51
|
Butola M, Nainwal N. Non-Invasive Techniques of Nose to Brain Delivery Using Nanoparticulate Carriers: Hopes and Hurdles. AAPS PharmSciTech 2024; 25:256. [PMID: 39477829 DOI: 10.1208/s12249-024-02946-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/15/2024] [Indexed: 12/12/2024] Open
Abstract
Intranasal drug delivery route has emerged as a promising non-invasive method of administering drugs directly to the brain, bypassing the blood-brain barrier (BBB) and blood-cerebrospinal fluid barriers (BCSF). BBB and BCSF prevent many therapeutic molecules from entering the brain. Intranasal drug delivery can transport drugs from the nasal mucosa to the brain, to treat a variety of Central nervous system (CNS) diseases. Intranasal drug delivery provides advantages over invasive drug delivery techniques such as intrathecal or intraparenchymal which can cause infection. Many strategies, including nanocarriers liposomes, solid-lipid NPs, nano-emulsion, nanostructured lipid carriers, dendrimers, exosomes, metal NPs, nano micelles, and quantum dots, are effective in nose-to-brain drug transport. However, the biggest obstacles to the nose-to-brain delivery of drugs include mucociliary clearance, poor drug retention, enzymatic degradation, poor permeability, bioavailability, and naso-mucosal toxicity. The current review aims to compile current approaches for drug delivery to the CNS via the nose, focusing on nanotherapeutics and nasal devices. Along with a brief overview of the related pathways or mechanisms, it also covers the advantages of nasal drug delivery as a potential method of drug administration. It also offers several possibilities to improve drug penetration across the nasal barrier. This article overviews various in-vitro, ex-vivo, and in-vivo techniques to assess drug transport from the nasal epithelium into the brain.
Collapse
Affiliation(s)
- Mansi Butola
- Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248001, India
| | - Nidhi Nainwal
- Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248001, India.
| |
Collapse
|
52
|
Rehman M, Tahir N, Sohail MF, Qadri MU, Duarte SOD, Brandão P, Esteves T, Javed I, Fonte P. Lipid-Based Nanoformulations for Drug Delivery: An Ongoing Perspective. Pharmaceutics 2024; 16:1376. [PMID: 39598500 PMCID: PMC11597327 DOI: 10.3390/pharmaceutics16111376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Oils and lipids help make water-insoluble drugs soluble by dispersing them in an aqueous medium with the help of a surfactant and enabling their absorption across the gut barrier. The emergence of microemulsions (thermodynamically stable), nanoemulsions (kinetically stable), and self-emulsifying drug delivery systems added unique characteristics that make them suitable for prolonged storage and controlled release. In the 1990s, solid-phase lipids were introduced to reduce drug leakage from nanoparticles and prolong drug release. Manipulating the structure of emulsions and solid lipid nanoparticles has enabled multifunctional nanoparticles and the loading of therapeutic macromolecules such as proteins, nucleic acid, vaccines, etc. Phospholipids and surfactants with a well-defined polar head and carbon chain have been used to prepare bilayer vesicles known as liposomes and niosomes, respectively. The increasing knowledge of targeting ligands and external factors to gain control over pharmacokinetics and the ever-increasing number of synthetic lipids are expected to make lipid nanoparticles and vesicular systems a preferred choice for the encapsulation and targeted delivery of therapeutic agents. This review discusses different lipids and oil-based nanoparticulate systems for the delivery of water-insoluble drugs. The salient features of each system are highlighted, and special emphasis is given to studies that compare them.
Collapse
Affiliation(s)
- Mubashar Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Nayab Tahir
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
- Wellman Center of Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Muhammad Farhan Sohail
- Department of Pharmacy, University of South Asia, Lahore 54000, Pakistan;
- Department of Pharmacy, Faculty of Health and Medical Sciences, The University of Copenhagen, 1172 København, Denmark
| | - Muhammad Usman Qadri
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; (M.U.Q.); (I.J.)
| | - Sofia O. D. Duarte
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.O.D.D.); (P.B.); (T.E.)
- Associate Laboratory i4HB, Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Pedro Brandão
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.O.D.D.); (P.B.); (T.E.)
- Associate Laboratory i4HB, Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
- Departamento de Química, Centro de Química de Coimbra-Institute of Molecular Sciences (CQC-IMS), Faculdade de Ciências e Tecnologia, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Teresa Esteves
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.O.D.D.); (P.B.); (T.E.)
- Associate Laboratory i4HB, Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; (M.U.Q.); (I.J.)
| | - Pedro Fonte
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.O.D.D.); (P.B.); (T.E.)
- Associate Laboratory i4HB, Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| |
Collapse
|
53
|
Noor L, Hafeez A, Rahman MA, Vishwakarma KK, Kapoor A, Ara N, Aqeel R. Demystifying the Potential of Embelin-Loaded Nanoformulations: a Comprehensive Review. AAPS PharmSciTech 2024; 25:249. [PMID: 39433611 DOI: 10.1208/s12249-024-02968-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Phytoconstituent based therapies have the potential to reduce the adverse effects and enhance overall patient compliance for different diseased conditions. Embelin (EMB) is a natural compound extracted from Embelia ribes that has demonstrated high therapeutic potential, particularly as anti-inflammatory and anticancer therapeutic applications. However, its poor water solubility and low oral bioavailability limitations make it challenging to use in biomedical applications. Nanostructure-based novel formulations have shown the potential to improve physicochemical and biological characteristics of active pharmaceutical ingredients obtained from plants. Different nanoformulations that have been utilized to encapsulate/entrap EMB for various therapeutic applications are nanoliposomes, nanostructured lipid carriers, niosomes, polymeric nanoparticles, nanosuspensions, phytosomes, self nanoemulsifying drug delivery system, silver nanoparticles, microparticles, solid lipid nanoparticle, gold nanoparticles and nanomicelles. The common methods reported for the preparation of EMB nanoformulations are thin film hydration, nanoprecipitation, ethanol injection, emulsification followed by sonication. The size of nanoformulations ranged in between 50 and 345 nm. In this review, the mentioned EMB loaded nanocarriers are methodically discussed for size, shape, drug entrapment, zeta potential, in vitro release & permeation and in vivo studies. Potential of EMB with other drugs (dual drug approach) incorporated in nanocarriers are also discussed (physicochemical and preclinical characteristics). Patents related to EMB nanoformulations are also presented which showed the clinical translation of this bioactive for future utilization in different indications.
Collapse
Affiliation(s)
- Layba Noor
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Abdul Hafeez
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India.
| | - Md Azizur Rahman
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | | | - Archita Kapoor
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Nargis Ara
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Rabia Aqeel
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| |
Collapse
|
54
|
Torres J, Silva R, Farias G, Sousa Lobo JM, Ferreira DC, Silva AC. Enhancing Acute Migraine Treatment: Exploring Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for the Nose-to-Brain Route. Pharmaceutics 2024; 16:1297. [PMID: 39458626 PMCID: PMC11510892 DOI: 10.3390/pharmaceutics16101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Migraine has a high prevalence worldwide and is one of the main disabling neurological diseases in individuals under the age of 50. In general, treatment includes the use of oral analgesics or non-steroidal anti-inflammatory drugs (NSAIDs) for mild attacks, and, for moderate or severe attacks, triptans or 5-HT1B/1D receptor agonists. However, the administration of antimigraine drugs in conventional oral pharmaceutical dosage forms is a challenge, since many molecules have difficulty crossing the blood-brain barrier (BBB) to reach the brain, which leads to bioavailability problems. Efforts have been made to find alternative delivery systems and/or routes for antimigraine drugs. In vivo studies have shown that it is possible to administer drugs directly into the brain via the intranasal (IN) or the nose-to-brain route, thus avoiding the need for the molecules to cross the BBB. In this field, the use of lipid nanoparticles, in particular solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), has shown promising results, since they have several advantages for drugs administered via the IN route, including increased absorption and reduced enzymatic degradation, improving bioavailability. Furthermore, SLN and NLC are capable of co-encapsulating drugs, promoting their simultaneous delivery to the site of therapeutic action, which can be a promising approach for the acute migraine treatment. This review highlights the potential of using SLN and NLC to improve the treatment of acute migraine via the nose-to-brain route. First sections describe the pathophysiology and the currently available pharmacological treatment for acute migraine, followed by an outline of the mechanisms underlying the nose-to-brain route. Afterwards, the main features of SLN and NLC and the most recent in vivo studies investigating the use of these nanoparticles for the treatment of acute migraine are presented.
Collapse
Affiliation(s)
- Joana Torres
- UCIBIO, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | | | - José Manuel Sousa Lobo
- UCIBIO, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Domingos Carvalho Ferreira
- UCIBIO, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana Catarina Silva
- UCIBIO, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- FP-BHS (Biomedical and Health Sciences Research Unit), FP-I3ID (Instituto de Investigação, Inovação e Desenvolvimento), Faculty of Health Sciences, University Fernando Pessoa, 4200-150 Porto, Portugal
| |
Collapse
|
55
|
Patel D, Solanki J, Kher MM, Azagury A. A Review: Surface Engineering of Lipid-Based Drug Delivery Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401990. [PMID: 39004869 DOI: 10.1002/smll.202401990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/19/2024] [Indexed: 07/16/2024]
Abstract
This review explores the evolution of lipid-based nanoparticles (LBNPs) for drug delivery (DD). Herein, LBNPs are classified into liposomes and cell membrane-based nanoparticles (CMNPs), each with unique advantages and challenges. Conventional LBNPs possess drawbacks such as poor targeting, quick clearance, and limited biocompatibility. One of the possible alternatives to overcome these challenges is surface modification of nanoparticles (NPs) with materials such as polyethylene glycol (PEG), aptamers, antibody fragments, peptides, CD44, hyaluronic acid, folic acid, palmitic acid, and lactoferrin. Thus, the main focus of this review will be on the different surface modifications that enable LBNPs to have beneficial properties for DD, such as enhancing mass transport properties, immune evasion, improved stability, and targeting. Moreover, various CMNPs are explored used for DD derived from cells such as red blood cells (RBCs), platelets, leukocytes, cancer cells, and stem cells, highlighting their unique natural properties (e.g., biocompatibility and ability to evade the immune system). This discussion extends to the biomimicking of hybrid NPs accomplished through the surface coating of synthetic (mainly polymeric) NPs with different cell membranes. This review aims to provide a comprehensive resource for researchers on recent advances in the field of surface modification of LBNPs and CMNPs. Overall, this review provides valuable insights into the dynamic field of lipid-based DD systems.
Collapse
Affiliation(s)
- Dhaval Patel
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, 4070000, Israel
| | - Jyoti Solanki
- Post Graduate Department of Biosciences, Sardar Patel University, Bakrol, Anand, Gujarat, 388120, India
| | - Mafatlal M Kher
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, 4070000, Israel
| | - Aharon Azagury
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, 4070000, Israel
| |
Collapse
|
56
|
Fathi F, Machado TOX, de A C Kodel H, Portugal I, Ferreira IO, Zielinska A, Oliveira MBPP, Souto EB. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for the delivery of bioactives sourced from plants: part II - applications and preclinical advancements. Expert Opin Drug Deliv 2024; 21:1491-1499. [PMID: 39351671 DOI: 10.1080/17425247.2024.2410949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION Numerous purified bioactive compounds, crude extracts, and essential oils have demonstrated potent antioxidant, antimicrobial, anti-inflammatory, and antiviral properties, particularly in vitro or in silico; however, their in vivo applications are hindered by inadequate absorption and distribution in the organism. The incorporation of these phytochemicals into solid lipid nanoparticles (SLN) or nanostructured lipid carriers (NLC) has demonstrated significant advancements and represents a viable approach to improve their bioavailability through different administration routes. AREAS COVERED This review discusses the potential applications of SLN and NLC, loading bioactive compounds sourced from plants for the treatment of several diseases. An overview of the preclinical developments on the use of these lipid nanoparticles is also provided as well as the requisites to be launched on the market. EXPERT OPINION Medicinal plants have gained even more value for the pharmaceutical industries and their customers, leading to many studies exploring their therapeutic potential. Several bioactives derived from plants with antiviral, anticancer, neuroprotective, antioxidant, and antiaging properties have been proposed and loaded into lipid nanoparticles. In vitro and invivo studies corroborate the added value of SLN/NLC to improve the bioavailability of several bioactives. Surface modification to increase their stability and target delivery should be considering.
Collapse
Affiliation(s)
- Faezeh Fathi
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Viterbo Ferreira, Portugal
| | - Tatiane O X Machado
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy of University of Porto, Viterbo Ferreira, Portugal
- Rede Nordeste de Biotecnologia-RENORBIO, University of Tiradentes, Aracaju, Sergipe, Brazil
- Department of Agroindustry, Federal Institute of Sertão Pernambucano, Campus Petrolina Zona Rural, Petrolina, PE, Brazil
| | - Helena de A C Kodel
- Graduation Program of Biomedicine, University of Tiradentes, Aracaju, Sergipe, Brazil
| | - Isabella Portugal
- Department of Medicine, Cambridge Health Alliance, Cambridge, MA, USA
| | - Inês O Ferreira
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy of University of Porto, Viterbo Ferreira, Portugal
| | - Aleksandra Zielinska
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy of University of Porto, Viterbo Ferreira, Portugal
- Institute of Natural Fibres and Medicinal Plants National Research Institute, Department of Biotechnology, Poznań, Poland
| | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Viterbo Ferreira, Portugal
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy of University of Porto, Viterbo Ferreira, Portugal
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
57
|
Xie Y, Li P, Fu D, Yang F, Sui X, Huang B, Liu J, Chi J. CBD-Loaded Nanostructured Lipid Carriers: Optimization, Characterization, and Stability. ACS OMEGA 2024; 9:40632-40643. [PMID: 39372028 PMCID: PMC11447858 DOI: 10.1021/acsomega.4c04771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/06/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024]
Abstract
Cannabidiol (CBD) has demonstrated its potential to enhance depression treatment through various biological pathways. However, the application potential of CBD is significantly impeded by its polymorphic nature, limited water solubility, and hepatic first-pass metabolism. To improve chemical stability and water solubility, nanostructured lipid carriers loaded with CBD (CBD-NLCs) were developed using a hot-melt emulsification method and optimized by response surface methodology (RSM). The process parameters were optimized using a four-factor and three-level Box-Behnken experimental design consisting of 29 experiments. The CBD-NLCs were formulated and characterized, demonstrating desirable properties, including a mean particle size of 54.33 nm, a PDI value of 0.118, a zeta potential of -29.7 mV, and an impressive encapsulation efficiency rate of 87.58%. The nanoparticles were found to possess an approximately spherical shape, as revealed by scanning and transmission electron microscopy. The stability studies have demonstrated that CBD-NLCs effectively mitigated the photodegradation of CBD and exhibited a stable behavior for 42 days when stored. The CBD-NLCs displayed a biphasic release profile characterized by an initial burst release (over 50% of CBD released within 20 min) followed by a subsequent gradual and sustained release, aligned with first-order kinetics and Fickian diffusion. These findings demonstrate the potential suitability of this formulation as a carrier for CBD in food fortification and pharmaceutical applications.
Collapse
Affiliation(s)
- Yang Xie
- Heilongjiang Academy of
Sciences, Institute of Advanced Technology, Harbin 150020, China
| | - Peng Li
- Heilongjiang Academy of
Sciences, Institute of Advanced Technology, Harbin 150020, China
| | - Dong Fu
- Heilongjiang Academy of
Sciences, Institute of Advanced Technology, Harbin 150020, China
| | - Fan Yang
- Heilongjiang Academy of
Sciences, Institute of Advanced Technology, Harbin 150020, China
| | - Xin Sui
- Heilongjiang Academy of
Sciences, Institute of Advanced Technology, Harbin 150020, China
| | - Bo Huang
- Heilongjiang Academy of
Sciences, Institute of Advanced Technology, Harbin 150020, China
| | - Jiaying Liu
- Heilongjiang Academy of
Sciences, Institute of Advanced Technology, Harbin 150020, China
| | - Jialong Chi
- Heilongjiang Academy of
Sciences, Institute of Advanced Technology, Harbin 150020, China
| |
Collapse
|
58
|
Fathi F, Machado TOX, de A C Kodel H, Portugal I, Ferreira IO, Zielinska A, Oliveira MBPP, Souto EB. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for the delivery of bioactives sourced from plants: part I - composition and production methods. Expert Opin Drug Deliv 2024; 21:1479-1490. [PMID: 39370828 DOI: 10.1080/17425247.2024.2410951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
INTRODUCTION Nanoparticles (NPs) are widely used in the pharmaceutical field to treat various human disorders. Among these, lipid-based NPs (LNPs), including solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), are favored for drug/bioactive delivery due to their high stability, biocompatibility, encapsulation efficiency, and sustained/controlled release. These properties make them particularly suitable as carriers of compounds derived from plant sources. AREAS COVERED This study comprehensively explores updated literature knowledge on SLN and NLC, focusing on their composition and production methods for the specific delivery of drug/bioactive compounds derived from plant sources of interest in pharmaceutical and biomedical fields. EXPERT OPINION SLN and NLC facilitate the development of more effective natural product-based therapies, aiming to reduce dosage and minimize side effects. These delivery systems align with the consumer demands for safer and more sustainable products, as there are also based on biocompatible and biodegradable raw materials, thereby posing minimal toxicological risks while also meeting regulatory guidelines.
Collapse
Affiliation(s)
- Faezeh Fathi
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Tatiane O X Machado
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy of University of Porto, Porto, Portugal
- Rede Nordeste de Biotecnologia-RENORBIO, University of Tiradentes, Aracaju, Sergipe, Brazil
- Department of Agroindustry, Federal Institute of Sertão Pernambucano, Campus Petrolina Zona Rural, Petrolina, Pernambuco, Brazil
| | - Helena de A C Kodel
- Graduation Program of Biomedicine, University of Tiradentes, Aracaju, Sergipe, Brazil
| | - Isabella Portugal
- Department of Medicine, Cambridge Health Alliance, Cambridge, MA, USA
| | - Inês O Ferreira
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy of University of Porto, Porto, Portugal
| | - Aleksandra Zielinska
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy of University of Porto, Porto, Portugal
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants National Research Institute, Poznań, Poland
| | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy of University of Porto, Porto, Portugal
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
59
|
Yan Z, Lin S, Li F, Qiang J, Zhang S. Food nanotechnology: opportunities and challenges. Food Funct 2024; 15:9690-9706. [PMID: 39262316 DOI: 10.1039/d4fo02119c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Food nanotechnology, which applies nanotechnology to food systems ranging from food production to food processing, packaging, and transportation, provides tremendous opportunities for conventional food science and industry innovation and improvement. Although great progress and rapid growth have been achieved in food nanotechnology research owing to the unique food features rendered by nanotechnology, at a fundamental level, food nanotechnology is still in its initial stages and the potential adverse effects of nanomaterials are still a controversial problem that attract public attention. Food-derived nanomaterials, compared to some inorganic nanoparticles and synthetic organic macromolecules, can be digested rapidly and produce similar digestion products to those produced normally, which become the mainstream and trend for food nanotechnology in practical applications, and are expected to be a vital tool for addressing the security problem and easing public concerns. These food-derived materials enable the favourable characteristics of nanostructures to be combined with the safety, biocompatibility, and bioactivity of natural food. Very recently, diverse food-derived nanomaterials have been explored and widely applied in multiple fields. Herein, we thoroughly summarize the fabrication and development of nanomaterials for use in food technology, as well as the recent advances in the improvement of food quality, revolutionizing food supply, and boosting food industries based on foodborne nanomaterials. The current challenges in food nanotechnology are also discussed. We hope this review can provide a detailed reference for experts and food manufacturers and inspire researchers to participate in the development of food nanotechnology for highly efficient food industry growth.
Collapse
Affiliation(s)
- Zhiyu Yan
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Fanghan Li
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Jiaxin Qiang
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Simin Zhang
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
60
|
Chaudhary AA, Fareed M, Khan SUD, Alneghery LM, Aslam M, Alex A, Rizwanullah M. Exploring the therapeutic potential of lipid-based nanoparticles in the management of oral squamous cell carcinoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:1223-1246. [PMID: 39465011 PMCID: PMC11502080 DOI: 10.37349/etat.2024.00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a highly malignant and invasive tumor with significant mortality and morbidity. Current treatment modalities such as surgery, radiotherapy, and chemotherapy encounter significant limitations, such as poor targeting, systemic toxicity, and drug resistance. There is an urgent need for novel therapeutic strategies that offer targeted delivery, enhanced efficacy, and reduced side effects. The advent of lipid-based nanoparticles (LNPs) offers a promising tool for OSCC therapy, potentially overcoming the limitations of current therapeutic approaches. LNPs are composed of biodegradable and biocompatible lipids, which minimize the risk of toxicity and adverse effects. LNPs can encapsulate hydrophobic drugs, improving their solubility and stability in the biological environment, thereby enhancing their bioavailability. LNPs demonstrate significantly higher ability to encapsulate lipophilic drugs than other nanoparticle types. LNPs offer excellent storage stability, minimal drug leakage, and controlled drug release, making them highly effective nanoplatforms for the delivery of chemotherapeutic agents. Additionally, LNPs can be modified by complexing them with specific target ligands on their surface. This surface modification allows the active targeting of LNPs to the tumors in addition to the passive targeting mechanism. Furthermore, the PEGylation of LNPs improves their hydrophilicity and enhances their biological half-life by reducing clearance by the reticuloendothelial system. This review aims to discuss current treatment approaches and their limitations, as well as recent advancements in LNPs for better management of OSCC.
Collapse
Affiliation(s)
- Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mohammad Fareed
- College of Medicine, AlMaarefa University, Diriyah, Riyadh 11597, Saudi Arabia
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Lina M Alneghery
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mohammed Aslam
- Pharmacy Department, Tishk International University, Erbil 44001, Kurdistan Region, Iraq
| | - Arockia Alex
- Molecular and Nanobiotechnology Laboratory (MNBL), Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu, India
| | - Md Rizwanullah
- Drug Delivery and Nanomedicine Unit, Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu, India
| |
Collapse
|
61
|
Safta DA, Bogdan C, Moldovan ML. SLNs and NLCs for Skin Applications: Enhancing the Bioavailability of Natural Bioactives. Pharmaceutics 2024; 16:1270. [PMID: 39458602 PMCID: PMC11510141 DOI: 10.3390/pharmaceutics16101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Natural bioactives are mixtures of compounds extracted from plants with physicochemical properties that are usually not favorable for penetrating the skin's complex barrier. Nanoparticles have important advantages both in dermatology and cosmetology: improved solubility and stability of encapsulated phytocompounds, controlled and sustained skin delivery, and enhanced skin permeation, leading to an improved bioavailability. This review focuses on two generations of lipid-based nanoparticles: solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs). An extensive overview on the recent studies on SLNs and NLCs entrapping essential oils, oils, herbal extracts, and phytocompounds for topical applications is presented, emphasizing their composition, physicochemical characterization, efficacy, and methodologies used to evaluate them. This review also summarizes topical systems containing natural bioactives incorporated into SLNs and NLCs, commercially available products and registered patents in the field. SLNs and NLCs turn out to be effective nanocarriers for skin applications, offering significantly improved encapsulation efficiency, stability, and bioactives delivery. However, their full potential is underexplored. Future applications should study the encapsulation potential of new natural bioactives and show more specialized solutions that address specific requirements; an improved product performance and a pleasant sensory profile could lead to increased customer compliance with the product use.
Collapse
Affiliation(s)
| | - Cătălina Bogdan
- Department of Dermopharmacy and Cosmetics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 12 I. Creanga Street, 400010 Cluj-Napoca, Romania; (D.A.S.); (M.-L.M.)
| | | |
Collapse
|
62
|
Shah P, Patel M, Kansara Y, Vyas B, Prajapati P, Pradhan M, Jain S. Investigation of Mirabegron-loaded Nanostructured Lipid Carriers for Improved Bioabsorption: Formulation, Statistical Optimization, and In-Vivo Evaluation. AAPS PharmSciTech 2024; 25:222. [PMID: 39322792 DOI: 10.1208/s12249-024-02944-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
Overactive bladder (OAB) is a usual medical syndrome that affects the bladder, and Mirabegron (MBG) is preferred medicine for its control. Currently, available marketed formulations (MYRBETRIQ® granules and MYRBETRIQ® ER tablets) suffer from low bioavailability (29-35%) hampering their therapeutic effectiveness and compromising patient compliance. By creating MBG nanostructured lipid carriers (MBG-NLCs) for improved systemic availability and drug release, specifically in oral administration of OAB treatment, this study aimed to address these issues. MBG-NLCs were fabricated using a hot-melt ultrasonication technique. MBG-GMS; MBG-oleic acid interaction was assessed by in silico molecular docking. QbD relied on the concentration of Span 80 (X1) and homogenizer speed (X2) as critical material attribute (CMA) and critical process parameter (CPP) respectively, while critical quality attributes (CQA) such as particle size (Y1) and cumulative drug release at 24 h (Y2) were estimated as dependent variables. 32 factorial design was utilized to investigate the interconnection in variables that are dependent and independents. Optimized MBG-NLCs with a particle size of 194.4 ± 2.25 nm were suitable for lymphatic uptake. A PDI score of 0.275 ± 0.02 and zeta potential of -36.2 ± 0.721 mV indicated a uniform monodisperse system with stable dispersion properties. MBG-NLCs exhibited entrapment efficiency of 77.3 ± 1.17% and a sustained release in SIF of 94.75 ± 1.60% for 24 h. MBG-NLCs exhibited the Higuchi model with diffusion as a release mechanism. A pharmacokinetic study in Wistar rats exhibited a 1.67-fold higher bioavailability as compared to MBG suspension. Hence, MBG-NLCs hold promise for treating OAB by improving MBG's oral bio absorption.
Collapse
Affiliation(s)
- Pranav Shah
- Department of Pharmaceutics, Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli-Mahuva Road, Tarsadi, 394350, Surat, Gujarat, India.
| | - Mansi Patel
- Department of Pharmaceutics, Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli-Mahuva Road, Tarsadi, 394350, Surat, Gujarat, India
| | - Yashwini Kansara
- Department of Pharmaceutics, Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli-Mahuva Road, Tarsadi, 394350, Surat, Gujarat, India
| | - Bhavin Vyas
- Department of Pharmacology, Maliba Pharmacy College, Uka Tarsadia University, Surat, Gujarat, India
| | - Pintu Prajapati
- Department Pharmaceutical Analysis & Quality Assurance, Maliba Pharmacy College, Uka Tarsadia University, Surat, Gujarat, India
| | - Madhulika Pradhan
- Department of Pharmaceutics, Gracious College of Pharmacy, Abhanpur, Chhattisgarh, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Punjab, India
| |
Collapse
|
63
|
Baig MS, Karade SK, Ahmad A, Khan MA, Haque A, Webster TJ, Faiyazuddin M, Al-Qahtani NH. Lipid-based nanoparticles: innovations in ocular drug delivery. Front Mol Biosci 2024; 11:1421959. [PMID: 39355534 PMCID: PMC11442363 DOI: 10.3389/fmolb.2024.1421959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/21/2024] [Indexed: 10/03/2024] Open
Abstract
Ocular drug delivery presents significant challenges due to intricate anatomy and the various barriers (corneal, tear, conjunctival, blood-aqueous, blood-retinal, and degradative enzymes) within the eye. Lipid-based nanoparticles (LNPs) have emerged as promising carriers for ocular drug delivery due to their ability to enhance drug solubility, improve bioavailability, and provide sustained release. LNPs, particularly solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), and cationic nanostructured lipid carriers (CNLCs), have emerged as promising solutions for enhancing ocular drug delivery. This review provides a comprehensive summary of lipid nanoparticle-based drug delivery systems, emphasizing their biocompatibility and efficiency in ocular applications. We evaluated research and review articles sourced from databases such as Google Scholar, TandFonline, SpringerLink, and ScienceDirect, focusing on studies published between 2013 and 2023. The review discusses the materials and methodologies employed in the preparation of SLNs, NLCs, and CNLCs, focusing on their application as proficient carriers for ocular drug delivery. CNLCs, in particular, demonstrate superior effectiveness attributed due to their electrostatic bioadhesion to ocular tissues, enhancing drug delivery. However, continued research efforts are essential to further optimize CNLC formulations and validate their clinical utility, ensuring advancements in ocular drug delivery technology for improved patient outcomes.
Collapse
Affiliation(s)
- Mirza Salman Baig
- Anjuman-I-Islam’s Kalsekar Technical Campus School of Pharmacy, Affiliated to the University of Mumbai, New Panvel, Maharashtra, India
| | | | - Anas Ahmad
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Mohd. Ashif Khan
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Anzarul Haque
- Central Laboratories Unit (CLU), Qatar University, Doha, Qatar
| | - Thomas J. Webster
- School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- School of Engineering, Saveetha University, Chennai, India
- Program in Materials, UFPI, Teresina, Brazil
- Division of Pre-College and Undergraduate Studies, Brown University, Providence, RI, United States
| | - Md. Faiyazuddin
- School of Pharmacy, Al – Karim University, Katihar, Bihar, India
- Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Noora H. Al-Qahtani
- Central Laboratories Unit (CLU), Qatar University, Doha, Qatar
- Center for Advanced Materials, Qatar University, Doha, Qatar
| |
Collapse
|
64
|
Nascimento Júnior JAC, Santos AM, Oliveira AMS, Santos AB, de Souza Araújo AA, Aragón DM, Frank LA, Serafini MR. The Tiny Big Difference: Nanotechnology in Photoprotective Innovations - A Systematic Review. AAPS PharmSciTech 2024; 25:212. [PMID: 39242428 DOI: 10.1208/s12249-024-02925-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/18/2024] [Indexed: 09/09/2024] Open
Abstract
UV radiation causes long- and short-term skin damage, such as erythema and skin cancer. Therefore, the use of sunscreens is extremely important. However, concerns about UV filter safety have prompted exploration into alternative solutions, with nanotechnology emerging as a promising avenue. This systematic review identified 23 experimental studies utilizing nanocarriers to encapsulate sunscreens with the aim of enhancing their efficacy and safety. Polymeric and lipid nanoparticles are frequently employed to encapsulate both organic and inorganic UV filters along with natural antioxidants. Nanocarriers have demonstrated benefits including reduced active ingredient usage, increased sun protection factor, and mitigated photoinstability. Notably, they also decreased the skin absorption of UV filters. In summary, nanocarriers represent a viable strategy for improving sunscreen formulations, offering enhanced physicochemical properties and bolstered photoprotective effects, thereby addressing concerns regarding UV filter safety and efficacy in cosmetic applications.
Collapse
Affiliation(s)
| | | | - Ana Maria Santos Oliveira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | | | - Adriano Antunes de Souza Araújo
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Brazil
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Brazil
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Brazil
| | - Diana Marcela Aragón
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional da Colombia, Bogotá, D.C, Colombia
| | - Luiza Abrahão Frank
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
- Núcleo de Terapias Nanotecnológicas (NTnano), Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Mairim Russo Serafini
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Brazil.
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Brazil.
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Brazil.
| |
Collapse
|
65
|
M NK, S S, P SR, Narayanasamy D. The Science of Solid Lipid Nanoparticles: From Fundamentals to Applications. Cureus 2024; 16:e68807. [PMID: 39376878 PMCID: PMC11456405 DOI: 10.7759/cureus.68807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
Solid lipid nanoparticles (SLNs) play a crucial role in drug delivery, offering benefits such as enhanced bioavailability, targeted distribution, and reduced toxicity. This article provides a comprehensive overview of SLN formulation, development, and advancement in pharmaceutical research, examining their characteristics, classifications, and significance. The review also delves into the real-world applicability of various SLN formulations across different routes of administration, discussing their advantages, disadvantages, and challenges of scalability, along with strategies for efficient implementation. Furthermore, it explores the diverse applications of SLNs through various delivery methods, addressing the obstacles and potential solutions. By highlighting the critical role of SLNs in improving treatment outcomes, this review underscores their importance in modern drug delivery systems.
Collapse
Affiliation(s)
- Navaneetha Krishnan M
- Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, IND
| | - Sangeetha S
- Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, IND
| | - Sree Ranjani P
- Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, IND
| | - Damodharan Narayanasamy
- Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, IND
| |
Collapse
|
66
|
Adamo FM, De Falco F, Dorillo E, Sorcini D, Stella A, Esposito A, Arcaleni R, Rosati E, Sportoletti P. Nanotechnology Advances in the Detection and Treatment of Lymphoid Malignancies. Int J Mol Sci 2024; 25:9253. [PMID: 39273202 PMCID: PMC11395233 DOI: 10.3390/ijms25179253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Lymphoid malignancies are complex diseases with distinct biological behaviors, clinical presentations, and treatment responses. Ongoing research and advancements in biotechnology enhance the understanding and management of these malignancies, moving towards more personalized approaches for diagnosis and treatment. Nanotechnology has emerged as a promising tool to improve some limitations of conventional diagnostics as well as treatment strategies for lymphoid malignancies. Nanoparticles (NPs) offer unique advantages such as enhanced multimodal detection, drug delivery, and targeted therapy capabilities, with the potential to improve precision medicine and patient outcomes. Here, we comprehensively examine the current landscape of nanoconstructs applied in the management of lymphoid disease. Through a comprehensive analysis of preclinical studies, we highlight the translational potential of NPs in revolutionizing the field of hematological malignancies, with a specific focus on lymphoid neoplasms.
Collapse
Affiliation(s)
- Francesco Maria Adamo
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy
| | - Filomena De Falco
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy
| | - Erica Dorillo
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy
| | - Daniele Sorcini
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy
| | - Arianna Stella
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy
| | - Angela Esposito
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy
| | - Roberta Arcaleni
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy
| | - Emanuela Rosati
- Department of Medicine and Surgery, Biosciences and Medical Embryology Section, University of Perugia, 06132 Perugia, Italy
| | - Paolo Sportoletti
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy
| |
Collapse
|
67
|
Amiri F, Ziaei Chamgordani S, Ghourchian H. An in vitro study for reducing the cytotoxicity and dose dumping risk of remdesivir via entrapment in nanostructured lipid carriers. Sci Rep 2024; 14:19360. [PMID: 39169059 PMCID: PMC11339451 DOI: 10.1038/s41598-024-70003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
The aim of this study was to synthesize and evaluate nanostructured lipid carriers (NLCs) loaded with Remdesivir (RDV) to control its side effects in COVID-19 patients. Due to the low solubility and short half-life of RDV in the blood, an injectable formulation was prepared using sulphobutylether-beta-cyclodextrin. However, it can accumulate in the kidney and cause renal impairment. NLCs improve the parenteral delivery of hydrophobic drugs such as RDV by increasing drug solubility and bioavailability. For the synthesis of RDV-NLCs, the aqueous phase containing Tween 80 was injected into the lipid phase under rapid stirring and was sonicated. The experimental conditions were optimized using Box-Behnken design and Design Expert software. The optimum formulation contained a total lipid of 2.13%, a total surfactant of 1%, and a hot bath time of 71 min. The optimum formulation showed particle size, polydispersity index, zeta potential, and entrapment efficiency values of 151.0 ± 1.7 nm (from 149.1 to 152.1), 0.4 ± 0.1 (from 0.3 to 0.5), -43.8 ± 1.2 mV (from -42.4 to -44.7), and 81.34 ± 1.57% (from 79.52 to 82.33%), respectively. RDV-NLCs showed acceptable stability for 30 days at 25 ℃ and were compatible with commonly used intravenous infusion fluids for 48 h. FE-SEM images of RDV-NLC showed spherical particles with a mean diameter of 207 nm. The NLC-RDV formulation showed a sustained release of RDV with a low risk of dose-dumping, minimizing potential side effects. In addition, RDV in the form of RDV-NLC causes less cytotoxicity to healthy normal kidney cells, which is expected to reduce renal impairment in COVID-19 patients.
Collapse
Affiliation(s)
- Fatemeh Amiri
- Laboratory of Bioanalysis, Institute of Biochemistry & Biophysics, University of Tehran, Enghelab Ave, P.O. Box: 13145-1384, Tehran, 1417614411, Iran
| | - Sepideh Ziaei Chamgordani
- Laboratory of Bioanalysis, Institute of Biochemistry & Biophysics, University of Tehran, Enghelab Ave, P.O. Box: 13145-1384, Tehran, 1417614411, Iran
| | - Hedayatollah Ghourchian
- Laboratory of Bioanalysis, Institute of Biochemistry & Biophysics, University of Tehran, Enghelab Ave, P.O. Box: 13145-1384, Tehran, 1417614411, Iran.
| |
Collapse
|
68
|
An P, Zhao Q, Hao S, Wang X, Tian J, Ma Z. Recent Advancements and Trends of Topical Drug Delivery Systems in Psoriasis: A Review and Bibliometric Analysis. Int J Nanomedicine 2024; 19:7631-7671. [PMID: 39099792 PMCID: PMC11296365 DOI: 10.2147/ijn.s461514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Psoriasis is an immune-mediated inflammatory skin disease where topical therapy is crucial. While various dosage forms have enhanced the efficacy of current treatments, their limited permeability and lack of targeted delivery to the dermis and epidermis remain challenges. We reviewed the evolution of topical therapies for psoriasis and conducted a bibliometric analysis from 1993 to 2023 using a predictive linear regression model. This included a comprehensive statistical and visual evaluation of each model's validity, literature profiles, citation patterns, and collaborations, assessing R variance and mean squared error (MSE). Furthermore, we detailed the structural features and penetration pathways of emerging drug delivery systems for topical treatment, such as lipid-based, polymer-based, metallic nanocarriers, and nanocrystals, highlighting their advantages. This systematic overview indicates that future research should focus on developing novel drug delivery systems characterized by enhanced stability, biocompatibility, and drug-carrying capacity.
Collapse
Affiliation(s)
- Pingyu An
- Basic Medical College, Harbin Medical University, Harbin, People’s Republic of China
| | - Qiyue Zhao
- School of Nursing, Southern Medical University, Guangzhou, People’s Republic of China
| | - Siyu Hao
- Department of Dermatology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Xiaodong Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Jiangtian Tian
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, People’s Republic of China
| | - Zhiqiang Ma
- Department of Dermatology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
69
|
Eker F, Duman H, Akdaşçi E, Bolat E, Sarıtaş S, Karav S, Witkowska AM. A Comprehensive Review of Nanoparticles: From Classification to Application and Toxicity. Molecules 2024; 29:3482. [PMID: 39124888 PMCID: PMC11314082 DOI: 10.3390/molecules29153482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Nanoparticles are structures that possess unique properties with high surface area-to-volume ratio. Their small size, up to 100 nm, and potential for surface modifications have enabled their use in a wide range of applications. Various factors influence the properties and applications of NPs, including the synthesis method and physical attributes such as size and shape. Additionally, the materials used in the synthesis of NPs are primary determinants of their application. Based on the chosen material, NPs are generally classified into three categories: organic, inorganic, and carbon-based. These categories include a variety of materials, such as proteins, polymers, metal ions, lipids and derivatives, magnetic minerals, and so on. Each material possesses unique attributes that influence the activity and application of the NPs. Consequently, certain NPs are typically used in particular areas because they possess higher efficiency along with tenable toxicity. Therefore, the classification and the base material in the NP synthesis hold significant importance in both NP research and application. In this paper, we discuss these classifications, exemplify most of the major materials, and categorize them according to their preferred area of application. This review provides an overall review of the materials, including their application, and toxicity.
Collapse
Affiliation(s)
- Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
70
|
Feng X, Jia P, Zhang D. Nanocarrier drug delivery system: promising platform for targeted depression therapy. Front Pharmacol 2024; 15:1435133. [PMID: 39119603 PMCID: PMC11306052 DOI: 10.3389/fphar.2024.1435133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Depression is a chronic mental disorder characterized by persistent low mood and loss of interest. Treatments for depression are varied but may not be sufficient cure. Drug-based treatment regimens have drawbacks such as slow onset of action, low bioavailability, and drug side effects. Nanocarrier Drug Delivery Systems (NDDS) has received increasing attention for brain drug delivery since it assists the drug through the blood-brain barrier and improves bioavailability, which may be beneficial for treating depression. Due to the particle size and physicochemical properties of nanocarriers, it presents a promise to improve the stability and solubility of antidepressants, thereby enhancing the drug concentration. Moreover, ligand-modified nanocarriers can be taken as a target direct medicines release system and reduce drug side effects. The purpose of the present review is to provide an up-to-date understanding of the Nanocarrier drug delivery system and relevant antidepressants in different routes of ingestion, to lay a foundation for the treatment of patients with depression.
Collapse
Affiliation(s)
- Xiaoying Feng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Jia
- Department of Neurosurgery Nursing, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dingding Zhang
- Sichuan Provincial Key Laboratory for Genetic Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
71
|
Sharma P, Kaul S, Jain N, Pandey M, Nagaich U. Enhanced Skin Penetration and Efficacy: First and Second Generation Lipoidal Nanocarriers in Skin Cancer Therapy. AAPS PharmSciTech 2024; 25:170. [PMID: 39044049 DOI: 10.1208/s12249-024-02884-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024] Open
Abstract
Skin carcinoma remains one of the most widespread forms of cancer, and its global impact continues to increase. Basal cell carcinoma, melanoma, and squamous cell carcinoma are three kinds of cutaneous carcinomas depending upon occurrence and severity. The invasive nature of skin cancer, the limited effectiveness of current therapy techniques, and constraints to efficient systems for drug delivery are difficulties linked with the treatment of skin carcinoma. In the present era, the delivery of drugs has found a new and exciting horizon in the realm of nanotechnology, which presents inventive solutions to the problems posed by traditional therapeutic procedures for skin cancer management. Lipid-based nanocarriers like solid lipid nanoparticles and nanostructured lipid carriers have attracted a substantial focus in recent years owing to their capability to improve the drug's site-specific delivery, enhancing systemic availability, and thus its effectiveness. Due to their distinct structural and functional characteristics, these nanocarriers can deliver a range of medications, such as peptides, nucleic acids, and chemotherapeutics, via different biological barriers, such as the skin. In this review, an effort was made to present the mechanism of lipid nanocarrier permeation via cancerous skin. In addition, recent research advances in lipid nanocarriers have also been discussed with the help of in vitro cell lines and preclinical studies. Being a nano size, their limitations and toxicity aspects in living systems have also been elaborated.
Collapse
Affiliation(s)
- Palak Sharma
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, 201301, Noida, India
| | - Shreya Kaul
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, 201301, Noida, India.
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, 201301, Noida, India.
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Upendra Nagaich
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Science, Chennai, India
| |
Collapse
|
72
|
Atrooz OM, Reihani N, Mozafari MR, Salawi A, Taghavi E. Enhancing hair regeneration: Recent progress in tailoring nanostructured lipid carriers through surface modification strategies. ADMET AND DMPK 2024; 12:431-462. [PMID: 39091900 PMCID: PMC11289513 DOI: 10.5599/admet.2376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND AND PURPOSE Hair loss is a prevalent problem affecting millions of people worldwide, necessitating innovative and efficient regrowth approaches. Nanostructured lipid carriers (NLCs) have become a hopeful option for transporting bioactive substances to hair follicles because of their compatibility with the body and capability to improve drug absorption. REVIEW APPROACH Recently, surface modification techniques have been used to enhance hair regeneration by improving the customization of NLCs. These techniques involve applying polymers, incorporating targeting molecules, and modifying the surface charge. KEY RESULTS The conversation focuses on how these techniques enhance stability, compatibility with the body, and precise delivery to hair follicles within NLCs. Moreover, it explains how surface-modified NLCs can improve the bioavailability of hair growth-promoting agents like minoxidil and finasteride. Furthermore, information on how surface-modified NLCs interact with hair follicles is given, uncovering their possible uses in treating hair loss conditions. CONCLUSION This review discusses the potential of altering the surface of NLCs to customize them for enhanced hair growth. It offers important information for upcoming studies on hair growth.
Collapse
Affiliation(s)
- Omar M. Atrooz
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
- Department of Biological Sciences, Mutah University, Mutah, Jordan
| | - Nasim Reihani
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, Victoria 3800, Australia
| | - M. R. Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, Victoria 3800, Australia
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Elham Taghavi
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
73
|
Cimino C, Sánchez López E, Bonaccorso A, Bonilla L, Musumeci T, Badia J, Baldomà L, Pignatello R, Marrazzo A, Barbaraci C, García ML, Carbone C. In vitro and in vivo studies of ocular topically administered NLC for the treatment of uveal melanoma. Int J Pharm 2024; 660:124300. [PMID: 38851409 DOI: 10.1016/j.ijpharm.2024.124300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Uveal melanoma is one of the most common and aggressive intraocular malignancies, and, due to its great capability of metastasize, it constitutes the most incident intraocular tumor in adults. However, to date there is no effective treatment since achieving the inner ocular tissues still constitutes one of the greatest challenges in actual medicine, because of the complex structure and barriers. Uncoated and PEGylated nanostructured lipid carriers were developed to achieve physico-chemical properties (mean particle size, homogeneity, zeta potential, pH and osmolality) compatible for the ophthalmic administration of (S)-(-)-MRJF22, a new custom-synthetized prodrug for the potential treatment of uveal melanoma. The colloidal physical stability was investigated at different temperatures by Turbiscan® Ageing Station. Morphology analysis and mucoadhesive studies highlighted the presence of small particles suitable to be topically administered on the ocular surface. In vitro release studies performed using Franz diffusion cells demonstrated that the systems were able to provide a slow and prolonged prodrug release. In vitro cytotoxicity test on Human Corneal Epithelium and Human Uveal Melanoma cell lines and Hen's egg-chorioallantoic membrane test showed a dose-dependent cytotoxic effect of the free prodrug on corneal cells, whose cytocompatibility improved when encapsulated into nanoparticles, as also confirmed by in vivo studies on New Zealand albino rabbits. Antiangiogenic capability and preventive anti-inflammatory properties were also investigated on embryonated eggs and rabbits, respectively. Furthermore, preliminary in vivo biodistribution images of fluorescent nanoparticles after topical instillation in rabbits' eyes, suggested their ability to reach the posterior segment of the eye, as a promising strategy for the treatment of choroidal uveal melanoma.
Collapse
Affiliation(s)
- Cinzia Cimino
- PhD in Biotechnology, Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania
| | - Elena Sánchez López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain; Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034, Barcelona, Spain
| | - Angela Bonaccorso
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania
| | - Lorena Bonilla
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania
| | - Josefa Badia
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain; Research Institute Sant Joan De Déu (IR-SJD), 08950 Barcelona, Spain
| | - Laura Baldomà
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain; Research Institute Sant Joan De Déu (IR-SJD), 08950 Barcelona, Spain
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania
| | - Agostino Marrazzo
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034, Barcelona, Spain; Medicinal Chemistry Laboratory, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Carla Barbaraci
- Medicinal Chemistry Laboratory, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; Present address: Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - María Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania.
| |
Collapse
|
74
|
Yu HP, Liu FC, Chung YK, Alalaiwe A, Sung CT, Fang JY. Nucleic acid-based nanotherapeutics for treating sepsis and associated organ injuries. Theranostics 2024; 14:4411-4437. [PMID: 39113804 PMCID: PMC11303080 DOI: 10.7150/thno.98487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
In recent years, gene therapy has been made possible with the success of nucleic acid drugs against sepsis and its related organ dysfunction. Therapeutics based on nucleic acids such as small interfering RNAs (siRNAs), microRNAs (miRNAs), messenger RNAs (mRNAs), and plasmid DNAs (pDNAs) guarantee to treat previously undruggable diseases. The advantage of nucleic acid-based therapy against sepsis lies in the development of nanocarriers, achieving targeted and controlled gene delivery for improved efficacy with minimal adverse effects. Entrapment into nanocarriers also ameliorates the poor cellular uptake of naked nucleic acids. In this study, we discuss the current state of the art in nanoparticles for nucleic acid delivery to treat hyperinflammation and apoptosis associated with sepsis. The optimized design of the nanoparticles through physicochemical property modification and ligand conjugation can target specific organs-such as lung, heart, kidney, and liver-to mitigate multiple sepsis-associated organ injuries. This review highlights the nanomaterials designed for fabricating the anti-sepsis nanosystems, their physicochemical characterization, the mechanisms of nucleic acid-based therapy in working against sepsis, and the potential for promoting the therapeutic efficiency of the nucleic acids. The current investigations associated with nanoparticulate nucleic acid application in sepsis management are summarized in this paper. Noteworthily, the potential application of nanotherapeutic nucleic acids allows for a novel strategy to treat sepsis. Further clinical studies are required to confirm the findings in cell- and animal-based experiments. The capability of large-scale production and reproducibility of nanoparticle products are also critical for commercialization. It is expected that numerous anti-sepsis possibilities will be investigated for nucleic acid-based nanotherapeutics in the future.
Collapse
Affiliation(s)
- Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Yu-Kuo Chung
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Calvin T. Sung
- Department of Dermatology, University of California, Irvine, United States
| | - Jia-You Fang
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
75
|
Joukhadar R, Nižić Nodilo L, Lovrić J, Hafner A, Pepić I, Jug M. Functional Nanostructured Lipid Carrier-Enriched Hydrogels Tailored to Repair Damaged Epidermal Barrier. Gels 2024; 10:466. [PMID: 39057488 PMCID: PMC11275585 DOI: 10.3390/gels10070466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
In this study, a functional nanostructured lipid carriers (NLCs)-based hydrogel was developed to repair the damaged epidermal skin barrier. NLCs were prepared via a high-energy approach, using argan oil and beeswax as liquid and solid lipids, respectively, and were loaded with ceramides and cholesterol at a physiologically relevant ratio, acting as structural and functional compounds. Employing a series of surfactants and optimizing the preparation conditions, NLCs of 215.5 ± 0.9 nm in size and a negative zeta potential of -42.7 ± 0.9 were obtained, showing acceptable physical and microbial stability. Solid state characterization by differential scanning calorimetry and X-ray powder diffraction revealed the formation of imperfect crystal NLC-type. The optimized NLC dispersion was loaded into the gel based on sodium hyaluronate and xanthan gum. The gels obtained presented a shear thinning and thixotropic behavior, which is suitable for dermal application. Incorporating NLCs enhanced the rheological, viscoelastic, and textural properties of the gel formed while retaining the suitable spreadability required for comfortable application and patient compliance. The NLC-loaded gel presented a noticeable occlusion effect in vitro. It provided 2.8-fold higher skin hydration levels on the ex vivo porcine ear model than the NLC-free gel, showing a potential to repair the damaged epidermal barrier and nourish the skin actively.
Collapse
Affiliation(s)
| | | | | | | | | | - Mario Jug
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia; (R.J.); (L.N.N.); (J.L.); (A.H.); (I.P.)
| |
Collapse
|
76
|
Alwani S, Wasan EK, Badea I. Solid Lipid Nanoparticles for Pulmonary Delivery of Biopharmaceuticals: A Review of Opportunities, Challenges, and Delivery Applications. Mol Pharm 2024; 21:3084-3102. [PMID: 38828798 DOI: 10.1021/acs.molpharmaceut.4c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Biopharmaceuticals such as nucleic acids, proteins, and peptides constitute a new array of treatment modalities for chronic ailments. Invasive routes remain the mainstay of administering biopharmaceuticals due to their labile nature in the biological environment. However, it is not preferred for long-term therapy due to the lack of patient adherence and clinical suitability. Therefore, alternative routes of administration are sought to utilize novel biopharmaceutical therapies to their utmost potential. Nanoparticle-mediated pulmonary delivery of biologics can facilitate both local and systemic disorders. Solid lipid nanoparticles (SLNs) afford many opportunities as pulmonary carriers due to their physicochemical stability and ability to incorporate both hydrophilic and hydrophobic moieties, thus allowing novel combinatorial drug/gene therapies. These applications include pulmonary infections, lung cancer, and cystic fibrosis, while systemic delivery of biomolecules, like insulin, is also attractive for the treatment of chronic ailments. This Review explores physiological and particle-associated factors affecting pulmonary delivery of biopharmaceuticals. It compares the advantages and limitations of SLNs as pulmonary nanocarriers along with design improvements underway to overcome these limitations. Current research illustrating various SLN designs to deliver proteins, peptides, plasmids, oligonucleotides, siRNA, and mRNA is also summarized.
Collapse
Affiliation(s)
- Saniya Alwani
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Health Sciences Building, Saskatoon, S7N 5E5 Saskatchewan, Canada
| | - Ellen K Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Health Sciences Building, Saskatoon, S7N 5E5 Saskatchewan, Canada
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Health Sciences Building, Saskatoon, S7N 5E5 Saskatchewan, Canada
| |
Collapse
|
77
|
Yu J, Meng Y, Wen Z, Jiang Y, Guo Y, Du S, Liu Y, Xia X. Investigation of Factors Influencing the Effectiveness of Deformable Nanovesicles for Insulin Nebulization Inhalation. Pharmaceutics 2024; 16:879. [PMID: 39065576 PMCID: PMC11280345 DOI: 10.3390/pharmaceutics16070879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Nebulized inhalation offers a noninvasive method for delivering drugs to treat both local respiratory and systemic diseases. In this study, insulin was used as a model drug to design a series of deformable nanovesicles (DNVs) with key quality attributes, including particle size, deformability, and drug load capacity. We investigated the effects of these properties on aerosol generation, macrophage phagocytosis, and bloodstream penetration. The results showed that deformability improved nebulization performance and reduced macrophage phagocytosis, benefiting local and systemic delivery. However, the advantage of DNVs for transmembrane penetration was not evident in the alveolar epithelium. Within the size range of 80-490 nm, the smaller the particle size of IPC-DNVs, the easier it is to evade clearance by macrophages and the more effective the in vivo hypoglycemic efficacy will be. In the drug load range of 3-5 mg/mL, a lower drug load resulted in better hypoglycemic efficacy. The area above the blood glucose decline curve with time (AAC) of nebulized DNVs was 2.32 times higher than that of the insulin solution, demonstrating the feasibility and advantages of DNVs in the pulmonary delivery of biomacromolecule drugs. This study provides insights into the construction and formulation optimization of pulmonary delivery carriers.
Collapse
Affiliation(s)
- Jinghan Yu
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (J.Y.); (Y.M.); (Z.W.); (Y.J.); (S.D.)
| | - Yingying Meng
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (J.Y.); (Y.M.); (Z.W.); (Y.J.); (S.D.)
| | - Zhiyang Wen
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (J.Y.); (Y.M.); (Z.W.); (Y.J.); (S.D.)
| | - Yu Jiang
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (J.Y.); (Y.M.); (Z.W.); (Y.J.); (S.D.)
| | - Yiyue Guo
- Beijing Wehand-Bio Pharmaceutical Co., Ltd., Beijing 102600, China;
| | - Simeng Du
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (J.Y.); (Y.M.); (Z.W.); (Y.J.); (S.D.)
| | - Yuling Liu
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (J.Y.); (Y.M.); (Z.W.); (Y.J.); (S.D.)
| | - Xuejun Xia
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (J.Y.); (Y.M.); (Z.W.); (Y.J.); (S.D.)
| |
Collapse
|
78
|
Atapour-Mashhad H, Tayarani-Najaran Z, Golmohammadzadeh S. Preparation and characterization of novel nanostructured lipid carriers (NLC) and solid lipid nanoparticles (SLN) containing coenzyme Q10 as potent antioxidants and antityrosinase agents. Heliyon 2024; 10:e31429. [PMID: 38882272 PMCID: PMC11180323 DOI: 10.1016/j.heliyon.2024.e31429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
We developed novel and optimal Q10-NLC/SLN formulations as antioxidant and anti-tyrosinase agents. The formulations were analyzed for particle size, morphology, entrapment efficiency (EE %), and long-term stability. The in vitro drug release and in vivo skin penetration were evaluated using dialysis bag diffusion and Sprague Dawley (SD) rats, respectively. Cytotoxicity and protecting effects were assessed by AlamarBlue® assay, ROS level by DCFH-DA, and tyrosinase activity by l-DOPA assay, measuring the absorbance at 470 nm. The selected formulations had optimal surface characterizations, including Z-average size, PDI, and Zeta potential ranging from 125 to 207 nm, 0.09-0.22, and -7 to -24, respectively. They also exhibited physiochemical stability for up to 6 months and EE% above 80 %. The lipids ratio and co-Q10 amount as variable factors significantly affected particle size and zeta potential but were insignificant on PDI. The in vitro release diagram showed that Q10-NLC/SLN revealed a fast release during the first 8 h and prolonged release afterward. The in vivo skin permeation revealed a higher accumulative uptake of co-Q10 in the skin for Q10-NLC/SLN compared to Q10 emulsions. Both selected Q10-NLC and Q10-SLN could reduce intracellular ROS after exposure to H2O2. The Q10-NLC was found to be more potent for inhibiting the tyrosinase activity compared to O10-SLN. The results suggest that the new formulations are promising carriers for topical delivery of co-Q10 as an anti-aging and skin-whitening agent.
Collapse
Affiliation(s)
- Hoda Atapour-Mashhad
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shiva Golmohammadzadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
79
|
Bellini C, Mancin F, Papini E, Tavano R. Nanotechnological Approaches to Enhance the Potential of α-Lipoic Acid for Application in the Clinic. Antioxidants (Basel) 2024; 13:706. [PMID: 38929145 PMCID: PMC11201002 DOI: 10.3390/antiox13060706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
α-lipoic acid is a naturally occurring compound with potent antioxidant properties that helps protect cells and tissues from oxidative stress. Its incorporation into nanoplatforms can affect factors like bioavailability, stability, reactivity, and targeted delivery. Nanoformulations of α-lipoic acid can significantly enhance its solubility and absorption, making it more bioavailable. While α-lipoic acid can be prone to degradation in its free form, encapsulation within nanoparticles ensures its stability over time, and its release in a controlled and sustained manner to the targeted tissues and cells. In addition, α-lipoic acid can be combined with other compounds, such as other antioxidants, drugs, or nanomaterials, to create synergistic effects that enhance their overall therapeutic benefits or hinder their potential cytotoxicity. This review outlines the advantages and drawbacks associated with the use of α-lipoic acid, as well as various nanotechnological approaches employed to enhance its therapeutic effectiveness, whether alone or in combination with other bioactive agents. Furthermore, it describes the engineering of α-lipoic acid to produce poly(α-lipoic acid) nanoparticles, which hold promise as an effective drug delivery system.
Collapse
Affiliation(s)
- Chiara Bellini
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy; (C.B.); (E.P.)
| | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35121 Padova, Italy;
| | - Emanuele Papini
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy; (C.B.); (E.P.)
| | - Regina Tavano
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy; (C.B.); (E.P.)
| |
Collapse
|
80
|
Wasim M, Bergonzi MC. Unlocking the Potential of Oleanolic Acid: Integrating Pharmacological Insights and Advancements in Delivery Systems. Pharmaceutics 2024; 16:692. [PMID: 38931816 PMCID: PMC11206505 DOI: 10.3390/pharmaceutics16060692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024] Open
Abstract
The growing interest in oleanolic acid (OA) as a triterpenoid with remarkable health benefits prompts an emphasis on its efficient use in pharmaceutical research. OA exhibits a range of pharmacological effects, including antidiabetic, anti-inflammatory, immune-enhancing, gastroprotective, hepatoprotective, antitumor, and antiviral properties. While OA demonstrates diverse pharmacological effects, optimizing its therapeutic potential requires overcoming significant challenges. In the field of pharmaceutical research, the exploration of efficient drug delivery systems is essential to maximizing the therapeutic potential of bioactive compounds. Efficiently delivering OA faces challenges, such as poor aqueous solubility and restricted bioavailability, and to unlock its full therapeutic efficacy, novel formulation strategies are imperative. This discussion thoroughly investigates different approaches and advancements in OA drug delivery systems with the aim of enhancing the biopharmaceutical features and overall efficacy in diverse therapeutic contexts.
Collapse
Affiliation(s)
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
81
|
Wei Q, Xiao Y, Du L, Li Y. Advances in Nanoparticles in the Prevention and Treatment of Myocardial Infarction. Molecules 2024; 29:2415. [PMID: 38893291 PMCID: PMC11173599 DOI: 10.3390/molecules29112415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Myocardial infarction (MI) is one of the most prevalent types of cardiovascular disease. During MI, myocardial cells become ischemic and necrotic due to inadequate blood perfusion, leading to irreversible damage to the heart. Despite the development of therapeutic strategies for the prevention and treatment of MI, their effects are still unsatisfactory. Nanoparticles represent a new strategy for the pre-treatment and treatment of MI, and novel multifunctional nanoparticles with preventive and therapeutic capabilities hold promise for the prevention and treatment of this disease. This review summarizes the common types and properties of nanoparticles, and focuses on the research progress of nanoparticles for the prevention and treatment of MI.
Collapse
Affiliation(s)
| | | | | | - Ya Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.W.); (Y.X.); (L.D.)
| |
Collapse
|
82
|
Sotirova Y, Kiselova-Kaneva Y, Vankova D, Tasinov O, Ivanova D, Popov H, Hristova M, Nikolova K, Andonova V. Tissue Regeneration and Remodeling in Rat Models after Application of Hypericum perforatum L. Extract-Loaded Bigels. Gels 2024; 10:341. [PMID: 38786258 PMCID: PMC11121646 DOI: 10.3390/gels10050341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
The wound-healing effect of St. John's Wort (SJW) is mainly attributed to hyperforin (HP), but its low stability restricts its topical administration. This study investigates how "free" HP-rich SJW extract (incorporated into a bigel; B/SJW) and extract "protected" by nanostructured lipid carriers (also included in a biphasic semisolid; B/NLC-SJW) affect tissue regeneration in a rat skin excision wound model. Wound diameter, histological changes, and tissue gene expression levels of fibronectin (Fn), matrix metalloproteinase 8 (MMP8), and tumor necrosis factor-alpha (TNF-α) were employed to quantify the healing progress. A significant wound size reduction was achieved after applying both extract-containing semisolids, but after a 21-day application period, the smallest wound size was observed in the B/NLC-SJW-treated animals. However, the inflammatory response was affected more favorably by the bigel containing the "free" SJW extract, as evidenced by histological studies. Moreover, after the application of B/SJW, the expression of Fn, MMP8, and TNF-α was significantly higher than in the positive control. In conclusion, both bigel formulations exhibited beneficial effects on wound healing in rat skin, but B/SJW affected skin restoration processes in a comprehensive and more efficient way.
Collapse
Affiliation(s)
- Yoana Sotirova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria;
| | - Yoana Kiselova-Kaneva
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria (O.T.); (D.I.)
| | - Deyana Vankova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria (O.T.); (D.I.)
| | - Oskan Tasinov
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria (O.T.); (D.I.)
| | - Diana Ivanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria (O.T.); (D.I.)
| | - Hristo Popov
- Department of General and Clinical Pathology, Forensic Medicine and Deontology, Faculty of Medicine, Medical University of Varna, 9000 Varna, Bulgaria;
| | - Minka Hristova
- Department of Physiology and Pathophysiology, Faculty of Medicine, Medical University of Varna, 9000 Varna, Bulgaria;
| | - Krastena Nikolova
- Department of Physics and Biophysics, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria;
| | - Velichka Andonova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria;
| |
Collapse
|
83
|
Wu KY, Wang XC, Anderson M, Tran SD. Advancements in Nanosystems for Ocular Drug Delivery: A Focus on Pediatric Retinoblastoma. Molecules 2024; 29:2263. [PMID: 38792122 PMCID: PMC11123804 DOI: 10.3390/molecules29102263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The eye's complex anatomical structures present formidable barriers to effective drug delivery across a range of ocular diseases, from anterior to posterior segment pathologies. Emerging as a promising solution to these challenges, nanotechnology-based platforms-including but not limited to liposomes, dendrimers, and micelles-have shown the potential to revolutionize ophthalmic therapeutics. These nanocarriers enhance drug bioavailability, increase residence time in targeted ocular tissues, and offer precise, localized delivery, minimizing systemic side effects. Focusing on pediatric ophthalmology, particularly on retinoblastoma, this review delves into the recent advancements in functionalized nanosystems for drug delivery. Covering the literature from 2017 to 2023, it comprehensively examines these nanocarriers' potential impact on transforming the treatment landscape for retinoblastoma. The review highlights the critical role of these platforms in overcoming the unique pediatric eye barriers, thus enhancing treatment efficacy. It underscores the necessity for ongoing research to realize the full clinical potential of these innovative drug delivery systems in pediatric ophthalmology.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Xingao C. Wang
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3T 1J4, Canada
| | - Maude Anderson
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
84
|
Vanzan DF, Goma EP, Locatelli FR, Honorio TDS, Furtado PDS, Rodrigues CR, de Sousa VP, Mata dos Santos HA, do Carmo FA, Simon A, Pyrrho ADS, Ribeiro AJ, Cabral LM. Evaluation of Silybin Nanoparticles against Liver Damage in Murine Schistosomiasis mansoni Infection. Pharmaceutics 2024; 16:618. [PMID: 38794280 PMCID: PMC11125168 DOI: 10.3390/pharmaceutics16050618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Silybin (SIB) is a hepatoprotective drug known for its poor oral bioavailability, attributed to its classification as a class IV drug with significant metabolism during the first-pass effect. This study explored the potential of solid lipid nanoparticles with (SLN-SIB-U) or without (SLN-SIB) ursodeoxycholic acid and polymeric nanoparticles (PN-SIB) as delivery systems for SIB. The efficacy of these nanosystems was assessed through in vitro studies using the GRX and Caco-2 cell lines for permeability and proliferation assays, respectively, as well as in vivo experiments employing a murine model of Schistosomiasis mansoni infection in BALB/c mice. The mean diameter and encapsulation efficiency of the nanosystems were as follows: SLN-SIB (252.8 ± 4.4 nm, 90.28 ± 2.2%), SLN-SIB-U (252.9 ± 14.4 nm, 77.05 ± 2.8%), and PN-SIB (241.8 ± 4.1 nm, 98.0 ± 0.2%). In the proliferation assay with the GRX cell line, SLN-SIB and SLN-SIB-U exhibited inhibitory effects of 43.09 ± 5.74% and 38.78 ± 3.78%, respectively, compared to PN-SIB, which showed no inhibitory effect. Moreover, SLN-SIB-U demonstrated a greater apparent permeability coefficient (25.82 ± 2.2) than PN-SIB (20.76 ± 0.1), which was twice as high as that of SLN-SIB (11.32 ± 4.6) and pure SIB (11.28 ± 0.2). These findings suggest that solid lipid nanosystems hold promise for further in vivo investigations. In the murine model of acute-phase Schistosomiasis mansoni infection, both SLN-SIB and SLN-SIB-U displayed hepatoprotective effects, as evidenced by lower alanine amino transferase values (22.89 ± 1.6 and 23.93 ± 2.4 U/L, respectively) than those in control groups I (29.55 ± 0.7 U/L) and I+SIB (34.29 ± 0.3 U/L). Among the prepared nanosystems, SLN-SIB-U emerges as a promising candidate for enhancing the pharmacokinetic properties of SIB.
Collapse
Affiliation(s)
- Daniel Figueiredo Vanzan
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.F.V.); (F.A.d.C.)
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ester Puna Goma
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.F.V.); (F.A.d.C.)
| | - Fernanda Resende Locatelli
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.F.V.); (F.A.d.C.)
| | - Thiago da Silva Honorio
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.F.V.); (F.A.d.C.)
| | - Priscila de Souza Furtado
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.F.V.); (F.A.d.C.)
| | - Carlos Rangel Rodrigues
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.F.V.); (F.A.d.C.)
| | - Valeria Pereira de Sousa
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.F.V.); (F.A.d.C.)
| | - Hilton Antônio Mata dos Santos
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Flávia Almada do Carmo
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.F.V.); (F.A.d.C.)
| | - Alice Simon
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.F.V.); (F.A.d.C.)
| | - Alexandre dos Santos Pyrrho
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - António José Ribeiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- Group Genetics of Cognitive Dysfunction, I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4169-007 Porto, Portugal
| | - Lucio Mendes Cabral
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.F.V.); (F.A.d.C.)
| |
Collapse
|
85
|
De Rubis G, Paudel KR, Corrie L, Mehndiratta S, Patel VK, Kumbhar PS, Manjappa AS, Disouza J, Patravale V, Gupta G, Manandhar B, Rajput R, Robinson AK, Reyes RJ, Chakraborty A, Chellappan DK, Singh SK, Oliver BGG, Hansbro PM, Dua K. Applications and advancements of nanoparticle-based drug delivery in alleviating lung cancer and chronic obstructive pulmonary disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2793-2833. [PMID: 37991539 DOI: 10.1007/s00210-023-02830-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
Lung cancer (LC) and chronic obstructive pulmonary disease (COPD) are among the leading causes of mortality worldwide. Cigarette smoking is among the main aetiologic factors for both ailments. These diseases share common pathogenetic mechanisms including inflammation, oxidative stress, and tissue remodelling. Current therapeutic approaches are limited by low efficacy and adverse effects. Consequentially, LC has a 5-year survival of < 20%, while COPD is incurable, underlining the necessity for innovative treatment strategies. Two promising emerging classes of therapy against these diseases include plant-derived molecules (phytoceuticals) and nucleic acid-based therapies. The clinical application of both is limited by issues including poor solubility, poor permeability, and, in the case of nucleic acids, susceptibility to enzymatic degradation, large size, and electrostatic charge density. Nanoparticle-based advanced drug delivery systems are currently being explored as flexible systems allowing to overcome these limitations. In this review, an updated summary of the most recent studies using nanoparticle-based advanced drug delivery systems to improve the delivery of nucleic acids and phytoceuticals for the treatment of LC and COPD is provided. This review highlights the enormous relevance of these delivery systems as tools that are set to facilitate the clinical application of novel categories of therapeutics with poor pharmacokinetic properties.
Collapse
Affiliation(s)
- Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Samir Mehndiratta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Vyoma K Patel
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Popat S Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
| | - Arehalli Sidramappa Manjappa
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
- Department of Pharmaceutics, Vasantidevi Patil Institute of Pharmacy, Kodoli, Kolkapur, Maharashtra, 416114, India
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, Maharashtra, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, 302017, India
| | - Bikash Manandhar
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Rashi Rajput
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Alexandra Kailie Robinson
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Ruby-Jean Reyes
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Amlan Chakraborty
- Division of Immunology, Immunity to Infection and Respiratory Medicine (DIIIRM), School of Biological Sciences I Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Brian Gregory George Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia
| | - Philip Michael Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
86
|
Alcantara KP, Malabanan JWT, Nalinratana N, Thitikornpong W, Rojsitthisak P, Rojsitthisak P. Cannabidiol-Loaded Solid Lipid Nanoparticles Ameliorate the Inhibition of Proinflammatory Cytokines and Free Radicals in an In Vitro Inflammation-Induced Cell Model. Int J Mol Sci 2024; 25:4744. [PMID: 38731964 PMCID: PMC11083812 DOI: 10.3390/ijms25094744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Cannabidiol (CBD) is a non-psychoactive compound derived from Cannabis sativa. It has demonstrated promising effects in combating inflammation and holds potential as a treatment for the progression of chronic inflammation. However, the clinical application of CBD is limited due to its poor solubility and bioavailability. This study introduces an effective method for preparing CBD-loaded solid lipid nanoparticles (CBD-SLNs) using a combination of low-energy hot homogenization and ultrasonication. We enhanced this process by employing statistical optimization with response surface methodology (RSM). The optimized CBD-SLN formulation utilizes glyceryl monostearate as the primary lipid component of the nanocarrier. The CBD-SLN formulation is screened as a potential tool for managing chronic inflammation. Stable, uniformly dispersed spherical nanoparticles with a size of 123 nm, a surface charge of -32.1 mV, an encapsulation efficiency of 95.16%, and a drug loading of 2.36% were obtained. The CBD-SLNs exhibited sustained release properties, ensuring prolonged and controlled CBD delivery, which could potentially amplify its therapeutic effects. Additionally, we observed that CBD-SLNs significantly reduced both reactive oxygen and nitrogen species and proinflammatory cytokines in chondrocyte and macrophage cell lines, with these inhibitory effects being more pronounced than those of free CBD. In conclusion, CBD-SLNs demonstrated superiority over free CBD, highlighting its potential as an effective delivery system for CBD.
Collapse
Affiliation(s)
- Khent Primo Alcantara
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (K.P.A.); (J.W.T.M.); (N.N.); (W.T.); (P.R.)
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - John Wilfred T. Malabanan
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (K.P.A.); (J.W.T.M.); (N.N.); (W.T.); (P.R.)
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nonthaneth Nalinratana
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (K.P.A.); (J.W.T.M.); (N.N.); (W.T.); (P.R.)
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Worathat Thitikornpong
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (K.P.A.); (J.W.T.M.); (N.N.); (W.T.); (P.R.)
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (K.P.A.); (J.W.T.M.); (N.N.); (W.T.); (P.R.)
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pranee Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (K.P.A.); (J.W.T.M.); (N.N.); (W.T.); (P.R.)
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
87
|
Soliman B, Wen MM, Kandil E, El-Agamy B, Gamal-Eldeen AM, ElHefnawi M. Preparation and Optimization of MiR-375 Nano-Vector Using Two Novel Chitosan-Coated Nano-Structured Lipid Carriers as Gene Therapy for Hepatocellular Carcinoma. Pharmaceutics 2024; 16:494. [PMID: 38675155 PMCID: PMC11054685 DOI: 10.3390/pharmaceutics16040494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 04/28/2024] Open
Abstract
Currently, there is still a lack of effective carriers with minimal side effects to deliver therapeutic miRNA. Thus, it is crucial to optimize novel drug delivery systems. MiR-375 has proven superior therapeutic potency in Hepatocellular carcinoma (HCC). The purpose of this study was to fabricate 2 novel and smart nano-carriers for the transportation efficiency of miR-375 in HCC cells and enhance its anti-tumor effects. We established the miR-375 construct through the pEGP- miR expression vector. Two nano-carriers of solid/liquid lipids and chitosan (CS) were strategically selected, prepared by high-speed homogenization, and optimized by varying nano-formulation factors. Thus, the two best nano-formulations were designated as F1 (0.5% CS) and F2 (1.5% CS) and were evaluated for miR-375 conjugation efficiency by gel electrophoresis and nanodrop assessment. Then, physio-chemical characteristics and stability tests for the miR-375 nano-plexes were all studied. Next, its efficiencies as replacement therapy in HepG2 cells have been assessed by fluorescence microscopy, flow cytometry, and cytotoxicity assay. The obtained data showed that two cationic nanostructured solid/liquid lipid carriers (NSLCs); F1 and F2 typically had the best physio-chemical parameters and long-term stability. Moreover, both F1 and F2 could form nano-plexes with the anionic miR-375 construct at weight ratios 250/1 and 50/1 via electrostatic interactions. In addition, these nano-plexes exhibited physical stability after three months and protected miR-375 from degradation in the presence of 50% fetal bovine serum (FBS). Furthermore, both nano-plexes could simultaneously deliver miR-375 into HepG2 cells and they ensure miR re-expression even in the presence of 50% FBS compared to free miR-375 (p-value < 0.001). Moreover, both F1 and F2 alone significantly exhibited minimal cytotoxicity in treated cells. In contrast, the nano-plexes significantly inhibited cell growth compared to free miR-375 or doxorubicin (DOX), respectively. More importantly, F2/miR-375 nano-plex exhibited more anti-proliferative activity in treated cells although its IC50 value was 55 times lower than DOX (p-value < 0.001). Collectively, our findings clearly emphasized the multifunctionality of the two CS-coated NSLCs in terms of their enhanced biocompatibility, biostability, conjugation, and transfection efficiency of therapeutic miR-375. Therefore, the NSLCs/miR-375 nano-plexes could serve as a novel and promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Bangly Soliman
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; (B.S.)
- Biomedical Informatics and Chemo-Informatics Group, Informatics and Systems Department, National Research Centre, Cairo 12622, Egypt
| | - Ming Ming Wen
- Faculty of Pharmacy, Pharos University, Alexandria 21648, Egypt
| | - Eman Kandil
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; (B.S.)
| | - Basma El-Agamy
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; (B.S.)
| | - Amira M. Gamal-Eldeen
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mahmoud ElHefnawi
- Biomedical Informatics and Chemo-Informatics Group, Informatics and Systems Department, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
88
|
Tsakiri M, Tsichlis I, Zivko C, Demetzos C, Mahairaki V. Lipidic Nanoparticles, Extracellular Vesicles and Hybrid Platforms as Advanced Medicinal Products: Future Therapeutic Prospects for Neurodegenerative Diseases. Pharmaceutics 2024; 16:350. [PMID: 38543244 PMCID: PMC10975844 DOI: 10.3390/pharmaceutics16030350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 04/01/2024] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's and Parkinson's, affect a wide variety of the population and pose significant challenges with progressive and irreversible neural cell loss. The limitations of brain-targeting therapies and the unclear molecular mechanisms driving neurodegeneration hamper the possibility of developing successful treatment options. Thus, nanoscale drug delivery platforms offer a promising solution. This paper explores and compares lipidic nanoparticles, extracellular vesicles (EVs), and hybrid liposomal-EV nanoplatforms as advanced approaches for targeted delivery to combat neurodegeneration. Lipidic nanoparticles are well-characterized platforms that allow multi-drug loading and scalable production. Conversely, EVs offer the ability of selectively targeting specific tissues and high biocompatibility. The combination of these two platforms in one could lead to promising results in the treatment of neurodegeneration. However, many issues, such as the regulatory framework, remain to be solved before these novel products are translated into clinical practice.
Collapse
Affiliation(s)
- Maria Tsakiri
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece; (M.T.); (I.T.); (C.D.)
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA;
| | - Ioannis Tsichlis
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece; (M.T.); (I.T.); (C.D.)
| | - Cristina Zivko
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA;
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece; (M.T.); (I.T.); (C.D.)
| | - Vasiliki Mahairaki
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA;
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
89
|
Avalos-Padilla Y, Fernàndez-Busquets X. Nanotherapeutics against malaria: A decade of advancements in experimental models. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1943. [PMID: 38426407 DOI: 10.1002/wnan.1943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 11/01/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024]
Abstract
Malaria, caused by different species of protists of the genus Plasmodium, remains among the most common causes of death due to parasitic diseases worldwide, mainly for children aged under 5. One of the main obstacles to malaria eradication is the speed with which the pathogen evolves resistance to the drug schemes developed against it. For this reason, it remains urgent to find innovative therapeutic strategies offering sufficient specificity against the parasite to minimize resistance evolution and drug side effects. In this context, nanotechnology-based approaches are now being explored for their use as antimalarial drug delivery platforms due to the wide range of advantages and tuneable properties that they offer. However, major challenges remain to be addressed to provide a cost-efficient and targeted therapeutic strategy contributing to malaria eradication. The present work contains a systematic review of nanotechnology-based antimalarial drug delivery systems generated during the last 10 years. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Yunuen Avalos-Padilla
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
90
|
Rios CA, Ondei R, Breitkreitz MC. Development of a Versatile Lipid Core for Nanostructured Lipid Carriers (NLCs) Using Design of Experiments (DoE) and Raman Mapping. Pharmaceutics 2024; 16:250. [PMID: 38399304 PMCID: PMC10893334 DOI: 10.3390/pharmaceutics16020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The objective of this study was to develop a versatile lipid core for the 'brick-dust type of drugs' (poorly water-soluble and poorly lipid-soluble drugs). In the first step, excipients of different polarities were classified according to their behavior in aqueous solutions. Subsequently, binary mixtures were prepared with cetyl palmitate (Crodamol™ CP pharma, Campinas, São Paulo, Brazil) as the solid lipid, and its miscibility with other excipients was evaluated using Raman mapping and classical least squares (CLS). Based on the results, the excipients Crodamol™ CP pharma (hydrophobic), Super Refined™ DMI (dimethyl isosorbide; hydrophilic, Mill Hall, PA, USA), and Super Refined™ Lauryl Lactate (lauryl lactate, medium polarity, Mill Hall, PA, USA) were chosen to compose the lipid core. The ideal proportion of these excipients was determined using a mixture design and the standard deviation (STD) of image histograms as the response variables. After statistical evaluation of the DoE results, the final composition was determined, and drugs with different logP (0 to 10) and physicochemical characteristics were evaluated in the optimized mixture. The drugs butamben (Sigma-Aldrich Co., Spruce Street, St. Louis, MO, USA), tacrolimus (NutriFarm, São Paulo, Brazil), atorvastatin calcium, and resveratrol (Botica da Terra, Campinas, Brazil) presented a homogeneous distribution in the optimized lipid core, indicating that this is a promising system to be used in nanostructured lipid carrier (NLC) formulations of such types of drugs.
Collapse
Affiliation(s)
- Carlos Alberto Rios
- Institute of Chemistry, University of Campinas (UNICAMP), Rua Josué de Castro, s/n, Campinas 13084-971, SP, Brazil;
| | - Roberta Ondei
- Croda Brazil, R. Croda, 580—Distrito Industrial, Campinas 13054-710, SP, Brazil;
| | - Márcia Cristina Breitkreitz
- Institute of Chemistry, University of Campinas (UNICAMP), Rua Josué de Castro, s/n, Campinas 13084-971, SP, Brazil;
| |
Collapse
|
91
|
Hsu CY, Liao CC, Lin ZC, Alalaiwe A, Hwang E, Lin TW, Fang JY. Facile adipocyte uptake and liver/adipose tissue delivery of conjugated linoleic acid-loaded tocol nanocarriers for a synergistic anti-adipogenesis effect. J Nanobiotechnology 2024; 22:50. [PMID: 38317220 PMCID: PMC10845550 DOI: 10.1186/s12951-024-02316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/26/2024] [Indexed: 02/07/2024] Open
Abstract
Obesity is a major risk to human health. Adipogenesis is blocked by α-tocopherol and conjugated linoleic acid (CLA). However, their effect at preventing obesity is uncertain. The effectiveness of the bioactive agents is associated with their delivery method. Herein, we designed CLA-loaded tocol nanostructured lipid carriers (NLCs) for enhancing the anti-adipogenic activity of α-tocopherol and CLA. Adipogenesis inhibition by the nanocarriers was examined using an in vitro adipocyte model and an in vivo rat model fed a high fat diet (HFD). The targeting of the tocol NLCs into adipocytes and adipose tissues were also investigated. A synergistic anti-adipogenesis effect was observed for the combination of free α-tocopherol and CLA. Nanoparticles with different amounts of solid lipid were developed with an average size of 121‒151 nm. The NLCs with the smallest size (121 nm) showed greater adipocyte internalization and differentiation prevention than the larger size. The small-sized NLCs promoted CLA delivery into adipocytes by 5.5-fold as compared to free control. The nanocarriers reduced fat accumulation in adipocytes by counteracting the expression of the adipogenic transcription factors peroxisome proliferator activated receptor (PPAR)γ and CCAAT/enhancer-binding protein (C/EBP)α, and lipogenic enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS). Localized administration of CLA-loaded tocol NLCs significantly reduced body weight, total cholesterol, and liver damage indicators in obese rats. The biodistribution study demonstrated that the nanoparticles mainly accumulated in liver and adipose tissues. The NLCs decreased adipocyte hypertrophy and cytokine overexpression in the groin and epididymis to a greater degree than the combination of free α-tocopherol and CLA. In conclusion, the lipid-based nanocarriers were verified to inhibit adipogenesis in an efficient and safe way.
Collapse
Affiliation(s)
- Ching-Yun Hsu
- Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Chia-Chih Liao
- Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Zih-Chan Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Chiayi, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Erica Hwang
- Department of Dermatology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tzu-Wei Lin
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, 259 Wen-Hwa 1st Road, Kweishan, Taoyuan, 333, Taiwan
| | - Jia-You Fang
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
- Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, 259 Wen-Hwa 1st Road, Kweishan, Taoyuan, 333, Taiwan.
| |
Collapse
|
92
|
Chen J, Hu S, Sun M, Shi J, Zhang H, Yu H, Yang Z. Recent advances and clinical translation of liposomal delivery systems in cancer therapy. Eur J Pharm Sci 2024; 193:106688. [PMID: 38171420 DOI: 10.1016/j.ejps.2023.106688] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/23/2023] [Accepted: 12/31/2023] [Indexed: 01/05/2024]
Abstract
The limitations of conventional cancer treatment are driving the emergence and development of nanomedicines. Research in liposomal nanomedicine for cancer therapy is rapidly increasing, opening up new horizons for cancer treatment. Liposomal nanomedicine, which focuses on targeted drug delivery to improve the therapeutic effect of cancer while reducing damage to normal tissues and cells, has great potential in the field of cancer therapy. This review aims to clarify the advantages of liposomal delivery systems in cancer therapy. We describe the recent understanding of spatiotemporal fate of liposomes in the organism after different routes of drug administration. Meanwhile, various types of liposome-based drug delivery systems that exert their respective advantages in cancer therapy while reducing side effects were discussed. Moreover, the combination of liposomal agents with other therapies (such as photodynamic therapy and photothermal therapy) has demonstrated enhanced tumor-targeting efficiency and therapeutic efficacy. Finally, the opportunities and challenges faced by the field of liposome nanoformulations for entering the clinical treatment of cancer are highlighted.
Collapse
Affiliation(s)
- Jiayi Chen
- School of Life Sciences, Jilin University, Changchun, China
| | - Siyuan Hu
- School of Life Sciences, Jilin University, Changchun, China
| | - Man Sun
- School of Life Sciences, Jilin University, Changchun, China
| | - Jianan Shi
- School of Life Sciences, Jilin University, Changchun, China
| | - Huan Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Hongmei Yu
- China-Japan Union Hospital, Jilin University, Changchun, China.
| | - Zhaogang Yang
- School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
93
|
Pucek-Kaczmarek A, Celary D, Bazylińska U. Natural-Origin Betaine Surfactants as Promising Components for the Stabilization of Lipid Carriers. Int J Mol Sci 2024; 25:955. [PMID: 38256029 PMCID: PMC10815673 DOI: 10.3390/ijms25020955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
In the present work, we demonstrate studies involving the influence of the formulation composition on the physicochemical properties of nanocarriers: solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs). Novel lipid-origin platforms were prepared using two "green" betaine-based surfactants, cocamidopropyl betaine (ROKAmina K30) and coco betaine (ROKAmina K30B), in combination with three different solid lipids, cetyl palmitate (CRODAMOL CP), trimyristin (Dynasan 114), and tristearin (Dynasan 118). Extensive optimization studies included the selection of the most appropriate lipid and surfactant concentration for effective SLN and NLC stabilization. The control parameters involving the hydrodynamic diameters of the obtained nanocarriers along with the size distribution (polydispersity index) were determined by dynamic light scattering (DLS), while shape and morphology were evaluated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). Electrophoretic light scattering (ELS) and turbidimetric method (backscattering profiles) were used to assess colloidal stability. The studied results revealed that both betaine-stabilized SLN and NLC formulations containing CRODAMOL CP as lipid matrix are the most monodisperse and colloidally stable regardless of the other components and their concentrations used, indicating them as the most promising candidates for drug delivery nanosystems with a diverse range of potential uses.
Collapse
Affiliation(s)
- Agata Pucek-Kaczmarek
- Laboratory of Nanocolloids and Disperse Systems, Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland;
| | | | - Urszula Bazylińska
- Laboratory of Nanocolloids and Disperse Systems, Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland;
| |
Collapse
|
94
|
Manchanda N, Vishkarma H, Goyal M, Shah S, Famta P, Talegaonkar S, Srivastava S. Surface Functionalized Lipid Nanoparticles in Promoting Therapeutic Outcomes: An Insight View of the Dynamic Drug Delivery System. Curr Drug Targets 2024; 25:278-300. [PMID: 38409709 DOI: 10.2174/0113894501285598240216065627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/28/2024]
Abstract
Compared to the conventional approach, nanoparticles (NPs) facilitate a non-hazardous, non-toxic, non-interactive, and biocompatible system, rendering them incredibly promising for improving drug delivery to target cells. When that comes to accomplishing specific therapeutic agents like drugs, peptides, nucleotides, etc., lipidic nanoparticulate systems have emerged as even more robust. They have asserted impressive ability in bypassing physiological and cellular barriers, evading lysosomal capture and the proton sponge effect, optimizing bioavailability, and compliance, lowering doses, and boosting therapeutic efficacy. However, the lack of selectivity at the cellular level hinders its ability to accomplish its potential to the fullest. The inclusion of surface functionalization to the lipidic NPs might certainly assist them in adapting to the basic biological demands of a specific pathological condition. Several ligands, including peptides, enzymes, polymers, saccharides, antibodies, etc., can be functionalized onto the surface of lipidic NPs to achieve cellular selectivity and avoid bioactivity challenges. This review provides a comprehensive outline for functionalizing lipid-based NPs systems in prominence over target selectivity. Emphasis has been put upon the strategies for reinforcing the therapeutic performance of lipidic nano carriers' using a variety of ligands alongside instances of relevant commercial formulations.
Collapse
Affiliation(s)
- Namish Manchanda
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Government of NCT of Delhi, Mehrauli-Badarpur Road, Pushp Vihar Sector-3, New Delhi-110017, Delhi (NCT), India
- Centre of Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, India
- Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Government of India, Sector-67, S.A.S Nagar, Mohali-160062, Punjab, India
| | - Harish Vishkarma
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Government of NCT of Delhi, Mehrauli-Badarpur Road, Pushp Vihar Sector-3, New Delhi-110017, Delhi (NCT), India
| | - Muskan Goyal
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Government of NCT of Delhi, Mehrauli-Badarpur Road, Pushp Vihar Sector-3, New Delhi-110017, Delhi (NCT), India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
- Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Government of India, Balanagar, Hyderabad-500037, Telangana, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
- Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Government of India, Balanagar, Hyderabad-500037, Telangana, India
| | - Sushama Talegaonkar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Government of NCT of Delhi, Mehrauli-Badarpur Road, Pushp Vihar Sector-3, New Delhi-110017, Delhi (NCT), India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
- Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Government of India, Balanagar, Hyderabad-500037, Telangana, India
| |
Collapse
|
95
|
Kapoor D, Chilkapalli SC, Prajapati BG, Rodriques P, Patel R, Singh S, Bhattacharya S. The Astonishing Accomplishment of Biological Drug Delivery using Lipid Nanoparticles: An Ubiquitous Review. Curr Pharm Biotechnol 2024; 25:1952-1968. [PMID: 38265380 DOI: 10.2174/0113892010268824231122041237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 01/25/2024]
Abstract
Biotech drugs, including proteins, hormones, enzymes, DNA/RNA therapies, and cell-based treatments, are gaining popularity due to their effectiveness. However, effective delivery systems are needed to overcome administration challenges. Lipid nanoparticles (LNPs) have emerged as promising carriers for various therapies. LNPs are biocompatible, less likely to cause adverse reactions, and can stabilize delicate biological drugs, enhancing their stability and solubility. Scalable and cost-effective manufacturing processes make LNPs suitable for largescale production. Despite recent research efforts, challenges in stability, toxicity, and regulatory concerns have limited the commercial availability of LNP-based products. This review explores the applications, administration routes, challenges, and future directions of LNPs in delivering biopharmaceuticals.
Collapse
Affiliation(s)
- Devesh Kapoor
- Department of Pharmaceutical Technology, Dr. Dayaram Patel Pharmacy College, Bardoli 394601, Gujarat, India
| | - Shirisha C Chilkapalli
- Department of Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana-384012, Gujarat, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana-384012, Gujarat, India
| | - Paul Rodriques
- Department of Pharmaceutical Technology, Krishna School of Pharmacy and Research, KPGU, Vadodara, Mumbai NH#8, Varnama, Vadodara, Gujarat, India
| | - Ravish Patel
- Department of Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa 388 421, Anand, Gujarat, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM's NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| |
Collapse
|
96
|
Dighe S, Jog S, Momin M, Sawarkar S, Omri A. Intranasal Drug Delivery by Nanotechnology: Advances in and Challenges for Alzheimer's Disease Management. Pharmaceutics 2023; 16:58. [PMID: 38258068 PMCID: PMC10820353 DOI: 10.3390/pharmaceutics16010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/11/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Alzheimer's disease, a progressive neurodegenerative condition, is characterized by a gradual decline in cognitive functions. Current treatment approaches primarily involve the administration of medications through oral, parenteral, and transdermal routes, aiming to improve cognitive function and alleviate symptoms. However, these treatments face limitations, such as low bioavailability and inadequate permeation. Alternative invasive methods, while explored, often entail discomfort and require specialized assistance. Therefore, the development of a non-invasive and efficient delivery system is crucial. Intranasal delivery has emerged as a potential solution, although it is constrained by the unique conditions of the nasal cavity. An innovative approach involves the use of nano-carriers based on nanotechnology for intranasal delivery. This strategy has the potential to overcome current limitations by providing enhanced bioavailability, improved permeation, effective traversal of the blood-brain barrier, extended retention within the body, and precise targeting of the brain. The comprehensive review focuses on the advancements in designing various types of nano-carriers, including polymeric nanoparticles, metal nanoparticles, lipid nanoparticles, liposomes, nanoemulsions, Quantum dots, and dendrimers. These nano-carriers are specifically tailored for the intranasal delivery of therapeutic agents aimed at combatting Alzheimer's disease. In summary, the development and utilization of intranasal delivery systems based on nanotechnology show significant potential in surmounting the constraints of current Alzheimer's disease treatment strategies. Nevertheless, it is essential to acknowledge regulatory as well as toxicity concerns associated with this route; meticulous consideration is required when engineering a carrier. This comprehensive review underscores the potential to revolutionize Alzheimer's disease management and highlights the importance of addressing regulatory considerations for safe and effective implementations. Embracing this strategy could lead to substantial advancements in the field of Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Sayali Dighe
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, India
| | - Sunil Jog
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, India
- Indoco Remedies Private Limited, Mumbai 400098, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
97
|
Faustino C, Duarte N, Pinheiro L. Triterpenes Drug Delivery Systems, a Modern Approach for Arthritis Targeted Therapy. Pharmaceuticals (Basel) 2023; 17:54. [PMID: 38256888 PMCID: PMC10819636 DOI: 10.3390/ph17010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Arthritis is a major cause of disability. Currently available anti-arthritic drugs, such as disease-modifying anti-rheumatic drugs (DMARDs), have serious side-effects associated with long-term use. Triterpenoids are natural products with known anti-inflammatory properties, and many have revealed efficiency against arthritis both in vitro and in vivo in several animal models, with negligible cytotoxicity. However, poor bioavailability due to low water solubility and extensive metabolism upon oral administration hinder the therapeutic use of anti-arthritic triterpenoids. Therefore, drug delivery systems (DDSs) able to improve the pharmacokinetic profile of triterpenoids and achieve sustained drug release are useful alternatives for targeted delivery in arthritis treatment. Several DDSs have been described in the literature for triterpenoid delivery, including microparticulate and nanoparticulate DDSs, such as polymeric micro and nanoparticles (NPs), polymeric micelles, liposomes, micro and nanoemulsions, and hydrogels. These systems have shown superior therapeutic effects in arthritis compared to the free drugs and are similar to currently available anti-arthritic drugs without significant side-effects. This review focuses on nanocarriers for triterpenoid delivery in arthritis therapy, including osteoarthritis (OA), rheumatoid arthritis (RA) and gout that appeared in the literature in the last ten years.
Collapse
Affiliation(s)
| | - Noélia Duarte
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
| | - Lídia Pinheiro
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
| |
Collapse
|
98
|
Rahman M, Afzal O, Ullah SNM, Alshahrani MY, Alkhathami AG, Altamimi ASA, Almujri SS, Almalki WH, Shorog EM, Alossaimi MA, Mandal AK, abdulrahman A, Sahoo A. Nanomedicine-Based Drug-Targeting in Breast Cancer: Pharmacokinetics, Clinical Progress, and Challenges. ACS OMEGA 2023; 8:48625-48649. [PMID: 38162753 PMCID: PMC10753706 DOI: 10.1021/acsomega.3c07345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024]
Abstract
Breast cancer (BC) is a malignant neoplasm that begins in the breast tissue. After skin cancer, BC is the second most common type of cancer in women. At the end of 2040, the number of newly diagnosed BC cases is projected to increase by over 40%, reaching approximately 3 million worldwide annually. The hormonal and chemotherapeutic approaches based on conventional formulations have inappropriate therapeutic effects and suboptimal pharmacokinetic responses with nonspecific targeting actions. To overcome such issues, the use of nanomedicines, including liposomes, nanoparticles, micelles, hybrid nanoparticles, etc., has gained wider attention in the treatment of BC. Smaller dimensional nanomedicine (especially 50-200 nm) exhibited improved in vivo effectiveness, such as better tissue penetration and more effective tumor suppression through enhanced retention and permeation, as well as active targeting of the drug. Additionally, nanotechnology, which further extended and developed theranostic nanomedicine by incorporating diagnostic and imaging agents in one platform, has been applied to BC. Furthermore, hybrid and theranostic nanomedicine has also been explored for gene delivery as anticancer therapeutics in BC. Moreover, the nanocarriers' size, shape, surface charge, chemical compositions, and surface area play an important role in the nanocarriers' stability, cellular absorption, cytotoxicity, cellular uptake, and toxicity. Additionally, nanomedicine clinical translation for managing BC remains a slow process. However, a few cases are being used clinically, and their progress with the current challenges is addressed in this Review. Therefore, this Review extensively discusses recent advancements in nanomedicine and its clinical challenges in BC.
Collapse
Affiliation(s)
- Mahfoozur Rahman
- Department
of Pharmaceutical Sciences, Shalom Institute of Health and Allied
Sciences, Sam Higginbottom University of
Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| | - Obaid Afzal
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shehla Nasar Mir
Najib Ullah
- Phyto
Pharmaceuticals Research Lab, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences and Research, Jamia
Hamdard University, Hamdard Nagar, New Delhi, Delhi 110062, India
| | - Mohammad Y. Alshahrani
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Ali G. Alkhathami
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | | | - Salem Salman Almujri
- Department
of Pharmacology, College of Pharmacy, King
Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Waleed H Almalki
- Department
of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Eman M. Shorog
- Department
of Clinical Pharmacy, Faculty of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Manal A Alossaimi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ashok Kumar Mandal
- Department
of Pharmacology, Faculty of Medicine, University
Malaya, Kuala Lumpur 50603, Malaysia
| | - Alhamyani abdulrahman
- Pharmaceuticals
Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia
| | - Ankit Sahoo
- Department
of Pharmaceutical Sciences, Shalom Institute of Health and Allied
Sciences, Sam Higginbottom University of
Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| |
Collapse
|
99
|
Araújo GDMS, Loureiro AIS, Rodrigues JL, Barros PAB, Halicki PCB, Ramos DF, Marinho MAG, Vaiss DP, Vaz GR, Yurgel VC, Bidone J, Muccillo-Baisch AL, Hort MA, Paulo AMC, Dora CL. Toward a Platform for the Treatment of Burns: An Assessment of Nanoemulsions vs. Nanostructured Lipid Carriers Loaded with Curcumin. Biomedicines 2023; 11:3348. [PMID: 38137569 PMCID: PMC10742090 DOI: 10.3390/biomedicines11123348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Curcumin is a highly promising substance for treating burns, owing to its anti-inflammatory, antioxidant, antimicrobial, and wound-healing properties. However, its therapeutic use is restricted due to its hydrophobic nature and low bioavailability. This study was conducted to address these limitations; it developed and tested two types of lipid nanocarriers, namely nanoemulsions (NE-CUR) and nanostructured lipid carriers (NLC-CUR) loaded with curcumin, and aimed to identify the most suitable nanocarrier for skin burn treatment. The study evaluated various parameters, including physicochemical characteristics, stability, encapsulation efficiency, release, skin permeation, retention, cell viability, and antimicrobial activity. The results showed that both nanocarriers showed adequate size (~200 nm), polydispersity index (~0.25), and zeta potential (~>-20 mV). They also showed good encapsulation efficiency (>90%) and remained stable for 120 days at different temperatures. In the release test, NE-CUR and NCL-CUR released 57.14% and 51.64% of curcumin, respectively, in 72 h. NE-CUR demonstrated better cutaneous permeation/retention in intact or scalded skin epidermis and dermis than NLC-CUR. The cell viability test showed no toxicity after treatment with NE-CUR and NLC-CUR up to 125 μg/mL. Regarding microbial activity assays, free curcumin has activity against P. aeruginosa, reducing bacterial growth by 75% in 3 h. NE-CUR inhibited bacterial growth by 65% after 24 h, and the association with gentamicin had favorable results, while NLC-CUR showed a lower inhibition. The results demonstrated that NE-CUR is probably the most promising nanocarrier for treating burns.
Collapse
Affiliation(s)
| | - Ana Isabel Sá Loureiro
- CEB-Center of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jamile Lima Rodrigues
- Graduate Program in Food Science and Engineering, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | | | | | - Daniela Fernandes Ramos
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | | | - Daniela Pastorim Vaiss
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Gustavo Richter Vaz
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Virginia Campello Yurgel
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Juliana Bidone
- Center of Chemical, Pharmaceutical, and Food Sciences, Federal University of Pelotas, Pelotas 96010-610, RS, Brazil
| | - Ana Luiza Muccillo-Baisch
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Mariana Appel Hort
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Artur Manuel Cavaco Paulo
- CEB-Center of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cristiana Lima Dora
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
- Graduate Program in Food Science and Engineering, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| |
Collapse
|
100
|
Viegas C, Patrício AB, Prata J, Fonseca L, Macedo AS, Duarte SOD, Fonte P. Advances in Pancreatic Cancer Treatment by Nano-Based Drug Delivery Systems. Pharmaceutics 2023; 15:2363. [PMID: 37765331 PMCID: PMC10536303 DOI: 10.3390/pharmaceutics15092363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Pancreatic cancer represents one of the most lethal cancer types worldwide, with a 5-year survival rate of less than 5%. Due to the inability to diagnose it promptly and the lack of efficacy of existing treatments, research and development of innovative therapies and new diagnostics are crucial to increase the survival rate and decrease mortality. Nanomedicine has been gaining importance as an innovative approach for drug delivery and diagnosis, opening new horizons through the implementation of smart nanocarrier systems, which can deliver drugs to the specific tissue or organ at an optimal concentration, enhancing treatment efficacy and reducing systemic toxicity. Varied materials such as lipids, polymers, and inorganic materials have been used to obtain nanoparticles and develop innovative drug delivery systems for pancreatic cancer treatment. In this review, it is discussed the main scientific advances in pancreatic cancer treatment by nano-based drug delivery systems. The advantages and disadvantages of such delivery systems in pancreatic cancer treatment are also addressed. More importantly, the different types of nanocarriers and therapeutic strategies developed so far are scrutinized.
Collapse
Affiliation(s)
- Cláudia Viegas
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal;
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (A.B.P.); (S.O.D.D.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana B. Patrício
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (A.B.P.); (S.O.D.D.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João Prata
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (A.B.P.); (S.O.D.D.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Leonor Fonseca
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (A.B.P.); (S.O.D.D.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana S. Macedo
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (A.B.P.); (S.O.D.D.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- LAQV, REQUIMTE, Applied Chemistry Lab—Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sofia O. D. Duarte
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (A.B.P.); (S.O.D.D.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro Fonte
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (A.B.P.); (S.O.D.D.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| |
Collapse
|