konjac Glucomannan-based Microporous Scaffolds with Enriched Antioxidant and Antibacterial Properties for Skin Tissue Engineering Applications. Chem Asian J 2024; 19:e202400839. [PMID: 39340792 DOI: 10.1002/asia.202400839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
An antioxidant, antibacterial, and biocompatible biomaterial is essential to repair skin wounds effectively. Here, we have employed two natural biopolymers, isabgol (ISAB) and konjac glucomannan (KGM), to prepare microporous scaffolds by freezing and lyophilization. The scaffolds are loaded with thymol (THY) to impart potent antioxidant and antibacterial activities. The physicochemical properties of the ISAB+KGM+THY scaffold, like porosity (41.8±2.4 %), swelling, and biodegradation, were optimal for tissue regeneration application. Compared to the control, ISAB+KGM+THY scaffolds promote attachment, migration, and proliferation of L929 fibroblasts. The antioxidant activity of the ISAB+KGM+THY scaffold was significantly improved after loading THY. This would protect the tissues from oxidative damage. The antibacterial activity of the ISAB+KGM+THY scaffold was significantly higher than that of the control, which would help prevent bacterial infection. The vascularization ability of the ISAB+KGM scaffold was not altered by incorporating THY in the ISAB+KGM scaffold. Therefore, a strong antioxidant, antibacterial, and biocompatible nature of the ISAB+KGM+THY scaffold could be useful for various biomedical applications.
Collapse
Affiliation(s)
- Shruthi Sakthivel
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Ponrasu Thangavel
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Iniyan Saravanakumar
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Vignesh Muthuvijayan
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
76
|
Bahadori Zade M, Abdollahi S, Raoufi Z, Zare Asl H. Synergistic antibacterial and wound healing effects of chitosan nanofibers with ZnO nanoparticles and dual antibiotics. Int J Pharm 2024; 666:124767. [PMID: 39332456 DOI: 10.1016/j.ijpharm.2024.124767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
One concern that has been considered potentially fatal is bacterial infection. In addition to the development of biocompatible antibacterial dressings, the screening and combination of new antibiotics effective against antibiotic resistance are crucial. In this study, designing hemostasis electrospun composite nanofibers containing chitosan (CS), polyvinyl pyrrolidone (PVP) and Gelatin (G) as the major components of hydrogel and natural nanofibrillated sodium alginate (SA)/polyvinyl alcohol (PVA) and ZnO nanoparticles (ZnONPs) combination as the nanofiller ingredient, has been investigated which demonstrated significant potential for accelerating wound healing. The hydrogels were developed for the delivery of the amikacin and cefepime antibiotics, along with zinc oxide nanoparticles that were applied to an electrospun layer. Amikacin is a highly effective aminoglycoside antibiotic, particularly for hospital-acquired infections, but its use is limited due to its toxicity. By utilizing it in low concentrations in the form of nanofibers and combining it with cefepime, which exhibits synergistic effects, enhanced efficacy against bacterial pathogens is achieved while potentially minimizing cytotoxicity compared to individual antibiotics. This dressing demonstrated efficient drug release, flexibility, and good swelling properties, indicating its suitable mechanical properties for therapeutic applications. After applying the biocompatible hydrogel to wounds, a significant acceleration in wound closure was observed within 14 days compared to the control group. Furthermore, the notable antibiotic and anti-inflammatory properties underscore its effectiveness in wound healing, making it a promising candidate for medical applications.
Collapse
Affiliation(s)
- Mona Bahadori Zade
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Sajad Abdollahi
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Zeinab Raoufi
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Hassan Zare Asl
- Department of Physics, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| |
Collapse
|
77
|
Bae IS, Hoa VB, Lee JA, Park WS, Kim DG, Kim HW, Seong PN, Ham JS. Skin Function Improvement and Anti-Inflammatory Effects of Goat Meat Extract. Foods 2024; 13:3934. [PMID: 39683006 DOI: 10.3390/foods13233934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Chronic skin conditions, such as atopic dermatitis, are characterized by a weakened skin barrier and persistent inflammation. Traditional treatments can frequently cause substantial side effects, emphasizing the need for safer alternatives. This study investigated the anti-inflammatory properties of goat meat extract and its effects on improving skin function. We conducted wound healing assays using HaCaT cells and analyzed the expression of key skin barrier-related genes. Additionally, the anti-inflammatory effects of goat meat extract were assessed in HaCaT cells stimulated with TNFα and IFNγ, as well as in LPS-treated RAW264.7 cells. Mechanistic studies focused on the activation of mitogen-activated protein kinase (MAPK) pathways. The results showed that goat meat extract significantly promoted wound closure in HaCaT cells and upregulated the expression of filaggrin, loricrin, and involucrin. The extract also reduced the production of pro-inflammatory cytokines and chemokines in both HaCaT and RAW264.7 cells. Furthermore, it inhibited the activation of the JNK, p38, and ERK pathways in TNFα/IFNγ-stimulated HaCaT cells. These findings suggest that goat meat extract improves skin barrier function and exhibits anti-inflammatory effects, indicating its potential as a therapeutic agent for chronic skin. Further research is required to investigate the in vivo effects of goat meat extract and validate its therapeutic potential.
Collapse
Affiliation(s)
- In-Seon Bae
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Van-Ba Hoa
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Jeong-Ah Lee
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Won-Seo Park
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Dong-Gyun Kim
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Hyoun-Wook Kim
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Pil-Nam Seong
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Jun-Sang Ham
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| |
Collapse
|
78
|
Lin J, Wang L, Li W, Li Y, Tang F, Xu J, Li W, Gong H, Jiang X, Feng Y, Guo S, Liu H. Dried tangerine peel polysaccharide accelerates wound healing by recruiting anti-inflammatory macrophages. Int Immunopharmacol 2024; 142:113036. [PMID: 39216115 DOI: 10.1016/j.intimp.2024.113036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Macrophage polarization is a key process involved in wound healing. The continuous release of proinflammatory cytokines by macrophages inhibits the healing process of chronic wounds, such as diabetic wounds. To promote wound healing, it is important to change the phenotype of resident macrophages to prevent inflammation. We previously reported that dried tangerine peel polysaccharide (DTPP) binds to and inhibits the TLR4/MD-2 complex, which is crucial for the inflammatory activation of macrophages, suggesting the potential of DTPP in wound healing applications. Both zebrafish and mouse models were used to evaluate the therapeutic efficacy of DTPP. Moreover, we found that DTPP recruited macrophages to the wound area and promoted their M2 repolarization. Using hyperglycaemic zebrafish and db/db mouse models, we discovered that DTPP accelerated wound healing in vivo in metabolic disorders. Our results suggest that DTPP promotes the recruitment of macrophages, shifts macrophages towards the anti-inflammatory M2 phenotype, and ultimately accelerates the wound healing process.
Collapse
Affiliation(s)
- Jiayin Lin
- School of Stomatology, Jinan University, Guangzhou 510630, China
| | - Lingzhi Wang
- School of Stomatology, Jinan University, Guangzhou 510630, China; School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Wenxi Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Yinggang Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Fuqiang Tang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Jucai Xu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Wu Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Huafang Gong
- School of Stomatology, Jinan University, Guangzhou 510630, China
| | - Xin Jiang
- China Power (Jiangmen) Comprehensive Energy Company LTD, Jiangmen 529000, China
| | - Yanxian Feng
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China.
| | - Suqin Guo
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China.
| | - Hui Liu
- Department of Emergency, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
79
|
Feng J, Gao W, Ge P, Chang S, Wang T, Zhao Q, He B, Pan S. Poly(thioctic acid) Hydrogels Integrated with Self-Healing, Bioadhesion, Antioxidation, and Antibiosis for Infected Wound Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65877-65889. [PMID: 39574373 DOI: 10.1021/acsami.4c14752] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Bacterial infections pose significant challenges in wound healing and are a serious threat to human health. Hydrogels have emerged as an ideal wound dressing due to their three-dimensional network, which facilitates exudate absorption and maintains a moist environment conducive to healing. Herein, we developed integrated hydrogels composed of poly(thioctic acid) (PTA), polydopamine (PDA), and curcumin (Cur). The formation of covalent and hydrogen bonds among PTA, PDA, and Cur endowed the hydrogels with excellent self-healing and bioadhesion properties. These hydrogels were utilized as dressings for healing Staphylococcus aureus-infected wounds. The PDA-PTA-Cur 16 hydrogel showed the best overall performance in stability, bioadhesion, antioxidant activity, and antibacterial effectiveness. The in vivo results revealed that the PDA-PTA-Cur 16 hydrogel accelerated infected wound healing by inhibiting bacterial growth, alleviating inflammation, promoting collagen deposition, and inducing angiogenesis. This multifunctional hydrogel not only enhances wound healing but also presents a promising strategy for combating bacterial infections in clinical settings.
Collapse
Affiliation(s)
- Juan Feng
- School of Pharmacy, Chengdu University, Chengdu 610106, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Wenxia Gao
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Pengjin Ge
- Chengdu Baili-Biopharm. LTD, Chengdu 610041, China
| | - Shuhua Chang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Ting Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China
| | - Quan Zhao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Shengsheng Pan
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
80
|
Naharro-Rodriguez J, Bacci S, Fernandez-Guarino M. Molecular Biomarkers in Cutaneous Photodynamic Therapy: A Comprehensive Review. Diagnostics (Basel) 2024; 14:2724. [PMID: 39682631 DOI: 10.3390/diagnostics14232724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Photodynamic therapy (PDT) is widely utilized in dermatology for the treatment of various skin conditions. Despite its effectiveness, the exact biomolecular changes underlying therapeutic outcomes remain only partially understood. This review, through a transversal approach, aims to provide an in-depth exploration of molecular biomarkers involved in PDT, evaluate its underlying mechanisms, and examine how these insights can contribute to enhanced treatment protocols and personalized therapy approaches. METHODS A narrative review of the literature was conducted, targeting peer-reviewed articles and clinical trials that focus on PDT and its molecular biomarker effects on dermatological conditions. The databases searched included PubMed, Scopus, and Web of Science, and the inclusion criteria encompassed original research articles, systematic reviews, and meta-analyses in English. RESULTS PDT effectively reduces the expression of critical biomarkers such as p53, Cyclin D1, and Ki-67 in AK and other cancerous lesions, leading to reduced cell proliferation and increased apoptosis. Additionally, PDT promotes extracellular matrix remodeling and stimulates collagen production, which has a rejuvenating effect on the skin and a promising role in the treatment of chronic wounds. CONCLUSIONS PDT represents a powerful and versatile treatment option for various dermatological conditions due to its ability to target cellular pathways involved in proliferation and apoptosis. Further research into optimizing treatment parameters and combining PDT with other targeted therapies may enhance patient outcomes, reduce resistance, and pave the way for more individualized therapeutic approaches in dermatology.
Collapse
Affiliation(s)
- Jorge Naharro-Rodriguez
- Programa de Doctorado en Ciencias de la Salud, Universidad de Alcalá de Henares, 28801 Madrid, Spain
- Dermatology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain
| | - Stefano Bacci
- Research Unit of Histology and Embriology, Department of Biology, University of Florence, 50139 Florence, Italy
| | | |
Collapse
|
81
|
Chen R, Zou T, Zhang B, Yang Z, Wang Y, Yu P, Cheng H, Zhao J, Liu X, Yang X, Wang L, Li Y, Cheng Y. Sodium alginate based piezoelectric hydrogel for promoting healing of infected wounds at movable parts. Int J Biol Macromol 2024; 285:138287. [PMID: 39631595 DOI: 10.1016/j.ijbiomac.2024.138287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/20/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
The frequent movement is an obstacle to the healing of wounds at movable parts. It would be highly beneficial if this characteristic could be utilized to accelerate wound healing process. Herein, we developed a sodium niobate (NNO) hydrogel (NNO-Gel) for promoting healing process of wounds at movable parts based on its photodynamic and piezoelectric properties. NNO-Gel is formed through incorporating NNO into polyvinyl alcohol‑sodium alginate hydrogel using calcium chloride as a cross-linking agent. NNO-Gel could not only produce reactive oxygen species for bacteria inactivation with simulated sunlight irradiation, but also generate electric field for promoting cell migration and proliferation through the frequent movement of necks. With simulated sunlight irradiation, NNO-Gel could kill 95.6 % ± 1.4 % of bacteria, 9.3 % higher than NNO nanomaterials. The cell proliferation rate reaches 148.41 ± 6.37 % by NNO nanomaterials with ultrasound irradiation through activating and phosphorylating phosphoinositide 3-kinase and protein kinase B. For infected neck wounds, NNO NMs and NNO-Gel show 23.6 ± 5.1 % and 25.3 ± 6.1 % higher healing rate than PBS treated ones. The development of NNO-Gel provides an opportunity for transforming the negative frequent movement which prevents wound healing into motive power for promoting healing of wound at movable parts, as well as the possibility of clinic applications for piezoelectric nanomaterials.
Collapse
Affiliation(s)
- Rui Chen
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China
| | - Tianshu Zou
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Biao Zhang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Zhiqi Yang
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China
| | - Yuhang Wang
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China
| | - Pengcheng Yu
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China
| | - Haotian Cheng
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China
| | - Jian Zhao
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China
| | - Xin Liu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Xiaodong Yang
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China
| | - Lili Wang
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China.
| | - Yuanqiang Li
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Changchun 130118, China; Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| | - Yan Cheng
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
82
|
Arslan NP, Orak T, Ozdemir A, Altun R, Esim N, Eroglu E, Karaagac SI, Aktas C, Taskin M. Polysaccharides and Peptides With Wound Healing Activity From Bacteria and Fungi. J Basic Microbiol 2024; 64:e2400510. [PMID: 39410821 PMCID: PMC11609500 DOI: 10.1002/jobm.202400510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 12/13/2024]
Abstract
Bacteria and fungi are natural sources of metabolites exhibiting diverse bioactive properties such as wound healing, antioxidative, antibacterial, antifungal, anti-inflammatory, antidiabetic, and anticancer activities. Two important groups of bacteria or fungi-derived metabolites with wound-healing potential are polysaccharides and peptides. In addition to bacteria-derived cellulose and hyaluronic acid and fungi-derived chitin and chitosan, these organisms also produce different polysaccharides (e.g., exopolysaccharides) with wound-healing potential. The most commonly used bacterial peptides in wound healing studies are bacteriocins and lipopeptides. Bacteria or fungi-derived polysaccharides and peptides exhibit both the in vitro and the in vivo wound healing potency. In the in vivo models, including animals and humans, these metabolites positively affect wound healing by inhibiting pathogens, exhibiting antioxidant activity, modulating inflammatory response, moisturizing the wound environment, promoting the proliferation and migration of fibroblasts and keratinocytes, increasing collagen synthesis, re-epithelialization, and angiogenesis. Therefore, peptides and polysaccharides derived from bacteria and fungi have medicinal importance. This study aims to overview current literature knowledge (especially within the past 5 years) on the in vitro and in vivo wound repair potentials of polysaccharides and peptides obtained from bacteria (Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, and Proteobacteria) and fungi (yeasts, filamentous microfungi, and mushrooms).
Collapse
Affiliation(s)
| | - Tugba Orak
- Department of Molecular Biology and Genetics, Science FacultyAtaturk UniversityErzurumTurkey
| | - Aysenur Ozdemir
- Department of Molecular Biology and Genetics, Science FacultyAtaturk UniversityErzurumTurkey
| | - Ramazan Altun
- Department of Molecular Biology and Genetics, Science FacultyAtaturk UniversityErzurumTurkey
| | - Nevzat Esim
- Department of Molecular Biology and Genetics, Science and Art FacultyBingol UniversityBingolTurkey
| | - Elvan Eroglu
- Department of Molecular Biology and Genetics, Science FacultyAtaturk UniversityErzurumTurkey
| | - Sinem Ilayda Karaagac
- Department of Molecular Biology and Genetics, Science FacultyAtaturk UniversityErzurumTurkey
| | - Cigdem Aktas
- Department of Molecular Biology and Genetics, Science FacultyAtaturk UniversityErzurumTurkey
| | - Mesut Taskin
- Department of Molecular Biology and Genetics, Science FacultyAtaturk UniversityErzurumTurkey
| |
Collapse
|
83
|
Khodadad N, Hoseininejad SS, Nazeri A. Advantage of Amnion Dressing (Biological Dressing) + Silver Sulfadiazine Cream vs. Standard Silver Sulfadiazine Cream Dressings in Acute Deep Second-Degree and Third-Degree Burn Wounds: a Single Center Experience. MAEDICA 2024; 19:756-762. [PMID: 39974431 PMCID: PMC11834838 DOI: 10.26574/maedica.2024.19.4.756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
INTRODUCTION This study compared the benefits of amnion dressing (biological dressing) + silver sulfadiazine cream with standard silver sulfadiazine cream dressings in treating deep second- and third-degree acute burn wounds. METHODS This prospective clinical trial was conducted on 50 patients with deep second- and third-degree burns who were admitted to Taleghani Hospital in Ahvaz, Iran. Participants were divided into two groups: the first one comprised subjects who received silver-amnion biological dressing (silver sulfadiazine 1%) and the second group consisted of patients treated with standard silver sulfadiazine cream dressings. RESULTS In the amnion-silver group, the average time required for graft readiness was eight days, compared to 11 days in the standard dressing group, which indicated a 27% reduction in recovery time. The treatment costs in the amnion-silver group were 20.8 Euro compared to 26.3 Euro for the standard dressing group, reflecting a 21% cost reduction. Narcotic consumption in the amnion-silver group was zero, but the average narcotic use in the standard dressing group was 50 mg of pethidine, revealing a 100% reduction. Based on the visual analog scale (VAS), the mean pain intensity was 4 in the amnion-silver group and 5.5 in the standard dressing group. Patient satisfaction was 85% in the amnion-silver group versus 60% in the standard dressing group. No infections were reported in the amnion-silver group, while three cases were observed in the standard dressing group. CONCLUSION The results of the present study indicate that amnion-silver dressing can be an effective and economical treatment option for wound healing. In the amnion-silver group versus standard group, a considerable reduction in recovery time was observed, which was also reflecting a cost reduction. Furthermore, the mean pain intensity was lower in the amnion-silver group than the standard dressing group. Patient satisfaction was higher in the amnion-silver group.
Collapse
Affiliation(s)
- Nasrin Khodadad
- Department of General Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Saheb Hoseininejad
- Department of General Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Nazeri
- Department of General Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
84
|
Liu S, Wang J, Wang X, Tan L, Liu T, Wang Y, Shi Y, Zhang Z, Ding S, Hou K, Zhang W, Li F, Meng X. Smart chitosan-based nanofibers for real-time monitoring and promotion of wound healing. Int J Biol Macromol 2024; 282:136670. [PMID: 39442852 DOI: 10.1016/j.ijbiomac.2024.136670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Timely healing of acute wounds and stopping wound chronicity are current and future priorities in wound therapy. It is urgent and relevant to develop a wound dressing that has antimicrobial and monitors the wound microenvironment in real time. In this study, quaternary ammonium chitosan (HTCC) was selected as the antimicrobial agent and CS/PEO/HTCC nanofiber membranes (CPHs) were prepared by electrostatic spinning technique. The nanofiber membrane (CPH91) with the best antimicrobial performance was screened by the disk diffusion method and drug susceptibility testing by dilution method, and its antimicrobial effect on S. aureus was better than that of E. coli. Subsequently, functional carbon dots (CDs) were synthesized by solvothermal method and doped into CPH91 nanofibers by electrospinning. A good linear relationship between pH value (5.0-8.0) and the fluorescence intensity of CDs was observed. In addition, the nanofibers (CPH91@CDs) had good morphology, hydrophilicity, and biocompatibility. Changes in fluorescence intensity of CPH91@CDs at different pH (5.0-8.0) were monitored and converted into RGB values that were linearly fitted to pH value. Finally, the potential of CPH91@CDs of improving wound healing and instantaneously controlling wound healing process was confirmed by an infected wound model (S. aureus) on the back of SD rats.
Collapse
Affiliation(s)
- Shuhan Liu
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jianing Wang
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xin Wang
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lintongqing Tan
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tao Liu
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin 300161, China
| | - Yudie Wang
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yihan Shi
- Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin 300161, China
| | - Zhuoran Zhang
- General Hospital of Xinjiang Military Command, Xinjiang 830002, China
| | - Sheng Ding
- Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin 300161, China
| | - Kexin Hou
- Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin 300161, China
| | - Wen Zhang
- Shandong Academy of Pharmaceutical Sciences, Shandong Key Laboratory of Mucosal and Skin Drug Delivery Technology, Jinan 250101, China
| | - Fan Li
- Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin 300161, China.
| | - Xin Meng
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Shandong Academy of Pharmaceutical Sciences, Shandong Key Laboratory of Mucosal and Skin Drug Delivery Technology, Jinan 250101, China.
| |
Collapse
|
85
|
Aliniay-Sharafshadehi S, Yousefi MH, Ghodratie M, Kashfi M, Afkhami H, Ghoreyshiamiri SM. Exploring the therapeutic potential of different sources of mesenchymal stem cells: a novel approach to combat burn wound infections. Front Microbiol 2024; 15:1495011. [PMID: 39678916 PMCID: PMC11638218 DOI: 10.3389/fmicb.2024.1495011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
The most prevalent and harmful injuries are burns, which are still a major global health problem. Burn injuries can cause issues because they boost the inflammatory and metabolic response, which can cause organ malfunction and systemic failure. On the other hand, a burn wound infection creates an environment that is conducive to the growth of bacteria and might put the patient at risk for sepsis. In addition, scarring is unavoidable, and this results in patients having functional and cosmetic issues. Wound healing is an amazing phenomenon with a complex mechanism that deals with different types of cells and biomolecules. Cell therapy using stem cells is one of the most challenging treatment methods that accelerates the healing of burn wounds. Since 2000, the use of mesenchymal stem cells (MSCs) in regenerative medicine and wound healing has increased. They can be extracted from various tissues, such as bone marrow, fat, the umbilical cord, and the amniotic membrane. According to studies, stem cell therapy for burn wounds increases angiogenesis, has anti-inflammatory properties, slows the progression of fibrosis, and has an excellent ability to differentiate and regenerate damaged tissue. Figuring out the main preclinical and clinical problems that stop people from using MSCs and then suggesting the right ways to improve therapy could help show the benefits of MSCs and move stem cell-based therapy forward. This review's objective was to assess mesenchymal stem cell therapy's contribution to the promotion of burn wound healing.
Collapse
Affiliation(s)
- Shahrzad Aliniay-Sharafshadehi
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Ghodratie
- Department of Medical Microbiology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mojtaba Kashfi
- Fellowship in Clinical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | | |
Collapse
|
86
|
Mohammadi G, Safari M, Karimi M, Iranpanah A, Farzaei MH, Fakhri S, Echeverría J. Preparation and characterization of Pistacia atlantica oleo-gum-resin-loaded electrospun nanofibers and evaluating its wound healing activity in two rat models of skin scar and burn wound. Front Pharmacol 2024; 15:1474981. [PMID: 39654617 PMCID: PMC11625589 DOI: 10.3389/fphar.2024.1474981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/31/2024] [Indexed: 12/12/2024] Open
Abstract
Background A growing body of research is dedicated to developing new therapeutic agents for wound healing with fewer adverse effects. One of the proceedings being taken today in wound healing research is to identify promising biological materials that not only heal wounds but also vanish scarring. The effectiveness of nanofibers like polyvinyl alcohol (PVA), in improving wound healing can be related to their unique properties. Pistacia atlantica Desf. subsp. kurdica (Zohary) Rech. f. (PAK) [Anacardiaceae], also known as "Baneh" in traditional Iranian medicine, is one of the most effective herbal remedies for the treatment of different diseases like skin injuries due to its numerous pharmacological and biological properties, including anti-inflammatory, antioxidant, and anti-bacterial effects. Purpose Our study aimed to evaluate the wound-healing activity of nanofibers containing PVA/PAK oleo-gum-resin in two rat models of burn and excision wound repair. Material and Methods PVA/PKA nanofibers were prepared using the electrospinning method. Scanning electron microscope (SEM) images and mechanical properties of nanofibers were explored. Diffusion and releasing experiments of nanofibers were performed by the UV visible method at different time intervals and up to 72 h. The animal models were induced by excision and burn in Wistar rat's skin and the wound surface area was measured during the experiment for 10 and 21 days, respectively. On the last day, the wound tissue was removed for histological studies, and serum oxidative factors were measured to evaluate the antioxidant properties of the PVA/PKA. Data analysis was performed using ImageJ, Expert Design, and statistical analysis methods. Results and discussion PVA/PKA nanofibers were electrospun at different voltages (15, 18, and 20 kV). The most suitable fibers were obtained when the nozzle was positioned 15 cm away from the collector, with a working voltage of 15 kV, and an injection rate of 0.5 mm per hour, using the 30:70 w/v PKA gum. In the SEM images, it was found that the surface tension of the polymer solution decreased by adding the gum and yield thinner and longer fibers at a voltage of 15 kV with an average diameter of 96 ± 24 nm. The mechanical properties of PVA/PKA nanofibers showed that the presence of gum increased the tensile strength and decreased the tensile strength of the fibers simultaneously. In vivo results showed that PVA/PKA nanofibers led to a significant reduction in wound size and tissue damage (regeneration of the epidermal layer, higher density of dermal collagen fibers, and lower presence of inflammatory cells) compared to the positive (phenytoin and silver sulfadiazine) and negative control (untreated) groups. Wound contraction was higher in rats treated with PVA/PKA nanofibers. Additionally, antioxidative serum levels of catalase and glutathione were higher in the PVA/PKA nanofiber groups even in comparison to positive control groups. Conclusion Pistacia atlantica oleo-gum-resin-loaded electrospun nanofibers potentially improve excision and burn models of skin scars in rats through antioxidative and tissue regeneration mechanisms.
Collapse
Affiliation(s)
- Ghobad Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mosayyeb Safari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Karimi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
87
|
Grivet-Brancot A, Buscemi M, Ciardelli G, Bronco S, Sartori S, Cassino C, Al Kayal T, Losi P, Soldani G, Boffito M. Cord Blood Platelet Lysate-Loaded Thermo-Sensitive Hydrogels for Potential Treatment of Chronic Skin Wounds. Pharmaceutics 2024; 16:1438. [PMID: 39598561 PMCID: PMC11597581 DOI: 10.3390/pharmaceutics16111438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Chronic skin wounds (CSWs) are a worldwide healthcare problem with relevant impacts on both patients and healthcare systems. In this context, innovative treatments are needed to improve tissue repair and patient recovery and quality of life. Cord blood platelet lysate (CB-PL) holds great promise in CSW treatment thanks to its high growth factors and signal molecule content. In this work, thermo-sensitive hydrogels based on an amphiphilic poly(ether urethane) (PEU) were developed as CB-PL carriers for CSW treatment. METHODS A Poloxamer 407®-based PEU was solubilized in aqueous medium (10 and 15% w/v) and added with CB-PL at a final concentration of 20% v/v. Hydrogels were characterized for their gelation potential, rheological properties, and swelling/dissolution behavior in a watery environment. CB-PL release was also tested, and the bioactivity of released CB-PL was evaluated through cell viability, proliferation, and migration assays. RESULTS PEU aqueous solutions with concentrations in the range 10-15% w/v exhibited quick (within a few minutes) sol-to-gel transition at around 30-37 °C and rheological properties modulated by the PEU concentration. Moreover, CB-PL loading within the gels did not affect the overall gel properties. Stability in aqueous media was dependent on the PEU concentration, and payload release was completed between 7 and 14 days depending on the polymer content. The CB-PL-loaded hydrogels also showed biocompatibility and released CB-PL induced keratinocyte migration and proliferation, with scratch wound recovery similar to the positive control (i.e., CB-PL alone). CONCLUSIONS The developed hydrogels represent promising tools for CSW treatment, with tunable gelation properties and residence time and the ability to encapsulate and deliver active biomolecules with sustained and controlled kinetics.
Collapse
Affiliation(s)
- Arianna Grivet-Brancot
- Institute for Chemical-Physical Processes, National Research Council, 56124 Pisa, Italy; (A.G.-B.); (S.B.)
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy;
| | - Marianna Buscemi
- Institute of Clinical Physiology, National Research Council, Massa, 56124 Pisa, Italy; (M.B.); (T.A.K.); (P.L.); (G.S.)
| | - Gianluca Ciardelli
- Institute for Chemical-Physical Processes, National Research Council, 56124 Pisa, Italy; (A.G.-B.); (S.B.)
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy;
| | - Simona Bronco
- Institute for Chemical-Physical Processes, National Research Council, 56124 Pisa, Italy; (A.G.-B.); (S.B.)
| | - Susanna Sartori
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy;
| | - Claudio Cassino
- Department of Science and Technological Innovation, Università del Piemonte Orientale, 15121 Alessandria, Italy;
| | - Tamer Al Kayal
- Institute of Clinical Physiology, National Research Council, Massa, 56124 Pisa, Italy; (M.B.); (T.A.K.); (P.L.); (G.S.)
| | - Paola Losi
- Institute of Clinical Physiology, National Research Council, Massa, 56124 Pisa, Italy; (M.B.); (T.A.K.); (P.L.); (G.S.)
| | - Giorgio Soldani
- Institute of Clinical Physiology, National Research Council, Massa, 56124 Pisa, Italy; (M.B.); (T.A.K.); (P.L.); (G.S.)
| | - Monica Boffito
- Institute for Chemical-Physical Processes, National Research Council, 56124 Pisa, Italy; (A.G.-B.); (S.B.)
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy;
| |
Collapse
|
88
|
Ghasempour A, Dehghan H, Mahmoudi M, Lavi Arab F. Biomimetic scaffolds loaded with mesenchymal stem cells (MSCs) or MSC-derived exosomes for enhanced wound healing. Stem Cell Res Ther 2024; 15:406. [PMID: 39522032 PMCID: PMC11549779 DOI: 10.1186/s13287-024-04012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Since wound healing is one of the most important medical challenges and common dressings have not been able to manage this challenge well today, efforts have been increased to achieve an advanced dressing. Mesenchymal stem cells and exosomes derived from them have shown high potential in healing and regenerating wounds due to their immunomodulatory, anti-inflammatory, immunosuppressive, and high regenerative capacities. However, challenges such as the short life of these cells, the low durability of these cells in the wound area, and the low stability of exosomes derived from them have resulted in limitations in their use for wound healing. Nowadays, different scaffolds are considered suitable biomaterials for wound healing. These scaffolds are made of natural or synthetic polymers and have shown promising potential for an ideal dressing that does not have the disadvantages of common dressings. One of the strategies that has attracted much attention today is using these scaffolds for seeding and delivering MSCs and their exosomes. This combined strategy has shown a high potential in enhancing the shelf life of cells and increasing the stability of exosomes. In this review, the combination of different scaffolds with different MSCs or their exosomes for wound healing has been comprehensively discussed.
Collapse
Affiliation(s)
- Alireza Ghasempour
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Dehghan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
89
|
Wang J, Huang L, Li J, Xu R, Guo T, Huang T, Wu Y, Yang Y, Zhang J, Jiang F, Liu H, Liang L, Wang L. Efficacy and safety of sequential treatment with botulinum toxin type A, fractional CO2 laser, and topical growth factor for hypertrophic scar management: a retrospective analysis. Sci Rep 2024; 14:27233. [PMID: 39516539 PMCID: PMC11549097 DOI: 10.1038/s41598-024-78094-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Hypertrophic scars arise from aberrant wound healing and can lead to functional and aesthetic impairments. One of the common interventions for treating hypertrophic scars is fractional carbon dioxide (CO2) laser, which employs narrow laser beams to stimulate dermal collagen deposition. Recent studies and reports have suggested that combining laser therapy with other interventions such as botulinum toxin type A (BTX-A) and topical growth factors may enhance treatment outcomes. Here, we examine the efficacy and safety of a sequential combination of BTX-A, fractional CO2 laser, and topical growth factors, referred to as combined therapy, for treating hypertrophic scars compared with only using fractional CO2 laser and topical growth factors, referred to as monotherapy. Our retrospective study includes 128 patients with hypertrophic scars (56 underwent monotherapy and 72 underwent combined therapy), which were followed-up for up to 15 months after the initiation of treatment to collect demographic and clinical data. Our analysis showed that the combined therapy significantly outperformed monotherapy in improving Vancouver scar scale scores (P < 0.05) and in the reduction of scar thickness (P < 0.05), without increasing adverse complications. Repeated treatments further augmented the efficacy of the combined therapy. Subgroup analysis revealed that combined therapy was notably more effective in reducing Vancouver scar scale scores and scar thickness in early-stage scars compared to late-stage (P = 0.023 and P = 0.045, respectively). Our study suggests that including BTX-A treatment before fractional CO2 laser and topical growth factors offers superior efficacy in reducing hypertrophic scars. We encourage early intervention and repeated treatments for optimal treatment outcomes.
Collapse
Affiliation(s)
- Jin Wang
- Department of Laser, General Hospital of Ningxia Medical University, Yinchuan, 750001, China
| | - Lijun Huang
- Department of Laser, General Hospital of Ningxia Medical University, Yinchuan, 750001, China
| | - Juan Li
- Pingluo County People's Hospital, Shizuishan, 753400, China
| | - Rui Xu
- Department of Laser, General Hospital of Ningxia Medical University, Yinchuan, 750001, China
| | - Tao Guo
- Department of Laser, General Hospital of Ningxia Medical University, Yinchuan, 750001, China
| | - Tong Huang
- Department of Laser, General Hospital of Ningxia Medical University, Yinchuan, 750001, China
| | - Yanping Wu
- Department of Laser, General Hospital of Ningxia Medical University, Yinchuan, 750001, China
| | - Yang Yang
- Ningxia Medical University, Yinchuan, 750001, China
| | - Jiale Zhang
- Ningxia Medical University, Yinchuan, 750001, China
| | - Feng Jiang
- Department of Genetics, Stanford University , Stanford, 94304, USA
| | - Huan Liu
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, 14620, USA
| | - Li Liang
- Department of Laser, General Hospital of Ningxia Medical University, Yinchuan, 750001, China.
| | - Lei Wang
- Department of Vascular Surgery, General Hospital of Ningxia Medical University, 99 Fuan East Ln, Yinchuan, 750001, Ningxia Huizu, China.
- Department of Vascular Surgery, General Hospital of Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
90
|
Yang J, Jia D, Qiao J, Peng X, Zhou C, Yang Y. Controlled Nitric Oxide-Releasing Nanovehicles for Enhanced Infected Wound Healing: A Study on PDA@BNN6 Encapsulated in GelMA Hydrogel. Int J Nanomedicine 2024; 19:11499-11516. [PMID: 39534378 PMCID: PMC11556330 DOI: 10.2147/ijn.s486640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction The photo-activated thermo/gas antimicrobial nanocomposite hydrogel, Gel/PDA@BNN6, is composed of the nitric oxide (NO) carrier N, N'-di-sec-butyl-N, N'-dinitroso-p-phenylenediamine (BNN6), photothermal (PTT) material polydopamine nanoparticles (PDA NPs), and methacrylate gelatin (GelMA). This hydrogel can release NO gas in a stable and controlled manner, generating a localized photothermal effect when exposed to near-infrared laser light. This dual action promotes the healing of full-thickness skin wounds that are infected. Methods Gel/PDA@BNN6 was developed, and both in vitro and in vivo experiments were carried out to evaluate its structure, physicochemical properties, antibacterial effects, effectiveness in promoting infected wound healing, and biocompatibility. Results Gel/PDA@BNN6 was successfully synthesized, exhibiting a porous three-dimensional lattice structure and excellent mechanical properties. It demonstrated highly efficient photothermal conversion, controllable nitric oxide delivery, strong bactericidal effects, and minimal cytotoxicity in vitro. In vivo, Gel/PDA@BNN6, when used with NIR therapy, showed significant anti-inflammatory effects, promoted collagen deposition, and stimulated vascular neoangiogenesis, which accelerated wound closure. Additionally, it displayed superior biocompatibility. Discussion Gel/PDA@BNN6 has shown an explicit curative effect for infected wound healing, suggesting it has a good chance of being an antimicrobial dressing in the future.
Collapse
Affiliation(s)
- Jing Yang
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, People’s Republic of China
- Department of Medicine, Jianghan University, Wuhan, 430056, People’s Republic of China
| | - Donghui Jia
- Department of Traumatology, The Third Hospital of Jianghan University, The Huangpi People’s Hospital of Wuhan, Wuhan, Hubei, People’s Republic of China
| | - Jialu Qiao
- Department of Medicine, Jianghan University, Wuhan, 430056, People’s Republic of China
| | - Ximing Peng
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, People’s Republic of China
| | - Chuchao Zhou
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, People’s Republic of China
| | - Yanqing Yang
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, People’s Republic of China
| |
Collapse
|
91
|
Khattak S, Ullah I, Sohail M, Akbar MU, Rauf MA, Ullah S, Shen J, Xu H. Endogenous/exogenous stimuli‐responsive smart hydrogels for diabetic wound healing. AGGREGATE 2024. [DOI: 10.1002/agt2.688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
AbstractDiabetes significantly impairs the body's wound‐healing capabilities, leading to chronic, infection‐prone wounds. These wounds are characterized by hyperglycemia, inflammation, hypoxia, variable pH levels, increased matrix metalloproteinase activity, oxidative stress, and bacterial colonization. These complex conditions complicate effective wound management, prompting the development of advanced diabetic wound care strategies that exploit specific wound characteristics such as acidic pH, high glucose levels, and oxidative stress to trigger controlled drug release, thereby enhancing the therapeutic effects of the dressings. Among the solutions, hydrogels emerge as promising due to their stimuli‐responsive nature, making them highly effective for managing these wounds. The latest advancements in mono/multi‐stimuli‐responsive smart hydrogels showcase their superiority and potential as healthcare materials, as highlighted by relevant case studies. However, traditional wound dressings fall short of meeting the nuanced needs of these wounds, such as adjustable adhesion, easy removal, real‐time wound status monitoring, and dynamic drug release adjustment according to the wound's specific conditions. Responsive hydrogels represent a significant leap forward as advanced dressings proficient in sensing and responding to the wound environment, offering a more targeted approach to diabetic wound treatment. This review highlights recent advancements in smart hydrogels for wound dressing, monitoring, and drug delivery, emphasizing their role in improving diabetic wound healing. It addresses ongoing challenges and future directions, aiming to guide their clinical adoption.
Collapse
Affiliation(s)
- Saadullah Khattak
- The Fifth Affiliated Hospital of Wenzhou Medical University Lishui China
| | - Ihsan Ullah
- Zhejiang Engineering Research Center for Tissue Repair Materials Wenzhou Institute University of Chinese Academy of Sciences Wenzhou China
| | - Mohammad Sohail
- The Fifth Affiliated Hospital of Wenzhou Medical University Lishui China
| | - Muhammad Usman Akbar
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou China
| | - Mohd Ahmar Rauf
- Department of Internal Medicine, Heme Oncology Unit, University of Michigan Ann Arbor Michigan USA
| | - Salim Ullah
- The Fifth Affiliated Hospital of Wenzhou Medical University Lishui China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry Eye Hospital Wenzhou Medical University Wenzhou China
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou China
| | - Hong‐Tao Xu
- The Fifth Affiliated Hospital of Wenzhou Medical University Lishui China
| |
Collapse
|
92
|
Kusnadi K, Herdiana Y, Rochima E, Putra ON, Mohd Gazzali A, Muchtaridi M. Collagen-Based Nanoparticles as Drug Delivery System in Wound Healing Applications. Int J Nanomedicine 2024; 19:11321-11341. [PMID: 39524919 PMCID: PMC11550700 DOI: 10.2147/ijn.s485588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Background Conventional wound dressings often adhere to wounds and can cause secondary injury due to their lack of anti-inflammatory and antibacterial properties. In contrast, collagen-based nanoparticles (NPs) as drug delivery systems exhibit both biocompatibility and biodegradability, presenting a promising avenue for accelerating wound healing processes. Aims of Study This review aims to provide a comprehensive overview of the mechanisms involved in wound healing, description of the attributes of ideal wound dressings, understanding of wound healing efficacy of collagen, exploring NPs-mediated drug delivery mechanisms in wound therapy, detailing the synthesis and fabrication techniques of collagen-based NPs, and delineating the applications of various collagen-based NPs infused wound dressings on wound healing. Methodology This review synthesizes relevant literature from reputable databases such as Scopus, Science Direct, Google Scholar, and PubMed. Results A diverse array of collagen-based NPs, including nanopolymers, metal NPs, nanoemulsions, nanoliposomes, and nanofibers, demonstrate pronounced efficacy in promoting wound closure and tissue regeneration. The incorporation of collagen-based NPs has not only become an agent for the delivery of therapeutics but also actively contributes to the wound healing cascade. Conclusion In conclusion, In brief, the use of collagen-based NPs presents a compelling strategy for expediting wound healing processes.
Collapse
Affiliation(s)
- Kusnadi Kusnadi
- Department of Pharmacy Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Department of Pharmacy, Politeknik Harapan Bersama, Tegal, Central Java, 52147, Indonesia
| | - Yedi Herdiana
- Department of Pharmacy Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Emma Rochima
- Department of Fishery, Faculty of Fisheries and Marine Sciences, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| | - Okta Nama Putra
- Department of Pharmacy Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Research Center for Agroindustry, National Research and Innovation Agency (BRIN), Cibinong, Jawa Barat, 16911, Indonesia
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang, 11800, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmacy Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Sumedang, West Java, 45363, Indonesia
| |
Collapse
|
93
|
P A, M RJ, Joy JM, Visnuvinayagam S, Remya S, Mathew S. Development of κ-carrageenan-based transparent and absorbent biodegradable films for wound dressing applications. Int J Biol Macromol 2024; 282:137084. [PMID: 39500428 DOI: 10.1016/j.ijbiomac.2024.137084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Wound healing remains a critical challenge in healthcare, requiring advanced wound dressings with superior properties like transparency, absorbency, and biocompatibility. However, gaps exist in the use of marine-derived biopolymers for sustainable dressings. This study addresses this gap by combining κ-carrageenan (KC) with polyvinyl pyrrolidone (PVP) to develop transparent and absorbent biodegradable films through solvent casting and lyophilization techniques. Lyophilized films exhibited superior absorbency (9.17 g/cm2) and moisture management, with a water vapour transmission rate of 3990.67 g/m2/24 h, while solvent-cast films showed 78 % transmittance, enabling wound visualization. Mechanical testing revealed high tensile strength (31.5 MPa) and folding endurance (410 folds), ensuring durability. In vitro bactericidal assays confirmed efficacy against MRSA and E. coli, and in vivo tests on Wistar rats showed complete wound healing within 16 days with 91.1 % closure, outperforming untreated controls (76.7 %). This is the first study to explore lyophilized KC-PVP films for wound dressing applications, demonstrating potential for drug release, absorbency, and biodegradability. The innovative combination of biopolymers and fabrication techniques offers a sustainable, high-performance solution for wound care.
Collapse
Affiliation(s)
- Amruth P
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India; Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India; Department of Life Sciences, Christ University, Hosur Main Road, Bhavani Nagar, Bangalore 560029, Karnataka, India
| | - Rosemol Jacob M
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India; Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India
| | - Jean Mary Joy
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India; Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India; Department of Zoology, St. Teresa's College (Autonomous), Ernakulam 682011, Kerala, India
| | - S Visnuvinayagam
- Microbiology, Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
| | - S Remya
- Fish Processing Technology, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
| | - Suseela Mathew
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India.
| |
Collapse
|
94
|
Suriyaamporn P, Dechsri K, Charoenying T, Ngawhirunpat T, Rojanarata T, Patrojanasophon P, Opanasopit P, Pamornpathomkul B. Multiple strategies approach: A novel crosslinked hydrogel forming chitosan-based microneedles chemowrap patch loaded with 5-fluorouracil liposomes for chronic wound cancer treatment. Int J Biol Macromol 2024; 279:134973. [PMID: 39182897 DOI: 10.1016/j.ijbiomac.2024.134973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/27/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Untreated or poorly managed chronic wounds can progress to skin cancer. Topically applied 5-fluorouracil (5-FU), a nonspecific cytostatic agent, can cause various side effects. Its high polarity also results in low cell membrane affinity and bioavailability. Hydrogel, used for its occlusive effect, is one platform for treating chronic wounds combined with PEGylated liposomes (LPs), developed to increase drug-skin affinity. This research aimed to develop a novel hydrogel forming chitosan-based microneedles (HFM) chemowrap patch containing 5-FU PEGylated LPs, improving 5-FU efficiency for pre-carcinogenic and carcinogenic skin lesions. The results indicated that the 5-FU-PEGylated LPs-loaded HFM chemowrap patch exhibited desirable physical and mechanical characteristics with complete penetration ability. Furthermore, in vivo skin permeation studies demonstrated the highest percentage of 5-FU permeated the skin (42.06 ± 11.82 %) and skin deposition (75.90 ± 1.13 %) compared to the other treatments, with demonstrated superior percentages of complete wound healing in in vivo (47.00 ± 5.77 % wound healing at day 7) and in NHF cells (92.79 ± 7.15 % at 48 h). Furthermore, 5-FU-PEGylated LPs-loaded HFM chemowrap patches exhibit efficient anticancer activity while maintaining safety for normal cells. The results also show that the developed formulation of a 5-FU-PEGylated LPs-loaded HFM chemowrap patch could enhance apoptosis higher than that of the 5-FU solution. Consequently, 5-FU PEGylated LPs-loaded HFM chemowrap patch represented a promising drug delivery approach for treating pre-carcinogenic and carcinogenic skin lesions.
Collapse
Affiliation(s)
- Phuvamin Suriyaamporn
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Koranat Dechsri
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Thapakorn Charoenying
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Theerasak Rojanarata
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Boonnada Pamornpathomkul
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| |
Collapse
|
95
|
Heydari P, Mojahedi M, Javaherchi P, Sharifi M, Kharazi AZ. Advances and impact of human amniotic membrane and human amniotic-based materials in wound healing application. Int J Biol Macromol 2024; 281:136596. [PMID: 39419158 DOI: 10.1016/j.ijbiomac.2024.136596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
Wound healing is a complicated process, especially when surgical, traumatic, burn, or pathological injury occurs, which requires different kinds of dressing covers including hydrogels, hydrocolloids, alginates foams and films for treatment. The human amniotic membrane (hAM) is a biodegradable extracellular matrix with unique and tailorable physicochemical and biological properties, generated by the membrane itself or other cells that are located on the membrane surface. It is noted as a promising aid for wound healing and tissue regeneration due to the release of growth factors and cytokines, and its antibacterial and immunosuppressive properties. Moreover, hAM has optimal physical, biological, and mechanical properties, which makes it a much better option as a regenerative skin treatment than existing alternative materials. In addition, this layer has a structure with different layers and cells with different functions, which act as a regenerative geometry and reservoir of bioactive substances and cells for wound healing. In the present work, the structural and biological features of hAM are introduced as well as the application of this layer in different forms of composites to enhance wound healing. Future studies are recommended to detect possible further functionalization to enhance the hAM effectiveness on wound healing.
Collapse
Affiliation(s)
- Parisa Heydari
- Department of Biomaterials Nanotechnology and Tissue Engineering, School of Advanced Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Mojahedi
- Department of Biomaterials Nanotechnology and Tissue Engineering, School of Advanced Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pouya Javaherchi
- Department of Biomaterials Nanotechnology and Tissue Engineering, School of Advanced Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maede Sharifi
- Department of Biomaterials Nanotechnology and Tissue Engineering, School of Advanced Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anousheh Zargar Kharazi
- Department of Biomaterials Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
96
|
Ngo PKT, Nguyen DN, Nguyen HP, Tran THH, Nguyen QND, Luu CH, Phan TH, Le PK, Phan VHG, Ta HT, Thambi T. Silk fibroin/chitosan/montmorillonite sponge dressing: Enhancing hemostasis, antimicrobial activity, and angiogenesis for advanced wound healing applications. Int J Biol Macromol 2024; 279:135329. [PMID: 39236943 DOI: 10.1016/j.ijbiomac.2024.135329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024]
Abstract
Open wounds present a significant challenge in healthcare, requiring careful management to prevent infection and promote wound healing. Advanced wound dressings are critical need to enhance their hemostatic capabilities, antimicrobial properties, and ability to support angiogenesis and sustained moisture for optimal healing. This study introduces a flexible hemostatic dressing designed for open wounds, integrating chitosan (CS) for hemostasis and biocompatibility, silk fibroin (SF) for mechanical strength, and montmorillonite (MMT) for enhanced drug transport. The CSSF@MMT dressings showed promising mechanical strength and swift hemostasis. The CIP-loaded CSSF@MMT demonstrated sustained release for up to one week, exhibiting antibacterial properties against both Gram-positive and Gram-negative bacteria. In vitro cell migration assay demonstrated that erythropoietin-loaded CSSF@MMT dressings promoted the proliferation and migration of endothelial cells. Similarly, the chick embryo chorioallantoic membrane study indicated the same dressings exhibited a significant increase in vascular regeneration. This research suggests that the CSSF@MMT sponge dressing, incorporated with CIP and erythropoietin, holds promise in effectively halting bleeding, creating a protective environment, diminishing inflammation, and fostering wound tissue regeneration. This potential makes it a significant advancement in open wound care, potentially lowering the need for limb amputation and decreasing wound care burden worldwide.
Collapse
Affiliation(s)
- Phuong-Khanh Thi Ngo
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), VNU-HCM, Ho Chi Minh City, Vietnam
| | - Dieu Ngoc Nguyen
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Hong-Phuc Nguyen
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Thanh-Han Hoang Tran
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Quynh-Nhu Doan Nguyen
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Cuong Hung Luu
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia; Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| | - Thuy-Hien Phan
- Department of Endocrinology, People's Hospital 115, Ho Chi Minh City, Vietnam
| | - Phung K Le
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), VNU-HCM, Ho Chi Minh City, Vietnam
| | - V H Giang Phan
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Hang Thu Ta
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia; Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia.
| | - Thavasyappan Thambi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Republic of Korea.
| |
Collapse
|
97
|
Haririan Y, Asefnejad A. Biopolymer hydrogels and synergistic blends for tailored wound healing. Int J Biol Macromol 2024; 279:135519. [PMID: 39260639 DOI: 10.1016/j.ijbiomac.2024.135519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Biopolymers have a transformative role in wound repair due to their biocompatibility, ability to stimulate collagen production, and controlled drug and growth factor delivery. This article delves into the biological parameters critical to wound healing emphasizing how combinations of hydrogels with reparative properties can be strategically designed to create matrices that stimulate targeted cellular responses at the wound site to facilitate tissue repair and recovery. Beyond a detailed examination of various biopolymer types and their functionalities in wound dressings acknowledging that the optimal choice depends on the specific wound type and application, this evaluation provides concepts for developing synergistic biopolymer blends to create next-generation dressings with enhanced efficiencies. Furthermore, the incorporation of therapeutic agents such as medications and wound healing accelerators into dressings to enhance their efficacy is examined. These agents often possess desirable properties such as antibacterial activity, antioxidant effects, and the ability to promote collagen synthesis and tissue regeneration. Finally, recent advancements in conductive hydrogels are explored, highlighting their capabilities in treatment and real-time wound monitoring. This comprehensive resource emphasizes the importance of optimizing ingredient efficiency besides assisting researchers in selecting suitable materials for personalized wound dressings, ultimately leading to more sophisticated and effective wound management strategies.
Collapse
Affiliation(s)
- Yasamin Haririan
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Azadeh Asefnejad
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
98
|
Hamid A, Chong PL, Khor YY, Kong PY, Rasli NR, Abd Warif NM, Ghazali AR, Jufri NF. Biochemical, immunological markers, histology and ultrastructural changes of open wound healing in rats treated with ethyl acetate extract of Zingiber zerumbet rhizomes. Heliyon 2024; 10:e39339. [PMID: 39469692 PMCID: PMC11513452 DOI: 10.1016/j.heliyon.2024.e39339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Research on plant-based wound healing agents has been one of the current developing areas in modern biomedical science. This study aimed to assess the effects of ethyl acetate extract of Zingiber zerumbet rhizome (ZZRE) on open wound healing activity in Wistar rats. Ninety male Wistar rats (220-320 g) were divided into three groups treated with phosphate buffered saline (PBS) (negative control), Solcoseryl gel (positive control), and 10 % ZZRE (treatment group), respectively. Six circular full-skin thickness wounds of 6.0 mm in diameter were induced bilaterally on the dorsal surface of each rat. Six rats were sacrificed on Day-1, Day-3, Day-6, Day-10 and Day-14 respectively from each group after wound induction. All data obtained are considered statistically significant at p < 0.05. Macroscopic observations showed that the 10 % ZZRE treated wounds healed faster compared to other groups. The wound closure percentage showed that the wound treated with 10 % ZZRE is significantly higher (p < 0.05) than the PBS group on Day-6, Day-10 and Day-14. Protein levels of the 10 % ZZRE group decreased significantly at Day-1 compared to the PBS group and significantly (p < 0.05) higher at Day-14 compared to both control groups. The hexosamine and uronic acid levels of the 10 % ZZRE group showed a significant (p < 0.05) decrease on Day-14. Conversely, hydroxyproline levels showed significant (p < 0.05) increase starting from Day-3 until Day-14. As for the immunological markers, the level of total TGF-β1 of the 10 % ZZRE group was significantly (p < 0.05) higher than the PBS group on Day-14, whereas the level of IL-10 on the wound tissue of the 10 % ZZRE group was significantly (p < 0.05) lower than the PBS group on Day-1 but significantly (p < 0.05) higher on Day-10 and Day-14 compared to both control groups. Histological observation showed that the wounds treated with 10 % ZZRE infiltrated with lesser inflammatory cells while collagen deposition was denser as compared to both control groups. Based on the result obtained, it is clearly proven that treatment of 10 % ZZRE on open wound healing in rats, showed that the extract was effective in healing the wound and accelerated the healing process. Therefore, the 10 % ZZRE tested has the potential to be developed as an alternative wound healing agent in the future.
Collapse
Affiliation(s)
- Asmah Hamid
- Program of Biomedical Science, Center for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Pek Lian Chong
- Program of Biomedical Science, Center for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Yun Ying Khor
- Program of Biomedical Science, Center for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Poh Ying Kong
- Program of Biomedical Science, Center for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Nur Rasyiqin Rasli
- Program of Biomedical Science, Center for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Nor Malia Abd Warif
- Program of Biomedical Science, Center for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Ahmad Rohi Ghazali
- Program of Biomedical Science, Center for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Nurul Farhana Jufri
- Program of Biomedical Science, Center for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| |
Collapse
|
99
|
Sedighi-Pirsaraei N, Tamimi A, Sadeghi Khamaneh F, Dadras-Jeddi S, Javaheri N. Boron in wound healing: a comprehensive investigation of its diverse mechanisms. Front Bioeng Biotechnol 2024; 12:1475584. [PMID: 39539690 PMCID: PMC11557333 DOI: 10.3389/fbioe.2024.1475584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Chronic wounds present a significant clinical challenge due to their prolonged healing time and susceptibility to infection. Boron, a trace element with diverse biological functions, has emerged as a promising therapeutic agent in wound healing. This review article comprehensively investigates the mechanisms underlying the beneficial effects of boron compounds in wound healing. Boron exerts its healing properties through multiple pathways, including anti-inflammatory, antimicrobial, antioxidant, and pro-proliferative effects. Inflammation is a crucial component of the wound-healing process, and boron has been shown to modulate inflammatory responses by inhibiting pro-inflammatory cytokines and promoting the resolution of inflammation. Furthermore, boron exhibits antimicrobial activity against a wide range of pathogens commonly associated with chronic wounds, thereby reducing the risk of infection and promoting wound closure. The antioxidant properties of boron help protect cells from oxidative stress, a common feature of chronic wounds that can impair healing. Additionally, boron stimulates cell proliferation and migration, as well as essential tissue regeneration and wound closure processes. Overall, this review highlights the potential of boron as a novel therapeutic approach for treating chronic wounds, offering insights into its diverse mechanisms of action and clinical implications.
Collapse
|
100
|
Al-Timimi Z. Comparative Effectiveness of Diode Laser Therapy and Topical Turmeric Extract Ointment in Promoting Healing of Wounds in a Murine Model. INT J LOW EXTR WOUND 2024:15347346241292127. [PMID: 39469933 DOI: 10.1177/15347346241292127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The intricate biological process of wound healing is influenced by a wide range of therapeutic techniques. In this work, the effects of topical turmeric extract ointment and diode laser therapy on wound healing in a mouse model were investigated. Out of the sixty mice, three groups of twenty male mice each were created. Three groups received treatment: the first was a control group that got no treatment; the second group received topical application of 5% curcumin twice a day; and the third group received diode laser therapy, which involved direct laser beam therapy for five minutes a day at an output power of 100 mW at an 810 nm wavelength. Over the course of two weeks, the study examined histological changes and wound closure rates. On days 0 through 14, the wound area was measured with digital calipers to provide quantifiable statistics about the process of healing. In histological analyses, epithelializations, and collagen deposition, in addition to inflammatory cells, were investigated using hematoxylin and eosin staining. It was demonstrated by comparing the outcomes to those of a control group that diode laser therapy and turmeric extract ointment are both successful therapeutic options. The results demonstrate that different therapies, while with differing degrees of effectiveness, greatly quicken the healing process of wounds. According to these results, topical turmeric extract ointment could be used as an additional or supporting therapy to aid in the healing of wounds during medical treatments.
Collapse
Affiliation(s)
- Zahra Al-Timimi
- Laser Physics Department, College of Science for Women, University of Babylon, Hillah, Iraq
| |
Collapse
|