51
|
Akhter MH, Al-Keridis LA, Saeed M, Khalilullah H, Rab SO, Aljadaan AM, Rahman MA, Jaremko M, Emwas AH, Ahmad S, Alam N, Ali MS, Khan G, Afzal O. Enhanced drug delivery and wound healing potential of berberine-loaded chitosan-alginate nanocomposite gel: characterization and in vivo assessment. Front Public Health 2023; 11:1238961. [PMID: 38229669 PMCID: PMC10790630 DOI: 10.3389/fpubh.2023.1238961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/15/2023] [Indexed: 01/18/2024] Open
Abstract
Berberine-encapsulated polyelectrolyte nanocomposite (BR-PolyET-NC) gel was developed as a long-acting improved wound healing therapy. BR-PolyET-NC was developed using an ionic gelation/complexation method and thereafter loaded into Carbopol gel. Formulation was optimized using Design-Expert® software implementing a three-level, three-factor Box Behnken design (BBD). The concentrations of polymers, namely, chitosan and alginate, and calcium chloride were investigated based on particle size and %EE. Moreover, formulation characterized in vitro for biopharmaceutical performances and their wound healing potency was evaluated in vivo in adult BALB/c mice. The particle distribution analysis showed a nanocomposite size of 71 ± 3.5 nm, polydispersity index (PDI) of 0.45, ζ-potential of +22 mV, BR entrapment of 91 ± 1.6%, and loading efficiency of 12.5 ± 0.91%. Percentage drug release was recorded as 89.50 ± 6.9% with pH 6.8, thereby simulating the wound microenvironment. The in vitro investigation of the nanocomposite gel revealed uniform consistency, well spreadability, and extrudability, which are ideal for topical wound use. The analytical estimation executed using FT-IR, DSC, and X-ray diffraction (XRD) indicated successful formulation with no drug excipients and without the amorphous state. The colony count of microbes was greatly reduced in the BR-PolyET-NC treated group on the 15th day from up to 6 CFU compared to 20 CFU observed in the BR gel treated group. The numbers of monocytes and lymphocytes counts were significantly reduced following healing progression, which reached to a peak level and vanished on the 15th day. The observed experimental characterization and in vivo study indicated the effectiveness of the developed BR-PolyET-NC gel toward wound closure and healing process, and it was found that >99% of the wound closed by 15th day, stimulated via various anti-inflammatory and angiogenic factors.
Collapse
Affiliation(s)
- Md Habban Akhter
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun, India
| | - Lamya Ahmad Al-Keridis
- Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy Qassim University, Unaizah, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Adel M. Aljadaan
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
- University of Nottingham Graduate Entry Medicine, Royal Derby Hospital, Nottingham, United Kingdom
| | - Mohammad Akhlaquer Rahman
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sarfaraz Ahmad
- Department of Clinical Pharmacy Practice, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Nawazish Alam
- Department of Clinical Pharmacy Practice, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Md Sajid Ali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Gyas Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
52
|
Araújo GDMS, Loureiro AIS, Rodrigues JL, Barros PAB, Halicki PCB, Ramos DF, Marinho MAG, Vaiss DP, Vaz GR, Yurgel VC, Bidone J, Muccillo-Baisch AL, Hort MA, Paulo AMC, Dora CL. Toward a Platform for the Treatment of Burns: An Assessment of Nanoemulsions vs. Nanostructured Lipid Carriers Loaded with Curcumin. Biomedicines 2023; 11:3348. [PMID: 38137569 PMCID: PMC10742090 DOI: 10.3390/biomedicines11123348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Curcumin is a highly promising substance for treating burns, owing to its anti-inflammatory, antioxidant, antimicrobial, and wound-healing properties. However, its therapeutic use is restricted due to its hydrophobic nature and low bioavailability. This study was conducted to address these limitations; it developed and tested two types of lipid nanocarriers, namely nanoemulsions (NE-CUR) and nanostructured lipid carriers (NLC-CUR) loaded with curcumin, and aimed to identify the most suitable nanocarrier for skin burn treatment. The study evaluated various parameters, including physicochemical characteristics, stability, encapsulation efficiency, release, skin permeation, retention, cell viability, and antimicrobial activity. The results showed that both nanocarriers showed adequate size (~200 nm), polydispersity index (~0.25), and zeta potential (~>-20 mV). They also showed good encapsulation efficiency (>90%) and remained stable for 120 days at different temperatures. In the release test, NE-CUR and NCL-CUR released 57.14% and 51.64% of curcumin, respectively, in 72 h. NE-CUR demonstrated better cutaneous permeation/retention in intact or scalded skin epidermis and dermis than NLC-CUR. The cell viability test showed no toxicity after treatment with NE-CUR and NLC-CUR up to 125 μg/mL. Regarding microbial activity assays, free curcumin has activity against P. aeruginosa, reducing bacterial growth by 75% in 3 h. NE-CUR inhibited bacterial growth by 65% after 24 h, and the association with gentamicin had favorable results, while NLC-CUR showed a lower inhibition. The results demonstrated that NE-CUR is probably the most promising nanocarrier for treating burns.
Collapse
Affiliation(s)
| | - Ana Isabel Sá Loureiro
- CEB-Center of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jamile Lima Rodrigues
- Graduate Program in Food Science and Engineering, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | | | | | - Daniela Fernandes Ramos
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | | | - Daniela Pastorim Vaiss
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Gustavo Richter Vaz
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Virginia Campello Yurgel
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Juliana Bidone
- Center of Chemical, Pharmaceutical, and Food Sciences, Federal University of Pelotas, Pelotas 96010-610, RS, Brazil
| | - Ana Luiza Muccillo-Baisch
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Mariana Appel Hort
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Artur Manuel Cavaco Paulo
- CEB-Center of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cristiana Lima Dora
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
- Graduate Program in Food Science and Engineering, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| |
Collapse
|
53
|
Liao L, Wang H, Wei D, Yi M, Gu Y, Zhang M, Wang L. Exosomal microRNAs: implications in the pathogenesis and clinical applications of subarachnoid hemorrhage. Front Mol Neurosci 2023; 16:1300864. [PMID: 38143562 PMCID: PMC10748509 DOI: 10.3389/fnmol.2023.1300864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) is a severe acute neurological disorder with a high fatality rate. Early brain injury (EBI) and cerebral vasospasm are two critical complications of SAH that significantly contribute to poor prognosis. Currently, surgical intervention and interventional therapy are the main treatment options for SAH, but their effectiveness is limited. Exosomes, which are a type of extracellular vesicles, play a crucial role in intercellular communication and have been extensively studied in the past decade due to their potential influence on disease progression, diagnosis, and treatment. As one of the most important components of exosomes, miRNA plays both direct and indirect roles in affecting disease progression. Previous research has found that exosomal miRNA is involved in the development of various diseases, such as tumors, chronic hepatitis, atherosclerosis, diabetes, and SAH. This review focuses on exploring the impact of exosomal miRNA on SAH, including its influence on neuronal apoptosis, inflammatory response, and immune activation following SAH. Furthermore, this review highlights the potential clinical applications of exosomal miRNA in the treatment of SAH. Although current research on this topic is limited and the clinical application of exosomal miRNA has inherent limitations, we aim to provide a concise summary of existing research progress and offer new insights for future research directions and trends in this field.
Collapse
Affiliation(s)
- Lishang Liao
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Haoran Wang
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Deli Wei
- Department of Neurosurgery, The People’s Hospital of Fushun County, Zigong, China
| | - Mingliang Yi
- Department of Neurosurgery, The People’s Hospital of Fushun County, Zigong, China
| | - Yingjiang Gu
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Department of Neurosurgery, The People’s Hospital of Fushun County, Zigong, China
| | - Mingwei Zhang
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Li Wang
- Department of Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
54
|
Moammeri A, Chegeni MM, Sahrayi H, Ghafelehbashi R, Memarzadeh F, Mansouri A, Akbarzadeh I, Abtahi MS, Hejabi F, Ren Q. Current advances in niosomes applications for drug delivery and cancer treatment. Mater Today Bio 2023; 23:100837. [PMID: 37953758 PMCID: PMC10632535 DOI: 10.1016/j.mtbio.2023.100837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/21/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
The advent of nanotechnology has led to an increased interest in nanocarriers as a drug delivery system that is efficient and safe. There have been many studies addressing nano-scale vesicular systems such as liposomes and niosome is a newer generation of vesicular nanocarriers. The niosomes provide a multilamellar carrier for lipophilic and hydrophilic bioactive substances in the self-assembled vesicle, which are composed of non-ionic surfactants in conjunction with cholesterol or other amphiphilic molecules. These non-ionic surfactant vesicles, simply known as niosomes, can be utilized in a wide variety of technological applications. As an alternative to liposomes, niosomes are considered more chemically and physically stable. The methods for preparing niosomes are more economic. Many reports have discussed niosomes in terms of their physicochemical properties and applications as drug delivery systems. As drug carriers, nano-sized niosomes expand the horizons of pharmacokinetics, decreasing toxicity, enhancing drug solvability and bioavailability. In this review, we review the components and fabrication methods of niosomes, as well as their functionalization, characterization, administration routes, and applications in cancer gene delivery, and natural product delivery. We also discuss the limitations and challenges in the development of niosomes, and provide the future perspective of niosomes.
Collapse
Affiliation(s)
- Ali Moammeri
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Hamidreza Sahrayi
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Farkhondeh Memarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Afsoun Mansouri
- School of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Maryam Sadat Abtahi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Faranak Hejabi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014, St. Gallen, Switzerland
| |
Collapse
|
55
|
Dawoud MHS, Mannaa IS, Abdel-Daim A, Sweed NM. Integrating Artificial Intelligence with Quality by Design in the Formulation of Lecithin/Chitosan Nanoparticles of a Poorly Water-Soluble Drug. AAPS PharmSciTech 2023; 24:169. [PMID: 37552427 DOI: 10.1208/s12249-023-02609-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/25/2023] [Indexed: 08/09/2023] Open
Abstract
The aim of the current study is to explore the potential of artificial intelligence (AI) when integrated with Quality by Design (QbD) approach in the formulation of a poorly water-soluble drug, for its potential use in carcinoma. Silymarin is used as a model drug for its potential effectiveness in liver cancer. A detailed QbD approach was applied. The effect of the critical process parameters was studied on each of the particle size, size distribution, and entrapment efficiency. Response surface designs were applied in the screening and optimization of lecithin/chitosan nanoparticles, to obtain an optimized formula. The release rate was tested, where artificial neural network models were used to predict the % release of the drug from the optimized formula at different time intervals. The optimized formula was tested for its cytotoxicity. A design space was established, with an optimized formula having a molar ratio of 18.33:1 lecithin:chitosan and 38.35 mg silymarin. This resulted in nanoparticles with a size of 161 nm, a polydispersity index of 0.2, and an entrapment efficiency of 97%. The optimized formula showed a zeta potential of +38 mV, with well-developed spherical particles. AI successfully showed high prediction ability of the drug's release rate. The optimized formula showed an enhancement in the cytotoxic effect of silymarin with a decreased IC50 compared to standard silymarin. Lecithin/chitosan nanoparticles were successfully formulated, with deep process and product understanding. Several tools were used as AI which could shift pharmaceutical formulations from experience-dependent studies to data-driven methodologies in the future.
Collapse
Affiliation(s)
- Marwa H S Dawoud
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts, intersection of 26th of July road and Elwahat road, 6th of October city, Giza, Egypt.
| | - Islam S Mannaa
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts, intersection of 26th of July road and Elwahat road, 6th of October city, Giza, Egypt
| | - Amira Abdel-Daim
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza, Egypt
| | - Nabila M Sweed
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts, intersection of 26th of July road and Elwahat road, 6th of October city, Giza, Egypt
| |
Collapse
|
56
|
Mahara G, Tian C, Xu X, Wang W. Revolutionising health care: Exploring the latest advances in medical sciences. J Glob Health 2023; 13:03042. [DOI: • doi: 10.7189/jogh.13.03042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023] Open
Affiliation(s)
- Gehendra Mahara
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Cuihong Tian
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Center for Precision Health, Edith Cowan University, Perth, Australia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaojia Xu
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Center for Precision Health, Edith Cowan University, Perth, Australia
- Department of Infection Control, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangzhou, China
| | - Wei Wang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Center for Precision Health, Edith Cowan University, Perth, Australia
- Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
57
|
Mahara G, Tian C, Xu X, Wang W. Revolutionising health care: Exploring the latest advances in medical sciences. J Glob Health 2023; 13:03042. [PMID: 37539846 PMCID: PMC10401902 DOI: 10.7189/jogh.13.03042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Affiliation(s)
- Gehendra Mahara
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Cuihong Tian
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Center for Precision Health, Edith Cowan University, Perth, Australia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaojia Xu
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Center for Precision Health, Edith Cowan University, Perth, Australia
- Department of Infection Control, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangzhou, China
| | - Wei Wang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Center for Precision Health, Edith Cowan University, Perth, Australia
- Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
58
|
Naguib GH, Abd El-Aziz GS, Almehmadi A, Bayoumi A, Mira AI, Hassan AH, Hamed MT. Evaluation of the time-dependent osteogenic activity of glycerol incorporated magnesium oxide nanoparticles in induced calvarial defects. Heliyon 2023; 9:e18757. [PMID: 37593643 PMCID: PMC10432181 DOI: 10.1016/j.heliyon.2023.e18757] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/06/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023] Open
Abstract
Introduction Magnesium-based biomaterials have been explored for their potential as bone healing materials, as a result of their outstanding biodegradability and biocompatibility. These characteristics make magnesium oxide nanoparticles (MgO NPs) a promising material for treating bone disorders. The purpose of this investigation is to assess the osteogenic activity of newly-developed locally administered glycerol-incorporated MgO NPs (GIMgO NPs) in rabbits' calvarial defects. Materials and methods Characterization of GIMgO was done by X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). Bilateral calvarial defects were created in eighteen New Zealand Rabbits, of which they were divided into 3 groups with time points corresponding to 2, 4, and 6 weeks postoperatively (n = 6). One defect was implanted with absorbable gel foam impregnated with GIMgO NPs while the other was implanted with gel foam soaked with glycerol (the control). The defects were assessed using histological, Micro-Computed Tomography (Micro-CT), and histometric evaluation. Results The characterization of the GIMgO nanogel revealed the presence of MgO NPs and glycerol as well as the formation of the crystalline phase of the MgO NPs within the nanogel sample. The histological and micro-CT analysis showed time-dependent improvement of healing activity in the calvarial defects implanted with GIMgO NPs when compared to the control. Furthermore, the histometric analysis demonstrated a marked increase in the total area of new bone, connective tissue, new bone area and volume in the GIMgO NPs implanted site. Statistically, the amount of new bone formation was more significant at 6 weeks than at 2 and 4 weeks postoperatively in the calvarial defects implanted with GIMgO NPs as compared to the control. Conclusion The locally applied GIMgO NPs demonstrated efficacy in promoting bone formation, with more significant effects observed over an extended period. These findings suggest its suitability for clinical use as a therapeutic alternative to enhance bone healing.
Collapse
Affiliation(s)
- Ghada H. Naguib
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Oral Biology, Cairo University School of Dentistry, Cairo, Egypt
| | - Gamal S. Abd El-Aziz
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Almehmadi
- Department of Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amr Bayoumi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulghani I. Mira
- Department of Restorative Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Mohamed T. Hamed
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Fixed Prosthodontics, Cairo University School of Dentistry, Cairo, Egypt
| |
Collapse
|
59
|
Boltman T, Meyer M, Ekpo O. Diagnostic and Therapeutic Approaches for Glioblastoma and Neuroblastoma Cancers Using Chlorotoxin Nanoparticles. Cancers (Basel) 2023; 15:3388. [PMID: 37444498 DOI: 10.3390/cancers15133388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 07/15/2023] Open
Abstract
Glioblastoma multiforme (GB) and high-risk neuroblastoma (NB) are known to have poor therapeutic outcomes. As for most cancers, chemotherapy and radiotherapy are the current mainstay treatments for GB and NB. However, the known limitations of systemic toxicity, drug resistance, poor targeted delivery, and inability to access the blood-brain barrier (BBB), make these treatments less satisfactory. Other treatment options have been investigated in many studies in the literature, especially nutraceutical and naturopathic products, most of which have also been reported to be poorly effective against these cancer types. This necessitates the development of treatment strategies with the potential to cross the BBB and specifically target cancer cells. Compounds that target the endopeptidase, matrix metalloproteinase 2 (MMP-2), have been reported to offer therapeutic insights for GB and NB since MMP-2 is known to be over-expressed in these cancers and plays significant roles in such physiological processes as angiogenesis, metastasis, and cellular invasion. Chlorotoxin (CTX) is a promising 36-amino acid peptide isolated from the venom of the deathstalker scorpion, Leiurus quinquestriatus, demonstrating high selectivity and binding affinity to a broad-spectrum of cancers, especially GB and NB through specific molecular targets, including MMP-2. The favorable characteristics of nanoparticles (NPs) such as their small sizes, large surface area for active targeting, BBB permeability, etc. make CTX-functionalized NPs (CTX-NPs) promising diagnostic and therapeutic applications for addressing the many challenges associated with these cancers. CTX-NPs may function by improving diffusion through the BBB, enabling increased localization of chemotherapeutic and genotherapeutic drugs to diseased cells specifically, enhancing imaging modalities such as magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), optical imaging techniques, image-guided surgery, as well as improving the sensitization of radio-resistant cells to radiotherapy treatment. This review discusses the characteristics of GB and NB cancers, related treatment challenges as well as the potential of CTX and its functionalized NP formulations as targeting systems for diagnostic, therapeutic, and theranostic purposes. It also provides insights into the potential mechanisms through which CTX crosses the BBB to bind cancer cells and provides suggestions for the development and application of novel CTX-based formulations for the diagnosis and treatment of GB and NB in the future.
Collapse
Affiliation(s)
- Taahirah Boltman
- Department of Medical Biosciences, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa
| | - Okobi Ekpo
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
60
|
Rofeal M, Abdelmalek F, Pietrasik J, Steinbüchel A. A comparative study between two carboxymethylated polysaccharides/protein electrostatic and cross-linked nanogels constructed for caffeic acid and eugenol delivery. Int J Biol Macromol 2023:125585. [PMID: 37379949 DOI: 10.1016/j.ijbiomac.2023.125585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/11/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
In response to the pressing demand for functional nanomaterials synthesis and applications, two polyelectrolyte complexes (PECs) [electrostatic and cross-linked nanogels (NGs)] loaded individually with caffeic acid (CafA) and eugenol (Eug) demonstrating multifunctionalities were proposed for the first time. Curdlan (Curd) and glucomannan (GM) were carboxymethylated (CMCurd and CMGM) successfully and polymeric ratios of 1:1 and 4:1 (v/v) for chitosan (Cs): CMCurd and lactoferrin (Lf): CMGM were selected for the synthesis of Cs/CMCurd and Lf/CMGM NGs. Due to the use of EDC/NHS, Cs/CMCurd/CafA and Lf/CMGM/Eug NGs possessed very uniform particles sizes of 177 ± 18 and 230 ± 17 nm with marked encapsulation efficiencies (EEs) of 76 ± 4 and 88 ± 3 %, respectively. The formation of a carbonyl-amide linkage in both cross-linked NGs was confirmed by FTIR. It should be noted, the self-assembly was not reliable in retaining enough of the encapsulated compounds. Owing to the excellent physicochemical characteristics of the loaded cross-linked NGs, they were prioritized over the electrostatic ones. Both Cs/CMCurd/CafA and Lf/CMGM/Eug NGs exhibited high colloidal stability over 12 weeks, elevated hemocompatibility, and in vitro serum stability. The generated NGs were also tailored to possess controlled release profiles for CafA and Eug over 72 h. Cs/CMCurd/CafA and Lf/CMGM/Eug NGs had promising antioxidant efficacies and could remarkably inhibit 4 bacterial pathogens at low 2-16 μg/mL concentration of encapsulated NGs compared to their unencapsulated counterparts. Interestingly, the respective NGs could significantly decline the IC50 against colorectal cancer HCT-116 than conventional drugs. Based on these data, it was conferred that the investigated NGs could be promising candidates for functional foods and pharmaceutics.
Collapse
Affiliation(s)
- Marian Rofeal
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland; Department of Botany and Microbiology, Faculty of Science, Alexandria University, 21521, Egypt.
| | - Fady Abdelmalek
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland.
| | - Joanna Pietrasik
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Alexander Steinbüchel
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland
| |
Collapse
|
61
|
Cha SR, Jang J, Park SM, Ryu SM, Cho SJ, Yang SR. Cigarette Smoke-Induced Respiratory Response: Insights into Cellular Processes and Biomarkers. Antioxidants (Basel) 2023; 12:1210. [PMID: 37371940 DOI: 10.3390/antiox12061210] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Cigarette smoke (CS) poses a significant risk factor for respiratory, vascular, and organ diseases owing to its high content of harmful chemicals and reactive oxygen species (ROS). These substances are known to induce oxidative stress, inflammation, apoptosis, and senescence due to their exposure to environmental pollutants and the presence of oxidative enzymes. The lung is particularly susceptible to oxidative stress. Persistent oxidative stress caused by chronic exposure to CS can lead to respiratory diseases such as chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), and lung cancer. Avoiding exposure to environmental pollutants, like cigarette smoke and air pollution, can help mitigate oxidative stress. A comprehensive understanding of oxidative stress and its impact on the lungs requires future research. This includes identifying strategies for preventing and treating lung diseases as well as investigating the underlying mechanisms behind oxidative stress. Thus, this review aims to investigate the cellular processes induced by CS, specifically inflammation, apoptosis, senescence, and their associated biomarkers. Furthermore, this review will delve into the alveolar response provoked by CS, emphasizing the roles of potential therapeutic target markers and strategies in inflammation and oxidative stress.
Collapse
Affiliation(s)
- Sang-Ryul Cha
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Jimin Jang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Sung-Min Park
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Se Min Ryu
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Seong-Joon Cho
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| |
Collapse
|
62
|
Adeyemi SA, Az-Zamakhshariy Z, Choonara YE. In Vitro Prototyping of a Nano-Organogel for Thermo-Sonic Intra-Cervical Delivery of 5-Fluorouracil-Loaded Solid Lipid Nanoparticles for Cervical Cancer. AAPS PharmSciTech 2023; 24:123. [PMID: 37226039 DOI: 10.1208/s12249-023-02583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
Solid lipid nanoparticles (SLNs) are used extensively to achieve site-specific drug delivery with improved bioavailability and reduced toxicity. This work focused on a new approach to provide site-specific stimuli-responsive delivery of SLNs loaded within thermo-sonic nano-organogel (TNO) variants to deliver the model chemotherapeutic agent 5-FU in treating cervical cancer. Pharmaceutically stable nanospherical SLNs comprising poly-L-lactic acid (PLA), palmitic acid (PA), and polyvinyl alcohol (PVA) were prepared and incorporated into TNO variants augmented by external thermal and ultrasound stimuli for release of 5-FU in the cervix. Results revealed that rate-modulated 5-FU release was achieved from SLNs (particle size =450.9 nm; PDI =0.541; zeta potential =-23.2 mV; %DL =33%) within an organogel upon exposure to either a single (thermo-) and/or both (thermo-sonic) stimuli. 5FU was released from all TNO variants with an initial burst on day 1 followed by sustained release over 14 days. TNO 1 provided desirable release over 15 days (44.29% vs. 67.13% under single (T) or combined (TU) stimuli, respectively). Release rates were primarily influenced by the SLN:TO ratio in tandem with biodegradation and hydrodynamic influx. Biodegradation by day 7 revealed that variant TNO 1 (1:5) released 5FU (46.8%) analogous to its initial mass than the other TNO variants (i.e., ratios of 2:5 and 3:5). FT-IR spectra revealed assimilation of the system components and corroborative with the DSC and XRD analysis (i.e., in ratios of PA:PLA 1:1 and 2:1). In conclusion, the TNO variants produced may be used as a potential stimuli-responsive platform for the site-specific delivery of chemotherapeutic agents such as 5-FU to treat cervical cancer.
Collapse
Affiliation(s)
- Samson A Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zardad Az-Zamakhshariy
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
63
|
Huang TH, Chen CJ, Lin HCA, Chen CH, Fang JY. Self-Nanoemulsifying Drug Delivery System-Containing the Poorly Absorbed Drug - Valsartan in Post-Bariatric Surgery. Int J Nanomedicine 2023; 18:2647-2658. [PMID: 37220630 PMCID: PMC10200115 DOI: 10.2147/ijn.s394624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Purpose Morbid obesity and its related metabolic syndrome are an important health issue. Recently, sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB) have accounted for the most popular bariatric surgeries. Valsartan (VST) is a common hypertension drug, and nano-carriers can increase its solubility and bioavailability. This study aims to explore the nano-VST formula in bariatric surgery subjects. Methods High-fat fed animals were used as obese models. Operations were performed according to a standardized protocol. The drug was administrated by gavage, and blood samples were taken by serial tail vein sampling. Caco-2 cells were used for examining cell viability and drug uptake. A self-nano-emusifying drug delivery system (SNEDDS) formula was composed of sefsol-218, RH-40 and propylene glycol by a specified ratio, while high-performance liquid chromatography (HPLC) was used for determining drug concentrations. Results Post-operatively, subjects that underwent RYGB lost more body weight compared to the SG group. The SNEDDS did not exhibit cytotoxicity after adequate dilution, and the cytotoxicity was not related to VST dose. A better cellular uptake of SNEDDS was observed in vitro. The SNEDDS formula achieved a diameter of 84 nm in distilled water and 140 nm in simulated gastric fluid. In obese animals, the maximum serum concentration (Cmax) of VST was increased 1.68-folds by SNEDDS. In RYGB with SUS, the Cmax was reduced to less than 50% of the obese group. SNEDDS increased the Cmax to 3.5 folds higher than SUS and resulted in 3.28-folds higher AUC0-24 in the RYGB group. Fluorescence imaging also confirmed a stronger signal of SNEDDS in the gastrointestinal mucosa. SNEDDS accumulated a higher drug concentration than suspension alone in the liver of the obese group. Conclusion SNEDDS could reverse the VST malabsorption in RYGB. Further studies are mandatory to clarify post-SG change of drug absorption.
Collapse
Affiliation(s)
- Tzu-Hao Huang
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chih-Jung Chen
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hsin-Chia Angela Lin
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chun-Han Chen
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Jia-You Fang
- Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
64
|
Khalil SMS, Alahmed AM, Munawar K. RNAi-mediated mortality of Culex quinquefasciatus using two delivery methods of potential field application. Acta Trop 2023; 243:106938. [PMID: 37146864 DOI: 10.1016/j.actatropica.2023.106938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
With increasing reports of resistance to traditional insecticides, there is a need for innovative ways for mosquito control. RNAi is a sequence-specific molecular biology technique for gene silencing through degradation of mRNA and prevention of protein translation. Some genes are essential for insect life and their silencing can lead to insect morbidity and/or mortality. Searching for lethal genes in Culex quinquefasciatus, we found dynamin, ROP, HMGR and JHAMT to be lethal targets for RNAi in initial screening through larval soaking in dsRNA solution. Two delivery methods, chitosan nanoparticles and genetically modified yeast cells, were used in this study and proved effective in inducing high larval mortality and low adult emergence. Adult emergence after chitosan nanoparticles/dsRNA treatment was 12.67% ± 1.76 (HMGR), 17.33% ± 1.76 (dynamin), 18.67% ± 0.67 (ROP), and 35.33% ± 0.67 (JHAMT). Genetically modified yeast increased mortalities as adult emergence was 8.33% ± 1.67 (HMGR), 13.33% ± 3.33 (dynamin), and 10% ± 2.89 (JHAMT and ROP). Chitosan nanoparticles retained 75% of its biological activity whereas yeast cells retained >95% of their activities after 7 days of incubation in water. In conclusion, our results showed that these four genes are good targets for C. quinquefasciatus control using RNAi packaged in either chitosan nanoparticles or genetically modified yeast cells.
Collapse
Affiliation(s)
- Sayed M S Khalil
- Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia; Agricultural Genetic Engineering Research Institute, Agricultural Research Center, 9 Gamaa Street, Giza, 12619, Egypt.
| | - Azzam M Alahmed
- Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kashif Munawar
- Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
65
|
Mansour A, Romani M, Acharya AB, Rahman B, Verron E, Badran Z. Drug Delivery Systems in Regenerative Medicine: An Updated Review. Pharmaceutics 2023; 15:pharmaceutics15020695. [PMID: 36840018 PMCID: PMC9967372 DOI: 10.3390/pharmaceutics15020695] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Modern drug discovery methods led to evolving new agents with significant therapeutic potential. However, their properties, such as solubility and administration-related challenges, may hinder their benefits. Moreover, advances in biotechnology resulted in the development of a new generation of molecules with a short half-life that necessitates frequent administration. In this context, controlled release systems are required to enhance treatment efficacy and improve patient compliance. Innovative drug delivery systems are promising tools that protect therapeutic proteins and peptides against proteolytic degradation where controlled delivery is achievable. The present review provides an overview of different approaches used for drug delivery.
Collapse
Affiliation(s)
- Alaa Mansour
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Maya Romani
- Department of Family Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | | | - Betul Rahman
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence:
| | - Elise Verron
- CNRS, CEISAM, UMR 6230, Nantes Université, F-44000 Nantes, France
| | - Zahi Badran
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
66
|
RB Singh K, Nagpure G, Singh J, Singh RP. Introduction to drug-delivery techniques based on nanotechnological approaches. NANOTECHNOLOGY FOR DRUG DELIVERY AND PHARMACEUTICALS 2023:3-28. [DOI: 10.1016/b978-0-323-95325-2.00010-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
67
|
Sakthiganapathi M, Yoganandam GP, Gopal V. Formulation, Characterization, and Evaluation of Wound Healing Potency of a Novel Mattan tailam Nanogel Based on a Famous Traditional Siddha Formula. Avicenna J Med Biotechnol 2023; 15:38-47. [PMID: 36789120 PMCID: PMC9895983 DOI: 10.18502/ajmb.v15i1.11423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/28/2022] [Indexed: 12/27/2022] Open
Abstract
Background The Mattan tailam mixture has been extensively used to heal ulcerous wounds in traditional Siddha practice. The present study aimed to synthesize a Mattan tailam nanogel and evaluate the enhancement of wound healing potential in an experimental wound model. Methods Mattan tailam nanogel was synthesized using the high-energy milling approach, and characterization of nanogel and potency of wound healing was investigated. The novelty of this study was the nanogel preparation of Mattan tailam. Results As expected, a synthesized novel nanogel of Mattan tailam has a distinct, prominent peak with a spherical form, is negatively charged and has an average particle size of 20-30 nm. Mattan tailam nanogel treated rats showed a remarkable reduction (p<0.001) in the wound area. On the 16th day, 10% Mattan tailam nanogel treatment resulted in a higher percentage of wound contraction. The 10% Mattan tailam nanogel group exhibited a faster epithelialization time (14.33 days) and a greater hydroxyproline concentration than the others. The topical application of 10% Mattan tailam nanogel increased tensile strength, signifying a better therapeutic indication. Conclusion The present findings prove that polyherbal Mattan tailam nanogel formulation significantly improves collagen production, wound contraction, and tensile strength.
Collapse
Affiliation(s)
- Meenachisundaram Sakthiganapathi
- Department of Pharmacognosy, College of Pharmacy, Mother Theresa Post Graduate and Research Institute of Health Sciences, A Government of Puducherry Institution, Gorimedu, Puducherry 605 006, India
- School of Pharmacy, Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, India
| | - Gnanakumar Prakash Yoganandam
- Department of Pharmacognosy, College of Pharmacy, Mother Theresa Post Graduate and Research Institute of Health Sciences, A Government of Puducherry Institution, Gorimedu, Puducherry 605 006, India
| | - Venkatachalam Gopal
- Department of Pharmacognosy, College of Pharmacy, Mother Theresa Post Graduate and Research Institute of Health Sciences, A Government of Puducherry Institution, Gorimedu, Puducherry 605 006, India
| |
Collapse
|
68
|
Sapino S, Chindamo G, Chirio D, Morel S, Peira E, Vercelli C, Gallarate M. Nanocarriers in Veterinary Medicine: A Challenge for Improving Osteosarcoma Conventional Treatments. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4501. [PMID: 36558354 PMCID: PMC9785518 DOI: 10.3390/nano12244501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
In recent years, several nanocarrier-based drug delivery systems, such as polymeric nanoparticles, solid lipid nanoparticles, metallic nanoparticles, liposomes, and others, have been explored to target and treat a wide variety of diseases. Their employment has brought many benefits, not only to human medicine but also to veterinary medicine, albeit at a slower rate. Soon, the use of nanocarriers could revolutionize the animal health sector, and many veterinary therapies will be more effective as a result. The purpose of this review is to offer an overview of the main applications of nanocarriers in the veterinary field, from supplements for animal health and reproduction to nanovaccines and nanotherapies. Among the major pathologies that can affect animals, special attention is given to canine osteosarcoma (OSA): a comparison with human OSA is provided and the main treatment options are reviewed emphasizing the benefits that nanocarriers could bring in the treatment of this widespread disease.
Collapse
Affiliation(s)
- Simona Sapino
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Giulia Chindamo
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Daniela Chirio
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Silvia Morel
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale A. Avogadro, 28100 Novara, Italy
| | - Elena Peira
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Cristina Vercelli
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, 10095 Grugliasco, Italy
| | - Marina Gallarate
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| |
Collapse
|
69
|
Saxena T, Sie C, Lin K, Ye D, Saatchi K, Häfeli UO. Potential of Nuclear Imaging Techniques to Study the Oral Delivery of Peptides. Pharmaceutics 2022; 14:2809. [PMID: 36559303 PMCID: PMC9780892 DOI: 10.3390/pharmaceutics14122809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Peptides are small biomolecules known to stimulate or inhibit important functions in the human body. The clinical use of peptides by oral delivery, however, is very limited due to their sensitive structure and physiological barriers present in the gastrointestinal tract. These barriers can be overcome with chemical and mechanical approaches protease inhibitors, permeation enhancers, and polymeric encapsulation. Studying the success of these approaches pre-clinically with imaging techniques such as fluorescence imaging (IVIS) and optical microscopy is difficult due to the lack of in-depth penetration. In comparison, nuclear imaging provides a better platform to observe the gastrointestinal transit and quantitative distribution of radiolabeled peptides. This review provides a brief background on the oral delivery of peptides and states examples from the literature on how nuclear imaging can help to observe and analyze the gastrointestinal transit of oral peptides. The review connects the fields of peptide delivery and nuclear medicine in an interdisciplinary way to potentially overcome the challenges faced during the study of oral peptide formulations.
Collapse
Affiliation(s)
- Tanya Saxena
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Claire Sie
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Kristine Lin
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Daisy Ye
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Urs O. Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T1Z3, Canada
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
70
|
Kafle U, Agrawal S, Dash AK. Injectable Nano Drug Delivery Systems for the Treatment of Breast Cancer. Pharmaceutics 2022; 14:2783. [PMID: 36559276 PMCID: PMC9785637 DOI: 10.3390/pharmaceutics14122783] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most diagnosed type of cancer, with 2.26 million cases and 685,000 deaths recorded in 2020. If left untreated, this deadly disease can metastasize to distant organs, which is the reason behind its incurability and related deaths. Currently, conventional therapies are used to treat breast cancer, but they have numerous shortcomings such as low bioavailability, short circulation time, and off-target toxicity. To address these challenges, nanomedicines are preferred and are being extensively investigated for breast cancer treatment. Nanomedicines are novel drug delivery systems that can improve drug stability, aqueous solubility, blood circulation time, controlled release, and targeted delivery at the tumoral site and enhance therapeutic safety and effectiveness. Nanoparticles (NPs) can be administered through different routes. Although the injectable route is less preferred than the oral route for drug administration, it has its advantages: it helps tailor drugs with targeted moiety, boosts payload, avoids first-pass metabolism, and improves the pharmacokinetic parameters of the active pharmaceutical ingredients. Targeted delivery of nanomedicine, closer to organelles such as the mitochondria and nuclei in breast cancer, reduces the dosage requirements and the toxic effects of chemotherapeutics. This review aims to provide the current status of the recent advances in various injectable nanomedicines for targeted treatment of breast cancer.
Collapse
Affiliation(s)
- Urmila Kafle
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Satish Agrawal
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Alekha K Dash
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
71
|
Pallavi P, Harini K, Alshehri S, Ghoneim MM, Alshlowi A, Gowtham P, Girigoswami K, Shakeel F, Girigoswami A. From Synthetic Route of Silica Nanoparticles to Theranostic Applications. Processes (Basel) 2022; 10:2595. [DOI: 10.3390/pr10122595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The advancements in nanotechnology have quickly developed a new subject with vast applications of nanostructured materials in medicine and pharmaceuticals. The enormous surface-to-volume ratio, ease of surface modification, outstanding biocompatibility, and, in the case of mesoporous nanoparticles, the tunable pore size make the silica nanoparticles (SNPs) a promising candidate for nano-based medical applications. The preparation of SNPs and their contemporary usage as drug carriers, contrast agents for imaging, carrier of photosensitizers (PS) in photodynamic, as well as photothermal treatments are intensely discussed in this review. Furthermore, the potential harmful responses of silica nanoparticles are reviewed using data obtained from in vitro and in vivo experiments conducted by several studies. Moreover, we showcase the engineering of SNPs for the theranostic applications that can address several intrinsic limitations of conventional therapeutics and diagnostics. In the end, a personal perspective was outlined to state SNPs’ current status and future directions, focusing on SNPs’ significant potentiality and opportunities.
Collapse
Affiliation(s)
- Pragya Pallavi
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, India
| | - Karthick Harini
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, India
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Areej Alshlowi
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Pemula Gowtham
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, India
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, India
| |
Collapse
|
72
|
Jampilek J, Kralova K. Anticancer Applications of Essential Oils Formulated into Lipid-Based Delivery Nanosystems. Pharmaceutics 2022; 14:2681. [PMID: 36559176 PMCID: PMC9781429 DOI: 10.3390/pharmaceutics14122681] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
The use of natural compounds is becoming increasingly popular among patients, and there is a renewed interest among scientists in nature-based bioactive agents. Traditionally, herbal drugs can be taken directly in the form of teas/decoctions/infusions or as standardized extracts. However, the disadvantages of natural compounds, especially essential oils, are their instability, limited bioavailability, volatility, and often irritant/allergenic potential. However, these active substances can be stabilized by encapsulation and administered in the form of nanoparticles. This brief overview summarizes the latest results of the application of nanoemulsions, liposomes, solid lipid nanoparticles, and nanostructured lipid carriers used as drug delivery systems of herbal essential oils or used directly for their individual secondary metabolites applicable in cancer therapy. Although the discussed bioactive agents are not typical compounds used as anticancer agents, after inclusion into the aforesaid formulations improving their stability and bioavailability and/or therapeutic profile, they indicated anti-tumor activity and became interesting agents with cancer treatment potential. In addition, co-encapsulation of essential oils with synthetic anticancer drugs into nanoformulations with the aim to achieve synergistic effect in chemotherapy is discussed.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
73
|
Overcoming challenges to enable targeting of metastatic breast cancer tumour microenvironment with nano-therapeutics: Current status and future perspectives. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
74
|
Pisani S, Bertino G, Prina-Mello A, Locati LD, Mauramati S, Genta I, Dorati R, Conti B, Benazzo M. Electroporation in Head-and-Neck Cancer: An Innovative Approach with Immunotherapy and Nanotechnology Combination. Cancers (Basel) 2022; 14:5363. [PMID: 36358782 PMCID: PMC9658293 DOI: 10.3390/cancers14215363] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Squamous cell carcinoma is the most common malignancy that arises in the head-and-neck district. Traditional treatment could be insufficient in case of recurrent and/or metastatic cancers; for this reason, more selective and enhanced treatments are in evaluation in preclinical and clinical trials to increase in situ concentration of chemotherapy drugs promoting a selectively antineoplastic activity. Among all cancer treatment types (i.e., surgery, chemotherapy, radiotherapy), electroporation (EP) has emerged as a safe, less invasive, and effective approach for cancer treatment. Reversible EP, using an intensive electric stimulus (i.e., 1000 V/cm) applied for a short time (i.e., 100 μs), determines a localized electric field that temporarily permealizes the tumor cell membranes while maintaining high cell viability, promoting cytoplasm cell uptake of antineoplastic agents such as bleomycin and cisplatin (electrochemotherapy), calcium (Ca2+ electroporation), siRNA and plasmid DNA (gene electroporation). The higher intracellular concentration of antineoplastic agents enhances the antineoplastic activity and promotes controlled tumor cell death (apoptosis). As secondary effects, localized EP (i) reduces the capillary blood flow in tumor tissue ("vascular lock"), lowering drug washout, and (ii) stimulates the immune system acting against cancer cells. After years of preclinical development, electrochemotherapy (ECT), in combination with bleomycin or cisplatin, is currently one of the most effective treatments used for cutaneous metastases and primary skin and mucosal cancers that are not amenable to surgery. To reach this clinical evidence, in vitro and in vivo models were preclinically developed for evaluating the efficacy and safety of ECT on different tumor cell lines and animal models to optimize dose and administration routes of drugs, duration, and intensity of the electric field. Improvements in reversible EP efficacy are under evaluation for HNSCC treatment, where the focus is on the development of a combination treatment between EP-enhanced nanotechnology and immunotherapy strategies.
Collapse
Affiliation(s)
- Silvia Pisani
- Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi, 19, 27100 Pavia, Italy
| | - Giulia Bertino
- Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi, 19, 27100 Pavia, Italy
| | - Adriele Prina-Mello
- LBCAM, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin 8, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, DO2 W085 Dublin, Ireland
| | - Laura Deborah Locati
- Translational Oncology, IRCCS ICS Maugeri, 27100 Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Simone Mauramati
- Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi, 19, 27100 Pavia, Italy
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Marco Benazzo
- Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi, 19, 27100 Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
75
|
Iannazzo D, Celesti C, Espro C, Ferlazzo A, Giofrè SV, Scuderi M, Scalese S, Gabriele B, Mancuso R, Ziccarelli I, Visalli G, Di Pietro A. Orange-Peel-Derived Nanobiochar for Targeted Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14102249. [PMID: 36297682 PMCID: PMC9607014 DOI: 10.3390/pharmaceutics14102249] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer-targeted drug delivery systems (DDS) based on carbon nanostructures have shown great promise in cancer therapy due to their ability to selectively recognize specific receptors overexpressed in cancer cells. In this paper, we have explored a green route to synthesize nanobiochar (NBC) endowed with graphene structure from the hydrothermal carbonization (HTC) of orange peels and evaluated the suitability of this nanomaterial as a nanoplatform for cancer therapy. In order to compare the cancer-targeting ability of different widely used targeting ligands (TL), we have conjugated NBC with biotin, riboflavin, folic acid and hyaluronic acid and have tested, in vitro, their biocompatibility and uptake ability towards a human alveolar cancer cell line (A549 cells). The nanosystems which showed the best biological performances-namely, the biotin- and riboflavin- conjugated systems-have been loaded with the poorly water-soluble drug DHF (5,5-dimethyl-6a-phenyl-3-(trimethylsilyl)-6,6a-dihydrofuro[3,2-b]furan-2(5H)-one) and tested for their anticancer activity. The in vitro biological tests demonstrated the ability of both systems to internalize the drug in A549 cells. In particular, the biotin-functionalized NBC caused cell death percentages to more than double with respect to the drug alone. The reported results also highlight the positive effect of the presence of oxygen-containing functional groups, present on the NBC surface, to improve the water dispersion stability of the DDS and thus make the approach of using this nanomaterial as nanocarrier for poorly water-soluble drugs effective.
Collapse
Affiliation(s)
- Daniela Iannazzo
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy
- Correspondence: (D.I.); (C.C.)
| | - Consuelo Celesti
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
- Correspondence: (D.I.); (C.C.)
| | - Claudia Espro
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy
| | - Angelo Ferlazzo
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy
| | - Salvatore V. Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 98166 Messina, Italy
| | - Mario Scuderi
- Institute for Microelectronics and Microsystems, National Research Council (CNR-IMM), Ottava Strada n.5, 95121 Catania, Italy
| | - Silvia Scalese
- Institute for Microelectronics and Microsystems, National Research Council (CNR-IMM), Ottava Strada n.5, 95121 Catania, Italy
| | - Bartolo Gabriele
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende, Italy
| | - Raffaella Mancuso
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende, Italy
| | - Ida Ziccarelli
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende, Italy
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphological and Functional Images, University Hospital of Messina, Via Consolare Valeria, 1, 98100 Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphological and Functional Images, University Hospital of Messina, Via Consolare Valeria, 1, 98100 Messina, Italy
| |
Collapse
|
76
|
Henrique Marcondes Sari M, Mota Ferreira L, Cruz L. The use of natural gums to produce nano-based hydrogels and films for topical application. Int J Pharm 2022; 626:122166. [PMID: 36075522 DOI: 10.1016/j.ijpharm.2022.122166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022]
Abstract
Natural gums are a source of biopolymeric materials with a wide range of applications for multiple purposes. These polysaccharides are extensively explored due to their low toxicity, gelling and thickening properties, and bioadhesive potential, which have sparked interest in researchers given their use in producing pharmaceutic dosage forms compared to synthetic agents. Hence, gums can be used as gelling and film-forming agents, which are suitable platforms for topical drug administration. Additionally, recent studies have demonstrated the possibility of obtaining nanocomposite materials formed by a polymeric matrix of gums associated with nanoscale carriers that have shown superior drug delivery performance and compatibility with multiple administration routes compared to starting components. In this sense, research on topical natural gum-based form preparation containing drug-loaded nanocarriers was detailed and discussed herein. A special focus was devoted to the advantages achieved regarding physicochemical and mechanical features, drug delivery capacity, permeability through topical barriers, and biocompatibility of the hydrogels and polymeric films.
Collapse
Affiliation(s)
- Marcel Henrique Marcondes Sari
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | - Letícia Cruz
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
77
|
Liu Z, Zhou D, Yan X, Xiao L, Wang P, Wei J, Liao L. Gold Nanoparticle-Incorporated Chitosan Nanogels as a Theranostic Nanoplatform for CT Imaging and Tumour Chemotherapy. Int J Nanomedicine 2022; 17:4757-4772. [PMID: 36238536 PMCID: PMC9553242 DOI: 10.2147/ijn.s375999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/07/2022] [Indexed: 11/07/2022] Open
Abstract
Purpose The translation of nanocarrier-based theranostics into cancer treatment is limited by their poor cellular uptake, low drug-loading capacity, uncontrolled drug release, and insufficient imaging ability. Methods In this study, novel hybrid nanogels were fabricated as theranostic nanocarriers by modifying chitosan (CTS)/tripolyphosphate (TPP) nanoparticles (NPs) with polyacrylic acid (PAA) and further conjugating cysteine-functionalized gold nanoparticles (AuNPs). Results The resultant nanogels, referred to as CTS/TPP/PAA@AuNPs (CTPA), exhibited excellent colloidal stability and a high encapsulation rate of 87% for the cationic drug doxorubicin (DOX). In the tumour microenvironment, the acidic pH and overexpression of lysozyme triggered CTPA@DOX to degrade and emit smaller nanoblocks (30–40 nm), which sequentially released the drug in a tumour-responsive manner. Cellular uptake experiments demonstrated that CTPA facilitates the entry of DOX into the cytoplasm. Furthermore, as visualised through AuNP-mediated computed tomography (CT) imaging, CTPA@DOX enabled favourable accumulation in the tumour. Our in vitro and in vivo data demonstrated that CTPA enabled advanced tumour cell-targeting delivery of DOX, which showed greater anti-tumour activity and biosafety than free DOX. Conclusion The natural polymer CTS was developed for degradable nanogels, which can precisely track drugs with high antitumour activity. Additionally, the surface adjustment strategy can be assembled to achieve cationic drug loading and high drug-loading capacity, controlled drug release, and sufficient imaging ability. Therefore, multifunctional CTPA enables efficient drug delivery and CT imaging, which is expected to provide a valuable strategy for designing advanced theranostic systems.
Collapse
Affiliation(s)
- Zhe Liu
- The Affiliated Stomatological Hospital of Nanchang University, Nanchang, People’s Republic of China,The Key Laboratory of Oral Biomedicine, Nanchang, People’s Republic of China,Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, People’s Republic of China
| | - Dong Zhou
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, People’s Republic of China
| | - Xuan Yan
- The Affiliated Stomatological Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Lan Xiao
- School of Mechanical, Medical & Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, Australia,Australia China Centre for Tissue Engineering and Regenerative Medicine, Kelvin Grove, Brisbane, Australia
| | - Pei Wang
- The Affiliated Stomatological Hospital of Nanchang University, Nanchang, People’s Republic of China,The Key Laboratory of Oral Biomedicine, Nanchang, People’s Republic of China,Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, People’s Republic of China
| | - Junchao Wei
- The Affiliated Stomatological Hospital of Nanchang University, Nanchang, People’s Republic of China,The Key Laboratory of Oral Biomedicine, Nanchang, People’s Republic of China,Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, People’s Republic of China,School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, People’s Republic of China,Correspondence: Junchao Wei; Lan Liao, Email ;
| | - Lan Liao
- The Affiliated Stomatological Hospital of Nanchang University, Nanchang, People’s Republic of China,The Key Laboratory of Oral Biomedicine, Nanchang, People’s Republic of China,Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, People’s Republic of China
| |
Collapse
|
78
|
Sahoo P, Dey J, Mahapatra SR, Ghosh A, Jaiswal A, Padhi S, Prabhuswamimath SC, Misra N, Suar M. Nanotechnology and COVID-19 Convergence: Toward New Planetary Health Interventions Against the Pandemic. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:473-488. [PMID: 36040392 DOI: 10.1089/omi.2022.0072] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
COVID-19 is a systemic disease affecting multiple organ systems and caused by infection with the SARS-CoV-2 virus. Two years into the COVID-19 pandemic and after the introduction of several vaccines, the pandemic continues to evolve in part owing to global inequities in access to preventive and therapeutic measures. We are also witnessing the introduction of antivirals against COVID-19. Against this current background, we review the progress made with nanotechnology-based approaches such as nanoformulations to combat the multiorgan effects of SARS-CoV-2 infection from a systems medicine lens. While nanotechnology has previously been widely utilized in the antiviral research domain, it has not yet received the commensurate interest in the case of COVID-19 pandemic response strategies. Notably, SARS-CoV-2 and nanomaterials are similar in size ranging from 50 to 200 nm. Nanomaterials offer the promise to reduce the side effects of antiviral drugs, codeliver multiple drugs while maintaining stability in the biological milieu, and sustain the release of entrapped drug(s) for a predetermined time period, to name but a few conceivable scenarios, wherein nanotechnology can enable and empower preventive medicine and therapeutic innovations against SARS-CoV-2. We conclude the article by underlining that nanotechnology-based interventions warrant further consideration to enable precision planetary health responses against the COVID-19 pandemic.
Collapse
Affiliation(s)
- Panchanan Sahoo
- Kalinga Institute of Medical Sciences, Kalinga Institute of Industrial Technology (KIIT) Deemed to Be University, Bhubaneswar, India
| | - Jyotirmayee Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
| | - Soumya Ranjan Mahapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
| | - Arpan Ghosh
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
| | - Aryan Jaiswal
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
| | - Santwana Padhi
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
| | - Samudyata C Prabhuswamimath
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
| |
Collapse
|
79
|
Zhang Z, Dalan R, Hu Z, Wang JW, Chew NW, Poh KK, Tan RS, Soong TW, Dai Y, Ye L, Chen X. Reactive Oxygen Species Scavenging Nanomedicine for the Treatment of Ischemic Heart Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202169. [PMID: 35470476 DOI: 10.1002/adma.202202169] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Ischemic heart disease (IHD) is the leading cause of disability and mortality worldwide. Reactive oxygen species (ROS) have been shown to play key roles in the progression of diabetes, hypertension, and hypercholesterolemia, which are independent risk factors that lead to atherosclerosis and the development of IHD. Engineered biomaterial-based nanomedicines are under extensive investigation and exploration, serving as smart and multifunctional nanocarriers for synergistic therapeutic effect. Capitalizing on cell/molecule-targeting drug delivery, nanomedicines present enhanced specificity and safety with favorable pharmacokinetics and pharmacodynamics. Herein, the roles of ROS in both IHD and its risk factors are discussed, highlighting cardiovascular medications that have antioxidant properties, and summarizing the advantages, properties, and recent achievements of nanomedicines that have ROS scavenging capacity for the treatment of diabetes, hypertension, hypercholesterolemia, atherosclerosis, ischemia/reperfusion, and myocardial infarction. Finally, the current challenges of nanomedicines for ROS-scavenging treatment of IHD and possible future directions are discussed from a clinical perspective.
Collapse
Affiliation(s)
- Zhan Zhang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 408433, Singapore
| | - Zhenyu Hu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jiong-Wei Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Diagnostic Radiology and Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Nicholas Ws Chew
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, 119074, Singapore
| | - Kian-Keong Poh
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, 119074, Singapore
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore, 119609, Singapore
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macao, Taipa, Macau SAR, 999078, China
| | - Lei Ye
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology and Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
80
|
Mehta J, Utkarsh K, Fuloria S, Singh T, Sekar M, Salaria D, Rolta R, Begum MY, Gan SH, Rani NNIM, Chidambaram K, Subramaniyan V, Sathasivam KV, Lum PT, Uthirapathy S, Fadare OA, Awofisayo O, Fuloria NK. Antibacterial Potential of Bacopa monnieri (L.) Wettst. and Its Bioactive Molecules against Uropathogens-An In Silico Study to Identify Potential Lead Molecule(s) for the Development of New Drugs to Treat Urinary Tract Infections. Molecules 2022; 27:4971. [PMID: 35956923 PMCID: PMC9370325 DOI: 10.3390/molecules27154971] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/25/2022] Open
Abstract
Urinary tract infections (UTIs) are becoming more common, requiring extensive protection from antimicrobials. The global expansion of multi-drug resistance uropathogens in the past decade emphasizes the necessity of newer antibiotic treatments and prevention strategies for UTIs. Medicinal plants have wide therapeutic applications in both the prevention and management of many ailments. Bacopa monnieri is a medicinal plant that is found in the warmer and wetlands regions of the world. It has been used in Ayurvedic systems for centuries. The present study aimed to investigate the antibacterial potential of the extract of B. monnieri leaves and its bioactive molecules against UTIs that are caused by Klebsiella pneumoniae and Proteus mirabilis. This in vitro experimental study was conducted by an agar well diffusion method to evaluate the antimicrobial effect of 80% methanol, 96% ethanol, and aqueous extracts of B. monnieri leaves on uropathogens. Then, further screening of their phytochemicals was carried out using standard methods. To validate the bioactive molecules and the microbe interactions, AutoDock Vina software was used for molecular docking with the Klebsiella pneumoniae fosfomycin resistance protein (5WEW) and the Zn-dependent receptor-binding domain of Proteus mirabilis MR/P fimbrial adhesin MrpH (6Y4F). Toxicity prediction and drug likeness were predicted using ProTox-II and Molinspiration, respectively. A molecular dynamics (MD) simulation was carried out to study the protein ligand complexes. The methanolic leaves extract of B. monnieri revealed a 22.3 mm ± 0.6 mm to 25.0 mm ± 0.5 mm inhibition zone, while ethanolic extract seemed to produce 19.3 mm ± 0.8 mm to 23.0 mm ± 0.4 mm inhibition zones against K. pneumoniae with the use of increasing concentrations. In the case of P. mirabilis activity, the methanolic extracts showed a 21.0 mm ± 0.8 mm to 24.0 mm ± 0.6 mm zone of inhibition and the ethanol extract produced a 17.0 mm ± 0.9 mm to 23.0 mm ± 0.7 mm inhibition zone with increasing concentrations. Carbohydrates, flavonoids, saponin, phenolic, and terpenoid were common phytoconstituents identified in B. monnieri extracts. Oroxindin showed the best interactions with the binding energies with 5WEW and 6Y4F, -7.5 kcal/mol and -7.4 kcal/mol, respectively. Oroxindin, a bioactive molecule, followed Lipinski's rule of five and exhibited stability in the MD simulation. The overall results suggest that Oroxindin from B. monnieri can be a potent inhibitor for the effective killing of K. pneumoniae and P. mirabilis. Additionally, its safety has been established, indicating its potential for future drug discovery and development in the treatment for UTIs.
Collapse
Affiliation(s)
- Jyoti Mehta
- Faculty of Applied sciences and Biotechnology, Shoolini University, Solan 173212, India
| | - Kumar Utkarsh
- Faculty of Applied sciences and Biotechnology, Shoolini University, Solan 173212, India
- DNA Lab’s Center for Applied Sciences, Dehradun 248001, Uttarakhand, India
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Tejpal Singh
- DNA Lab’s Center for Applied Sciences, Dehradun 248001, Uttarakhand, India
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Perak, Malaysia
| | - Deeksha Salaria
- Faculty of Applied sciences and Biotechnology, Shoolini University, Solan 173212, India
| | - Rajan Rolta
- Faculty of Applied sciences and Biotechnology, Shoolini University, Solan 173212, India
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Perak, Malaysia
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
| | | | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Perak, Malaysia
| | - Subasini Uthirapathy
- Department of Pharmacology, Faculty of Pharmacy, Tishk International University, Erbil 44001, Kurdistan Region, Iraq
| | - Olatomide A. Fadare
- Organic Chemistry Research Lab, Obafemi Awolowo University, Osun 220282, Nigeria
| | - Oladoja Awofisayo
- Department of Pharmaceutical and Medical Chemistry, University of Uyo, Uyo 520003, Nigeria
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| |
Collapse
|
81
|
A comprehensive review on different approaches for tumor targeting using nanocarriers and recent developments with special focus on multifunctional approaches. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00583-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
82
|
Nanocarriers: A Reliable Tool for the Delivery of Anticancer Drugs. Pharmaceutics 2022; 14:pharmaceutics14081566. [PMID: 36015192 PMCID: PMC9415391 DOI: 10.3390/pharmaceutics14081566] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/26/2022] Open
Abstract
Nanomedicines have gained popularity due to their potential therapeutic applications, especially cancer treatment. Targeted nanoparticles can deliver drugs directly to cancer cells and enable prolonged drug release, reducing off-target toxicity and increasing therapeutic efficacy. However, translating nanomedicines from preclinical to clinical settings has been difficult. Rapid advancements in nanotechnology promise to enhance cancer therapies. Nanomedicine offers advanced targeting and multifunctionality. Nanoparticles (NPs) have several uses nowadays. They have been studied as drug transporters, tumor gene delivery agents, and imaging contrast agents. Nanomaterials based on organic, inorganic, lipid, or glycan substances and synthetic polymers have been used to enhance cancer therapies. This review focuses on polymeric nanoparticle delivery strategies for anticancer nanomedicines.
Collapse
|
83
|
Loloi J, Babar M, Davies KP, Suadicani SO. Nanotechnology as a tool to advance research and treatment of non-oncologic urogenital diseases. Ther Adv Urol 2022; 14:17562872221109023. [PMID: 35924206 PMCID: PMC9340423 DOI: 10.1177/17562872221109023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
Nanotechnology represents an expanding area of research and innovation in almost every field of science, including Medicine, where nanomaterial-based products have been developed for diagnostic and therapeutic applications. Because of their small, nanoscale size, these materials exhibit unique physical and chemical properties that differ from those of each component when considered in bulk. In Nanomedicine, there is an increasing interest in harnessing these unique properties to engineer nanocarriers for the delivery of therapeutic agents. Nano-based drug delivery platforms have many advantages over conventional drug administration routes as this technology allows for local and transdermal applications of therapeutics that can bypass the first-pass metabolism, improves drug efficacy through encapsulation of hydrophobic drugs, and allows for a sustained and controlled release of encapsulated agents. In Urology, nano-based drug delivery platforms have been extensively investigated and implemented for cancer treatment. However, there is also great potential for use of nanotechnology to treat non-oncologic urogenital diseases. We provide an update on research that is paving the way for clinical translation of nanotechnology in the areas of erectile dysfunction (ED), overactive bladder (OAB), interstitial cystitis/bladder pain syndrome (IC/BPS), and catheter-associated urinary tract infections (CAUTIs). Overall, preclinical and clinical studies have proven the utility of nanomaterials both as vehicles for transdermal and intravesical delivery of therapeutic agents and for urinary catheter formulation with antimicrobial agents to treat non-oncologic urogenital diseases. Although clinical translation will be dependent on overcoming regulatory challenges, it is inevitable before there is universal adoption of this technology to treat non-oncologic urogenital diseases.
Collapse
|
84
|
Polymeric Nanosystems Applied for Metal-Based Drugs and Photosensitizers Delivery: The State of the Art and Recent Advancements. Pharmaceutics 2022; 14:pharmaceutics14071506. [PMID: 35890401 PMCID: PMC9320085 DOI: 10.3390/pharmaceutics14071506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/03/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Nanotechnology-based approaches for targeting the delivery and controlled release of metal-based therapeutic agents have revealed significant potential as tools for enhancing the therapeutic effect of metal-based agents and minimizing their systemic toxicities. In this context, a series of polymer-based nanosized systems designed to physically load or covalently conjugate metal-based therapeutic agents have been remarkably improving their bioavailability and anticancer efficacy. Initially, the polymeric nanocarriers were applied for platinum-based chemotherapeutic agents resulting in some nanoformulations currently in clinical tests and even in medical applications. At present, these nanoassemblies have been slowly expanding for nonplatinum-containing metal-based chemotherapeutic agents. Interestingly, for metal-based photosensitizers (PS) applied in photodynamic therapy (PDT), especially for cancer treatment, strategies employing polymeric nanocarriers have been investigated for almost 30 years. In this review, we address the polymeric nanocarrier-assisted metal-based therapeutics agent delivery systems with a specific focus on non-platinum systems; we explore some biological and physicochemical aspects of the polymer–metallodrug assembly. Finally, we summarize some recent advances in polymeric nanosystems coupled with metal-based compounds that present potential for successful clinical applications as chemotherapeutic or photosensitizing agents. We hope this review can provide a fertile ground for the innovative design of polymeric nanosystems for targeting the delivery and controlled release of metal-containing therapeutic agents.
Collapse
|
85
|
Hsing MT, Hsu HT, Chang CH, Chang KB, Cheng CY, Lee JH, Huang CL, Yang MY, Yang YC, Liu SY, Yen CM, Yang SF, Hung HS. Improved Delivery Performance of n-Butylidenephthalide-Polyethylene Glycol-Gold Nanoparticles Efficient for Enhanced Anti-Cancer Activity in Brain Tumor. Cells 2022; 11:cells11142172. [PMID: 35883615 PMCID: PMC9325228 DOI: 10.3390/cells11142172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
n-butylidenephthalide (BP) has been verified as having the superior characteristic of cancer cell toxicity. Furthermore, gold (Au) nanoparticles are biocompatible materials, as well as effective carriers for delivering bio-active molecules for cancer therapeutics. In the present research, Au nanoparticles were first conjugated with polyethylene glycol (PEG), and then cross-linked with BP to obtain PEG-Au-BP nanodrugs. The physicochemical properties were characterized through ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), and dynamic light scattering (DLS) to confirm the combination of PEG, Au, and BP. In addition, both the size and structure of Au nanoparticles were observed through scanning electron microscopy (SEM) and transmission electron microscopy (TEM), where the size of Au corresponded to the results of DLS assay. Through in vitro assessments, non-transformed BAEC and DBTRG human glioma cells were treated with PEG-Au-BP drugs to investigate the tumor-cell selective cytotoxicity, cell uptake efficiency, and mechanism of endocytic routes. According to the results of MTT assay, PEG-Au-BP was able to significantly inhibit DBTRG brain cancer cell proliferation. Additionally, cell uptake efficiency and potential cellular transportation in both BAEC and DBTRG cell lines were observed to be significantly higher at 2 and 24 h. Moreover, the mechanisms of endocytosis, clathrin-mediated endocytosis, and cell autophagy were explored and determined to be favorable routes for BAEC and DBTRG cells to absorb PEG-Au-BP nanodrugs. Next, the cell progression and apoptosis of DBTRG cells after PEG-Au-BP treatment was investigated by flow cytometry. The results show that PEG-Au-BP could remarkably regulate the DBTRG cell cycle at the Sub-G1 phase, as well as induce more apoptotic cells. The expression of apoptotic-related proteins in DBTRG cells was determined through Western blotting assay. After treatment with PEG-Au-BP, the apoptotic cascade proteins p21, Bax, and Act-caspase-3 were all significantly expressed in DBTRG brain cancer cells. Through in vivo assessments, the tissue morphology and particle distribution in a mouse model were examined after a retro-orbital sinus injection containing PEG-Au-BP nanodrugs. The results demonstrate tissue integrity in the brain (forebrain, cerebellum, and midbrain), heart, liver, spleen, lung, and kidney, as they did not show significant destruction due to PEG-Au-BP treatment. Simultaneously, the extended retention period for PEG-Au-BP nanodrugs was discovered, particularly in brain tissue. The above findings identify PEG-Au-BP as a potential nanodrug for brain cancer therapies.
Collapse
Affiliation(s)
- Ming-Tai Hsing
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (M.-T.H.); (H.-T.H.)
- Department of Neurosurgery, Changhua Christian Hospital, Changhua 50006, Taiwan; (C.-Y.C.); (J.-H.L.); (C.-L.H.)
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Hui-Ting Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (M.-T.H.); (H.-T.H.)
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Pathology, Changhua Christian Hospital, Changhua 50006, Taiwan
| | - Chih-Hsuan Chang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (C.-H.C.); (K.-B.C.)
| | - Kai-Bo Chang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (C.-H.C.); (K.-B.C.)
| | - Chun-Yuan Cheng
- Department of Neurosurgery, Changhua Christian Hospital, Changhua 50006, Taiwan; (C.-Y.C.); (J.-H.L.); (C.-L.H.)
| | - Jae-Hwan Lee
- Department of Neurosurgery, Changhua Christian Hospital, Changhua 50006, Taiwan; (C.-Y.C.); (J.-H.L.); (C.-L.H.)
| | - Chien-Li Huang
- Department of Neurosurgery, Changhua Christian Hospital, Changhua 50006, Taiwan; (C.-Y.C.); (J.-H.L.); (C.-L.H.)
| | - Meng-Yin Yang
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (S.-Y.L.); (C.-M.Y.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- College of Nursing, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan
- College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yi-Chin Yang
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (S.-Y.L.); (C.-M.Y.)
| | - Szu-Yuan Liu
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (S.-Y.L.); (C.-M.Y.)
| | - Chun-Ming Yen
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (S.-Y.L.); (C.-M.Y.)
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (M.-T.H.); (H.-T.H.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: (S.-F.Y.); (H.-S.H.); Tel.: +886-4-24739595 (ext. 34253) (S.-F.Y.); +886-4-22052121 (ext. 7827) (H.-S.H.); Fax: +886-4-22333641 (H.-S.H.)
| | - Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (C.-H.C.); (K.-B.C.)
- Translational Medicine Research, China Medical University Hospital, Taichung 40402, Taiwan
- Correspondence: (S.-F.Y.); (H.-S.H.); Tel.: +886-4-24739595 (ext. 34253) (S.-F.Y.); +886-4-22052121 (ext. 7827) (H.-S.H.); Fax: +886-4-22333641 (H.-S.H.)
| |
Collapse
|
86
|
Li C, Zhao T, Li L, Hu X, Li C, Chen W, Hu Y. Stimuli-Responsive Gold Nanocages for Cancer Diagnosis and Treatment. Pharmaceutics 2022; 14:1321. [PMID: 35890217 PMCID: PMC9318695 DOI: 10.3390/pharmaceutics14071321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 02/01/2023] Open
Abstract
With advances in nanotechnology, various new drug delivery systems (DDSs) have emerged and played a key role in the diagnosis and treatment of cancers. Over the last two decades, gold nanocages (AuNCs) have been attracting considerable attention because of their outstanding properties. This review summarizes current advancements in endogenous, exogenous, and dual/multi-stimuli responsive AuNCs in drug delivery. This review focuses on the properties, clinical translation potential, and limitations of stimuli-responsive AuNCs for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Chunming Li
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing 400030, China; (C.L.); (L.L.); (X.H.); (C.L.)
| | - Tengyue Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou 450001, China;
| | - Lixian Li
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing 400030, China; (C.L.); (L.L.); (X.H.); (C.L.)
| | - Xiaogang Hu
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing 400030, China; (C.L.); (L.L.); (X.H.); (C.L.)
| | - Chao Li
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing 400030, China; (C.L.); (L.L.); (X.H.); (C.L.)
| | - Wanyi Chen
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing 400030, China; (C.L.); (L.L.); (X.H.); (C.L.)
| | - Yurong Hu
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou 450001, China;
| |
Collapse
|
87
|
Enrichment Methods for Murine Liver Non-Parenchymal Cells Differentially Affect Their Immunophenotype and Responsiveness towards Stimulation. Int J Mol Sci 2022; 23:ijms23126543. [PMID: 35742987 PMCID: PMC9223567 DOI: 10.3390/ijms23126543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatocytes comprise the majority of the liver and largely exert metabolic functions, whereas non-parenchymal cells (NPCs)—comprising Kupffer cells, dendritic cells and liver sinusoidal endothelial cells—control the immunological state within this organ. Here, we compared the suitability of two isolation methods for murine liver NPCs. Liver perfusion (LP) with collagenase/DNase I applied via the portal vein leads to efficient liver digestion, whereas the modified liver dissociation (LD) method combines mechanical dissociation of the retrieved organ with enzymatic degradation of the extracellular matrix. In cases of both LP and LD, NPCs were enriched by subsequent gradient density centrifugation. Our results indicate that LP and LD are largely comparable with regards to the yield, purity, and composition of liver NPCs. However, LD-enriched liver NPCs displayed a higher degree of activation after overnight cultivation, and accordingly were less responsive towards stimulation with toll-like receptor ligands that are frequently used as adjuvants, e.g., in nano-vaccines. We conclude that LP is more suitable for obtaining liver NPCs for subsequent in vitro studies, whereas LD as the less laborious method, is more convenient for parallel isolation of larger numbers of samples for ex vivo analysis.
Collapse
|
88
|
davoodikia B, Pirali Hamedani M, Saffari M, Esmaeil Sadat Ebrahimi S, Seyyed hamzeh M, Hashemi S, Shafiee Ardestani M, Masoumeh Ghoreishi S. Synthesis of Novel Nano-Radiotracer for In-vivo Bone Imaging: 99mTc- Citric Acid Based PEG Dendrimer and Its Conjugation with Alendronate. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
89
|
Insights into Aptamer-Drug Delivery Systems against Prostate Cancer. Molecules 2022; 27:molecules27113446. [PMID: 35684384 PMCID: PMC9182114 DOI: 10.3390/molecules27113446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Prostate cancer is a common cancer in elderly males. Significant progress has been made in the drug therapies for prostate cancer in recent years. However, side effects are still problems that have not been overcome by the currently used anti-prostate cancer drugs. Novel technologies can be applied to reduce or even eliminate the side effects of drugs. An aptamer may be a sequence of nucleic acids or peptides that can specifically recognize proteins or cells. Taking advantage of this feature, scientists have designed aptamer-drug delivery systems for the development of anti-prostate cancer agents. Theoretically, these aptamer-drug delivery systems can specifically recognize prostate cancer cells and then induce cell death without attacking normal cells. We collected the relevant literature in this field and found that at least nine compounds have been prepared as aptamer-drug delivery systems to evaluate their precise anti-prostate cancer effects. However, the currently studied aptamer-drug delivery systems have not yet entered the market due to defects. Here, we analyze the published data, summarize the characteristics of these delivery systems, and propose ways to promote their application, thus promoting the development of the aptamer-drug delivery systems against prostate cancer.
Collapse
|
90
|
Folic acid conjugated poly(amidoamine) dendrimer as a smart nanocarriers for tracing, imaging, and treating cancers over-expressing folate receptors. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111156] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
91
|
Xu Y, Chen A, Wu J, Wan Y, You M, Gu X, Guo H, Tan S, He Q, Hu B. Nanomedicine: An Emerging Novel Therapeutic Strategy for Hemorrhagic Stroke. Int J Nanomedicine 2022; 17:1927-1950. [PMID: 35530973 PMCID: PMC9075782 DOI: 10.2147/ijn.s357598] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yating Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Anqi Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Jiehong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Yan Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Mingfeng You
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Xinmei Gu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Hongxiu Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Sengwei Tan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Correspondence: Bo Hu; Quanwei He, Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China, Tel +86-27-87542857, Fax +86-27-87547063, Email ;
| |
Collapse
|
92
|
Musumeci T, Di Benedetto G, Carbone C, Bonaccorso A, Amato G, Lo Faro MJ, Burgaletto C, Puglisi G, Bernardini R, Cantarella G. Intranasal Administration of a TRAIL Neutralizing Monoclonal Antibody Adsorbed in PLGA Nanoparticles and NLC Nanosystems: An In Vivo Study on a Mouse Model of Alzheimer's Disease. Biomedicines 2022; 10:985. [PMID: 35625722 PMCID: PMC9138905 DOI: 10.3390/biomedicines10050985] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that progressively compromises cognitive functions. Tumor necrosis factor (TNF)-Related Apoptosis Inducing Ligand (TRAIL), a proinflammatory cytokine belonging to the TNF superfamily, appears to be a key player in the inflammatory/immune orchestra of the AD brain. Despite the ability of an anti-TRAIL monoclonal antibody to reach the brain producing beneficial effects in AD mice, we attempted to develop such a TRAIL-neutralizing monoclonal antibody adsorbed on lipid and polymeric nanocarriers, for intranasal administration, in a valid approach to overcome issues related to both high dose and drug transport across the blood-brain barrier. The two types of nanomedicines produced showed physico-chemical characteristics appropriate for intranasal administration. As confirmed by enzyme-linked immunosorbent assay (ELISA), both nanomedicines were able to form a complex with the antibody with an encapsulation efficiency of ≈99%. After testing in vitro the immunoneutralizing properties of the nanomedicines, the latter were intranasally administered in AD mice. The antibody-nanocarrier complexes were detectable in the brain in substantial amounts at concentrations significantly higher compared to the free form of the anti-TRAIL antibody. These data support the use of nanomedicine as an optimal method for the delivery of the TRAIL neutralizing antibody to the brain through the nose-to-brain route, aiming to improve the biological attributes of anti-TRAIL-based therapy for AD treatment.
Collapse
Affiliation(s)
- Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (T.M.); (C.C.); (A.B.); (G.A.); (G.P.)
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (G.D.B.); (C.B.); (G.C.)
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (T.M.); (C.C.); (A.B.); (G.A.); (G.P.)
| | - Angela Bonaccorso
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (T.M.); (C.C.); (A.B.); (G.A.); (G.P.)
| | - Giovanni Amato
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (T.M.); (C.C.); (A.B.); (G.A.); (G.P.)
| | - Maria Josè Lo Faro
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy;
- CNR-IMM UoS Catania, Istituto per La Microelettronica e Microsistemi, Via Santa Sofia 64, 95123 Catania, Italy
| | - Chiara Burgaletto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (G.D.B.); (C.B.); (G.C.)
| | - Giovanni Puglisi
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (T.M.); (C.C.); (A.B.); (G.A.); (G.P.)
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (G.D.B.); (C.B.); (G.C.)
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (G.D.B.); (C.B.); (G.C.)
| |
Collapse
|
93
|
Emerging Nanotherapeutic Approaches to Overcome Drug Resistance in Cancers with Update on Clinical Trials. Pharmaceutics 2022; 14:pharmaceutics14040866. [PMID: 35456698 PMCID: PMC9028322 DOI: 10.3390/pharmaceutics14040866] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
A key issue with modern cancer treatments is the emergence of resistance to conventional chemotherapy and molecularly targeted medicines. Cancer nanotherapeutics were created in order to overcome the inherent limitations of traditional chemotherapeutics. Over the last few decades, cancer nanotherapeutics provided unparalleled opportunities to understand and overcome drug resistance through clinical assessment of rationally designed nanoparticulate delivery systems. In this context, various design strategies such as passive targeting, active targeting, nano-drug, and multimodal nano-drug combination therapy provided effective cancer treatment. Even though cancer nanotherapy has made great technological progress, tumor biology complexity and heterogeneity and a lack of comprehensive knowledge of nano-bio interactions remain important roadblocks to future clinical translation and commercialization. The current developments and advancements in cancer nanotherapeutics employing a wide variety of nanomaterial-based platforms to overcome cancer treatment resistance are discussed in this article. There is also a review of various nanotherapeutics-based approaches to cancer therapy, including targeting strategies for the tumor microenvironment and its components, advanced delivery systems for specific targeting of cancer stem cells (CSC), as well as exosomes for delivery strategies, and an update on clinical trials. Finally, challenges and the future perspective of the cancer nanotherapeutics to reverse cancer drug resistance are discussed.
Collapse
|
94
|
De R, Mahata MK, Kim K. Structure-Based Varieties of Polymeric Nanocarriers and Influences of Their Physicochemical Properties on Drug Delivery Profiles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105373. [PMID: 35112798 PMCID: PMC8981462 DOI: 10.1002/advs.202105373] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/09/2022] [Indexed: 05/04/2023]
Abstract
Carriers are equally important as drugs. They can substantially improve bioavailability of cargos and safeguard healthy cells from toxic effects of certain therapeutics. Recently, polymeric nanocarriers (PNCs) have achieved significant success in delivering drugs not only to cells but also to subcellular organelles. Variety of natural sources, availability of different synthetic routes, versatile molecular architectures, exploitable physicochemical properties, biocompatibility, and biodegradability have presented polymers as one of the most desired materials for nanocarrier design. Recent innovative concepts and advances in PNC-associated nanotechnology are providing unprecedented opportunities to engineer nanocarriers and their functions. The efficiency of therapeutic loading has got considerably increased. Structural design-based varieties of PNCs are widely employed for the delivery of small therapeutic molecules to genes, and proteins. PNCs have gained ever-increasing attention and certainly paves the way to develop advanced nanomedicines. This article presents a comprehensive investigation of structural design-based varieties of PNCs and the influences of their physicochemical properties on drug delivery profiles with perspectives highlighting the inevitability of incorporating both the multi-stimuli-responsive and multi-drug delivery properties in a single carrier to design intelligent PNCs as new and emerging research directions in this rapidly developing area.
Collapse
Affiliation(s)
- Ranjit De
- Laboratory of Molecular NeurophysiologyDepartment of Life SciencesPohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
- Division of Integrative Biosciences and Biotechnology (IBB)Pohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
| | - Manoj Kumar Mahata
- Drittes Physikalisches Institut ‐ BiophysikGeorg‐August‐Universität GöttingenFriedrich‐Hund‐Platz 1Göttingen37077Germany
| | - Kyong‐Tai Kim
- Laboratory of Molecular NeurophysiologyDepartment of Life SciencesPohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
- Division of Integrative Biosciences and Biotechnology (IBB)Pohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
| |
Collapse
|
95
|
Liu Z, Zhang Y, Shen N, Sun J, Tang Z, Chen X. Destruction of tumor vasculature by vascular disrupting agents in overcoming the limitation of EPR effect. Adv Drug Deliv Rev 2022; 183:114138. [PMID: 35143895 DOI: 10.1016/j.addr.2022.114138] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/27/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023]
Abstract
Nanomedicine greatly improves the efficiency in the delivery of antitumor drugs into the tumor, but insufficient tumoral penetration impairs the therapeutic efficacy of most nanomedicines. Vascular disrupting agent (VDA) nanomedicines are distributed around the tumor vessels due to the low tissue penetration in solid tumors, and the released drugs can selectively destroy immature tumor vessels and block the supply of oxygen and nutrients, leading to the internal necrosis of the tumors. VDAs can also improve the vascular permeability of the tumor, further increasing the extravasation of VDA nanomedicines in the tumor site, markedly reducing the dependence of nanomedicines on the enhanced permeability and retention effect (EPR effect). This review highlights the progress of VDA nanomedicines in recent years and their application in cancer therapy. First, the mechanisms of different VDAs are introduced. Subsequently, different strategies of delivering VDAs are described. Finally, multiple combination strategies with VDA nanomedicines in cancer therapy are described in detail.
Collapse
|
96
|
Formulation of Chitosan-Coated Brigatinib Nanospanlastics: Optimization, Characterization, Stability Assessment and In-Vitro Cytotoxicity Activity against H-1975 Cell Lines. Pharmaceuticals (Basel) 2022; 15:ph15030348. [PMID: 35337145 PMCID: PMC8948618 DOI: 10.3390/ph15030348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
The purpose of the current study was to develop Brigatinib (BGT)-loaded nanospanlastics (BGT-loaded NSPs) (S1-S13) containing Span 60 with different edge activators (Tween 80 and Pluronic F127) and optimized based on the vesicle size, zeta potential (ZP), and percent entrapment efficiency (%EE) using Design-Expert® software. The optimum formula was recommended with desirability of 0.819 and composed of Span-60:Tween 80 at a ratio of 4:1 and 10 min as a sonication time (S13). It showed predicted EE% (81.58%), vesicle size (386.55 nm), and ZP (−29.51 mv). The optimized nanospanlastics (S13) was further coated with chitosan and further evaluated for Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), in vitro release, Transmission Electron Microscopy (TEM), stability and in-vitro cytotoxicity studies against H-1975 lung cancer cell lines. The DSC and XRD revealed complete encapsulation of the drug. TEM imagery revealed spherical nanovesicles with a smooth surface. Also, the coated formula showed high stability for three months in two different conditions. Moreover, it resulted in improved and sustained drug release than free BGT suspension and exhibited Higuchi kinetic release mechanism. The cytotoxic activity of BGT-loaded SPs (S13) was enhanced three times in comparison to free the BGT drug against the H-1975 cell lines. Overall, these results confirmed that BGT-loaded SPs could be a promising nanocarrier to improve the anticancer efficacy of BGT.
Collapse
|
97
|
Zoulikha M, He W. Targeted Drug Delivery for Chronic Lymphocytic Leukemia. Pharm Res 2022; 39:441-461. [DOI: 10.1007/s11095-022-03214-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/21/2022] [Indexed: 02/06/2023]
|
98
|
Zhang C, Fu S, Zhang F, Han M, Wang X, Du J, Zhang H, Li W. Affibody Modified G-quadruplex DNA Micelles Incorporating Polymeric 5-Fluorodeoxyuridine for Targeted Delivery of Curcumin to Enhance Synergetic Therapy of HER2 Positive Gastric Cancer. NANOMATERIALS 2022; 12:nano12040696. [PMID: 35215023 PMCID: PMC8879187 DOI: 10.3390/nano12040696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022]
Abstract
Combination chemotherapy is emerging as an important strategy for cancer treatment with decreased side effects. However, chemotherapeutic drugs with different solubility are not easy to realize co-delivery in traditional nanocarriers. Herein, an affibody modified G-quadruplex DNA micellar prodrug (affi-F/GQs) of hydrophilic 5-fluorodeoxyuridine (FUdR) by integrating polymeric FUdRs into DNA strands is developed for the first time. To achieve synergistic efficacy with hydrophobic drugs, curcumin (Cur) is co-loaded into affi-F/GQs micelles to prepare the dual drug-loaded DNA micelles (Cur@affi-F/GQs), in which affibody is employed as a targeting moiety to facilitate HER2 receptor-mediated uptake. Cur@affi-F/GQs have a small size of approximately 130 nm and exhibit excellent stability. The system co-delivers FUdR and Cur in a ratiometric manner, and the drug loading rates are 21.1% and 5.6%, respectively. Compared with the physical combination of FUdR and Cur, Cur@affi-F/GQs show higher cytotoxicity and greater synergistic effect on HER2 positive gastric cancer N87 cells. Surprisingly, Cur@affi-F/GQs significantly enhance the expression and activity of apoptosis-associated proteins in Bcl-2/Bax-caspase 8, 9-caspase 3 apoptotic pathway, which is the main factor in the death of tumor cells induced by FUdR. Overall, this nanoencapsulation is a promising candidate for the targeted co-delivery of drugs with significant differences in solubility.
Collapse
Affiliation(s)
- Chao Zhang
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province-Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (C.Z.); (S.F.); (F.Z.); (M.H.); (X.W.); (J.D.)
- Department of Life Science, Hengshui University, Hengshui 053000, China
| | - Shuangqing Fu
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province-Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (C.Z.); (S.F.); (F.Z.); (M.H.); (X.W.); (J.D.)
| | - Fanghua Zhang
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province-Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (C.Z.); (S.F.); (F.Z.); (M.H.); (X.W.); (J.D.)
| | - Mengnan Han
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province-Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (C.Z.); (S.F.); (F.Z.); (M.H.); (X.W.); (J.D.)
| | - Xuming Wang
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province-Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (C.Z.); (S.F.); (F.Z.); (M.H.); (X.W.); (J.D.)
| | - Jie Du
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province-Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (C.Z.); (S.F.); (F.Z.); (M.H.); (X.W.); (J.D.)
| | - Honglei Zhang
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province-Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (C.Z.); (S.F.); (F.Z.); (M.H.); (X.W.); (J.D.)
- Correspondence: (H.Z.); (W.L.)
| | - Wei Li
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province-Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (C.Z.); (S.F.); (F.Z.); (M.H.); (X.W.); (J.D.)
- Correspondence: (H.Z.); (W.L.)
| |
Collapse
|
99
|
Rambaran TF. A patent review of polyphenol nano-formulations and their commercialization. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
100
|
Mehra A, Tharmatt A, Saini N, Singh G, Kaur K, Singh G, Bedi N. In Situ Hydrogels for Effective Treatment of Cancer: Strategies and Polymers Used. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2022; 16:287-308. [PMID: 36200152 DOI: 10.2174/2667387816666221005102931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 12/24/2022]
Abstract
Cancer is a worldwide health ailment with no known boundaries in terms of mortality and occurrence rates, thus is one of the biggest threats to humankind. Hence, there is an absolute need to develop novel therapeutics to bridge the infirmities associated with chemotherapy and conventional surgical methodologies, including impairment of normal tissue, compromised drug efficiency and an escalation in side effects. In lieu of this, there has been a surge in curiosity towards the development of injectable hydrogels for cancer therapy because local administration of the active pharmaceutical agent offers encouraging advantages such as providing a higher effective dose at the target site, a prolonged retention time of drug, ease of administration, mitigation of dose in vivo, and improved patient compliance. Furthermore, due to their biocompatible nature, such systems can significantly reduce the side effects that occur on long-term exposure to chemotherapy. The present review details the most recent advancements in the in-situ gel forming polymers (natural and synthetic), polymeric cross-linking methodologies and in-situ gelling mechanisms, focusing on their clinical benefits in cancer therapy.
Collapse
Affiliation(s)
- Anshula Mehra
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab-143005, India
| | - Abhay Tharmatt
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan-333031, India
| | - Navdeep Saini
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab-143005, India
| | - Gurdeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab-143005, India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab-143005, India
| | - Gurpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab-143005, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab-143005, India
| |
Collapse
|