51
|
Gandhi K, Dhiman S, Arora R, Ramirez DM, Ramirez D, Arthur G, Schweizer F. Exploring Antibiotic-Potentiating Effects of Tobramycin-Deferiprone Conjugates in Pseudomonas aeruginosa. Antibiotics (Basel) 2023; 12:1261. [PMID: 37627681 PMCID: PMC10451322 DOI: 10.3390/antibiotics12081261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Metal ions, including Fe3+, affect the target site binding of some antibiotics and control the porin- and siderophore-mediated uptake of antibiotics. Amphiphilic tobramycins are an emerging class of antibiotic potentiators capable of synergizing with multiple classes of antibiotics against Gram-negative bacteria, including Pseudomonas aeruginosa. To study how the antibiotic-potentiating effect of amphiphilic tobramycins is affected by the presence of intermolecular iron chelators, we conjugated the FDA-approved iron chelator deferiprone (DEF) to tobramycin (TOB). Three TOB-DEF conjugates differing in the length of the carbon tether were prepared and tested for antibacterial activity and synergistic relationships with a panel of antibiotics against clinical isolates of P. aeruginosa. While all TOB-DEF conjugates were inactive against P. aeruginosa, the TOB-DEF conjugates strongly synergized with outer-membrane-impermeable antibiotics, such as novobiocin and rifampicin. Among the three TOB-DEF conjugates, 1c containing a C12 tether showed a remarkable and selective potentiating effect to improve the susceptibility of multidrug-resistant P. aeruginosa isolates to tetracyclines when compared with other antibiotics. However, the antibacterial activity and antibiotic-potentiating effect of the optimized conjugate was not enhanced under iron-depleted conditions, indicating that the function of the antibiotic potentiator is not affected by the Fe3+ concentration.
Collapse
Affiliation(s)
- Karan Gandhi
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (K.G.); (S.D.); (R.A.); (D.M.R.); (D.R.)
| | - Shiv Dhiman
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (K.G.); (S.D.); (R.A.); (D.M.R.); (D.R.)
| | - Rajat Arora
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (K.G.); (S.D.); (R.A.); (D.M.R.); (D.R.)
| | - Danzel Marie Ramirez
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (K.G.); (S.D.); (R.A.); (D.M.R.); (D.R.)
| | - Danyel Ramirez
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (K.G.); (S.D.); (R.A.); (D.M.R.); (D.R.)
| | - Gilbert Arthur
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Frank Schweizer
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (K.G.); (S.D.); (R.A.); (D.M.R.); (D.R.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3R 0J9, Canada
| |
Collapse
|
52
|
Buzás GM, Birinyi P. Newer, Older, and Alternative Agents for the Eradication of Helicobacter pylori Infection: A Narrative Review. Antibiotics (Basel) 2023; 12:946. [PMID: 37370265 DOI: 10.3390/antibiotics12060946] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Although discovered 40 years ago, Helicobacter pylori infection is still raising diagnostic and therapeutic problems today. The infection is currently managed based on statements in several guidelines, but implementing them in practice is a long process. Increasing antibiotic resistance and weak compliance of the patients limit the efficacy of eradication regimens, leaving much room for improvement. Third-generation proton pump inhibitors have added little to the results of the first two generations. Potassium-competitive acid blockers have a stronger and longer inhibitory action of acid secretion, increasing the intragastric pH. They obtained superior results in eradication when compared to proton pump inhibitors. Instead of innovative antibiotics, derivatives of existing antimicrobials were developed; some new fluoroquinolones and nitazoxanide seem promising in practice, but they are not recommended by the guidelines. Carbonic anhydrase inhibitors have both anti-secretory and bactericidal effects, and some researchers are expecting their revival in the treatment of infection. Capsules containing components of the eradication regimens have obtained excellent results, but are of limited availability. Probiotics, if containing bacteria with anti-Helicobacter pylori activity, may be useful, increasing the rates of eradication and lowering the prevalence and severity of the side effects.
Collapse
Affiliation(s)
- György Miklós Buzás
- Ferencváros Health Centre, Gastroenterology, Mester utca 45, 1095 Budapest, Hungary
- Medoc Health Centre, Gastroenterology, Lehel út 8, 1137 Budapest, Hungary
| | - Péter Birinyi
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Szentkirályi utca 46, 1086 Budapest, Hungary
| |
Collapse
|
53
|
Lin F, He R, Yu B, Deng B, Ling B, Yuan M. Omadacycline for treatment of acute bacterial infections: a meta-analysis of phase II/III trials. BMC Infect Dis 2023; 23:232. [PMID: 37059988 PMCID: PMC10105466 DOI: 10.1186/s12879-023-08212-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/01/2023] [Indexed: 04/16/2023] Open
Abstract
OBJECTIVE This study aims to assess the clinical efficacy and safety of omadacycline for the treatment of acute bacterial infections. METHODS A search of PubMed, Embase, Cochrane Library, and Clinical Trials was conducted up to July 1, 2022. We included only randomized controlled trials (RCTs), in which omadacycline and other antibiotics were evaluated for treating acute bacterial infections in adults. The primary outcomes were clinical response and microbiological response, whereas the secondary outcome was the risk of adverse events (AEs). RESULTS A total of seven RCTs involving 2841 patients with acute bacterial infection were included. Overall, our study illustrated that the clinical cure ratio of omadacycline was similar to the comparators in the treatment of acute bacterial infections (OR = 1.18, 95%CI = 0.96, 1.46, I2 = 29%). Omadacycline had a microbiological eradication rate similar to comparators in the treatment of acute bacterial infections (OR = 1.02, 95%CI = 0.81, 1.29, I2 = 42%). No statistical differences were observed between omadacycline and the comparators in terms of infection caused by Staphylococcus aureus (OR = 1.14, 95%CI = 0.80, 1.63, I2 = 0%), methicillin-resistant S. aureus (MRSA, OR = 1.28, 95%CI = 0.73, 2.24, I2 = 0%), methicillin-susceptible S. aureus (MSSA, OR = 1.12, 95%CI = 0.69, 1.81, I2 = 0%), and Enterococcus faecalis (OR = 2.47, 95%CI = 0.36, 16.97, I2 = 7%). A significant difference was found between omadacycline and the comparators for the risk of any AEs and treatment related AEs. The risk of discontinuation of the study drug due to an AEs was lower for omadacycline than for the comparators. CONCLUSION Omadacycline is as good as comparators in terms of efficacy and tolerance in the treatment of acute bacterial infections in adult patients. Thus, omadacycline is an appropriate option for antibiotic therapy in adult patients with acute bacterial infections.
Collapse
Affiliation(s)
- Fei Lin
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Clinical Medical College, Chengdu Medical College, Chengdu, China
| | - Rong He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Bin Yu
- Department of Pharmacy, Mianyang Central Hospital, Mianyang, China
| | - Bowen Deng
- Department of Pharmacy, The Sixth People's Hospital of Chengdu, Chengdu, China
| | - Baodong Ling
- School of Pharmacy, Chengdu Medical College, Chengdu, China.
| | - Mingyong Yuan
- Clinical Medical College, Chengdu Medical College, Chengdu, China.
- Outpatient Department, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| |
Collapse
|
54
|
Huang CF, Wang JT, Chuang YC, Sheng WH, Chen YC. In vitro susceptibility of common Enterobacterales to eravacycline in Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:358-366. [PMID: 36243669 DOI: 10.1016/j.jmii.2022.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND New tetracycline derivatives exhibit broad-spectrum antimicrobial activities. This study aimed to assess the in vitro activity of eravacycline against common Enterobacterales. METHODS Clinical Enterobacterales isolates were collected between 2017 and 2021. The minimum inhibitory concentration (MIC) was determined using a broth microdilution test. RESULTS We identified Klebsiella pneumoniae (n = 300), Escherichia coli (n = 300), Klebsiella oxytoca (n = 100), Enterobacter cloacae complex (n = 100), Citrobacter freundii (n = 100), and Proteus mirabilis (n = 100). All P. mirabilis strains were resistant to eravacycline. Excluding P. mirabilis, the susceptibility rates to eravacycline, omadacycline, and tigecycline were 75.2%, 66.9%, and 73%, respectively. The MIC50 and MIC90 (mg/L) of eravacycline were 0.5 and 4 for K. pneumoniae, 0.5 and 1 for E. coli, 0.5 and 1 for K. oxytoca, 0.5 and 2 for E. cloacae complex, and 0.25 and 1 for C. freundii. In cefotaxime non-susceptible and meropenem susceptible Enterobacterales, excluding P. mirabilis, the susceptibility rates of eravacycline, omadacycline, and tigecycline were 69.7%, 57.1%, and 66.2%. We found decreased susceptibility rates of three new tetracycline derivatives against meropenem non-susceptible Enterobacterales (eravacycline: 47.1%, omadacycline: 39.4%, and tigecycline: 39.4%). Eravacycline showed a high susceptibility rate against cefotaxime non-susceptible and meropenem susceptible K. oxytoca (100%), C. freundii (93.2%), E. coli (85.9%), and meropenem non-susceptible E. coli (100%). CONCLUSION This study provides the MIC and susceptibility rate of eravacycline for common Enterobacterales. Eravacycline could be a therapeutic choice for cefotaxime non-susceptible or meropenem non-susceptible Enterobacterales, especially K. oxytoca, C. freundii, and E. coli.
Collapse
Affiliation(s)
- Chun-Fu Huang
- Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin County, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| | - Jann-Tay Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| | - Yu-Chung Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan.
| | - Wang-Huei Sheng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| |
Collapse
|
55
|
Breijyeh Z, Karaman R. Design and Synthesis of Novel Antimicrobial Agents. Antibiotics (Basel) 2023; 12:628. [PMID: 36978495 PMCID: PMC10045396 DOI: 10.3390/antibiotics12030628] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The necessity for the discovery of innovative antimicrobials to treat life-threatening diseases has increased as multidrug-resistant bacteria has spread. Due to antibiotics' availability over the counter in many nations, antibiotic resistance is linked to overuse, abuse, and misuse of these drugs. The World Health Organization (WHO) recognized 12 families of bacteria that present the greatest harm to human health, where options of antibiotic therapy are extremely limited. Therefore, this paper reviews possible new ways for the development of novel classes of antibiotics for which there is no pre-existing resistance in human bacterial pathogens. By utilizing research and technology such as nanotechnology and computational methods (such as in silico and Fragment-based drug design (FBDD)), there has been an improvement in antimicrobial actions and selectivity with target sites. Moreover, there are antibiotic alternatives, such as antimicrobial peptides, essential oils, anti-Quorum sensing agents, darobactins, vitamin B6, bacteriophages, odilorhabdins, 18β-glycyrrhetinic acid, and cannabinoids. Additionally, drug repurposing (such as with ticagrelor, mitomycin C, auranofin, pentamidine, and zidovudine) and synthesis of novel antibacterial agents (including lactones, piperidinol, sugar-based bactericides, isoxazole, carbazole, pyrimidine, and pyrazole derivatives) represent novel approaches to treating infectious diseases. Nonetheless, prodrugs (e.g., siderophores) have recently shown to be an excellent platform to design a new generation of antimicrobial agents with better efficacy against multidrug-resistant bacteria. Ultimately, to combat resistant bacteria and to stop the spread of resistant illnesses, regulations and public education regarding the use of antibiotics in hospitals and the agricultural sector should be combined with research and technological advancements.
Collapse
Affiliation(s)
- Zeinab Breijyeh
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
56
|
Pyrrole-Containing Alkaloids from a Marine-Derived Actinobacterium Streptomyces zhaozhouensis and Their Antimicrobial and Cytotoxic Activities. Mar Drugs 2023; 21:md21030167. [PMID: 36976216 PMCID: PMC10054583 DOI: 10.3390/md21030167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Two new alkaloids, streptopyrroles B and C (1 and 2), were discovered through a chemical investigation of the ethyl acetate (EtOAc) extract from a marine-derived actinomycete, Streptomyces zhaozhouensis, along with four known analogs (3–6). The structures of the new compounds were elucidated by spectroscopic analysis (HR-ESIMS, 1D, and 2D NMR) and a comparison of their experimental data with literature values. The new compounds were evaluated for their antimicrobial activity by standard broth dilution assay, and the tested compounds showed significant activity against Gram-positive bacteria with minimum inhibitory concentration (MIC) values ranging from 0.7 to 2.9 µM, and kanamycin was used as a positive control with MIC values ranging from <0.5 to 4.1 µM. Additionally, 1, 3, and 5 were evaluated for their cytotoxicity against six tumor cell lines by sulforhodamine B (SRB) assay, and these compounds displayed cytotoxic activities against all the tested cell lines, with concentration causing 50% cell growth inhibition (GI50) values ranging from 4.9 to 10.8 µM, while a positive control, adriamycin, showed GI50 values of 0.13–0.17 µM.
Collapse
|
57
|
Galvidis IA, Surovoy YA, Tsarenko SV, Burkin MA. Tigecycline Immunodetection Using Developed Group-Specific and Selective Antibodies for Drug Monitoring Purposes. BIOSENSORS 2023; 13:343. [PMID: 36979555 PMCID: PMC10046529 DOI: 10.3390/bios13030343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Tigecycline (TGC), a third-generation tetracycline, is characterized by a more potent and broad antibacterial activity, and the ability to overcome different mechanisms of tetracycline resistance. TGC has proven to be of value in treatment of multidrug-resistant infections, but therapy can be complicated by multiple dangerous side effects, including direct drug toxicity. Given that, a TGC immunodetection method has been developed for therapeutic drug monitoring to improve the safety and efficacy of therapy. The developed indirect competitive ELISA utilized TGC selective antibodies and group-specific antibodies interacting with selected coating TGC conjugates. Both assay systems showed high sensitivity (IC50) of 0.23 and 1.59 ng/mL, and LOD of 0.02 and 0.05 ng/mL, respectively. Satisfactory TGC recovery from the spiked blood serum of healthy volunteers was obtained in both assays and laid in the range of 81-102%. TGC concentrations measured in sera from COVID-19 patients with secondary bacterial infections were mutually confirmed by ELISA based on the other antibody-antigen interaction and showed good agreement (R2 = 0.966). A TGC pharmacokinetic (PK) study conducted in three critically ill patients proved the suitability of the test to analyze the therapeutic concentrations of TGC. Significant inter-individual PK variability revealed in this limited group supports therapeutic monitoring of TGC in individual patients and application of the test for population pharmacokinetic modelling.
Collapse
Affiliation(s)
- Inna A. Galvidis
- I. Mechnikov Research Institute for Vaccines and Sera, Moscow 105064, Russia
| | - Yury A. Surovoy
- I. Mechnikov Research Institute for Vaccines and Sera, Moscow 105064, Russia
- Faculty of Medicine, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sergei V. Tsarenko
- Faculty of Medicine, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
- Federal Center for Treatment and Rehabilitation Ministry of Health, Moscow 125367, Russia
| | - Maksim A. Burkin
- I. Mechnikov Research Institute for Vaccines and Sera, Moscow 105064, Russia
| |
Collapse
|
58
|
Pourseif T, Ghafelehbashi R, Abdihaji M, Radan N, Kaffash E, Heydari M, Naseroleslami M, Mousavi-Niri N, Akbarzadeh I, Ren Q. Chitosan -based nanoniosome for potential wound healing applications: Synergy of controlled drug release and antibacterial activity. Int J Biol Macromol 2023; 230:123185. [PMID: 36623618 DOI: 10.1016/j.ijbiomac.2023.123185] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
This study aims to develop a niosomal platform which can delivery drugs such as tetracycline hydrochloride (TCH) to treat bacterial infections in wounds. To this end, chitosan (CS) was used to obtain a controlled drug release and at the same time antibacterial activity. By design of experiments the niosome encapsulated TCH (TCH-Nio) were optimized for their particle size and encapsulation efficiency, followed by analysis of the release profile of TCH and stability of TCH-Nio and TCH-Nio@CS. The antibacterial activity and cytotoxicity of the fabricated nanoparticles were investigated as well. The release rate of TCH from TCH-Nio@CS in all conditions is less than TCH-Nio. In addition, higher temperature increases the release rate of drug from these formulations. The size, polydispersity index, and encapsulation efficacy of TCH-Nio and TCH-Nio@CS were more stable in 4 °C compared to 25 °C. TCH, TCH-Nio, and TCH-Nio@CS had MIC values of 7.82, 3.91, and 1.95 μg/mL for Escherichia coli, 3.91, 1.95, and 0.98 μg/mL for Pseudomonas aeruginosa, and 1.96, 0.98, and 0.49 μg/mL for Staphylococcus aureus, respectively. Coating of chitosan on niosome encapsulated TCH (TCH-Nio@CS) led to a reduced burst release of TCH from niosome (TCH-Nio), and enabled 2-fold higher antibacterial and anti-biofilm activity against the tested bacterial pathogens E. coli, P. aeruginosa and S. aureus, compared to the uncoated TCH-Nio, and 4-folder higher than the TCH solution, suggesting the synergetic effect of niosome encapsulation and chitosan coating. Moreover, the formulated niosomes displayed no in vitro toxicity toward the human foreskin fibroblast cells (HFF). Both TCH-Nio and TCH-Nio@CS were found to down-regulate the expression of certain biofilm genes, i.e., csgA, ndvB, and icaA in the tested bacteria, which might partially explain the improved antibacterial activity compared to TCH. The obtained results demonstrated that TCH-Nio@CS is capable of controlled drug release, leading to high antibacterial efficacy. The established platform of TCH-Nio@CS enlighten a clinic potential toward the treatment of bacterial infections in skin wounds, dental implants and urinary catheter.
Collapse
Affiliation(s)
- Tara Pourseif
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Mohammadreza Abdihaji
- Department of Biology, Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | - Niloufar Radan
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Ehsan Kaffash
- Department of Pharmaceutics, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Heydari
- Department of Cell and Molecular Biology, Faculty of Biological Science, University of Kharazmi, Tehran, Iran
| | - Maryam Naseroleslami
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Neda Mousavi-Niri
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland.
| |
Collapse
|
59
|
Fratoni AJ, Avery LM, Nicolau DP, Asempa TE. In vivo pharmacokinetics and pharmacodynamics of ceftibuten/ledaborbactam, a novel oral β-lactam/β-lactamase inhibitor combination. J Antimicrob Chemother 2022; 78:93-100. [PMID: 36272135 PMCID: PMC10205465 DOI: 10.1093/jac/dkac359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/05/2022] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES Oral β-lactam treatment options for MDR Enterobacterales are lacking. Ledaborbactam (formerly VNRX-5236) is a novel orally bioavailable β-lactamase inhibitor that restores ceftibuten activity against Ambler Class A-, C- and D-producing Enterobacterales. We assessed the ledaborbactam exposure needed to produce bacteriostasis against ceftibuten-resistant Enterobacterales in the presence of humanized ceftibuten exposures in the neutropenic murine thigh infection model. METHODS Twelve ceftibuten-resistant clinical isolates (six Klebsiella pneumoniae, five Escherichia coli and one Enterobacter cloacae) were utilized. Ceftibuten/ledaborbactam MICs ranged from 0.12 to 2 mg/L (ledaborbactam fixed at 4 mg/L). A ceftibuten murine dosing regimen mimicking ceftibuten 600 mg q12h human exposure was developed and administered alone and in combination with escalating exposures of ledaborbactam. The log10 cfu/thigh change at 24 h relative to 0 h controls was plotted against ledaborbactam fAUC0-24/MIC and the Hill equation was used to determine exposures associated with bacteriostasis. RESULTS The mean ± SD 0 h bacterial burden was 5.96 ± 0.24 log10 cfu/thigh. Robust growth (3.12 ± 0.93 log10 cfu/thigh) was achieved in untreated control mice. Growth of 2.51 ± 1.09 log10 cfu/thigh was observed after administration of humanized ceftibuten monotherapy. Individual isolate exposure-response relationships were strong (mean ± SD R2 = 0.82 ± 0.15). The median ledaborbactam fAUC0-24/MIC associated with stasis was 3.59 among individual isolates and 6.92 in the composite model. CONCLUSIONS Ledaborbactam fAUC0-24/MIC exposures for stasis were quantified with a ceftibuten human-simulated regimen against β-lactamase-producing Enterobacterales. This study supports the continued development of oral ceftibuten/ledaborbactam etzadroxil (formerly ceftibuten/VNRX-7145).
Collapse
Affiliation(s)
- Andrew J Fratoni
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford 06102, CT, USA
| | | | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford 06102, CT, USA
| | - Tomefa E Asempa
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford 06102, CT, USA
| |
Collapse
|
60
|
Dapporto M, Tavoni M, Restivo E, Carella F, Bruni G, Mercatali L, Visai L, Tampieri A, Iafisco M, Sprio S. Strontium-doped apatitic bone cements with tunable antibacterial and antibiofilm ability. Front Bioeng Biotechnol 2022; 10:969641. [PMID: 36568303 PMCID: PMC9780487 DOI: 10.3389/fbioe.2022.969641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Injectable calcium phosphate cements (CPCs) represent promising candidates for the regeneration of complex-shape bone defects, thanks to self-hardening ability, bioactive composition and nanostructure offering high specific surface area for cell attachment and conduction. Such features make CPCs also interesting for functionalization with various biomolecules, towards the generation of multifunctional devices with enhanced therapeutic ability. In particular, strontium-doped CPCs have been studied in the last years due to the intrinsic antiosteoporotic character of strontium. In this work, a SrCPC previously reported as osteointegrative and capable to modulate the fate of bone cells was enriched with hydroxyapatite nanoparticles (HA-NPs) functionalized with tetracycline (TC) to provide antibacterial activity. We found that HA-NPs functionalized with TC (NP-TC) can act as modulator of the drug release profile when embedded in SrCPCs, thus providing a sustained and tunable TC release. In vitro microbiological tests on Escherichia coli and Staphylococcus aureus strains proved effective bacteriostatic and bactericidal properties, especially for the NP-TC loaded SrCPC formulations. Overall, our results indicate that the addition of NP-TC on CPC acted as effective modulator towards a tunable drug release control in the treatment of bone infections or cancers.
Collapse
Affiliation(s)
- Massimiliano Dapporto
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC) (Former ISTEC), National Research Council (CNR), Faenza, Italy
| | - Marta Tavoni
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC) (Former ISTEC), National Research Council (CNR), Faenza, Italy
| | - Elisa Restivo
- Molecular Medicine Department, Center for Health Technologies, UdR INSTM, University of Pavia, Pavia, Italy
| | - Francesca Carella
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC) (Former ISTEC), National Research Council (CNR), Faenza, Italy
| | - Giovanna Bruni
- Department of Chemistry, Physical Chemistry Section, Center for Colloid and Surfaces Science, University of Pavia, Pavia, Italy
| | - Laura Mercatali
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Livia Visai
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC) (Former ISTEC), National Research Council (CNR), Faenza, Italy
- Molecular Medicine Department, Center for Health Technologies, UdR INSTM, University of Pavia, Pavia, Italy
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri. IRCCS, Pavia, Italy
| | - Anna Tampieri
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC) (Former ISTEC), National Research Council (CNR), Faenza, Italy
| | - Michele Iafisco
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC) (Former ISTEC), National Research Council (CNR), Faenza, Italy
| | - Simone Sprio
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC) (Former ISTEC), National Research Council (CNR), Faenza, Italy
| |
Collapse
|
61
|
Qin X, Kong L, Wu C, Zhang X, Xie M, Wu X. Pharmacokinetic/pharmacodynamic analysis of high-dose tigecycline, by Monte Carlo simulation, in plasma and sputum of patients with hospital-acquired pneumonia. J Clin Pharm Ther 2022; 47:2312-2319. [PMID: 36479719 DOI: 10.1111/jcpt.13823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/10/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE To Investigate the pharmacokinetic/pharmacodynamic (PK/PD) parameters of high-dose tigecycline in plasma and sputum of patients with hospital-acquired pneumonia (HAP), and provide a therapeutic regimen of multidrug-resistant bacteria (MDRB) infections. METHODS Blood/sputum samples were collected at intervals after tigecycline had reached a steady-state. Tigecycline concentrations in specimens were determined by high-performance liquid chromatography (HLPC), PK parameters were evaluated by WinNonlin software using a non-compartment model. The probability of target attainments (PTAs) at different minimal inhibitory concentrations (MICs) were calculated for achieving the PK/PD index with Crystal Ball software by 10,000-patient Monte Carlo Simulation. RESULTS In plasma, the maximum concentration (Cmax ) and area under the concentration-time curve from 0 to 12 h (AUC0-12h ) were 2.21 ± 0.17 mg/L and 15.29 ± 1.13 h mg/L, respectively. In sputum, they were 2.48 ± 0.21 mg/L and 19.46 ± 1.82 h mg/L, respectively. The mean lung penetration rate was 127.27%. At the MIC ≤4 mg/L, the PTAs in plasma and sputum were 100.00%. When the MIC increased to 8 mg/L, the PTAs in plasma and sputum mostly were < 90.00% according to two criteria. WHAT IS NEW AND CONCLUSION In this study, we explored PK/PD of high-dose tigecycline in plasma and sputum. From a PK/PD perspective, high-dose tigecycline had greater therapeutic outcomes in HAP treatment caused by MDRB. Antimicrobial-drug concentrations should be determined to optimize their clinical use.
Collapse
Affiliation(s)
- Xiaohong Qin
- Department of Emergency Internal Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China.,Institute of Emergency and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| | - Lingti Kong
- Institute of Emergency and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China.,Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| | - Chenchen Wu
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| | - Xiaohua Zhang
- Department of Emergency Internal Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China.,Institute of Emergency and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| | - Meng Xie
- Department of Emergency Internal Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China.,Institute of Emergency and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| | - Xiaofei Wu
- Department of Emergency Internal Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China.,Institute of Emergency and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| |
Collapse
|
62
|
Wongso H, Hendra R, Nugraha AS, Ritawidya R, Saptiama I, Kusumaningrum CE. Microbial metabolites diversity and their potential as molecular template for the discovery of new fluorescent and radiopharmaceutical probes. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
63
|
WANG H, WANG L, FAN K, PAN G. Tetracycline natural products: discovery, biosynthesis and engineering. Chin J Nat Med 2022; 20:773-794. [DOI: 10.1016/s1875-5364(22)60224-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Indexed: 11/03/2022]
|
64
|
Ansari S, Yamaoka Y. Helicobacter pylori Infection, Its Laboratory Diagnosis, and Antimicrobial Resistance: a Perspective of Clinical Relevance. Clin Microbiol Rev 2022; 35:e0025821. [PMID: 35404105 PMCID: PMC9491184 DOI: 10.1128/cmr.00258-21] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite the recent decrease in overall prevalence of Helicobacter pylori infection, morbidity and mortality rates associated with gastric cancer remain high. The antimicrobial resistance developments and treatment failure are fueling the global burden of H. pylori-associated gastric complications. Accurate diagnosis remains the opening move for treatment and eradication of infections caused by microorganisms. Although several reports have been published on diagnostic approaches for H. pylori infection, most lack the data regarding diagnosis from a clinical perspective. Therefore, we provide an intensive, comprehensive, and updated description of the currently available diagnostic methods that can help clinicians, infection diagnosis professionals, and H. pylori researchers working on infection epidemiology to broaden their understanding and to select appropriate diagnostic methods. We also emphasize appropriate diagnostic approaches based on clinical settings (either clinical diagnosis or mass screening), patient factors (either age or other predisposing factors), and clinical factors (either upper gastrointestinal bleeding or partial gastrectomy) and appropriate methods to be considered for evaluating eradication efficacy. Furthermore, to cope with the increasing trend of antimicrobial resistance, a better understanding of its emergence and current diagnostic approaches for resistance detection remain inevitable.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu City, Oita, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu City, Oita, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, Texas, USA
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
65
|
Osuský P, Smolíček M, Nociarová J, Rakovský E, Hrobárik P. One-Pot Reductive Methylation of Nitro- and Amino-Substituted (Hetero)Aromatics with DMSO/HCOOH: Concise Synthesis of Fluorescent Dimethylamino-Functionalized Bibenzothiazole Ligands with Tunable Emission Color upon Complexation. J Org Chem 2022; 87:10613-10629. [PMID: 35917477 DOI: 10.1021/acs.joc.2c00732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
One-pot reductive N,N-dimethylation of suitable nitro- and amino-substituted (hetero)arenes can be achieved using a DMSO/HCOOH/Et3N system acting as a low-cost but efficient reducing and methylating agent. The transformation of heteroaryl-amines can be accelerated by using dimethyl sulfoxide/oxalyl chloride or chloromethyl methyl sulfide as the source of active CH3SCH2+ species, while the exclusion of HCOOH in the initial stage of the reaction allows avoiding N-formamides as resting intermediates. The developed procedures are applicable in multigram-scale synthesis, and because of the lower electrophilicity of CH3SCH2+, they also work in pathological cases, where common methylating agents provide N,N-dimethylated products in no yield or inferior yields due to concomitant side reactions. The method is particularly useful in one-pot reductive transformation of 2-H-nitrobenzazoles to corresponding N,N-dimethylamino-substituted heteroarenes. These, upon Cu(II)-catalyzed oxidative homocoupling, afford 2,2'-bibenzazoles substituted with dimethylamino groups as charge-transfer N^N ligands with intensive absorption/emission in the visible region. The fluorescence of NMe2-functionalized bibenzothiazoles remains intensive even upon complexation with ZnCl2, while emission maxima are bathochromically shifted from the green/yellow to orange/red spectral region, making these small-molecule fluorophores, exhibiting large emission quantum yields and Stokes shifts, an attractive platform for the construction of various functional dyes and light-harvesting materials with tunable emission color upon complexation.
Collapse
Affiliation(s)
- Patrik Osuský
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, SK-84215 Bratislava, Slovakia
| | - Maroš Smolíček
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, SK-84215 Bratislava, Slovakia
| | - Jela Nociarová
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, SK-84215 Bratislava, Slovakia
| | - Erik Rakovský
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, SK-84215 Bratislava, Slovakia
| | - Peter Hrobárik
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, SK-84215 Bratislava, Slovakia
| |
Collapse
|
66
|
Tang H, Zhou H, Zhang R. Antibiotic Resistance and Mechanisms of Pathogenic Bacteria in Tubo-Ovarian Abscess. Front Cell Infect Microbiol 2022; 12:958210. [PMID: 35967860 PMCID: PMC9363611 DOI: 10.3389/fcimb.2022.958210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
A tubo-ovarian abscess (TOA) is a common type of inflammatory lump in clinical practice. TOA is an important, life-threatening disease, and it has become more common in recent years, posing a major health risk to women. Broad-spectrum antimicrobial agents are necessary to cover the most likely pathogens because the pathogens that cause TOA are polymicrobial. However, the response rate of antibiotic treatment is about 70%, whereas one-third of patients have poor clinical consequences and they require drainage or surgery. Rising antimicrobial resistance serves as a significant reason for the unsatisfactory medical outcomes. It is important to study the antibiotic resistance mechanism of TOA pathogens in solving the problems of multi-drug resistant strains. This paper focuses on the most common pathogenic bacteria isolated from TOA specimens and discusses the emerging trends and epidemiology of resistant Escherichia coli, Bacteroides fragilis, and gram-positive anaerobic cocci. Besides that, new methods that aim to solve the antibiotic resistance of related pathogens are discussed, such as CRISPR, nanoparticles, bacteriophages, antimicrobial peptides, and pathogen-specific monoclonal antibodies. Through this review, we hope to reveal the current situation of antibiotic resistance of common TOA pathogens, relevant mechanisms, and possible antibacterial strategies, providing references for the clinical treatment of drug-resistant pathogens.
Collapse
Affiliation(s)
- Huanna Tang
- Women’s Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Zhou
- Department of Infectious Disease, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hui Zhou, ; Runju Zhang,
| | - Runju Zhang
- Women’s Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hui Zhou, ; Runju Zhang,
| |
Collapse
|
67
|
Wyszkowska J, Borowik A, Kucharski J. The Role of Grass Compost and Zea Mays in Alleviating Toxic Effects of Tetracycline on the Soil Bacteria Community. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7357. [PMID: 35742602 PMCID: PMC9223702 DOI: 10.3390/ijerph19127357] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 12/26/2022]
Abstract
Given their common use for disease treatment in humans, and particularly in animals, antibiotics pose an exceptionally serious threat to the soil environment. This study aimed to determine the response of soil bacteria and oxidoreductases to a tetracycline (Tc) contamination, and to establish the usability of grass compost (G) and Zea mays (Zm) in mitigating adverse Tc effects on selected microbial properties of the soil. The scope of microbiological analyses included determinations of bacteria with the conventional culture method and new-generation sequencing method (NGS). Activities of soil dehydrogenases and catalase were determined as well. Tc was found to reduce counts of organotrophic bacteria and actinobacteria in the soils as well as the activity of soil oxidoreductases. Soil fertilization with grass compost (G) and Zea mays (Zm) cultivation was found to alleviate the adverse effects of tetracycline on the mentioned group of bacteria and activity of oxidoreductases. The metagenomic analysis demonstrated that the bacteria belonging to Acidiobacteria and Proteobacteria phyla were found to prevail in the soil samples. The study results recommend soil fertilization with G and Zm cultivation as successful measures in the bioremediation of tetracycline-contaminated soils and indicate the usability of the so-called core bacteria in the bioaugmentation of such soils.
Collapse
Affiliation(s)
- Jadwiga Wyszkowska
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland; (A.B.); (J.K.)
| | | | | |
Collapse
|
68
|
Wu S, Wu B, Liu Y, Deng S, Lei L, Zhang H. Mini Review Therapeutic Strategies Targeting for Biofilm and Bone Infections. Front Microbiol 2022; 13:936285. [PMID: 35774451 PMCID: PMC9238355 DOI: 10.3389/fmicb.2022.936285] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 12/21/2022] Open
Abstract
Bone infection results in a complex inflammatory response and bone destruction. A broad spectrum of bacterial species has been involved for jaw osteomyelitis, hematogenous osteomyelitis, vertebral osteomyelitis or diabetes mellitus, such as Staphylococcus aureus (S. aureus), coagulase-negative Staphylococcus species, and aerobic gram-negative bacilli. S. aureus is the major pathogenic bacterium for osteomyelitis, which results in a complex inflammatory response and bone destruction. Although various antibiotics have been applied for bone infection, the emergence of drug resistance and biofilm formation significantly decrease the effectiveness of those agents. In combination with gram-positive aerobes, gram-negative aerobes and anaerobes functionally equivalent pathogroups interact synergistically, developing as pathogenic biofilms and causing recurrent infections. The adhesion of biofilms to bone promotes bone destruction and protects bacteria from antimicrobial agent stress and host immune system infiltration. Moreover, bone is characterized by low permeability and reduced blood flow, further hindering the therapeutic effect for bone infections. To minimize systemic toxicity and enhance antibacterial effectiveness, therapeutic strategies targeting on biofilm and bone infection can serve as a promising modality. Herein, we focus on biofilm and bone infection eradication with targeting therapeutic strategies. We summarize recent targeting moieties on biofilm and bone infection with peptide-, nucleic acid-, bacteriophage-, CaP- and turnover homeostasis-based strategies. The antibacterial and antibiofilm mechanisms of those therapeutic strategies include increasing antibacterial agents’ accumulation by bone specific affinity, specific recognition of phage-bacteria, inhibition biofilm formation in transcription level. As chronic inflammation induced by infection can trigger osteoclast activation and inhibit osteoblast functioning, we additionally expand the potential applications of turnover homeostasis-based therapeutic strategies on biofilm or infection related immunity homeostasis for host-bacteria. Based on this review, we expect to provide useful insights of targeting therapeutic efficacy for biofilm and bone infection eradication.
Collapse
Affiliation(s)
- Shizhou Wu
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Binjie Wu
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yunjie Liu
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Shu Deng
- Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, United States
| | - Lei Lei
- West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Lei Lei,
| | - Hui Zhang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Hui Zhang,
| |
Collapse
|
69
|
Warner AJ, Hathaway-Schrader JD, Lubker R, Davies C, Novince CM. Tetracyclines and bone: Unclear actions with potentially lasting effects. Bone 2022; 159:116377. [PMID: 35248788 PMCID: PMC9035080 DOI: 10.1016/j.bone.2022.116377] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 01/11/2023]
Abstract
Tetracyclines are a broad-spectrum class of antibiotics that have unclear actions with potentially lasting effects on bone metabolism. Initially isolated from Streptomyces, tetracycline proved to be an effective treatment for Gram +/- infections. The emergence of resistant bacterial strains commanded the development of later generation agents, including minocycline, doxycycline, tigecycline, sarecycline, omadacycline, and eravacycline. In 1957, it was realized that tetracyclines act as bone fluorochrome labels due to their high affinity for the bone mineral matrix. Over the course of the next decade, researchers discerned that these compounds are retained in the bone matrix at high levels after the termination of antibiotic therapy. Studies during this period provided evidence that tetracyclines could disrupt prenatal and early postnatal skeletal development. Currently, tetracyclines are most commonly prescribed as a long-term systemic therapy for the treatment of acne in healthy adolescents and young adults. Surprisingly, the impact of tetracyclines on physiologic bone modeling/remodeling is largely unknown. This article provides an overview of the pharmacology of tetracycline drugs, summarizes current knowledge about the impact of these agents on skeletal development and homeostasis, and reviews prior work targeting tetracyclines' effects on bone cell physiology. The need for future research to elucidate unclear effects of tetracyclines on the skeleton is addressed, including drug retention/release mechanisms from the bone matrix, signaling mechanisms at bone cells, the impact of newer third generation tetracycline antibiotics, and the role of the gut-bone axis.
Collapse
Affiliation(s)
- Amy J Warner
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Stomatology-Division of Periodontics, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Pediatrics-Division of Endocrinology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Jessica D Hathaway-Schrader
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Stomatology-Division of Periodontics, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Pediatrics-Division of Endocrinology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Rena Lubker
- Medical University of South Carolina Libraries, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Stomatology-Division of Population Oral Health, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Christopher Davies
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Biochemistry & Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Chad M Novince
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Stomatology-Division of Periodontics, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Pediatrics-Division of Endocrinology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
70
|
Grada A, Ghannoum MA, Bunick CG. Sarecycline Demonstrates Clinical Effectiveness against Staphylococcal Infections and Inflammatory Dermatoses: Evidence for Improving Antibiotic Stewardship in Dermatology. Antibiotics (Basel) 2022; 11:antibiotics11060722. [PMID: 35740129 PMCID: PMC9220064 DOI: 10.3390/antibiotics11060722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Tetracycline class antibiotics are widely used for multiple skin diseases, including acne vulgaris, acne rosacea, cutaneous infections, inflammatory dermatoses, and autoimmune blistering disorders. Concerns about antibiotic resistance and protecting the human/host microbiome beg the question whether broad-spectrum tetracyclines such as doxycycline and minocycline should be prescribed at such a high rate by dermatologists when a narrow-spectrum tetracycline derivative, sarecycline, exists. We evaluated the clinical effectiveness of oral sarecycline against cutaneous staphylococcal infections, eyelid stye, and mucous membrane pemphigoid to determine whether sarecycline is a viable option for clinicians to practice improved antibiotic stewardship. We observed significant improvement in staphylococcal infections and inflammatory dermatoses with courses of oral sarecycline as short as 9 days, with no reported adverse events. These clinical findings are consistent with in vitro microbiological data and anti-inflammatory properties of sarecycline. Our data provides a strong rationale for clinicians to use narrow-spectrum sarecycline rather than broad-spectrum tetracyclines as a first-line agent in treating staphylococcal skin infections and inflammatory skin diseases for which tetracyclines are currently commonly employed. Such advancement in the practice paradigm in dermatology will enhance antibiotic stewardship, reduce risk of antibiotic resistance, protect the human microbiome, and provide patients with precision medicine care.
Collapse
Affiliation(s)
- Ayman Grada
- Grada Dermatology Research, LLC, Chesterbrook, PA 19087, USA;
| | - Mahmoud A. Ghannoum
- Center of Medical Mycology, Integrated Microbiome Core, Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Christopher G. Bunick
- Yale Department of Dermatology, Yale School of Medicine, New Haven, CT 06520, USA
- Correspondence: ; Tel.: +1-203-785-4092
| |
Collapse
|
71
|
Globally Vibrio cholera antibiotics resistance to RNA and DNA effective antibiotics: A systematic review and meta-analysis. Microb Pathog 2022; 172:105514. [DOI: 10.1016/j.micpath.2022.105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/19/2022]
|