51
|
Lei M, Liao H, Wang S, Zhou H, Zhu J, Wan H, Payne GF, Liu C, Qu X. Electro-Sorting Create Heterogeneity: Constructing A Multifunctional Janus Film with Integrated Compositional and Microstructural Gradients for Guided Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307606. [PMID: 38225697 DOI: 10.1002/advs.202307606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/25/2023] [Indexed: 01/17/2024]
Abstract
Biology remains the envy of flexible soft matter fabrication because it can satisfy multiple functional needs by organizing a small set of proteins and polysaccharides into hierarchical systems with controlled heterogeneity in composition and microstructure. Here, it is reported that controlled, mild electronic inputs (<10 V; <20 min) induce a homogeneous gelatin-chitosan mixture to undergo sorting and bottom-up self-assembly into a Janus film with compositional gradient (i.e., from chitosan-enriched layer to chitosan/gelatin-contained layer) and tunable dense-porous gradient microstructures (e.g., porosity, pore size, and ratio of dense to porous layers). This Janus film performs is shown multiple functions for guided bone regeneration: the integration of compositional and microstructural features confers flexible mechanics, asymmetric properties for interfacial wettability, molecular transport (directional growth factor release), and cellular responses (prevents fibroblast infiltration but promotes osteoblast growth and differentiation). Overall, this work demonstrates the versatility of electrofabrication for the customized manufacturing of functional gradient soft matter.
Collapse
Affiliation(s)
- Miao Lei
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of materials science and engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Haitao Liao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of materials science and engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shijia Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of materials science and engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hang Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of materials science and engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jianwei Zhu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of materials science and engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Haoran Wan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of materials science and engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Biomedical Device Institute, 5118 A. James Clark Hall, College Park, Maryland, 20742, USA
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of materials science and engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of materials science and engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
52
|
Ali ASM, Berg J, Roehrs V, Wu D, Hackethal J, Braeuning A, Woelken L, Rauh C, Kurreck J. Xeno-Free 3D Bioprinted Liver Model for Hepatotoxicity Assessment. Int J Mol Sci 2024; 25:1811. [PMID: 38339088 PMCID: PMC10855587 DOI: 10.3390/ijms25031811] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Three-dimensional (3D) bioprinting is one of the most promising methodologies that are currently in development for the replacement of animal experiments. Bioprinting and most alternative technologies rely on animal-derived materials, which compromises the intent of animal welfare and results in the generation of chimeric systems of limited value. The current study therefore presents the first bioprinted liver model that is entirely void of animal-derived constituents. Initially, HuH-7 cells underwent adaptation to a chemically defined medium (CDM). The adapted cells exhibited high survival rates (85-92%) after cryopreservation in chemically defined freezing media, comparable to those preserved in standard medium (86-92%). Xeno-free bioink for 3D bioprinting yielded liver models with high relative cell viability (97-101%), akin to a Matrigel-based liver model (83-102%) after 15 days of culture. The established xeno-free model was used for toxicity testing of a marine biotoxin, okadaic acid (OA). In 2D culture, OA toxicity was virtually identical for cells cultured under standard conditions and in CDM. In the xeno-free bioprinted liver model, 3-fold higher concentrations of OA than in the respective monolayer culture were needed to induce cytotoxicity. In conclusion, this study describes for the first time the development of a xeno-free 3D bioprinted liver model and its applicability for research purposes.
Collapse
Affiliation(s)
- Ahmed S. M. Ali
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Johanna Berg
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Viola Roehrs
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Dongwei Wu
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | | | - Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany;
| | - Lisa Woelken
- Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin, 14195 Berlin, Germany (C.R.)
| | - Cornelia Rauh
- Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin, 14195 Berlin, Germany (C.R.)
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| |
Collapse
|
53
|
Papaioannou A, Vasilaki E, Loukelis K, Papadogianni D, Chatzinikolaidou M, Vamvakaki M. Bioactive and biomimetic 3D scaffolds for bone tissue engineering using graphitic carbon nitride as a sustainable visible light photoinitiator. BIOMATERIALS ADVANCES 2024; 157:213737. [PMID: 38211506 DOI: 10.1016/j.bioadv.2023.213737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/03/2023] [Accepted: 12/16/2023] [Indexed: 01/13/2024]
Abstract
Graphitic carbon nitride (g-C3N4) is explored as a novel sustainable visible light photoinitiator for the preparation of biomimetic 3D hydrogel scaffolds comprising gelatin methacrylamide (GelMA) and dopamine methacrylamide for use in tissue engineering. The initiator efficiency was assessed by comparing the swelling behavior and the stability of photopolymerized hydrogels prepared with GelMA of different degrees of functionalization and different comonomer compositions. Bioactive composite hydrogels with a 50 wt% nanohydroxyapatite (nHAp) content, to closely mimic the actual bone composition, were successfully obtained by the introduction of nHAp in the prepolymer solutions followed by photopolymerization. The composite hydrogels demonstrated enhanced mechanical properties and excellent stability in PBS verifying the preparation of robust 3D scaffolds for use in cancellous or pre-calcified bone tissue engineering applications. The in vitro cell response of the composite scaffolds exhibited high cell viability and enhanced differentiation of pre-osteoblasts to mature osteoblasts, demonstrating their osteogenic potential. This work establishes, for the first time, the excellent properties of g-C3N4 as a sustainable, visible light initiator, fully satisfying the principles of green chemistry, for the preparation of robust and biologically relevant hydrogels, and proposes a new approach to overcome the main challenges of conventional photoinitiators in cell scaffold fabrication, such as photobleaching, high cost and non-scalable synthesis employing toxic organic precursors and solvents.
Collapse
Affiliation(s)
- Anna Papaioannou
- School of Medicine, University of Crete, 700 13 Heraklion, Greece
| | - Evangelia Vasilaki
- Department of Materials Science and Technology, University of Crete, 700 13 Heraklion, Greece; Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 700 13 Heraklion, Crete, Greece.
| | - Konstantinos Loukelis
- Department of Materials Science and Technology, University of Crete, 700 13 Heraklion, Greece
| | - Danai Papadogianni
- Department of Materials Science and Technology, University of Crete, 700 13 Heraklion, Greece
| | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, 700 13 Heraklion, Greece; Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 700 13 Heraklion, Crete, Greece
| | - Maria Vamvakaki
- Department of Materials Science and Technology, University of Crete, 700 13 Heraklion, Greece; Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 700 13 Heraklion, Crete, Greece.
| |
Collapse
|
54
|
Jonidi Shariatzadeh F, Solouk A, Mirzadeh H, Bonakdar S, Sadeghi D, Khoulenjani SB. Cellulose nanocrystals-reinforced dual crosslinked double network GelMA/hyaluronic acid injectable nanocomposite cryogels with improved mechanical properties for cartilage tissue regeneration. J Biomed Mater Res B Appl Biomater 2024; 112:e35346. [PMID: 38359175 DOI: 10.1002/jbm.b.35346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/04/2023] [Accepted: 10/14/2023] [Indexed: 02/17/2024]
Abstract
Improvement of mechanical properties of injectable tissue engineering scaffolds is a current challenge. The objective of the current study is to produce a highly porous injectable scaffold with improved mechanical properties. For this aim, cellulose nanocrystals-reinforced dual crosslinked porous nanocomposite cryogels were prepared using chemically crosslinked methacrylated gelatin (GelMA) and ionically crosslinked hyaluronic acid (HA) through the cryogelation process. The resulting nanocomposites showed highly porous structures with interconnected porosity (>90%) and mean pore size in the range of 130-296 μm. The prepared nanocomposite containing 3%w/v of GelMA, 20 w/w% of HA, and 1%w/v of CNC showed the highest Young's modulus (10 kPa) and excellent reversibility after 90% compression and could regain its initial shape after injection by a 16-gauge needle in the aqueous media. The in vitro results demonstrated acceptable viability (>90%) and migration of the human chondrocyte cell line (C28/I2), and chondrogenic differentiation of human adipose stem cells. A two-month in vivo assay on a rabbit's ear model confirmed that the regeneration potential of the prepared cryogel is comparable to the natural autologous cartilage graft, suggesting it is a promising alternative for autografts in the treatment of cartilage defects.
Collapse
Affiliation(s)
| | - Atefeh Solouk
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Hamid Mirzadeh
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
- Polymer and Color Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Davoud Sadeghi
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Shadab Bagheri Khoulenjani
- Polymer and Color Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
55
|
Trucillo P. Biomaterials for Drug Delivery and Human Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:456. [PMID: 38255624 PMCID: PMC10817481 DOI: 10.3390/ma17020456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Biomaterials embody a groundbreaking paradigm shift in the field of drug delivery and human applications. Their versatility and adaptability have not only enriched therapeutic outcomes but also significantly reduced the burden of adverse effects. This work serves as a comprehensive overview of biomaterials, with a particular emphasis on their pivotal role in drug delivery, classifying them in terms of their biobased, biodegradable, and biocompatible nature, and highlighting their characteristics and advantages. The examination also delves into the extensive array of applications for biomaterials in drug delivery, encompassing diverse medical fields such as cancer therapy, cardiovascular diseases, neurological disorders, and vaccination. This work also explores the actual challenges within this domain, including potential toxicity and the complexity of manufacturing processes. These challenges emphasize the necessity for thorough research and the continuous development of regulatory frameworks. The second aim of this review is to navigate through the compelling terrain of recent advances and prospects in biomaterials, envisioning a healthcare landscape where they empower precise, targeted, and personalized drug delivery. The potential for biomaterials to transform healthcare is staggering, as they promise treatments tailored to individual patient needs, offering hope for improved therapeutic efficacy, fewer side effects, and a brighter future for medical practice.
Collapse
Affiliation(s)
- Paolo Trucillo
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Piazzale V. Tecchio, 80, 80125 Naples, Italy
| |
Collapse
|
56
|
Jackson CE, Doyle I, Khan H, Williams SF, Aldemir Dikici B, Barajas Ledesma E, Bryant HE, English WR, Green NH, Claeyssens F. Gelatin-containing porous polycaprolactone PolyHIPEs as substrates for 3D breast cancer cell culture and vascular infiltration. Front Bioeng Biotechnol 2024; 11:1321197. [PMID: 38260750 PMCID: PMC10800367 DOI: 10.3389/fbioe.2023.1321197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Tumour survival and growth are reliant on angiogenesis, the formation of new blood vessels, to facilitate nutrient and waste exchange and, importantly, provide a route for metastasis from a primary to a secondary site. Whilst current models can ensure the transport and exchange of nutrients and waste via diffusion over distances greater than 200 μm, many lack sufficient vasculature capable of recapitulating the tumour microenvironment and, thus, metastasis. In this study, we utilise gelatin-containing polymerised high internal phase emulsion (polyHIPE) templated polycaprolactone-methacrylate (PCL-M) scaffolds to fabricate a composite material to support the 3D culture of MDA-MB-231 breast cancer cells and vascular ingrowth. Firstly, we investigated the effect of gelatin within the scaffolds on the mechanical and chemical properties using compression testing and FTIR spectroscopy, respectively. Initial in vitro assessment of cell metabolic activity and vascular endothelial growth factor expression demonstrated that gelatin-containing PCL-M polyHIPEs are capable of supporting 3D breast cancer cell growth. We then utilised the chick chorioallantoic membrane (CAM) assay to assess the angiogenic potential of cell-seeded gelatin-containing PCL-M polyHIPEs, and vascular ingrowth within cell-seeded, surfactant and gelatin-containing scaffolds was investigated via histological staining. Overall, our study proposes a promising composite material to fabricate a substrate to support the 3D culture of cancer cells and vascular ingrowth.
Collapse
Affiliation(s)
- Caitlin E. Jackson
- The Kroto Research Institute, Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield, United Kingdom
| | - Iona Doyle
- The Kroto Research Institute, Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Hamood Khan
- The Kroto Research Institute, Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Samuel F. Williams
- Department of Infection, Immunity and Cardiovascular Disease, Royal Hallamshire Hospital, The University of Sheffield, Sheffield, United Kingdom
| | | | | | - Helen E. Bryant
- School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - William R. English
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Nicola H. Green
- The Kroto Research Institute, Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield, United Kingdom
| | - Frederik Claeyssens
- The Kroto Research Institute, Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
57
|
Wu L, Morrow B, Hong L, Rajasingh J. Preparation of Monodispersed Nanofibrous Gelatin Microspheres Using Homebuilt Microfluidics. Methods Mol Biol 2024; 2835:325-337. [PMID: 39105928 DOI: 10.1007/978-1-0716-3995-5_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Gelatin, a protein derivative from collagen, is a versatile material with promising applications in tissue engineering. Among the various forms of gelatin scaffolds, nanofibrous gelatin microspheres (NFGMs) are attracting research efforts due to their fibrous nature and injectability. However, current methods for synthesizing nanofibrous gelatin microspheres (NFGMs) have limitations, such as wide size distributions and the use of toxic solvents. To address these challenges, the article introduces a novel approach. First, it describes the creation of a microfluidic device using readily available supplies. Subsequently, it outlines a unique process for producing monodispersed NFGMs through a combination of the microfluidic device and thermally induced phase separation (TIPS). This innovative method eliminates the need for sieving and the use of toxic solvents, making it a more ecofriendly and efficient alternative.
Collapse
Affiliation(s)
- Linfeng Wu
- Department of Pediatric Dentistry & Community Oral Health, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Brian Morrow
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Liang Hong
- Department of Pediatric Dentistry & Community Oral Health, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Johnson Rajasingh
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA.
- Department of Medicine-Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA.
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
58
|
Xie R, Pal V, Yu Y, Lu X, Gao M, Liang S, Huang M, Peng W, Ozbolat IT. A comprehensive review on 3D tissue models: Biofabrication technologies and preclinical applications. Biomaterials 2024; 304:122408. [PMID: 38041911 PMCID: PMC10843844 DOI: 10.1016/j.biomaterials.2023.122408] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
The limitations of traditional two-dimensional (2D) cultures and animal testing, when it comes to precisely foreseeing the toxicity and clinical effectiveness of potential drug candidates, have resulted in a notable increase in the rate of failure during the process of drug discovery and development. Three-dimensional (3D) in-vitro models have arisen as substitute platforms with the capacity to accurately depict in-vivo conditions and increasing the predictivity of clinical effects and toxicity of drug candidates. It has been found that 3D models can accurately represent complex tissue structure of human body and can be used for a wide range of disease modeling purposes. Recently, substantial progress in biomedicine, materials and engineering have been made to fabricate various 3D in-vitro models, which have been exhibited better disease progression predictivity and drug effects than convention models, suggesting a promising direction in pharmaceutics. This comprehensive review highlights the recent developments in 3D in-vitro tissue models for preclinical applications including drug screening and disease modeling targeting multiple organs and tissues, like liver, bone, gastrointestinal tract, kidney, heart, brain, and cartilage. We discuss current strategies for fabricating 3D models for specific organs with their strengths and pitfalls. We expand future considerations for establishing a physiologically-relevant microenvironment for growing 3D models and also provide readers with a perspective on intellectual property, industry, and regulatory landscape.
Collapse
Affiliation(s)
- Renjian Xie
- Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering in Jiangxi Province, Gannan Medical University, Ganzhou, JX, 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, JX, China
| | - Vaibhav Pal
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA; The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Yanrong Yu
- School of Pharmaceutics, Nanchang University, Nanchang, JX, 330006, China
| | - Xiaolu Lu
- Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering in Jiangxi Province, Gannan Medical University, Ganzhou, JX, 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, JX, China
| | - Mengwei Gao
- School of Pharmaceutics, Nanchang University, Nanchang, JX, 330006, China
| | - Shijie Liang
- School of Pharmaceutics, Nanchang University, Nanchang, JX, 330006, China
| | - Miao Huang
- Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering in Jiangxi Province, Gannan Medical University, Ganzhou, JX, 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, JX, China
| | - Weijie Peng
- Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering in Jiangxi Province, Gannan Medical University, Ganzhou, JX, 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, JX, China; School of Pharmaceutics, Nanchang University, Nanchang, JX, 330006, China.
| | - Ibrahim T Ozbolat
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA; Engineering Science and Mechanics Department, Penn State University, University Park, PA, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA; Materials Research Institute, Pennsylvania State University, University Park, PA, USA; Department of Neurosurgery, Pennsylvania State College of Medicine, Hershey, PA, USA; Penn State Cancer Institute, Penn State University, Hershey, PA, 17033, USA; Department of Medical Oncology, Cukurova University, Adana, 01130, Turkey; Biotechnology Research and Application Center, Cukurova University, Adana, 01130, Turkey.
| |
Collapse
|
59
|
Al Maruf DSA, Xin H, Cheng K, Garcia AG, Mohseni-Dargah M, Ben-Sefer E, Tomaskovic-Crook E, Crook JM, Clark JR. Bioengineered cartilaginous grafts for repairing segmental mandibular defects. J Tissue Eng 2024; 15. [DOI: 10.1177/20417314241267017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Reconstructing critical-sized craniofacial bone defects is a global healthcare challenge. Current methods, like autologous bone transplantation, face limitations. Bone tissue engineering offers an alternative to autologous bone, with traditional approaches focusing on stimulating osteogenesis via the intramembranous ossification (IMO) pathway. However, IMO falls short in addressing larger defects, particularly in clinical scenarios where there is insufficient vascularisation. This review explores redirecting bone regeneration through endochondral ossification (ECO), a process observed in long bone healing stimulated by hypoxic conditions. Despite its promise, gaps exist in applying ECO to bone tissue engineering experiments, requiring the elucidation of key aspects such as cell sources, biomaterials and priming protocols. This review discusses various scaffold biomaterials and cellular sources for chondrogenesis and hypertrophic chondrocyte priming, mirroring the ECO pathway. The review highlights challenges in current endochondral priming and proposes alternative approaches. Emphasis is on segmental mandibular defect repair, offering insights for future research and clinical application. This concise review aims to advance bone tissue engineering by addressing critical gaps in ECO strategies.
Collapse
Affiliation(s)
- D S Abdullah Al Maruf
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Hai Xin
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Kai Cheng
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, NSW, Australia
| | - Alejandro Garcia Garcia
- Cell, Tissue and Organ Engineering Laboratory, Biomedical Centre (BMC), Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, Lund, Sweden
| | - Masoud Mohseni-Dargah
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
| | - Eitan Ben-Sefer
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- Arto Hardy Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Eva Tomaskovic-Crook
- Arto Hardy Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Sarcoma and Surgical Research Centre, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- ARC Centre of Excellence for Electromaterials Science, The University of Wollongong, Wollongong, NSW, Australia
- Intelligent Polymer Research Institute, AIIM Facility, The University of Wollongong, Wollongong, NSW, Australia
| | - Jeremy Micah Crook
- Arto Hardy Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Sarcoma and Surgical Research Centre, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- ARC Centre of Excellence for Electromaterials Science, The University of Wollongong, Wollongong, NSW, Australia
- Intelligent Polymer Research Institute, AIIM Facility, The University of Wollongong, Wollongong, NSW, Australia
| | - Jonathan Robert Clark
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, NSW, Australia
| |
Collapse
|
60
|
Furuno K, Elvitigala KCML, Suzuki K, Sakai S. Local delivery of adeno-associated viral vectors with electrospun gelatin nanofiber mats. J Biomed Mater Res B Appl Biomater 2024; 112:e35345. [PMID: 37902433 DOI: 10.1002/jbm.b.35345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/28/2023] [Accepted: 10/14/2023] [Indexed: 10/31/2023]
Abstract
Adeno-associated viral (AAV) vectors play a significant role in gene therapy, yet the typical delivery methods, like systemic and local AAV injections, often lead to unintended off-target distribution and tissue damage due to injection. In this study, we propose a localized delivery approach for AAV vectors utilizing electrospun gelatin nanofiber mats, which are cross-linked with glutaraldehyde. The AAV vectors, which encoded a green fluorescent protein (GFP), were loaded onto the mats by immersing them in a solution containing the vectors. The amount of AAV vector loaded onto the mats increased as the vector concentration in the solution increased. The loaded AAV vector was steadily released into the cell culture medium over 3 days. The mats incubated for 3 days also showed the ability to transduce into the cells cultured on them. We evaluated the effectiveness of this delivery system by attaching the mats to mouse livers. GFP expression was visible on the surface of the liver beneath the attached mats, but not in areas in direct contact with the mats. These findings suggest that the attachment of AAV vector-loaded electrospun gelatin nanofiber mats to a target site present a promising solution for localized gene delivery while reducing off-target distribution.
Collapse
Affiliation(s)
- Kotoko Furuno
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | | | - Keiichiro Suzuki
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
- Graduate School of Frontier Bioscience, Osaka University, Osaka, Japan
| | - Shinji Sakai
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| |
Collapse
|
61
|
Ijaz F, Tahir HM, Ali S, Ali A, Khan HA, Muzamil A, Manzoor HH, Qayyum KA. Biomolecules based hydrogels and their potential biomedical applications: A comprehensive review. Int J Biol Macromol 2023; 253:127362. [PMID: 37827396 DOI: 10.1016/j.ijbiomac.2023.127362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
The need for biocompatible drug carriers has been significantly increased from the past few years. Researchers show great interest in the development of more versatile and sophisticated biomaterials based drug carriers. Hydrogels are beneficial drug carriers and easily release the controlled amount of drug at target site due to its tunable structure. The hydrogels made-up of potent biological macromolecules including collagen, gelatin, fibrin, elastin, fibroin, chitosan, starch, alginate, agarose and carrageenan have been proven as versatile biomaterials. These are three-dimensional polymeric networks, synthesized by crosslinking of hydrophilic polymers. The biological macromolecules based hydrogels containing therapeutic substances are used in a wide range of biomedical applications including wound healing, tissue engineering, cosmetics and contact lenses. However, many aspects related to hydrogels such as the mechanism of cross-linking and molecular entanglement are not clear. So, there is a need to do more research and exploration toward the extensive and cost-effective use of hydrogels. The present review article elaborately discusses the biomolecules based hydrogels and their possible biomedical applications in different fields.
Collapse
Affiliation(s)
- Fatima Ijaz
- Department of Zoology, Government College University Lahore, Pakistan
| | | | - Shaukat Ali
- Department of Zoology, Government College University Lahore, Pakistan
| | - Aamir Ali
- Department of Zoology, Government College University Lahore, Pakistan.
| | | | - Ayesha Muzamil
- Department of Zoology, Government College University Lahore, Pakistan
| | | | | |
Collapse
|
62
|
Sunakawa Y, Kondo M, Yamamoto Y, Inomata T, Inoue Y, Mori D, Mizuno T. Design of Cell-Adhesive Shellac Derivatives and Endowment of Photoswitchable Cell-Adhesion Properties. ACS APPLIED BIO MATERIALS 2023; 6:5493-5501. [PMID: 37978057 DOI: 10.1021/acsabm.3c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The emergence of new biodegradable cell-adhesion materials is an attractive topic in biomaterial chemistry, particularly for the development of cell incubation scaffolds and drug encapsulation materials used in in situ regenerative therapy. Shellac is a natural resin with unique film-forming properties and high miscibility with various chemicals, in addition to being biodegradable and nontoxic to biological systems. However, since native shellac does not adhere to mammalian cells, there have been no reports of using shellac to develop cell-adhesive biomaterials. In this study, we report on the development of cell-adhesive shellac derivatives through slight chemical modification. Shellac is a mixture of oligoesters that consists of hydroxyl fatty acids and resin acids, and therefore, all oligomers have one carboxylic acid group at the terminal. We discovered that a simple modification of hydrophobic chemical groups, particularly those containing aromatic groups in the ester form, could dramatically improve cell-adhesion properties for mammalian cells. Furthermore, by using photocleavable esters containing aromatic groups, we successfully endowed photoswitchable properties in cell adhesion. Given that shellac is a low-cost, biodegradable, and nontoxic natural resin, the modified shellacs have the potential to become new and attractive biomaterials applicable to in situ regenerative therapy.
Collapse
Affiliation(s)
- Yurino Sunakawa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Mai Kondo
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Yasushi Yamamoto
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Tomohiko Inomata
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Yasumichi Inoue
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Daisuke Mori
- Gifu Shellac Manufacturing Co., Ltd., 1-41, Higashiuzura, Gifu-shi, Gifu 500-8618, Japan
| | - Toshihisa Mizuno
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
- Department of Nanopharmaceutical Sciences, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
63
|
Esimbekova EN, Torgashina IG, Nemtseva EV, Kratasyuk VA. Enzymes Immobilized into Starch- and Gelatin-Based Hydrogels: Properties and Application in Inhibition Assay. MICROMACHINES 2023; 14:2217. [PMID: 38138386 PMCID: PMC10745932 DOI: 10.3390/mi14122217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
The present work is a review of the research on using hydrogels based on natural biodegradable polymers, starch, and gelatin for enzyme immobilization. This review addresses the main properties of starch and gelatin that make them promising materials in biotechnology for producing enzyme preparations stable during use and storage and insensitive to chemical and physical impacts. The authors summarize their achievements in developing the preparations of enzymes immobilized in starch and gelatin gels and assess their activity, stability, and sensitivity for use as biorecognition elements of enzyme inhibition-based biosensors.
Collapse
Affiliation(s)
- Elena N. Esimbekova
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (E.N.E.); (I.G.T.); (E.V.N.)
- Laboratory of Photobiology, Institute of Biophysics of Siberian Branch of Russian Academy of Science, 660036 Krasnoyarsk, Russia
| | - Irina G. Torgashina
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (E.N.E.); (I.G.T.); (E.V.N.)
| | - Elena V. Nemtseva
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (E.N.E.); (I.G.T.); (E.V.N.)
- Laboratory of Photobiology, Institute of Biophysics of Siberian Branch of Russian Academy of Science, 660036 Krasnoyarsk, Russia
| | - Valentina A. Kratasyuk
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (E.N.E.); (I.G.T.); (E.V.N.)
- Laboratory of Photobiology, Institute of Biophysics of Siberian Branch of Russian Academy of Science, 660036 Krasnoyarsk, Russia
| |
Collapse
|
64
|
Antezana PE, Municoy S, Ostapchuk G, Catalano PN, Hardy JG, Evelson PA, Orive G, Desimone MF. 4D Printing: The Development of Responsive Materials Using 3D-Printing Technology. Pharmaceutics 2023; 15:2743. [PMID: 38140084 PMCID: PMC10747900 DOI: 10.3390/pharmaceutics15122743] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Additive manufacturing, widely known as 3D printing, has revolutionized the production of biomaterials. While conventional 3D-printed structures are perceived as static, 4D printing introduces the ability to fabricate materials capable of self-transforming their configuration or function over time in response to external stimuli such as temperature, light, or electric field. This transformative technology has garnered significant attention in the field of biomedical engineering due to its potential to address limitations associated with traditional therapies. Here, we delve into an in-depth review of 4D-printing systems, exploring their diverse biomedical applications and meticulously evaluating their advantages and disadvantages. We emphasize the novelty of this review paper by highlighting the latest advancements and emerging trends in 4D-printing technology, particularly in the context of biomedical applications.
Collapse
Affiliation(s)
- Pablo Edmundo Antezana
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3, Buenos Aires 1113, Argentina; (P.E.A.); (S.M.)
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires 1428, Argentina;
| | - Sofia Municoy
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3, Buenos Aires 1113, Argentina; (P.E.A.); (S.M.)
| | - Gabriel Ostapchuk
- Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Nodo Constituyentes, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina; (G.O.); (P.N.C.)
- Departamento de Micro y Nanotecnología, Gerencia de Desarrollo Tecnológico y Proyectos Especiales, Gerencia de Área de Investigación, Desarrollo e Innovación, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina
| | - Paolo Nicolás Catalano
- Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Nodo Constituyentes, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina; (G.O.); (P.N.C.)
- Departamento de Micro y Nanotecnología, Gerencia de Desarrollo Tecnológico y Proyectos Especiales, Gerencia de Área de Investigación, Desarrollo e Innovación, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química Analítica Instrumental, Junín 954, Buenos Aires 1113, Argentina
| | - John G. Hardy
- Materials Science Institute, Lancaster University, Lancaster LA1 4YB, UK;
- Department of Chemistry, Faraday Building, Lancaster University, Lancaster LA1 4YB, UK
| | - Pablo Andrés Evelson
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires 1428, Argentina;
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain;
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
| | - Martin Federico Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3, Buenos Aires 1113, Argentina; (P.E.A.); (S.M.)
| |
Collapse
|
65
|
Xu P, Kankala RK, Wang S, Chen A. Decellularized extracellular matrix-based composite scaffolds for tissue engineering and regenerative medicine. Regen Biomater 2023; 11:rbad107. [PMID: 38173774 PMCID: PMC10761212 DOI: 10.1093/rb/rbad107] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/17/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Despite the considerable advancements in fabricating polymeric-based scaffolds for tissue engineering, the clinical transformation of these scaffolds remained a big challenge because of the difficulty of simulating native organs/tissues' microenvironment. As a kind of natural tissue-derived biomaterials, decellularized extracellular matrix (dECM)-based scaffolds have gained attention due to their unique biomimetic properties, providing a specific microenvironment suitable for promoting cell proliferation, migration, attachment and regulating differentiation. The medical applications of dECM-based scaffolds have addressed critical challenges, including poor mechanical strength and insufficient stability. For promoting the reconstruction of damaged tissues or organs, different types of dECM-based composite platforms have been designed to mimic tissue microenvironment, including by integrating with natural polymer or/and syntenic polymer or adding bioactive factors. In this review, we summarized the research progress of dECM-based composite scaffolds in regenerative medicine, highlighting the critical challenges and future perspectives related to the medical application of these composite materials.
Collapse
Affiliation(s)
- Peiyao Xu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Shibin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| |
Collapse
|
66
|
Park SS, Farwa U, Hossain M, Im S, Lee BT. Evaluation of Gelatin/Hyaluronic Acid-Generated Bridging in a 3D-Printed Titanium Cage for Bone Regeneration. J Funct Biomater 2023; 14:562. [PMID: 38132816 PMCID: PMC10743693 DOI: 10.3390/jfb14120562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
3D-printed titanium (Ti) cages present an attractive alternative for addressing issues related to osteoporosis-induced fractures, accidental fractures, and spinal fusion surgery due to disc herniation. These Ti-based bone implants possess superior strength compared to other metals, allowing for versatile applications in orthopedic scenarios. However, when used as standalone solutions, certain considerations may arise, such as interaction with soft tissues. Therefore, to overcome these issues, the combination with hydrogel has been considered. In this study, to impart Ti with regenerative abilities a 3D-printed Ti cage was loaded with gelatin and hyaluronic acid (G-H) to improve the cell attachment ability of the Ti-based bone implants. The void spaces within the mesh structure of the 3D Ti cage were filled with G-H, creating a network of micro-sized pores. The filled G-H acted as the bridge for the cells to migrate toward the large inner pores of the 3D Ti cage. Due to the microporous surface and slow release of gelatin and hyaluronic acid, the biocompatibility of the coated Ti cage was increased with an elevation in osteoconduction as depicted by the up-regulation of bone-related gene expressions. The in vivo implantation in the rabbit femur model showed enhanced bone regeneration due to the coated G-H on the Ti cage compared to the pristine hollow Ti cage. The G-H filled the large holes of the 3D Ti cage that acted as a bridge for the cells to travel inside the implant and aided in the fast regeneration of bone.
Collapse
Affiliation(s)
- Seong-Su Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University Cheonan, Cheonan 31151, Republic of Korea;
| | - Ume Farwa
- Institute of Tissue Regeneration, Soonchunhyang University Cheonan, Cheonan 31151, Republic of Korea; (U.F.); (S.I.)
| | - Mosharraf Hossain
- Department of Neurosurgery, Soonchunhyang University, Bucheon Hospital, Bucheon 14584, Republic of Korea;
| | - Soobin Im
- Institute of Tissue Regeneration, Soonchunhyang University Cheonan, Cheonan 31151, Republic of Korea; (U.F.); (S.I.)
- Department of Neurosurgery, Soonchunhyang University, Bucheon Hospital, Bucheon 14584, Republic of Korea;
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University Cheonan, Cheonan 31151, Republic of Korea;
- Institute of Tissue Regeneration, Soonchunhyang University Cheonan, Cheonan 31151, Republic of Korea; (U.F.); (S.I.)
| |
Collapse
|
67
|
Yilmaz-Aykut D, Torkay G, Kasgoz A, Shin SR, Bal-Ozturk A, Deligoz H. Injectable and self-healing dual crosslinked gelatin/kappa-carrageenan methacryloyl hybrid hydrogels via host-guest supramolecular interaction for wound healing. J Biomed Mater Res B Appl Biomater 2023; 111:1921-1937. [PMID: 37350561 DOI: 10.1002/jbm.b.35295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/10/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
Injectable hydrogels based on natural polymers have shown great potential for various tissue engineering applications, such as wound healing. However, poor mechanical properties and weak self-healing ability are still major challenges. In this work, we introduce a host-guest (HG) supramolecular interaction between acrylate-β-cyclodextrin (Ac-β-CD) conjugated on methacrylated kappa-carrageenan (MA-κ-CA) and aromatic residues on gelatin to provide self-healing characteristics. We synthesize an MA-κ-CA to conjugate Ac-β-CD and fabricate dual crosslinked hybrid hydrogels with gelatin to mimic the native extracellular matrix (ECM). The dual crosslinking occurs on the MA-κ-CA backbone through the addition of KCl and photocrosslinking process, which enhances mechanical strength and stability. The hybrid hydrogels exhibit shear-thinning, self-healing, and injectable behavior, which apply easily under a minimally invasive manner and contribute to shear stress during the injection. In-vitro studies indicate enhanced cell viability. Furthermore, scratch assays are performed to examine cell migration and cell-cell interaction. It is envisioned that the combination of self-healing and injectable dual crosslinked hybrid hydrogels with HG interactions display a promising and functional biomaterial platform for wound healing applications.
Collapse
Affiliation(s)
- Dilara Yilmaz-Aykut
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
- Faculty of Engineering, Chemical Engineering Department, Istanbul University-Cerrahpaşa, Avcılar, Istanbul, Turkey
| | - Gulsah Torkay
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, Turkey
| | - Alper Kasgoz
- Polymer Engineering Department, Faculty of Engineering, Yalova University, Yalova, Turkey
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Ayca Bal-Ozturk
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, Turkey
- Faculty of Pharmacy, Department of Analytical Chemistry, Istinye University, Istanbul, Turkey
- 3D Bioprinting Design & Prototyping R&D Center, Istinye University, Zeytinburnu, Turkey
| | - Huseyin Deligoz
- Faculty of Engineering, Chemical Engineering Department, Istanbul University-Cerrahpaşa, Avcılar, Istanbul, Turkey
| |
Collapse
|
68
|
Lukin I, Erezuma I, Desimone MF, Zhang YS, Dolatshahi-Pirouz A, Orive G. Nanomaterial-based drug delivery of immunomodulatory factors for bone and cartilage tissue engineering. BIOMATERIALS ADVANCES 2023; 154:213637. [PMID: 37778293 DOI: 10.1016/j.bioadv.2023.213637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
As life expectancy continues to increase, so do disorders related to the musculoskeletal system. Orthopedics-related impairments remain a challenge, with nearly 325 thousand and 120 thousand deaths recorded in 2019. Musculoskeletal system, including bone and cartilage tissue, is a living system in which cells constantly interact with the immune system, which plays a key role in the tissue repair process. An alternative to bridge the gap between these two systems is exploiting nanomaterials, as they have proven to serve as delivery agents of an array of molecules, including immunomodulatory agents (anti-inflammatory drugs, cytokines), as well as having the ability to mimic tissue by their nanoscopic structure and promote tissue repair per se. Therefore, this review outlooks nanomaterials and immunomodulatory factors widely employed in the area of bone and cartilage tissue engineering. Emerging developments in nanomaterials for delivery of immunomodulatory agents for bone and cartilage tissue engineering applications have also been discussed. It can be concluded that latest progress in nanotechnology have enabled to design intricate systems with the ability to deliver biologically active agents, promoting tissue repair and regeneration; thus, nanomaterials studied herein have shown great potential to serve as immunomodulatory agents in the area of tissue engineering.
Collapse
Affiliation(s)
- Izeia Lukin
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Itsasne Erezuma
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Martin F Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | | | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria 01007, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
| |
Collapse
|
69
|
Deptuła M, Zawrzykraj M, Sawicka J, Banach-Kopeć A, Tylingo R, Pikuła M. Application of 3D- printed hydrogels in wound healing and regenerative medicine. Biomed Pharmacother 2023; 167:115416. [PMID: 37683592 DOI: 10.1016/j.biopha.2023.115416] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Hydrogels are three-dimensional polymer networks with hydrophilic properties. The modifiable properties of hydrogels and the structure resembling living tissue allow their versatile application. Therefore, increasing attention is focused on the use of hydrogels as bioinks for three-dimensional (3D) printing in tissue engineering. Bioprinting involves the fabrication of complex structures from several types of materials, cells, and bioactive compounds. Stem cells (SC), such as mesenchymal stromal cells (MSCs) are frequently employed in 3D constructs. SCs have desirable biological properties such as the ability to differentiate into various types of tissue and high proliferative capacity. Encapsulating SCs in 3D hydrogel constructs enhances their reparative abilities and improves the likelihood of reaching target tissues. In addition, created constructs can simulate the tissue environment and mimic biological signals. Importantly, the immunogenicity of scaffolds is minimized through the use of patient-specific cells and the biocompatibility and biodegradability of the employed biopolymers. Regenerative medicine is taking advantage of the aforementioned capabilities in regenerating various tissues- muscle, bones, nerves, heart, skin, and cartilage.
Collapse
Affiliation(s)
- Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Medical University of Gdansk, Poland.
| | | | - Justyna Sawicka
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Poland
| | - Adrianna Banach-Kopeć
- Department of Chemistry, Technology and Biochemistry of Food, Faculty of Chemistry, Gdansk University of Technology, Poland
| | - Robert Tylingo
- Department of Chemistry, Technology and Biochemistry of Food, Faculty of Chemistry, Gdansk University of Technology, Poland
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Medical University of Gdansk, Poland
| |
Collapse
|
70
|
Tripathi AS, Zaki MEA, Al-Hussain SA, Dubey BK, Singh P, Rind L, Yadav RK. Material matters: exploring the interplay between natural biomaterials and host immune system. Front Immunol 2023; 14:1269960. [PMID: 37936689 PMCID: PMC10627157 DOI: 10.3389/fimmu.2023.1269960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023] Open
Abstract
Biomaterials are widely used for various medical purposes, for instance, implants, tissue engineering, medical devices, and drug delivery systems. Natural biomaterials can be obtained from proteins, carbohydrates, and cell-specific sources. However, when these biomaterials are introduced into the body, they trigger an immune response which may lead to rejection and failure of the implanted device or tissue. The immune system recognizes natural biomaterials as foreign substances and triggers the activation of several immune cells, for instance, macrophages, dendritic cells, and T cells. These cells release pro-inflammatory cytokines and chemokines, which recruit other immune cells to the implantation site. The activation of the immune system can lead to an inflammatory response, which can be beneficial or detrimental, depending on the type of natural biomaterial and the extent of the immune response. These biomaterials can also influence the immune response by modulating the behavior of immune cells. For example, biomaterials with specific surface properties, such as charge and hydrophobicity, can affect the activation and differentiation of immune cells. Additionally, biomaterials can be engineered to release immunomodulatory factors, such as anti-inflammatory cytokines, to promote a tolerogenic immune response. In conclusion, the interaction between biomaterials and the body's immune system is an intricate procedure with potential consequences for the effectiveness of therapeutics and medical devices. A better understanding of this interplay can help to design biomaterials that promote favorable immune responses and minimize adverse reactions.
Collapse
Affiliation(s)
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad lbn Saud Islamic University, Riyadh, Saudi Arabia
| | - Sami A Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad lbn Saud Islamic University, Riyadh, Saudi Arabia
| | - Bidhyut Kumar Dubey
- Department of Pharmaceutical Chemistry, Era College of Pharmacy, Era University, Lucknow, India
| | - Prabhjot Singh
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| | - Laiba Rind
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| | - Rajnish Kumar Yadav
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| |
Collapse
|
71
|
Brooks AK, Ramsey RG, Zhang N, Yadavalli VK. Tunable Light-Actuated Interpenetrating Networks of Silk Fibroin and Gelatin for Tissue Engineering and Flexible Biodevices. ACS Biomater Sci Eng 2023; 9:5793-5803. [PMID: 37698556 DOI: 10.1021/acsbiomaterials.3c00741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Soft materials with tunable properties are valuable for applications such as tissue engineering, electronic skins, and human-machine interfaces. Materials that are nature-derived offer additional advantages such as biocompatibility, biodegradability, low-cost sourcing, and sustainability. However, these materials often have contrasting properties that limit their use. For example, silk fibroin (SF) has high mechanical strength but lacks processability and cell-adhesive domains. Gelatin, derived from collagen, has excellent biological properties, but is fragile and lacks stability. To overcome these limitations, composites of gelatin and SF have been explored. However, mechanically robust self-supported matrices and electrochemically active or micropatterned substrates were not demonstrated. In this study, we present a composite of photopolymerizable SF and photogelatin, termed photofibrogel (PFG). By incorporating photoreactive properties in both SF and gelatin, control over material properties can be achieved. The PFG composite can be easily and rapidly formed into free-standing, high-resolution architectures with tunable properties. By optimizing the ratio of SF to gelatin, properties such as swelling, mechanical behavior, enzymatic degradation, and patternability are tailored. The PFG composite allows for macroscale and microscale patterning without significant swelling, enabling the fabrication of structures using photolithography and laser cutting techniques. PFG can be patterned with electrically conductive materials, making it suitable for cell guidance and stimulation. The versatility, mechanical robustness, bioactivity, and electrochemical properties of PFG are shown for skeletal muscle tissue engineering using C2C12 cells as a model. Overall, such composite biomaterials with tunable properties have broad potential in flexible bioelectronics, wound healing, regenerative medicine, and food systems.
Collapse
|
72
|
Kozan NG, Joshi M, Sicherer ST, Grasman JM. Porous biomaterial scaffolds for skeletal muscle tissue engineering. Front Bioeng Biotechnol 2023; 11:1245897. [PMID: 37854885 PMCID: PMC10579822 DOI: 10.3389/fbioe.2023.1245897] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Volumetric muscle loss is a traumatic injury which overwhelms the innate repair mechanisms of skeletal muscle and results in significant loss of muscle functionality. Tissue engineering seeks to regenerate these injuries through implantation of biomaterial scaffolds to encourage endogenous tissue formation and to restore mechanical function. Many types of scaffolds are currently being researched for this purpose. Scaffolds are typically made from either natural, synthetic, or conductive polymers, or any combination therein. A major criterion for the use of scaffolds for skeletal muscle is their porosity, which is essential for myoblast infiltration and myofiber ingrowth. In this review, we summarize the various methods of fabricating porous biomaterial scaffolds for skeletal muscle regeneration, as well as the various types of materials used to make these scaffolds. We provide guidelines for the fabrication of scaffolds based on functional requirements of skeletal muscle tissue, and discuss the general state of the field for skeletal muscle tissue engineering.
Collapse
Affiliation(s)
| | | | | | - Jonathan M. Grasman
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
73
|
Lukin I, Erezuma I, Garcia-Garcia P, Reyes R, Evora C, Kadumudi FB, Dolatshahi-Pirouz A, Orive G. Sumecton reinforced gelatin-based scaffolds for cell-free bone regeneration. Int J Biol Macromol 2023; 249:126023. [PMID: 37506785 DOI: 10.1016/j.ijbiomac.2023.126023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Bone tissue engineering has risen to tackle the challenges of the current clinical need concerning bone fractures that is already considered a healthcare system problem. Scaffold systems for the repair of this tissue have yielded different combinations including biomaterials with nanotechnology or biological agents. Herein, three-dimensional porous hydrogels were engineered based on gelatin as a natural biomaterial and reinforced with synthetic saponite nanoclays. Scaffolds were biocompatible and shown to enhance the inherent properties of pristine ones, in particular, proved to withstand pressures similar to load-bearing tissues. Studies with murine mesenchymal stem cells found that scaffolds had the potential to proliferate and promote cell differentiation. In vivo experiments were conducted to gain insight about the ability of these cell-free scaffolds to regenerate bone, as well as to determine the role that these nanoparticles in the scaffold could play as a drug delivery system. SDF-1 loaded scaffolds showed the highest percentage of bone formation, which was corroborated by osteogenic markers and new blood vessels. Albeit a first attempt in the field of synthetic nanosilicates, these results suggest that the designed constructs may serve as delivery platforms for biomimetic agents to mend bony defects, circumventing high doses of therapeutics and cell-loading systems.
Collapse
Affiliation(s)
- Izeia Lukin
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Itsasne Erezuma
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Patricia Garcia-Garcia
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Ricardo Reyes
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Carmen Evora
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Firoz Babu Kadumudi
- Department of Health Technology, Technical University of Denmark (DTU), 2800 Kgs. Lyngby, Denmark
| | | | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain.
| |
Collapse
|
74
|
Di Francesco D, Pigliafreddo A, Casarella S, Di Nunno L, Mantovani D, Boccafoschi F. Biological Materials for Tissue-Engineered Vascular Grafts: Overview of Recent Advancements. Biomolecules 2023; 13:1389. [PMID: 37759789 PMCID: PMC10526356 DOI: 10.3390/biom13091389] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The clinical demand for tissue-engineered vascular grafts is still rising, and there are many challenges that need to be overcome, in particular, to obtain functional small-diameter grafts. The many advances made in cell culture, biomaterials, manufacturing techniques, and tissue engineering methods have led to various promising solutions for vascular graft production, with available options able to recapitulate both biological and mechanical properties of native blood vessels. Due to the rising interest in materials with bioactive potentials, materials from natural sources have also recently gained more attention for vascular tissue engineering, and new strategies have been developed to solve the disadvantages related to their use. In this review, the progress made in tissue-engineered vascular graft production is discussed. We highlight, in particular, the use of natural materials as scaffolds for vascular tissue engineering.
Collapse
Affiliation(s)
- Dalila Di Francesco
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Alexa Pigliafreddo
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Simona Casarella
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Luca Di Nunno
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| |
Collapse
|
75
|
Sacco AM, Castaldo C, Di Meglio FD, Nurzynska D, Palermi S, Spera R, Gnasso R, Zinno G, Romano V, Belviso I. The Long and Winding Road to Cardiac Regeneration. APPLIED SCIENCES 2023; 13:9432. [DOI: 10.3390/app13169432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Cardiac regeneration is a critical endeavor in the treatment of heart diseases, aimed at repairing and enhancing the structure and function of damaged myocardium. This review offers a comprehensive overview of current advancements and strategies in cardiac regeneration, with a specific focus on regenerative medicine and tissue engineering-based approaches. Stem cell-based therapies, which involve the utilization of adult stem cells and pluripotent stem cells hold immense potential for replenishing lost cardiomyocytes and facilitating cardiac tissue repair and regeneration. Tissue engineering also plays a prominent role employing synthetic or natural biomaterials, engineering cardiac patches and grafts with suitable properties, and fabricating upscale bioreactors to create functional constructs for cardiac recovery. These constructs can be transplanted into the heart to provide mechanical support and facilitate tissue healing. Additionally, the production of organoids and chips that accurately replicate the structure and function of the whole organ is an area of extensive research. Despite significant progress, several challenges persist in the field of cardiac regeneration. These include enhancing cell survival and engraftment, achieving proper vascularization, and ensuring the long-term functionality of engineered constructs. Overcoming these obstacles and offering effective therapies to restore cardiac function could improve the quality of life for individuals with heart diseases.
Collapse
Affiliation(s)
- Anna Maria Sacco
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Clotilde Castaldo
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Franca Di Di Meglio
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Daria Nurzynska
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy
| | - Stefano Palermi
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Rocco Spera
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Rossana Gnasso
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Giorgio Zinno
- Department of Clinical and Surgical Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Veronica Romano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Immacolata Belviso
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
76
|
Joseph JP, Gugulothu SB, Nandi D, Chatterjee K. Mechanical Properties Affect Primary T Cell Activation in 3D Bioprinted Hydrogels. ACS Macro Lett 2023; 12:1085-1093. [PMID: 37466277 DOI: 10.1021/acsmacrolett.3c00271] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
T cells play a critical role in the adaptive immune response of the body, especially against intracellular pathogens and cancer. In vitro, T cell activation studies typically employ planar (two-dimensional, 2D) culture systems that do not mimic native cell-to-extracellular matrix (ECM) interactions, which influence activation. The goal of this work was to study T cell responses in a cell line (EL4) and primary mouse T cells in three-dimensional (3D) bioprinted matrices of varied stiffness. Cell-laden hydrogels were 3D bioprinted from gelatin methacryloyl (GelMA) using a digital light processing (DLP)-based 3D bioprinter operated with visible light (405 nm). Mechanical characterization revealed that the hydrogels had pathophysiologically relevant stiffnesses for a lymph node-mimetic tissue construct. EL4, a mouse T cell lymphoma line, or primary mouse T cells were 3D bioprinted and activated using a combination of 10 ng/mL of phorbol myristate acetate (PMA) and 0.1 μM of ionomycin. Cellular responses revealed differences between 2D and 3D cultures and that the biomechanical properties of the 3D bioprinted hydrogel influence T cell activation. Cellular responses of the 2D and 3D cultures in a soft matrix (19.83 ± 2.36 kPa) were comparable; however, they differed in a stiff matrix (52.95 ± 1.36 kPa). The fraction of viable EL4 cells was 1.3-fold higher in the soft matrix than in the stiff matrix. Furthermore, primary mouse T cells activated with PMA and ionomycin showed 1.35-fold higher viable cells in the soft matrix than in the stiff matrix. T cells bioprinted in a soft matrix and a stiff matrix released 7.4-fold and 5.9-fold higher amounts of interleukin-2 (IL-2) than 2D cultured cells, respectively. Overall, the study demonstrates the changes in the response of T cells in 3D bioprinted scaffolds toward engineering an ex vivo lymphoid tissue-mimetic system that can faithfully recapitulate T cell activation and unravel pathophysiological characteristics of T cells in infectious biology, autoimmunity, and cancers.
Collapse
Affiliation(s)
- Joel P Joseph
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru - 560012, India
| | | | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bengaluru - 560012, India
| | - Kaushik Chatterjee
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru - 560012, India
- Department of Materials Engineering, Indian Institute of Science, Bengaluru - 560012, India
| |
Collapse
|
77
|
Choi K, Park CY, Choi JS, Kim YJ, Chung S, Lee S, Kim CH, Park SJ. The Effect of the Mechanical Properties of the 3D Printed Gelatin/Hyaluronic Acid Scaffolds on hMSCs Differentiation Towards Chondrogenesis. Tissue Eng Regen Med 2023; 20:593-605. [PMID: 37195569 PMCID: PMC10313889 DOI: 10.1007/s13770-023-00545-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 04/09/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Tissue engineering, including 3D bioprinting, holds great promise as a therapeutic tool for repairing cartilage defects. Mesenchymal stem cells have the potential to treat various fields due to their ability to differentiate into different cell types. The biomimetic substrate, such as scaffolds and hydrogels, is a crucial factor that affects cell behavior, and the mechanical properties of the substrate have been shown to impact differentiation during incubation. In this study, we examine the effect of the mechanical properties of the 3D printed scaffolds, made using different concentrations of cross-linker, on hMSCs differentiation towards chondrogenesis. METHODS The 3D scaffold was fabricated using 3D bioprinting technology with gelatin/hyaluronic acid (HyA) biomaterial ink. Crosslinking was achieved by using different concentrations of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methlymorpholinium chloride n-hydrate (DMTMM), allowing for control of the scaffold's mechanical properties. The printability and stability were also evaluated based on the concentration of DMTMM used. The effects of the gelatin/HyA scaffold on chondrogenic differentiation was analyzed by utilizing various concentrations of DMTMM. RESULTS The addition of HyA was found to improve the printability and stability of 3D printed gelatin/HyA scaffolds. The mechanical properties of the 3D gelatin/HyA scaffold could be regulated through the use of different concentrations of DMTMM cross-linker. In particular, the use of 0.25 mM DMTMM for crosslinking the 3D gelatin/HyA scaffold resulted in enhanced chondrocyte differentiation. CONCLUSION The mechanical properties of 3D printed gelatin/HyA scaffolds cross-linked using various concentrations of DMTMM can influence the differentiation of hMSCs into chondrocytes.
Collapse
Affiliation(s)
- Kyoung Choi
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
- Program in Biomicro System Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Cho Young Park
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
- Program in Biomicro System Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Jun Shik Choi
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Young-Jin Kim
- Department of Biomedical Engineering, Catholic University of Daegu, Gyeongsan-Si, 38430, Republic of Korea
| | - Seok Chung
- Program in Biomicro System Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Sanghoon Lee
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Chun-Ho Kim
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea.
| | - Sang Jun Park
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea.
| |
Collapse
|
78
|
Demir D, Goksen G, Ceylan S, Trif M, Rusu AV. Optimized Peppermint Essential Oil Microcapsules Loaded into Gelatin-Based Cryogels with Enhanced Antimicrobial Activity. Polymers (Basel) 2023; 15:2782. [PMID: 37447427 DOI: 10.3390/polym15132782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, chitosan (Chi) was used to microencapsulate peppermint essential oil (PEO). A novel gelatin-based cryogel loaded with PEO microcapsules was further developed and characterized for potential applications. Four different cryogel systems were designed, and the morphological, molecular, physical and antibacterial properties were investigated. Additionally, the antimicrobial properties of PEO, alone and microcapsulated, incorporated into the cryogel network were evaluated. The observed gel structure of cryogels exhibited a highly porous morphology in the microcapsules. The highest values of the equilibrium swelling ratio were acquired for the GelCryo-ChiCap and GelCryo-PEO@ChiCap samples. The contact angle GelCryo-PEO@ChiCap sample was lower than the control (GelCryo) due to the water repelling of the essential oil. It has been found that the incorporation of encapsulated PEO into the cryogels would be more advantageous compared to its direct addition. Moreover, GelCryo-PEO@ChiCap cryogels showed the strongest antibacterial activities, especially against Staphylococcus aureus (Gram-positive bacteria) and Escherichia coli (Gram-negative bacteria). The system that was developed showed promising results, indicating an improved antibacterial efficacy and enhanced structural properties due to the presence of microcapsules. These findings suggest that the system may be an appropriate candidate for various applications, including, but not limited to, drug release, tissue engineering, and food packaging. Finally, this system demonstrates a strategy to stabilize the releasing of the volatile compounds for creating successful results.
Collapse
Affiliation(s)
- Didem Demir
- Department of Chemistry and Chemical Process Technologies, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin 33100, Türkiye
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin 33100, Türkiye
| | - Seda Ceylan
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana 01250, Türkiye
| | - Monica Trif
- Centre for Innovative Process Engineering (CENTIV) GmbH, 28857 Syke, Germany
| | - Alexandru Vasile Rusu
- CENCIRA Agrofood Research and Innovation Centre, Ion Meșter 6, 400650 Cluj-Napoca, Romania
| |
Collapse
|
79
|
Katrilaka C, Karipidou N, Petrou N, Manglaris C, Katrilakas G, Tzavellas AN, Pitou M, Tsiridis EE, Choli-Papadopoulou T, Aggeli A. Freeze-Drying Process for the Fabrication of Collagen-Based Sponges as Medical Devices in Biomedical Engineering. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4425. [PMID: 37374608 DOI: 10.3390/ma16124425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
This paper presents a systematic review of a key sector of the much promising and rapidly evolving field of biomedical engineering, specifically on the fabrication of three-dimensional open, porous collagen-based medical devices, using the prominent freeze-drying process. Collagen and its derivatives are the most popular biopolymers in this field, as they constitute the main components of the extracellular matrix, and therefore exhibit desirable properties, such as biocompatibility and biodegradability, for in vivo applications. For this reason, freeze-dried collagen-based sponges with a wide variety of attributes can be produced and have already led to a wide range of successful commercial medical devices, chiefly for dental, orthopedic, hemostatic, and neuronal applications. However, collagen sponges display some vulnerabilities in other key properties, such as low mechanical strength and poor control of their internal architecture, and therefore many studies focus on the settlement of these defects, either by tampering with the steps of the freeze-drying process or by combining collagen with other additives. Furthermore, freeze drying is still considered a high-cost and time-consuming process that is often used in a non-optimized manner. By applying an interdisciplinary approach and combining advances in other technological fields, such as in statistical analysis, implementing the Design of Experiments, and Artificial Intelligence, the opportunity arises to further evolve this process in a sustainable and strategic manner, and optimize the resulting products as well as create new opportunities in this field.
Collapse
Affiliation(s)
- Chrysoula Katrilaka
- Department of Chemical Engineering, School of Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Niki Karipidou
- Department of Chemical Engineering, School of Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Nestor Petrou
- Department of Chemical Engineering, School of Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Chris Manglaris
- Department of Chemical Engineering, School of Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - George Katrilakas
- Department of Chemical Engineering, School of Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Anastasios Nektarios Tzavellas
- 3rd Department of Orthopedics, School of Medicine, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Maria Pitou
- School of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Eleftherios E Tsiridis
- 3rd Department of Orthopedics, School of Medicine, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | | | - Amalia Aggeli
- Department of Chemical Engineering, School of Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| |
Collapse
|
80
|
Milano F, Masi A, Madaghiele M, Sannino A, Salvatore L, Gallo N. Current Trends in Gelatin-Based Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15051499. [PMID: 37242741 DOI: 10.3390/pharmaceutics15051499] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Gelatin is a highly versatile natural polymer, which is widely used in healthcare-related sectors due to its advantageous properties, such as biocompatibility, biodegradability, low-cost, and the availability of exposed chemical groups. In the biomedical field, gelatin is used also as a biomaterial for the development of drug delivery systems (DDSs) due to its applicability to several synthesis techniques. In this review, after a brief overview of its chemical and physical properties, the focus is placed on the commonly used techniques for the development of gelatin-based micro- or nano-sized DDSs. We highlight the potential of gelatin as a carrier of many types of bioactive compounds and its ability to tune and control select drugs' release kinetics. The desolvation, nanoprecipitation, coacervation, emulsion, electrospray, and spray drying techniques are described from a methodological and mechanistic point of view, with a careful analysis of the effects of the main variable parameters on the DDSs' properties. Lastly, the outcomes of preclinical and clinical studies involving gelatin-based DDSs are thoroughly discussed.
Collapse
Affiliation(s)
- Francesca Milano
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Annalia Masi
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Marta Madaghiele
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Luca Salvatore
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Typeone Biomaterials Srl, Via Europa 113, 73021 Calimera, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
81
|
Padilla C, Quero F, Pępczyńska M, Díaz-Calderon P, Acevedo JP, Byres N, Blaker JJ, MacNaughtan W, Williams HEL, Enrione J. Understanding the Molecular Conformation and Viscoelasticity of Low Sol-Gel Transition Temperature Gelatin Methacryloyl Suspensions. Int J Mol Sci 2023; 24:ijms24087489. [PMID: 37108653 PMCID: PMC10139010 DOI: 10.3390/ijms24087489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
For biomedical applications, gelatin is usually modified with methacryloyl groups to obtain gelatin methacryloyl (GelMA), which can be crosslinked by a radical reaction induced by low wavelength light to form mechanically stable hydrogels. The potential of GelMA hydrogels for tissue engineering has been well established, however, one of the main disadvantages of mammalian-origin gelatins is that their sol-gel transitions are close to room temperature, resulting in significant variations in viscosity that can be a problem for biofabrication applications. For these applications, cold-water fish-derived gelatins, such as salmon gelatin, are a good alternative due to their lower viscosity, viscoelastic and mechanical properties, as well as lower sol-gel transition temperatures, when compared with mammalian gelatins. However, information regarding GelMA (with special focus on salmon GelMA as a model for cold-water species) molecular conformation and the effect of pH prior to crosslinking, which is key for fabrication purposes since it will determine final hydrogel's structure, remains scarce. The aim of this work is to characterize salmon gelatin (SGel) and salmon methacryloyl gelatin (SGelMA) molecular configuration at two different acidic pHs (3.6 and 4.8) and to compare them to commercial porcine gelatin (PGel) and methacryloyl porcine gelatin (PGelMA), usually used for biomedical applications. Specifically, we evaluated gelatin and GelMA samples' molecular weight, isoelectric point (IEP), their molecular configuration by circular dichroism (CD), and determined their rheological and thermophysical properties. Results showed that functionalization affected gelatin molecular weight and IEP. Additionally, functionalization and pH affected gelatin molecular structure and rheological and thermal properties. Interestingly, the SGel and SGelMA molecular structure was more sensitive to pH changes, showing differences in gelation temperatures and triple helix formation than PGelMA. This work suggests that SGelMA presents high tunability as a biomaterial for biofabrication, highlighting the importance of a proper GelMA molecular configuration characterization prior to hydrogel fabrication.
Collapse
Affiliation(s)
- Cristina Padilla
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago 7620086, Chile
- Centro de Investigación e Innovación Biomédica (CIIB), Universidad de los Andes, Santiago 7620086, Chile
- Biopolymer Research and Engineering Laboratory (BIOPREL), Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de Los Andes, Santiago 7620086, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Universidad de los Andes, Santiago 7620086, Chile
| | - Franck Quero
- Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago 8370456, Chile
| | - Marzena Pępczyńska
- Centro de Investigación e Innovación Biomédica (CIIB), Universidad de los Andes, Santiago 7620086, Chile
- Biopolymer Research and Engineering Laboratory (BIOPREL), Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de Los Andes, Santiago 7620086, Chile
| | - Paulo Díaz-Calderon
- Centro de Investigación e Innovación Biomédica (CIIB), Universidad de los Andes, Santiago 7620086, Chile
- Biopolymer Research and Engineering Laboratory (BIOPREL), Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de Los Andes, Santiago 7620086, Chile
| | - Juan Pablo Acevedo
- Centro de Investigación e Innovación Biomédica (CIIB), Universidad de los Andes, Santiago 7620086, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Universidad de los Andes, Santiago 7620086, Chile
| | - Nicholas Byres
- Department of Materials and Henry Royce Institute, The University of Manchester, Manchester M13 9PL, UK
| | - Jonny J Blaker
- Department of Materials and Henry Royce Institute, The University of Manchester, Manchester M13 9PL, UK
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway
| | - William MacNaughtan
- Division of Food, Nutrition and Dietetics, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Huw E L Williams
- Centre for Biomedical Sciences, University Park, University of Nottingham, Nottingham NR7 2RD, UK
| | - Javier Enrione
- Centro de Investigación e Innovación Biomédica (CIIB), Universidad de los Andes, Santiago 7620086, Chile
- Biopolymer Research and Engineering Laboratory (BIOPREL), Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de Los Andes, Santiago 7620086, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Universidad de los Andes, Santiago 7620086, Chile
| |
Collapse
|
82
|
Aziz R, Falanga M, Purenovic J, Mancini S, Lamberti P, Guida M. A Review on the Applications of Natural Biodegradable Nano Polymers in Cardiac Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1374. [PMID: 37110959 PMCID: PMC10145986 DOI: 10.3390/nano13081374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
As cardiac diseases, which mostly result in heart failure, are increasing rapidly worldwide, heart transplantation seems the only solution for saving lives. However, this practice is not always possible due to several reasons, such as scarcity of donors, rejection of organs from recipient bodies, or costly medical procedures. In the framework of nanotechnology, nanomaterials greatly contribute to the development of these cardiovascular scaffolds as they provide an easy regeneration of the tissues. Currently, functional nanofibers can be used in the production of stem cells and in the regeneration of cells and tissues. The small size of nanomaterials, however, leads to changes in their chemical and physical characteristics that could alter their interaction and exposure to stem cells with cells and tissues. This article aims to review the naturally occurring biodegradable nanomaterials that are used in cardiovascular tissue engineering for the development of cardiac patches, vessels, and tissues. Moreover, this article also provides an overview of cell sources used for cardiac tissue engineering, explains the anatomy and physiology of the human heart, and explores the regeneration of cardiac cells and the nanofabrication approaches used in cardiac tissue engineering as well as scaffolds.
Collapse
Affiliation(s)
- Rabia Aziz
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 84084 Fisciano, Italy; (M.F.); (S.M.); (P.L.); (M.G.)
- Consiglio Nazionale Delle Ricerche (CNR)-Istituto Officina dei Materiali (IOM), Area Science Park Basovizza S.S. 14-Km. 163, 5-34149 Trieste, Italy
| | - Mariarosaria Falanga
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 84084 Fisciano, Italy; (M.F.); (S.M.); (P.L.); (M.G.)
| | - Jelena Purenovic
- Department of Physics and Materials, Faculty of Sciences at Cacak, University of Kragujevac, 32000 Cacak, Serbia;
| | - Simona Mancini
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 84084 Fisciano, Italy; (M.F.); (S.M.); (P.L.); (M.G.)
| | - Patrizia Lamberti
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 84084 Fisciano, Italy; (M.F.); (S.M.); (P.L.); (M.G.)
- Italian Interuniversity Research Center on Interaction between Electromagnetic Fields and Biosystems (ICEmB), Università Degli Studi di Genova, DITEN, Via all’Opera Pia 11/a, 16145 Genova, Italy
- Interdepartmental Research Centre for Nanomaterials and Nanotechnology at the University of Salerno (NanoMates), Department of Physics, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Michele Guida
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 84084 Fisciano, Italy; (M.F.); (S.M.); (P.L.); (M.G.)
- Italian Interuniversity Research Center on Interaction between Electromagnetic Fields and Biosystems (ICEmB), Università Degli Studi di Genova, DITEN, Via all’Opera Pia 11/a, 16145 Genova, Italy
| |
Collapse
|
83
|
Rashid AB, Showva NN, Hoque ME. Gelatin-Based Scaffolds – An Intuitive Support Structure for Regenerative Therapy. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023. [DOI: 10.1016/j.cobme.2023.100452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
84
|
Zdraveva E, Bendelja K, Bočkor L, Dolenec T, Mijović B. Detection of Limbal Stem Cells Adhered to Melt Electrospun Silk Fibroin and Gelatin-Modified Polylactic Acid Scaffolds. Polymers (Basel) 2023; 15:polym15030777. [PMID: 36772078 PMCID: PMC9919663 DOI: 10.3390/polym15030777] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Limbal stem cells (LSCs) are of paramount importance in corneal epithelial tissue repair. The cornea becomes opaque in case of limbal stem cell deficiency (LSCD), which may cause serious damage to the ocular visual function. There are many techniques to restore damaged epithelium, one of which is the transplantation of healthy cultured LSCs, usually onto a human amniotic membrane or onto bio-based engineered scaffolds in recent years. In this study, melt electrospun polylactic acid (PLA) was modified by silk fibroin or gelatin and further cultured with LSCs originating from three different donors. In terms of physicochemical properties, both modifications slightly increased PLA scaffold porosity (with a significantly larger pore area for the PLA/gelatin) and improved the scaffolds' swelling percentage, as well as their biodegradation rate. In terms of the scaffold application function, the aim was to detect/visualize whether LSCs adhered to the scaffolds and to further determine cell viability (total number), as well as to observe p63 and CK3 expressions in the LSCs. LSCs were attached to the surface of microfibers, showing flattened conformations or 3D spheres in the formation of colonies or agglomerations, respectively. All scaffolds showed the ability to bind the cells onto the surface of individual microfibers (PLA and PLA/gelatin), or in between the microfibers (PLA/silk fibroin), with the latter showing the most intense red fluorescence of the stained cells. All scaffolds proved to be biocompatible, while the PLA/silk fibroin scaffolds showed the highest 98% viability of 2.9 × 106 LSCs, with more than 98% of p63 and less than 20% of CK3 expressions in the LSCs, thus confirming the support of their growth, proliferation and corneal epithelial differentiation. The results show the potential of these bio-engineered scaffolds to be used as an alternative clinical approach.
Collapse
Affiliation(s)
- Emilija Zdraveva
- Department of Fundamental Natural and Engineering Sciences, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia
| | - Krešo Bendelja
- Center for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Luka Bočkor
- Center for Applied Bioanthropology, Institute for Anthropological Research, 10000 Zagreb, Croatia
| | - Tamara Dolenec
- Department of Transfusion and Regenerative Medicine, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| | - Budimir Mijović
- Department of Fundamental Natural and Engineering Sciences, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
85
|
Recent Developments in Biopolymer-Based Hydrogels for Tissue Engineering Applications. Biomolecules 2023; 13:biom13020280. [PMID: 36830649 PMCID: PMC9953003 DOI: 10.3390/biom13020280] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Hydrogels are being investigated for their application in inducing the regeneration of various tissues, and suitable conditions for each tissue are becoming more apparent. Conditions such as the mechanical properties, degradation period, degradation mechanism, and cell affinity can be tailored by changing the molecular structure, especially in the case of polymers. Furthermore, many high-functional hydrogels with drug delivery systems (DDSs), in which drugs or bioactive substances are contained in controlled hydrogels, have been reported. This review focuses on the molecular design and function of biopolymer-based hydrogels and introduces recent developments in functional hydrogels for clinical applications.
Collapse
|
86
|
Barreto MEV, Medeiros RP, Shearer A, Fook MVL, Montazerian M, Mauro JC. Gelatin and Bioactive Glass Composites for Tissue Engineering: A Review. J Funct Biomater 2022; 14:23. [PMID: 36662070 PMCID: PMC9861949 DOI: 10.3390/jfb14010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Nano-/micron-sized bioactive glass (BG) particles are attractive candidates for both soft and hard tissue engineering. They can chemically bond to the host tissues, enhance new tissue formation, activate cell proliferation, stimulate the genetic expression of proteins, and trigger unique anti-bacterial, anti-inflammatory, and anti-cancer functionalities. Recently, composites based on biopolymers and BG particles have been developed with various state-of-the-art techniques for tissue engineering. Gelatin, a semi-synthetic biopolymer, has attracted the attention of researchers because it is derived from the most abundant protein in the body, viz., collagen. It is a polymer that can be dissolved in water and processed to acquire different configurations, such as hydrogels, fibers, films, and scaffolds. Searching "bioactive glass gelatin" in the tile on Scopus renders 80 highly relevant articles published in the last ~10 years, which signifies the importance of such composites. First, this review addresses the basic concepts of soft and hard tissue engineering, including the healing mechanisms and limitations ahead. Then, current knowledge on gelatin/BG composites including composition, processing and properties is summarized and discussed both for soft and hard tissue applications. This review explores physical, chemical and mechanical features and ion-release effects of such composites concerning osteogenic and angiogenic responses in vivo and in vitro. Additionally, recent developments of BG/gelatin composites using 3D/4D printing for tissue engineering are presented. Finally, the perspectives and current challenges in developing desirable composites for the regeneration of different tissues are outlined.
Collapse
Affiliation(s)
- Maria E. V. Barreto
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Rebeca P. Medeiros
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Adam Shearer
- Department of Materials Science and Engineering, The Pennsylvania State University, State College, PA 16802, USA
| | - Marcus V. L. Fook
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Maziar Montazerian
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - John C. Mauro
- Department of Materials Science and Engineering, The Pennsylvania State University, State College, PA 16802, USA
| |
Collapse
|
87
|
Gelatin Meshes Enriched with Graphene Oxide and Magnetic Nanoparticles Support and Enhance the Proliferation and Neuronal Differentiation of Human Adipose-Derived Stem Cells. Int J Mol Sci 2022; 24:ijms24010555. [PMID: 36613995 PMCID: PMC9820391 DOI: 10.3390/ijms24010555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
The field of tissue engineering is constantly evolving due to the fabrication of novel platforms that promise to stimulate tissue regeneration in the scenario of accidents. Here, we describe the fabrication of fibrous nanostructured substrates based on fish gelatin (FG) and enriched with graphene oxide (GO) and magnetic nanoparticles (MNPs) and demonstrate its biological properties in terms of cell viability and proliferation, cell adhesion, and differentiation. For this purpose, electrospun fibers were fabricated using aqueous precursors containing either only GO and only MNP nanospecies, or both of them within a fish gelatin solution. The obtained materials were investigated in terms of morphology, aqueous media affinity, tensile elasticity, and structural characteristics. The biological evaluation was assessed against adipose-derived stem cells by MTT, LDH, Live/Dead assay, cytoskeleton investigation, and neuronal trans-differentiation. The results indicate an overall good interaction and show that these materials offer a biofriendly environment. A higher concentration of both nanospecies types induced some toxic effects, thus 0.5% GO, MNPs, and GO/MNPs turned out to be the most suitable option for biological testing. Moreover, a successful neuronal differentiation has been shown on these materials, where cells presented a typical neuronal phenotype. This study demonstrates the potential of this scaffold to be further used in tissue engineering applications.
Collapse
|
88
|
Hoshi M, Taira M, Sawada T, Hachinohe Y, Hatakeyama W, Takafuji K, Tekemoto S, Kondo H. Preparation of Collagen/Hydroxyapatite Composites Using the Alternate Immersion Method and Evaluation of the Cranial Bone-Forming Capability of Composites Complexed with Acidic Gelatin and b-FGF. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8802. [PMID: 36556608 PMCID: PMC9787395 DOI: 10.3390/ma15248802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Bone-substitute materials are essential in dental implantology. We prepared collagen (Col)/hydroxyapatite (Hap)/acidic gelatin (AG)/basic fibroblast growth factor (b-FGF) constructs with enhanced bone-forming capability. The Col/Hap apatite composites were prepared by immersing Col sponges alternately in calcium and phosphate ion solutions five times, for 20 and 60 min, respectively. Then, the sponges were heated to 56 °C for 48 h. Scanning electron microscopy/energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction analyses showed that the Col/Hap composites contained poorly crystalline Hap precipitates on the Col matrix. Col/Hap composite granules were infiltrated by AG, freeze-dried, and immersed in b-FGF solution. The wet quaternary constructs were implanted in rat cranial bone defects for 8 weeks, followed by soft X-ray measurements and histological analysis. Animal studies have shown that the constructs moderately increase bone formation in cranial bone defects. We found that an alternate immersion time of 20 min led to the greatest bone formation (p < 0.05). Constructs placed inside defects slightly extend the preexisting bone from the defect edges and lead to the formation of small island-like bones inside the defect, followed by disappearance of the constructs. The combined use of Col, Hap, AG, and b-FGF might bring about novel bone-forming biomaterials.
Collapse
Affiliation(s)
- Miki Hoshi
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Japan
| | - Masayuki Taira
- Department of Biomedical Engineering, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho 028-3694, Japan
| | - Tomofumi Sawada
- Department of Biomedical Engineering, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho 028-3694, Japan
| | - Yuki Hachinohe
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Japan
| | - Wataru Hatakeyama
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Japan
| | - Kyoko Takafuji
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Japan
| | - Shinji Tekemoto
- Department of Biomedical Engineering, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho 028-3694, Japan
| | - Hisatomo Kondo
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Japan
| |
Collapse
|
89
|
Bellucci D, Scalzone A, Ferreira AM, Cannillo V, Gentile P. Adhesive Bioinspired Coating for Enhancing Glass-Ceramics Scaffolds Bioactivity. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8080. [PMID: 36431564 PMCID: PMC9699021 DOI: 10.3390/ma15228080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Bioceramic scaffolds, composed of a biphasic composite containing bioactive glass and hydroxyapatite, were prepared in this work to overcome the intrinsic limits of the two components taken separately (in particular, their specific reactivities and dissolution rates, which should be tunable as a function of the given clinical requirements). To mimic the biological environment and tune the different stages of cellular response, a coating with gelatin and chondroitin sulphate via Layer-by-Layer (LbL) assembly was presented and discussed. The resulting functionalized scaffolds were affected by the coating in terms of microstructure and porosity. In addition, the LbL coating significantly enhanced the seeded cell behaviour, with high adhesion, proliferation and osteogenic activity, as revealed by the alkaline phosphatase activity and overexpression of osteopontin and osteocalcin.
Collapse
Affiliation(s)
- Devis Bellucci
- Dipartimento di Ingegneria “Enzo Ferrari”, Università Degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy
| | - Annachiara Scalzone
- School of Engineering, Newcastle University, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU, UK
- Center for Advanced Biomaterials for Health Care@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU, UK
| | - Valeria Cannillo
- Dipartimento di Ingegneria “Enzo Ferrari”, Università Degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
90
|
Temirel M, Dabbagh SR, Tasoglu S. Shape Fidelity Evaluation of Alginate-Based Hydrogels through Extrusion-Based Bioprinting. J Funct Biomater 2022; 13:jfb13040225. [PMID: 36412866 PMCID: PMC9680455 DOI: 10.3390/jfb13040225] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Extrusion-based 3D bioprinting is a promising technique for fabricating multi-layered, complex biostructures, as it enables multi-material dispersion of bioinks with a straightforward procedure (particularly for users with limited additive manufacturing skills). Nonetheless, this method faces challenges in retaining the shape fidelity of the 3D-bioprinted structure, i.e., the collapse of filament (bioink) due to gravity and/or spreading of the bioink owing to the low viscosity, ultimately complicating the fabrication of multi-layered designs that can maintain the desired pore structure. While low viscosity is required to ensure a continuous flow of material (without clogging), a bioink should be viscous enough to retain its shape post-printing, highlighting the importance of bioink properties optimization. Here, two quantitative analyses are performed to evaluate shape fidelity. First, the filament collapse deformation is evaluated by printing different concentrations of alginate and its crosslinker (calcium chloride) by a co-axial nozzle over a platform to observe the overhanging deformation over time at two different ambient temperatures. In addition, a mathematical model is developed to estimate Young’s modulus and filament collapse over time. Second, the printability of alginate is improved by optimizing gelatin concentrations and analyzing the pore size area. In addition, the biocompatibility of proposed bioinks is evaluated with a cell viability test. The proposed bioink (3% w/v gelatin in 4% alginate) yielded a 98% normalized pore number (high shape fidelity) while maintaining >90% cell viability five days after being bioprinted. Integration of quantitative analysis/simulations and 3D printing facilitate the determination of the optimum composition and concentration of different elements of a bioink to prevent filament collapse or bioink spreading (post-printing), ultimately resulting in high shape fidelity (i.e., retaining the shape) and printing quality.
Collapse
Affiliation(s)
- Mikail Temirel
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Mechanical Engineering Department, School of Engineering, Abdullah Gul University, Kayseri 38080, Turkey
| | | | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul 34450, Turkey
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Turkey
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Turkey
- Correspondence:
| |
Collapse
|
91
|
Antezana PE, Municoy S, Orive G, Desimone MF. Design of a New 3D Gelatin-Alginate Scaffold Loaded with Cannabis sativa Oil. Polymers (Basel) 2022; 14:4506. [PMID: 36365500 PMCID: PMC9658303 DOI: 10.3390/polym14214506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 09/20/2023] Open
Abstract
There is an increasing medical need for the development of new materials that could replace damaged organs, improve healing of critical wounds or provide the environment required for the formation of a new healthy tissue. The three-dimensional (3D) printing approach has emerged to overcome several of the major deficiencies of tissue engineering. The use of Cannabis sativa as a therapy for some diseases has spread throughout the world thanks to its benefits for patients. In this work, we developed a bioink made with gelatin and alginate that was able to be printed using an extrusion 3D bioprinter. The scaffolds obtained were lyophilized, characterized and the swelling was assessed. In addition, the scaffolds were loaded with Cannabis sativa oil extract. The presence of the extract provided antimicrobial and antioxidant activity to the 3D scaffolds. Altogether, our results suggest that the new biocompatible material printed with 3D technology and with the addition of Cannabis sativa oil could become an attractive alternative to common treatments of soft-tissue infections and wound repair.
Collapse
Affiliation(s)
- Pablo Edmundo Antezana
- Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Sofía Municoy
- Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Martín Federico Desimone
- Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
| |
Collapse
|
92
|
Brownell D, Chabaud S, Bolduc S. Tissue Engineering in Gynecology. Int J Mol Sci 2022; 23:12319. [PMID: 36293171 PMCID: PMC9603941 DOI: 10.3390/ijms232012319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 12/01/2022] Open
Abstract
Female gynecological organ dysfunction can cause infertility and psychological distress, decreasing the quality of life of affected women. Incidence is constantly increasing due to growing rates of cancer and increase of childbearing age in the developed world. Current treatments are often unable to restore organ function, and occasionally are the cause of female infertility. Alternative treatment options are currently being developed in order to face the inadequacy of current practices. In this review, pathologies and current treatments of gynecological organs (ovaries, uterus, and vagina) are described. State-of-the-art of tissue engineering alternatives to common practices are evaluated with a focus on in vivo models. Tissue engineering is an ever-expanding field, integrating various domains of modern science to create sophisticated tissue substitutes in the hope of repairing or replacing dysfunctional organs using autologous cells. Its application to gynecology has the potential of restoring female fertility and sexual wellbeing.
Collapse
Affiliation(s)
- David Brownell
- Centre de Recherche en Organogéneèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogéneèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogéneèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
- Division of Urology, Department of Surgery, CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Department of Surgery, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| |
Collapse
|
93
|
Lv W, Zhou H, Aazmi A, Yu M, Xu X, Yang H, Huang YYS, Ma L. Constructing biomimetic liver models through biomaterials and vasculature engineering. Regen Biomater 2022; 9:rbac079. [PMID: 36338176 PMCID: PMC9629974 DOI: 10.1093/rb/rbac079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/19/2022] [Accepted: 10/08/2022] [Indexed: 04/04/2024] Open
Abstract
The occurrence of various liver diseases can lead to organ failure of the liver, which is one of the leading causes of mortality worldwide. Liver tissue engineering see the potential for replacing liver transplantation and drug toxicity studies facing donor shortages. The basic elements in liver tissue engineering are cells and biomaterials. Both mature hepatocytes and differentiated stem cells can be used as the main source of cells to construct spheroids and organoids, achieving improved cell function. To mimic the extracellular matrix (ECM) environment, biomaterials need to be biocompatible and bioactive, which also help support cell proliferation and differentiation and allow ECM deposition and vascularized structures formation. In addition, advanced manufacturing approaches are required to construct the extracellular microenvironment, and it has been proved that the structured three-dimensional culture system can help to improve the activity of hepatocytes and the characterization of specific proteins. In summary, we review biomaterials for liver tissue engineering, including natural hydrogels and synthetic polymers, and advanced processing techniques for building vascularized microenvironments, including bioassembly, bioprinting and microfluidic methods. We then summarize the application fields including transplant and regeneration, disease models and drug cytotoxicity analysis. In the end, we put the challenges and prospects of vascularized liver tissue engineering.
Collapse
Affiliation(s)
- Weikang Lv
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hongzhao Zhou
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Abdellah Aazmi
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiaobin Xu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | | | - Liang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
94
|
Yang Y, Huang C, Zheng H, Meng Z, Heng BC, Zhou T, Jiang S, Wei Y. Superwettable and injectable GelMA-MSC microspheres promote cartilage repair in temporomandibular joints. Front Bioeng Biotechnol 2022; 10:1026911. [PMID: 36225601 PMCID: PMC9549523 DOI: 10.3389/fbioe.2022.1026911] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 11/14/2022] Open
Abstract
Temporomandibular disorders (TMD) can be treated by promoting cartilage regeneration with biomaterials. However, there are deficiencies in the infiltration function of bone filler biological materials. In this study, stems cells were loaded onto gelatin methacryloyl (GelMA) hydrogel microspheres endowed with superwettable properties and TGF-β sustained-release function, which can quickly infiltrate the irregular surface of the temporomandibular joint (TMJ) bone defect area and accelerate cartilage healing. First, to improve cell adhesion and spreading function, the BMSCs-coated GelMA microspheres were endowed with superwetting property. At the same time, the swelling adsorption characteristics of gelatin microspheres could be used to load recombinant TGF-β within the microspheres, which could in turn promote the chondrogenic differentiation of multi-potent bone marrow mesenchymal stem cells. The SEM imaging demonstrated that BMSCs-coated GelMA microsphere has superwettable and superhydrophilic property, which enabled rapid adaptation to the bone defect surface morphology, which is conducive to tissue repair. Furthermore, the cartilage defect model showed that rBMSCs-coated GelMA microspheres promote temporomandibular joint arthritis repair. In conclusion, our study established that BMSC-coated GelMA microspheres endowed with superwetting properties, can colonize the bone defect repair site better with sustained release of growth factors, thus providing an innovative strategy for promoting cartilage regeneration.
Collapse
Affiliation(s)
- Yue Yang
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Prosthodontics, The First Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
| | - Chenyan Huang
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Huimin Zheng
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Zhaoqiang Meng
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Boon Chin Heng
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Tuanfeng Zhou
- Department of Prosthodontics, The First Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
| | - Shengjie Jiang
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
- *Correspondence: Shengjie Jiang, ; Yan Wei,
| | - Yan Wei
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
- *Correspondence: Shengjie Jiang, ; Yan Wei,
| |
Collapse
|
95
|
Formulation and Evaluation of Chitosan-Gelatin Thermosensitive Hydrogels Containing 5FU-Alginate Nanoparticles for Skin Delivery. Gels 2022; 8:gels8090537. [PMID: 36135249 PMCID: PMC9498398 DOI: 10.3390/gels8090537] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 12/11/2022] Open
Abstract
(1) Background: Chitosan-gelatin-based thermosensitive hydrogel containing 5FU-alginate nanoparticles was formulated for the effective and sustained delivery of 5FU to the skin. (2) Methods: Alginate, a polysaccharide was used for the formulation of nanoparticles using a spray drying technique. Size, zeta potential, and surface morphology were investigated using a zetasizer and scanning electron microscope. The hydrogel was fabricated using chitosan and gelatin. Several important analyses were used to characterize these prepared topical hydrogels. The pH, visual transparency, rheological behavior, and swelling index of the prepared hydrogels were evaluated. The in vitro release studies were performed at different pH (5.5 and 7.4) and temperature (32 and 37 °C) conditions using a Franz diffusion cell. Ex vivo permeation and in vivo studies were performed using Sprague Dawley rats. (3) Results: Results show that spherical nanoparticles were produced at sizes of 202−254 nm and with zeta potentials of −43 to −38 mV. The prepared nanoparticles were successfully incorporated into chitosan-gelatin-based hydrogels using a glycerol 2-phosphate disodium salt hydrates crosslinker. Drug polymers and excipients compatibility and formulation of hydrogels was confirmed by ATR-FTIR results. The pH of the prepared hydrogels was in accordance with the skin pH. The viscosity of prepared hydrogel increased with temperature increase and phase transition (sol-gel transition) occurred at 34 °C. The release of drug was sustained in case of nanoparticles incorporated hydrogels (5FU-Alg-Np-HG) as compared to nanoparticles (5FU-Alg-Np) and simple hydrogels (5FU-HG) (ANOVA; p < 0.05). The premature and initial burst release of 5FU was prevented using 5FU-Alg-Np-HG. The release mechanism of 5FU from the 5FU-Alg-Np-HG diffusion was followed by swelling and erosion, as suggested by Korsmeyer-Peppas model. The prepared hydrogel proved to be non-irritant. Ex vivo permeation study across rat’s skin suggests that permeability of nanoparticles (5FU-Alg-Np) was higher than the 5FU-Alg-Np-HG (ANOVA; p < 0.05). However, skin-related drug retention of 5FU-Alg-Np-HG was significantly higher than the 5FU solution, 5FU-Alg-Np, and 5FU-HG (ANOVA; p < 0.05). This was due to swelling of hydrogels in the lower layers of skin where the temperature is 37 °C. The higher concentration of 5FU in the skin is helpful for treatment of local skin cancer, such as melanoma, and actinic keratosis. In vivo results also confirmed maximum AUC, t1/2, and skin-related drug retention of 5FU-Alg-Np-HG. (4) Conclusions: Chitosan-gelatin-based hydrogels containing 5FU-Alg-Np possess exceptional properties, and can be used for the sustained delivery of 5FU for the treatment of local skin cancers.
Collapse
|