51
|
Kamal R, Paul P, Thakur S, Singh SK, Awasthi A. Quercetin in Oncology: A Phytochemical with Immense Therapeutic Potential. Curr Drug Targets 2024; 25:740-751. [PMID: 38988154 DOI: 10.2174/0113894501292466240627050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024]
Abstract
Quercetin is a natural flavonoid with various pharmacological actions such as anti-inflammatory, antioxidant, antimicrobial, anticancer, antiviral, antidiabetic, cardioprotective, neuroprotective, and antiviral activities. Looking at these enormous potentials, researchers have explored how they can be used to manage numerous cancers. It's been studied for cancer management due to its anti-angiogenesis, anti-metastatic, and antiproliferative mechanisms. Despite having these proven pharmacological activities, the clinical use of quercetin is limited due to its first-- pass metabolism, poor solubility, and bioavailability. To address these shortcomings, researchers have fabricated various nanocarriers-based formulations to fight cancer. The present review overshadows the pharmacological potential, mechanisms, and application of nanoformulations against different cancers. Teaser: Explore the potential of Quercetin, a natural flavonoid with diverse pharmacological activities, and its nanoformulations in managing various cancers.
Collapse
Affiliation(s)
- Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Priyanka Paul
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Shubham Thakur
- Department of Pharmaceutics, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga-142001, Punjab, India
| |
Collapse
|
52
|
Tritean N, Dimitriu L, Dima ȘO, Stoica R, Trică B, Ghiurea M, Moraru I, Cimpean A, Oancea F, Constantinescu-Aruxandei D. Cytocompatibility, Antimicrobial and Antioxidant Activity of a Mucoadhesive Biopolymeric Hydrogel Embedding Selenium Nanoparticles Phytosynthesized by Sea Buckthorn Leaf Extract. Pharmaceuticals (Basel) 2023; 17:23. [PMID: 38256857 PMCID: PMC10819796 DOI: 10.3390/ph17010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Phytosynthesized selenium nanoparticles (SeNPs) are less toxic than the inorganic salts of selenium and show high antioxidant and antibacterial activity. Chitosan prevents microbial biofilm formation and can also determine microbial biofilm dispersal. Never-dried bacterial nanocellulose (NDBNC) is an efficient carrier of bioactive compounds and a flexible nanofibrillar hydrophilic biopolymer. This study aimed to develop a selenium-enriched hydrogel nanoformulation (Se-HNF) based on NDBNC from kombucha fermentation and fungal chitosan with embedded biogenic SeNPs phytosynthesized by an aqueous extract of sea buckthorn leaves (SbLEx)-SeNPsSb-in order to both disperse gingival dysbiotic biofilm and prevent its development. We determined the total phenolic content and antioxidant activity of SbLEx. Liquid chromatography-mass spectrometry (LC-MS) and high-performance liquid chromatography (HPLC) were used for the identification of polyphenols from SbLEx. SeNPsSb were characterized by transmission electron microscopy-energy-dispersive X-ray spectroscopy (TEM-EDX), dynamic light scattering (DLS), zeta potential, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) in small- and wide-angle X-ray scattering (SAXS and WAXS). The hydrogel nanoformulation with embedded SeNPsSb was characterized by SEM, FTIR, XRD, rheology, mucin binding efficiency, contact angle and interfacial tension measurements. We also assessed the in vitro biocompatibility, antioxidant activity and antimicrobial and antibiofilm potential of SeNPsSb and Se-HNF. TEM, DLS and SAXS evidenced polydisperse SeNPsSb, whereas FTIR highlighted a heterogeneous biocorona with various biocompounds. The contact angle on the polar surface was smaller (52.82 ± 1.23°) than that obtained on the non-polar surface (73.85 ± 0.39°). The interfacial tension was 97.6 ± 0.47 mN/m. The mucin binding efficiency of Se-HNF decreased as the amount of hydrogel decreased, and the SEM analysis showed a relatively compact structure upon mucin contact. FTIR and XRD analyses of Se-HNF evidenced an interaction between BNC and CS through characteristic peak shifting, and the rheological measurements highlighted a pseudoplastic behavior, 0.186 N adhesion force and 0.386 adhesion energy. The results showed a high degree of cytocompatibility and the significant antioxidant and antimicrobial efficiency of SeNPsSb and Se-HNF.
Collapse
Affiliation(s)
- Naomi Tritean
- Bioresources, Polymers and Analysis Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (R.S.); (B.T.); (M.G.)
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania;
| | - Luminița Dimitriu
- Bioresources, Polymers and Analysis Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (R.S.); (B.T.); (M.G.)
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv., No. 59, 011464 Bucharest, Romania
| | - Ștefan-Ovidiu Dima
- Bioresources, Polymers and Analysis Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (R.S.); (B.T.); (M.G.)
| | - Rusăndica Stoica
- Bioresources, Polymers and Analysis Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (R.S.); (B.T.); (M.G.)
| | - Bogdan Trică
- Bioresources, Polymers and Analysis Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (R.S.); (B.T.); (M.G.)
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, Splaiul Independenței nr. 313, 060042 Bucharest, Romania
| | - Marius Ghiurea
- Bioresources, Polymers and Analysis Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (R.S.); (B.T.); (M.G.)
| | - Ionuț Moraru
- Laboratoarele Medica Srl, str. Frasinului nr. 11, 075100 Otopeni, Romania;
| | - Anisoara Cimpean
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania;
| | - Florin Oancea
- Bioresources, Polymers and Analysis Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (R.S.); (B.T.); (M.G.)
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv., No. 59, 011464 Bucharest, Romania
| | - Diana Constantinescu-Aruxandei
- Bioresources, Polymers and Analysis Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (R.S.); (B.T.); (M.G.)
| |
Collapse
|
53
|
Gutierrez Montiel D, Guerrero Barrera AL, Martínez Ávila GCG, Gonzalez Hernandez MD, Chavez Vela NA, Avelar Gonzalez FJ, Ramírez Castillo FY. Influence of the Extraction Method on the Polyphenolic Profile and the Antioxidant Activity of Psidium guajava L. Leaf Extracts. Molecules 2023; 29:85. [PMID: 38202668 PMCID: PMC10779645 DOI: 10.3390/molecules29010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/09/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The leaves of Psidium guajava L. are an agro-industrial by-product with an outstanding content of polyphenolic compounds; however, there are many factors which can affect the phytochemical profile when valuing this type of plant material, such as temperatures and extraction times involving in the extraction methods applied. In this context, this study analyzed the impact of different extraction methods (Soxhlet, maceration and ultrasound-assisted extraction) on the phytochemical profile (FTIR and UPLC-MS) and the antioxidant activity (ABTS, FRAP and Folin-Ciocalteu) of guava leaf extracts. A yield of phenolic compounds per gram of guava leaf was obtained within the range of 16 to 45 mg/g; on the other hand, the IC50 values determined with the ABTS assay ranged between 78 ± 4 to 152 ± 12 µg/mL. The methanolic extract obtained by Soxhlet was the one with the best reducing power, both in the FRAP assay and in the Folin-Ciocalteu assay. Finally, bioactive compounds such as quercetin, kaempferol and avicularin were identified in the guava leaf extract. It was concluded that the purification of polyphenolics compounds improves the antioxidant capacity, and that the extraction method greatly influences the phytochemical profile and activity of the extracts.
Collapse
Affiliation(s)
- Daniela Gutierrez Montiel
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes CP 20100, Mexico; (D.G.M.); (F.Y.R.C.)
| | - Alma Lilian Guerrero Barrera
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes CP 20100, Mexico; (D.G.M.); (F.Y.R.C.)
| | | | - María Dolores Gonzalez Hernandez
- Laboratorio de Química y Bioquímica, Facultad de Agronomía, Universidad Autónoma de Nuevo León, General Escobedo CP 66050, Mexico;
| | - Norma Angelica Chavez Vela
- Laboratorio de Biotecnología, Departamento Ingeniería Bioquímica, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes CP 20100, Mexico;
| | - Francisco Javier Avelar Gonzalez
- Laboratorio de Estudios Ambientales, Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes CP 20100, Mexico;
| | - Flor Yazmin Ramírez Castillo
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes CP 20100, Mexico; (D.G.M.); (F.Y.R.C.)
| |
Collapse
|
54
|
Romero-Benavides JC, Guaraca-Pino E, Duarte-Casar R, Rojas-Le-Fort M, Bailon-Moscoso N. Chenopodium quinoa Willd. and Amaranthus hybridus L.: Ancestral Andean Food Security and Modern Anticancer and Antimicrobial Activity. Pharmaceuticals (Basel) 2023; 16:1728. [PMID: 38139854 PMCID: PMC10747716 DOI: 10.3390/ph16121728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The species Chenopodium quinoa Willd. and Amaranthus hybridus L. are Andean staples, part of the traditional diet and gastronomy of the people of the highlands of Colombia, Ecuador, Peru, Bolivia, northern Argentina and Chile, with several ethnopharmacological uses, among them anticancer applications. This review aims to present updated information on the nutritional composition, phytochemistry, and antimicrobial and anticancer activity of Quinoa and Amaranth. Both species contribute to food security due to their essential amino acid contents, which are higher than those of most staples. It is highlighted that the biological activity, especially the antimicrobial activity in C. quinoa, and the anticancer activity in both species is related to the presence of phytochemicals present mostly in leaves and seeds. The biological activity of both species is consistent with their phytochemical composition, with phenolic acids, flavonoids, carotenoids, alkaloids, terpenoids, saponins and peptides being the main compound families of interest. Extracts of different plant organs of both species and peptide fractions have shown in vitro and, to a lesser degree, in vivo activity against a variety of bacteria and cancer cell lines. These findings confirm the antimicrobial and anticancer activity of both species, C. quinoa having more reported activity than A. hybridus through different compounds and mechanisms.
Collapse
Affiliation(s)
- Juan Carlos Romero-Benavides
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador;
| | - Evelyn Guaraca-Pino
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador;
- Maestría en Alimentos, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador
| | - Rodrigo Duarte-Casar
- Tecnología Superior en Gestión Culinaria, Pontificia Universidad Católica del Ecuador—Sede Manabí, Portoviejo 130103, Ecuador; (R.D.-C.); (M.R.-L.-F.)
| | - Marlene Rojas-Le-Fort
- Tecnología Superior en Gestión Culinaria, Pontificia Universidad Católica del Ecuador—Sede Manabí, Portoviejo 130103, Ecuador; (R.D.-C.); (M.R.-L.-F.)
| | - Natalia Bailon-Moscoso
- Facultad de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja 110108, Ecuador;
| |
Collapse
|
55
|
Nataraj G, Jagadeesan G, Manoharan AL, Muniyandi K, Sathyanarayanan S, Thangaraj P. Ipomoea pes-tigridis L. extract accelerates wound healing in Wistar albino rats in excision and incision models. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116808. [PMID: 37343652 DOI: 10.1016/j.jep.2023.116808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE An annual herb, Ipomoea pes-tigridis L. (Convolvulaceae) is widely used for its anti-inflammatory and anti-spasmodic properties in traditional medicine. As well as treating wounds, fever, skin disorders, and other ailments, it is also used for other purposes. AIM OF THE STUDY This study investigated polyphenolic content, antioxidant activity, RP-HPLC, wound healing, and antioxidant enzyme activity. In terms of I. pes-tigridis potential for healing wounds, there is no scientific data available. Hence this study is designed to use animal models to investigate the ethnopharmacological report. MATERIALS METHODS The crude extracts of stem and leaf were subjected to phytochemicals, TPC, TTC, TFC, and free radical scavenging assays (DPPH, ABTS, etc). Excision and incision models were used to assess wound healing using the screened extracts (IPLEA, IPLM, IPSEA, and IPSM). Various tissue parameters (hydroxyproline, hexosamine, hexuronic acid content), as well as antioxidant enzyme activity (SOD, Catalase, GPX, LPO), were also examined. RESULTS The maximum amount of polyphenolic content was found in IPLM (TPC- 118.86 ± 5.94 mg GAE/g, TTC - 75.25 ± 2.64 mg TAE/g, and TFC-25.73 ± 0.99 mg GAE/g) with significant IC50 value of 1.65 ± 0.87 μg/mL among all the extracts. Coumaric acid was reported high (92.86 mg/g) in RP-HPLC analysis of crude extract in IPLEA. The in vivo excision wound healing model revealed that 1% IPLM had better healing property with the maximum wound healing area (0.098 ± 0.03 cm) and wound concentration (95.56 ± 1.95%) was reported with the significance level of ***P < 0.001, **P < 0.01, *P < 0.05. In the incision model, IPLM represented maximum tensile strength (27500 gf). A significant functional effect of the granulation tissue parameters and enzyme antioxidants on the wound-healed area of dry tissue was also observed. Finally, the histopathological analysis showed enhanced re-epithelialization, fibroblast proliferation, and collagen synthesis in wound-treated animal tissue in both models. CONCLUSION According to the present study, antioxidant-rich I. pes-tigridis promotes healthy cell regeneration while reducing inflammation and oxidative stress for wound healing. Additionally, it also enhances circulation and promotes healing.
Collapse
Affiliation(s)
- Gayathri Nataraj
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Gayathri Jagadeesan
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, India; BRAINS Research Group, Department of Neurology, McGovern Medical School, The University of Texas Health Science at Houston 6431 Fannin St., Houston, TX, 77030, USA
| | - Ashwini Lydia Manoharan
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Kasipandi Muniyandi
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, India; Department of Postharvest Science, Agricultural Research Organisation, The Volcani Center, HaMaccabim Rd 68, POB 15159, Rishon LeZion, 7528809, Israel
| | | | - Parimelazhagan Thangaraj
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
56
|
Zhou H, Zhang J, Bai L, Liu J, Li H, Hua J, Luo S. Chemical Structure Diversity and Extensive Biological Functions of Specialized Metabolites in Rice. Int J Mol Sci 2023; 24:17053. [PMID: 38069376 PMCID: PMC10707428 DOI: 10.3390/ijms242317053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Rice (Oryza sativa L.) is thought to have been domesticated many times independently in China and India, and many modern cultivars are available. All rice tissues are rich in specialized metabolites (SPMs). To date, a total of 181 terpenoids, 199 phenolics, 41 alkaloids, and 26 other types of compounds have been detected in rice. Some volatile sesquiterpenoids released by rice are known to attract the natural enemies of rice herbivores, and play an indirect role in defense. Momilactone, phytocassane, and oryzalic acid are the most common diterpenoids found in rice, and are found at all growth stages. Indolamides, including serotonin, tryptamine, and N-benzoylserotonin, are the main rice alkaloids. The SPMs mainly exhibit defense functions with direct roles in resisting herbivory and pathogenic infections. In addition, phenolics are also important in indirect defense, and enhance wax deposition in leaves and promote the lignification of stems. Meanwhile, rice SPMs also have allelopathic effects and are crucial in the regulation of the relationships between different plants or between plants and microorganisms. In this study, we reviewed the various structures and functions of rice SPMs. This paper will provide useful information and methodological resources to inform the improvement of rice resistance and the promotion of the rice industry.
Collapse
Affiliation(s)
| | | | | | | | | | - Juan Hua
- Research Center of Protection and Utilization of Plant Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China (J.L.)
| | - Shihong Luo
- Research Center of Protection and Utilization of Plant Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China (J.L.)
| |
Collapse
|
57
|
Khan V, Umar S, Iqbal N. Synergistic action of Pseudomonas fluorescens with melatonin attenuates salt toxicity in mustard by regulating antioxidant system and flavonoid profile. PHYSIOLOGIA PLANTARUM 2023; 175:e14092. [PMID: 38148187 DOI: 10.1111/ppl.14092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/28/2023]
Abstract
Salt stress is an alarming abiotic stress that reduces mustard growth and yield. To attenuate salt toxicity effects, plant growth-promoting rhizobacteria (PGPR) offers a sustainable approach. Among the various PGPR, Pseudomonas fluorescens (P. fluorescens NAIMCC-B-00340) was chosen for its salt tolerance (at 100 mM NaCl) and for exhibiting various growth-promoting activities. Notably, P. fluorescens can produce auxin, which plays a role in melatonin (MT) synthesis. Melatonin is a pleiotropic molecule that acts as an antioxidant to scavenge reactive oxygen species (ROS), resulting in stress reduction. Owing to the individual role of PGPR and MT in salt tolerance, and their casual nexus, their domino effect was investigated in Indian mustard under salt stress. The synergistic action of P. fluorescens and MT under salt stress conditions was found to enhance the activity of antioxidative enzymes and proline content as well as promote the production of secondary metabolites. This led to reduced oxidative stress following effective ROS scavenging, maintained photosynthesis, and improved growth. In mustard plants treated with MT and P. fluorescens under salt stress, eight flavonoids showed significant increase. Kaempferol and cyanidin showed the highest concentrations and are reported to act as antioxidants with protective functions under stress. Thus, we can anticipate that strategies involved in their enhancement could provide a better adaptive solution to salt toxicity in mustard plants. In conclusion, the combination of P. fluorescens and MT affected antioxidant metabolism and flavonoid profile that could be used to mitigate salt-induced stress and bolster plant resilience.
Collapse
Affiliation(s)
- Varisha Khan
- Department of Botany, School of chemical and life sciences, Jamia Hamdard, New Delhi, India
| | - Shahid Umar
- Department of Botany, School of chemical and life sciences, Jamia Hamdard, New Delhi, India
| | - Noushina Iqbal
- Department of Botany, School of chemical and life sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
58
|
Kumar S, Chandra R, Behera L, Sudhir I, Meena M, Singh S, Keswani C. Microbial consortium mediated acceleration of the defense response in potato against Alternaria solani through prodigious inflation in phenylpropanoid derivatives and redox homeostasis. Heliyon 2023; 9:e22148. [PMID: 38045140 PMCID: PMC10692827 DOI: 10.1016/j.heliyon.2023.e22148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
The present study was carried out in a pot experiment to examine the bioefficacy of three biocontrol agents, viz., Trichoderma viride, Bacillus subtilis, and Pseudomonas fluorescens, either alone or in consortium, on plant growth promotion and activation of defense responses in potato against the early blight pathogen Alternaria solani. The results demonstrate significant enhancement in growth parameters in plants bioprimed with the triple-microbe consortium compared to other treatments. In potato, the disease incidence percentage was significantly reduced in plants treated with the triple-microbe consortium compared to untreated control plants challenged with A. solani. Potato tubers treated with the consortium and challenged with pathogen showed significant activation of defense-related enzymes such as peroxidase (PO) at 96 h after pathogen inoculation (hapi) while, both polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) at 72 hapi, compared to the individual and dual microbial consortia-treated plants. The expression of antioxidant enzymes like superoxide dismutase (SOD) and catalase (CAT) and the accumulation of pathogenesis-related proteins such as chitinase and β-1,3-glucanase were observed to be highest at 72 hapi in the triple microbe consortium as compared to other treatments. HPLC analysis revealed significant induction in polyphenolic compounds in triple-consortium bioprimed plants compared to the control at 72 hapi. Histochemical analysis of hydrogen peroxide (H2O2) clearly showed maximum accumulation of H2O2 in pathogen-inoculated control plants, while the lowest was observed in triple-microbe consortium at 72 hapi. The findings of this study suggest that biopriming with a microbial consortium improved plant growth and triggered defense responses against A. solani through the induction of systemic resistance via modulation of the phenylpropanoid pathway and antioxidative network.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
- Department of Plant Pathology, B.M. College of Agriculture, Khandwa, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, 474002, India
| | - Ram Chandra
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Lopamudra Behera
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Ichini Sudhir
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, University Collage of Science, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Shailendra Singh
- Department of Biotechnology, Invertis University, Bareilly, 243123, India
| | - Chetan Keswani
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| |
Collapse
|
59
|
Liu M, Wang Q, Xu W, Wu J, Xu X, Yang H, Li X. Natural products for treating cytokine storm-related diseases: Therapeutic effects and mechanisms. Biomed Pharmacother 2023; 167:115555. [PMID: 37776639 DOI: 10.1016/j.biopha.2023.115555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND A cytokine storm (CS) is a rapidly occurring, complex, and highly lethal systemic acute inflammatory response induced by pathogens and other factors. Currently, no clinical therapeutic drugs are available with a significant effect and minimal side effects. Given the pathogenesis of CS, natural products have become important resources for bioactive agents in the discovery of anti-CS drugs. PURPOSE This study aimed to provide guidance for preventing and treating CS-related diseases by reviewing the natural products identified to inhibit CS in recent years. METHODS A comprehensive literature review was conducted on CS and natural products, utilizing databases such as PubMed and Web of Science. The quality of the studies was evaluated and summarized for further analysis. RESULTS This study summarized more than 30 types of natural products, including 9 classes of flavonoids, phenols, and terpenoids, among others. In vivo and in vitro experiments demonstrated that these natural products could effectively inhibit CS via nuclear factor kappa-B, mitogen-activated protein kinase, and Mammalian target of rapamycin (mTOR) signaling pathways. Moreover, the enzyme inhibition assays revealed that more than 20 chemical components had the potential to inhibit ACE2, 3CL-protease, and papain-like protease activity. The experimental results were obtained using advanced technologies such as biochips and omics. CONCLUSIONS Various natural compounds in traditional Chinese medicine (TCM) extracts could directly or indirectly inhibit CS occurrence, potentially serving as effective drugs for treating CS-related diseases. This study may guide further exploration of the therapeutic effects and biochemical mechanisms of natural products on CS.
Collapse
Affiliation(s)
- Mei Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wanai Xu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, China
| | - Jingyu Wu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, China
| | - Xingyue Xu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xianyu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
60
|
Xiao L, Xu G, Chen S, He Y, Peng F, Yuan C. Kaempferol ameliorated alcoholic liver disease through inhibiting hepatic bile acid synthesis by targeting intestinal FXR-FGF15 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155055. [PMID: 37678053 DOI: 10.1016/j.phymed.2023.155055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Alcoholic liver disease (ALD) is characterized by the disturbance of bile acids homeostasis, which further deteriorates ALD. Bile acid metabolism and its related signal molecules have become new therapeutic targets for alcoholic liver disease. This study aimed to investigate the impact of kaempferol (KAE) on ALD and elucidate its underlying mechanisms. METHODS C57BL/6 N mice were utilized to establish Binge-on-Chronic alcohol exposure mice model. KAE was administered as an interventional drug to chronic alcohol-fed mice for four weeks to assess its effects on liver damage and bile acid metabolism. And Z-Guggulsterone (Z-Gu), a global FXR inhibitor, was used to investigate the impact of intestinal FXR-FGF15 signal in ALD mice. Additionally, intestinal epithelial cells were exposed to alcohol or specific bile acid to induce the damage of FXR activity in vitro. The dual luciferase activity assay was employed to ascertain the interplay between KAE and FXR activity. RESULTS The results indicated that KAE treatment exhibited a significant hepatoprotective effect against chronic alcohol-fed mice. Accompanied by the intestinal FXR activation, the administration of KAE suppressed hepatic bile acid synthesis and promoted intestinal bile acid excretion in chronic ALD mice. And the notable alterations in total bile acid levels and composition were observed in mice after chronic alcohol feeding, which were reversed by KAE supplementation. And more, the protective effects of KAE on ALD mice were deprived by the inhibition of intestinal FXR activation. In vitro experiments demonstrated that KAE effectively activated FXR-FGF15 signaling, mitigated the damage to FXR activity in intestinal epithelial cells caused by alcohol or specific bile acids. Additionally, luciferase activity assays revealed that KAE directly promoted FXR expression, thereby enhancing FXR activity. CONCLUSION KAE treatment inhibited hepatic bile acids synthesis, maintained bile acids homeostasis in ALD mice by directly activating intestinal FXR-FGF15 signaling, which effectively alleviated liver injury induced by chronic alcohol consumption.
Collapse
Affiliation(s)
- Li Xiao
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, China
| | - Guangfu Xu
- College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Silong Chen
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, China
| | - Yumin He
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, China
| | - Fan Peng
- College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Chengfu Yuan
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, China.
| |
Collapse
|
61
|
Hegde A, Gupta S, Kumari P, Joshi R, Srivatsan V. Wild Edible Flowers of Western Himalayas: Nutritional Characterization, UHPLC-QTOF-IMS-Based Phytochemical Profiling, Antioxidant Properties, and In Vitro Bioaccessibility of Polyphenols. ACS OMEGA 2023; 8:40212-40228. [PMID: 37929082 PMCID: PMC10620890 DOI: 10.1021/acsomega.3c03861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/25/2023] [Indexed: 11/07/2023]
Abstract
Four edible flowers commonly consumed in the Western Himalayan region, namely, Bauhinia variegata (Kachnar), Tropaeolum majus (Nasturtium), Matricaria chamomilla (Chamomile), and Tagetes erecta (Marigold), were characterized for their nutritional and phytochemical composition. Through the UHPLC-QTOF-IMS-based metabolomics approach, 131 compounds were tentatively identified consisting of phenolic acids, flavonoid glycosides, terpenoids, amino acids, and fatty acid derivatives. Kaempferol and quercetin glycosides for Kachnar, apigenin glycosides and caffeoylquinic acid derivatives for Chamomile, patulin and quercetin derivatives for Marigold, cyanidin and delphinidin glycosides for Nasturtium were the predicted marker metabolites identified through non-targeted metabolomics. Kachnar and Chamomile scored best in terms of macronutrients and essential micronutrients, respectively. Nasturtium contained high concentrations of α-linolenic acid, anthocyanins, and lutein. Kachnar contained the highest total phenolic acids (63.36 ± 0.38 mg GAE g-1), while Marigold contained the highest total flavonoids (118.90 ± 1.30 mg QUE g-1). Marigolds possessed excellent free radical scavenging and metal chelation activities. Chamomile exhibited strong α-glucosidase inhibition activity, followed by Nasturtium. The in vitro gastrointestinal digestibility of flower extracts indicated that the bioaccessibility of phenolic acids was higher than that of flavonoids. Polyphenols from Nasturtium and Chamomile showed the highest bioaccessibility. The study is an attempt to characterize traditionally consumed edible flowers and promote their wider utilization in gastronomy and nutraceuticals.
Collapse
Affiliation(s)
- Athrinandan
S. Hegde
- Applied
Phycology and Food Technology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC)
Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Smriti Gupta
- Applied
Phycology and Food Technology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC)
Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Poonam Kumari
- Division
of Agrotechnology, CSIR-Institute of Himalayan
Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC)
Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Robin Joshi
- Applied
Phycology and Food Technology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC)
Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Vidyashankar Srivatsan
- Applied
Phycology and Food Technology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC)
Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
62
|
Hassan FU, Rehman MSU, Javed M, Ahmad K, Fatima I, Safdar M, Ashraf N, Nadeem A. Identification of phytochemicals as putative ligands for the targeted modulation of peroxisome proliferator-activated receptor α (PPARα) in animals. J Biomol Struct Dyn 2023; 42:12164-12175. [PMID: 37837423 DOI: 10.1080/07391102.2023.2268185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023]
Abstract
The PPAR family of transcription factors are ligand-activated and regulate diverse functions including metabolic, neurological, and inflammatory diseases, neurodegenerative disorders, fertility or reproduction in the body. Specifically, PPARα is known to play a role in reducing the levels of circulating triglycerides and regulating energy homeostasis in livestock animals. This study aimed to identify phytochemicals that could serve as ligands for modulation of the bovine nuclear peroxisome proliferator-activated receptor alpha (PPARα) using molecular docking studies. Therefore, we investigated 1000 flavonoids belonging to different groups for their ability to bind to PPARα using molecular docking. Out of 1000, 6 top lead compounds with maximum binding affinity, evaluated through molecular docking, were further analysed for physicochemical properties and drug-likeness attributes. The results revealed that two flavonoids, Quercetin-3-o-rhamnoside and (-)- epicatechingallate, which are known fatty acid synthase inhibitors, demonstrated high docking scores with PPARα (-8.66 kcal/mol and -8.49 kcal/mol, respectively) and low RMSD values with PPARα (1.61 kcal/mol and 1.28 kcal/mol, respectively) as compared to PPARα agonist (synthetic), fenofibrate (-6.24 kcal/mol and 2.19 kcal/mol) and thus analyzed further for prediction of stability of docked complexes through MD simulations. MD simulation studies predicted the stability of complexes and the complex of Quercetin-3-o-rhamnoside and (-)- epicatechingallate were found to be stable at 100 ns based on RSMD value and RMSF residue index. Through computational analysis, the screened compounds showed good pharmacokinetic parameters, including non-toxicity, non-carcinogenic, high gastrointestinal absorption and thus can serve as potential drug candidates. Finally, the findings suggest that these phytochemicals have the potential to act as potent PPARα pharmacological agonists to prevent disease mechanisms and their related complications, providing insights into the role of phytochemicals as feed additives in animals for modulating PPARα functions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Faiz-Ul Hassan
- Department of Animal Breeding and Genetics, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - M Saif-Ur Rehman
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Maryam Javed
- Institute of Biochemistry & Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Khalil Ahmad
- Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Israr Fatima
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Safdar
- Department of Animal Breeding and Genetics, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Noman Ashraf
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Asif Nadeem
- Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan
| |
Collapse
|
63
|
Urbonavičius A, Krikštolaitytė S, Bieliauskas A, Martynaitis V, Solovjova J, Žukauskaitė A, Arbačiauskienė E, Šačkus A. Synthesis and Characterization of New Pyrano[2,3- c]pyrazole Derivatives as 3-Hydroxyflavone Analogues. Molecules 2023; 28:6599. [PMID: 37764375 PMCID: PMC10537540 DOI: 10.3390/molecules28186599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
In this paper, an efficient synthetic route from pyrazole-chalcones to novel 6-aryl-5-hydroxy-2-phenylpyrano[2,3-c]pyrazol-4(2H)-ones as 3-hydroxyflavone analogues is described. The methylation of 5-hydroxy-2,6-phenylpyrano[2,3-c]pyrazol-4(2H)-one with methyl iodide in the presence of a base yielded a compound containing a 5-methoxy group, while the analogous reaction of 5-hydroxy-2-phenyl-6-(pyridin-4-yl)pyrano[2,3-c]pyrazol-4(2H)-one led to the zwitterionic 6-(N-methylpyridinium)pyrano[2,3-c]pyrazol derivative. The treatment of 5-hydroxy-2,6-phenylpyrano[2,3-c]pyrazol-4(2H)-one with triflic anhydride afforded a 5-trifloylsubstituted compound, which was further used in carbon-carbon bond forming Pd-catalyzed coupling reactions to yield 5-(hetero)aryl- and 5-carbo-functionalized pyrano[2,3-c]pyrazoles. The excited-state intramolecular proton transfer (ESIPT) reaction of 5-hydroxypyrano[2,3-c]pyrazoles from the 5-hydroxy moiety to the carbonyl group in polar protic, polar aprotic, and nonpolar solvents was observed, resulting in well-resolved two-band fluorescence. The structures of the novel heterocyclic compounds were confirmed by 1H-, 13C-, 15N-, and 19F-NMR spectroscopy, HRMS, and single-crystal X-ray diffraction data.
Collapse
Affiliation(s)
- Arminas Urbonavičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (A.U.); (S.K.); (V.M.); (J.S.); (A.Ž.)
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania;
| | - Sonata Krikštolaitytė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (A.U.); (S.K.); (V.M.); (J.S.); (A.Ž.)
| | - Aurimas Bieliauskas
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania;
| | - Vytas Martynaitis
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (A.U.); (S.K.); (V.M.); (J.S.); (A.Ž.)
| | - Joana Solovjova
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (A.U.); (S.K.); (V.M.); (J.S.); (A.Ž.)
| | - Asta Žukauskaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (A.U.); (S.K.); (V.M.); (J.S.); (A.Ž.)
- Department of Chemical Biology, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Eglė Arbačiauskienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (A.U.); (S.K.); (V.M.); (J.S.); (A.Ž.)
| | - Algirdas Šačkus
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania;
| |
Collapse
|
64
|
Farghadani R, Naidu R. The anticancer mechanism of action of selected polyphenols in triple-negative breast cancer (TNBC). Biomed Pharmacother 2023; 165:115170. [PMID: 37481930 DOI: 10.1016/j.biopha.2023.115170] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023] Open
Abstract
Breast cancer is a leadingcause of cancer-related deaths in women globally, with triple-negative breast cancer (TNBC) being an aggressive subtype that lacks targeted therapies and is associated with a poor prognosis. Polyphenols, naturally occurring compounds in plants, have been investigated as a potential therapeutic strategy for TNBC. This review provides an overview of the anticancer effects of polyphenols in TNBC and their mechanisms of action. Several polyphenols, including resveratrol, quercetin, kaempferol, genistein, epigallocatechin-3-gallate, apigenin, fisetin, hesperetin and luteolin, have been shown to inhibit TNBC cell proliferation, induce cell cycle arrest, promote apoptosis, and suppress migration/invasion in preclinical models. The molecular mechanisms underlying their anticancer effects involve the modulation of several signalling pathways, such as PI3K/Akt, MAPK, STATT, and NF-κB pathways. Polyphenols also exhibit synergistic effects with chemotherapy drugs, making them promising candidates for combination therapy. The review also highlights clinical trials investigating the potential use of polyphenols, individually or in combination therapy, against breast cancer. This review deepens the under-standing of the mechanism of action of respective polyphenols and provides valuable insights into the potential use of polyphenols as a therapeutic strategy for TNBC, and lays the groundwork for future research in this area.
Collapse
Affiliation(s)
- Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| |
Collapse
|
65
|
Ajisebiola BS, Oladele JO, Adeyi AO. Kaempferol from Moringa oleifera demonstrated potent antivenom activities via inhibition of metalloproteinase and attenuation of Bitis arietans venom-induced toxicities. Toxicon 2023; 233:107242. [PMID: 37558138 DOI: 10.1016/j.toxicon.2023.107242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
Bitis arietans venom (BAV) can induce severe pathophysiological disorders after envenoming. However, studies have shown that the Moringa oleifera fraction is effective against BAV toxicities and contains bioactive compounds with significant antivenom potency. This research aimed to identify the main active antivenom compound in the M. oleifera fraction responsible for neutralizing the toxicities induced by BAV. The compounds identified from M. oleifera fraction were docked in silico against the catalytic site of the Snake Venom Metalloproteinase (SVMP) to determine the lead inhibitor compound. The antivenom potency of the lead inhibitor compound was tested against BAV toxicities and metalloproteinase isolated from BAV using in vitro and in vivo methods, while EchiTab-Plus polyvalent antivenom served as a standard drug. The in silico prediction revealed kaempferol as the lead inhibitor compound with a docking score of -7.0 kcal/mol. Kaempferol effectively inhibited metalloproteinase activity at 0.2 mg/ml, compared to antivenom (0.4 mg/ml) and demonstrated significant antihaemorrhagic, antihaemolytic and coagulant effects against BAV activities. Furthermore, kaempferol showed a significant dose-dependent effect on altered haematological indices observed in rats challenged with LD50 of BAV. Envenomed rats also showed an increase in oxidative stress biomarkers and antioxidant enzyme activity in the heart and kidney. However, treatment with kaempferol significantly (P < 0.05) decreased malondialdehyde levels and SOD activity with concomitant enhancement of glutathione levels. Severe histopathological defects noticed in the organ tissues of envenomed rats were ameliorated after kaempferol treatment. Kaempferol is identified as the main active antivenom compound in M. oleifera, and this research highlights the potential of the compound as an effective alternative to snakebite treatment.
Collapse
Affiliation(s)
- Babafemi Siji Ajisebiola
- Department of Zoology, Osun State University, Osogbo, Nigeria; Animal Physiology Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria.
| | | | | |
Collapse
|
66
|
Romero-Benavides JC, Atiencie-Valarezo NC, Duarte-Casar R. Flavonoid Composition and Antioxidant Activity of Tragia volubilis L. Methanolic Extract. PLANTS (BASEL, SWITZERLAND) 2023; 12:3139. [PMID: 37687385 PMCID: PMC10490261 DOI: 10.3390/plants12173139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Several species from the genus Tragia L. in the family Euphorbiaceae are part of the ethnomedicine of traditional cultures, and have a variety of uses. Tragia volubilis L. is a species spread through tropical America and Africa with several ethnomedical uses, particularly for wound healing and reproductive issues. In this study, we assess the phytochemical composition and antioxidant activity of the methanolic extract of the aerial parts of T. volubilis collected in southern Ecuador. The phytochemical screening of the extract shows the preliminary presence of carbohydrates, alkaloids, flavonoids, and tannins. The extract shows an Antioxidant Activity Index of 1.14, interpreted as strong antioxidant activity. Four flavonoid compounds were isolated through chromatographic procedures and identified through NMR spectroscopy: avicularin, quercitrin, afzelin, and amentoflavone. The biological activity of these compounds matches the ethnopharmacological uses of the species. This is the first phytochemical study of T. volubilis and supports its traditional medicinal uses.
Collapse
Affiliation(s)
- Juan Carlos Romero-Benavides
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador;
| | - Nora Cecilia Atiencie-Valarezo
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador;
| | - Rodrigo Duarte-Casar
- Maestría en Química Aplicada, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador;
| |
Collapse
|
67
|
Pérez-Ramírez IF, Escobedo-Alvarez DE, Mendoza-Sánchez M, Rocha-Guzmán NE, Reynoso-Camacho R, Acosta-Gallegos JA, Ramos-Gómez M. Phytochemical Profile and Composition of Chickpea ( Cicer arietinum L.): Varietal Differences and Effect of Germination under Elicited Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:3093. [PMID: 37687340 PMCID: PMC10489618 DOI: 10.3390/plants12173093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
Germination is a simple process that improves the nutritional and medicinal values of seeds such as chickpeas. However, the detailed analysis of the phytochemical profile after chemical elicitation during chickpea germination is indispensable when making inferences about its biological properties. Therefore, an evaluation was made of the effect of the chemical inducers salicylic acid (SA, 1 and 2 mM), chitosan (CH, 3.3 and 7 μM), and hydrogen peroxide (H2O2, 20 and 30 mM) during germination at 25 °C with 70% RH for 4 days on the content of antinutritional and bioactive compounds, including phenolics, sterols, and saponins, in three Mexican chickpea varieties (Blanoro, Patron, and San Antonio) using UPLC-ELSD-ESI-QqQ-MS/MS, UPLC-DAD-ESI-QqQ-MS/MS, and HPLC-DAD-sQ-MS. The highest increase in phenolics and saponins was found in the Blanoro sprouts induced with SA 2 mM, whereas the highest phytosterol content was detected in San Antonio sprouts induced with CH 7 μM. In addition, significant increases in mono-, di-, and oligosaccharides and decreases in antinutritional contents were achieved after germination with most of the elicitation conditions. More importantly, we identified new compounds in chickpea sprouts, such as the lignans matairesinol and secoisolariciresinol, the phenolic compounds epicatechin gallate and methyl gallate, some phytosterols, and the saponin phaseoside 1, which further increased after chemical elicitation.
Collapse
Affiliation(s)
- Iza Fernanda Pérez-Ramírez
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, C.U., Cerro de las campanas S/N, Querétaro 76010, Mexico; (I.F.P.-R.)
| | - Diana E. Escobedo-Alvarez
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, C.U., Cerro de las campanas S/N, Querétaro 76010, Mexico; (I.F.P.-R.)
| | - Magdalena Mendoza-Sánchez
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, C.U., Cerro de las campanas S/N, Querétaro 76010, Mexico; (I.F.P.-R.)
| | - Nuria E. Rocha-Guzmán
- Unidad de Posgrado, Investigación y Desarrollo Tecnológico (UPIDET), TECNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico
| | - Rosalía Reynoso-Camacho
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, C.U., Cerro de las campanas S/N, Querétaro 76010, Mexico; (I.F.P.-R.)
| | - Jorge A. Acosta-Gallegos
- Campo Experimental Bajío (CEBAJ-INIFAP), Carretera Celaya-San Miguel de Allende Km. 6.5, Guanajuato 38010, Mexico
| | - Minerva Ramos-Gómez
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, C.U., Cerro de las campanas S/N, Querétaro 76010, Mexico; (I.F.P.-R.)
| |
Collapse
|
68
|
Higbee J, Brownmiller C, Solverson P, Howard L, Carbonero F. Polyphenolic profiles of a variety of wild berries from the Pacific Northwest region of North America. Curr Res Food Sci 2023; 7:100564. [PMID: 37664004 PMCID: PMC10474376 DOI: 10.1016/j.crfs.2023.100564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023] Open
Abstract
Polyphenols have been extensively profiled and quantified in commercially grown berries, but similar information is sparsely available for wild berries. Because polyphenolic contents are inherently associated with berries health benefits, determining phenolic profiles is an important step for strategizing potential uses by the industry and for health and nutrition outcomes. Here, we profiled phenolic compounds in wild berries commonly encountered and harvested in the Pacific Northwest region of North America. Huckleberries (Vaccinium membranaceum) of varying phenotypes were found to be comparable to related blueberries in terms of general phenolic classes composition. However, all huckleberries exhibited markedly high levels of cyanidins, and delphinidins or peonidins were also higher in specific phenotypes. Wild black elderberries (Sambucus nigra spp. Canadensis) were found to have remarkably high phenolic, especially anthocyanins, in line with reports from cultivated elderberries. Saskatoon serviceberries (Amelanchier alnifolia) were found to exhibit high polyphenol content, but with a less diverse profile dominated by quercetin. The most intriguing berry may be the Oregon grape (Mahonia Aquifolium) being the only one exhibiting more than one g of polyphenols per 100 g; as well as a remarkably even distribution of the different anthocyanin classes. All colored wild berries were found to have at minimum comparable total phenolic contents when compared to cultivated and other wild berries, suggesting they should exhibit comparable human health benefits such as antioxidant and metabolic syndrome preventative potential described for these other berries. Overall, our data represents a valuable resource to explore the potential to valorize wild berry species for their specific phenolic profiles and predicted nutritional and health properties. With repeated phenolic profiling to better understand the impact of the environment, the wild berries described here hold promises both as food ingredient applications as well as valuable complement for healthy dietary patterns.
Collapse
Affiliation(s)
- Jerome Higbee
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, WA, USA
| | - Cindi Brownmiller
- Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| | - Patrick Solverson
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, WA, USA
| | - Luke Howard
- Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| | - Franck Carbonero
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, WA, USA
- School of Food Science, Washington State University, Pullman, WA, USA
| |
Collapse
|
69
|
Lu Y, Yu Y, Xuan Y, Kari A, Yang C, Wang C, Zhang C, Gu W, Wang H, Hu Y, Sun P, Guan Y, Si W, Bai B, Zhang X, Xu Y, Prasanna BM, Shi B, Zheng H. Integrative transcriptome and metabolome analysis reveals the mechanisms of light-induced pigmentation in purple waxy maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1203284. [PMID: 37649997 PMCID: PMC10465178 DOI: 10.3389/fpls.2023.1203284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
Introduction Waxy maize, mainly consumed at the immature stage, is a staple and vegetable food in Asia. The pigmentation in the kernel of purple waxy maize enhances its nutritional and market values. Light, a critical environmental factor, affects anthocyanin biosynthesis and results in pigmentation in different parts of plants, including in the kernel. SWL502 is a light-sensitive waxy maize inbred line with purple kernel color, but the regulatory mechanism of pigmentation in the kernel resulting in purple color is still unknown. Methods In this study, cyanidin, peonidin, and pelargonidin were identified as the main anthocyanin components in SWL502, evaluated by the ultra-performance liquid chromatography (UPLC) method. Investigation of pigment accumulation in the kernel of SWL502 was performed at 12, 17, and 22 days after pollination (DAP) under both dark and light treatment conditions via transcriptome and metabolome analyses. Results Dark treatment affected genes and metabolites associated with metabolic pathways of amino acid, carbohydrate, lipid, and galactose, biosynthesis of phenylpropanoid and terpenoid backbone, and ABC transporters. The expression of anthocyanin biosynthesis genes, such as 4CL2, CHS, F3H, and UGT, was reduced under dark treatment. Dynamic changes were identified in genes and metabolites by time-series analysis. The genes and metabolites involved in photosynthesis and purine metabolism were altered in light treatment, and the expression of genes and metabolites associated with carotenoid biosynthesis, sphingolipid metabolism, MAPK signaling pathway, and plant hormone signal transduction pathway were induced by dark treatment. Light treatment increased the expression level of major transcription factors such as LRL1, myc7, bHLH125, PIF1, BH093, PIL5, MYBS1, and BH074 in purple waxy maize kernels, while dark treatment greatly promoted the expression level of transcription factors RVE6, MYB4, MY1R1, and MYB145. Discussion This study is the first report to investigate the effects of light on waxy maize kernel pigmentation and the underlying mechanism at both transcriptome and metabolome levels, and the results from this study are valuable for future research to better understand the effects of light on the regulation of plant growth.
Collapse
Affiliation(s)
- Yuan Lu
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Specialty Maize, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Yao Yu
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Specialty Maize, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Yanfang Xuan
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ayiguli Kari
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Specialty Maize, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Caixia Yang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Specialty Maize, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Chenyu Wang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Specialty Maize, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Chao Zhang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Specialty Maize, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Wei Gu
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Specialty Maize, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Hui Wang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Specialty Maize, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Yingxiong Hu
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Specialty Maize, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Pingdong Sun
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Specialty Maize, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Yuan Guan
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Specialty Maize, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Wenshuai Si
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Bing Bai
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Yunbi Xu
- CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Biao Shi
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Hongjian Zheng
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Specialty Maize, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
| |
Collapse
|
70
|
Panklai T, Suphrom N, Temkitthawon P, Totoson P, Chootip K, Yang XL, Ge HM, Yao ZJ, Chaichamnong N, Ingkaninan K, Girard C. Phosphodiesterase 5 and Arginase Inhibitory Activities of the Extracts from Some Members of Nelumbonaceae and Nymphaeaceae Families. Molecules 2023; 28:5821. [PMID: 37570790 PMCID: PMC10420992 DOI: 10.3390/molecules28155821] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The objectives of this study were (1) to investigate the effect of extracts from some plants in the families Nelumbonaceae and Nymphaeaceae on phosphodiesterase 5 (PDE5) and arginase, which have been used in erectile dysfunction treatment, and (2) to isolate and identify the compounds responsible for such activities. The characterization and quantitative analysis of flavonoid constituents in the active extracts were performed by HPLC. Thirty-seven ethanolic extracts from different parts of plants in the genus Nymphaea and Victoria of Nymphaeaceae and genus Nelumbo of Nelumbonaceae were screened for PDE5 and arginase inhibitory activities. The ethanolic extracts of the receptacles and pollens of Nelumbo nucifera Gaertn., petals of Nymphaea cyanea Roxb. ex G.Don, Nymphaea stellata Willd., and Victoria amazonica (Poepp.) Sowerby and the petals and receptacles of Nymphaea pubescens Willd. showed IC50 values on PDE5 of less than 25 μg/mL while none of the extracts showed effects on arginase. The most active extract, N. pubescens petal extract, was fractionated to isolate and identify the PDE5 inhibitors. The results showed that six flavonoid constituents including quercetin 3'-O-β-xylopyranoside (1), quercetin 3-methyl ether 3'-O-β-xylopyranoside (2), quercetin (3), 3-O-methylquercetin (4), kaempferol (5) and 3-O-methylkaempferol (6) inhibited PDE5 with IC50 values at the micromolar level.
Collapse
Affiliation(s)
- Teerapap Panklai
- Center of Excellence in Cannabis Research, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand; (T.P.); (P.T.)
- Université de Franche-Comté, PEPITE, 25000 Besançon, France; (P.T.); (C.G.)
| | - Nungruthai Suphrom
- Department of Chemistry, Faculty of Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand;
| | - Prapapan Temkitthawon
- Center of Excellence in Cannabis Research, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand; (T.P.); (P.T.)
| | - Perle Totoson
- Université de Franche-Comté, PEPITE, 25000 Besançon, France; (P.T.); (C.G.)
| | - Krongkarn Chootip
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand;
| | - Xiao-Liang Yang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advance Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China; (X.-L.Y.); (Z.-J.Y.)
| | - Hui-Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China;
| | - Zhu-Jun Yao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advance Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China; (X.-L.Y.); (Z.-J.Y.)
| | - Nattiya Chaichamnong
- Division of Applied Thai Traditional Medicine, Faculty of Public Health, Naresuan University, Phitsanulok 65000, Thailand;
| | - Kornkanok Ingkaninan
- Center of Excellence in Cannabis Research, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand; (T.P.); (P.T.)
| | - Corine Girard
- Université de Franche-Comté, PEPITE, 25000 Besançon, France; (P.T.); (C.G.)
| |
Collapse
|
71
|
Qanash H, Bazaid AS, Binsaleh NK, Alharbi B, Alshammari N, Qahl SH, Alhuthali HM, Bagher AA. Phytochemical Characterization of Saudi Mint and Its Mediating Effect on the Production of Silver Nanoparticles and Its Antimicrobial and Antioxidant Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112177. [PMID: 37299156 DOI: 10.3390/plants12112177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
The green synthesis of nanoparticles (NPs) is attracting enormous attention as a new area of study that encompasses the development and discovery of new agents for their utilization in different fields, such as pharmaceuticals and food. Nowadays, the use of plants, particularly medicinal plants, for the creation of NPs has emerged as a safe, ecofriendly, rapid, and simple approach. Therefore, the present study aimed to use the Saudi mint plant as a medicinal plant for the synthesis of silver nanoparticles (AgNPs) and to evaluate the antimicrobial and antioxidant activities of AgNPs compared to mint extract (ME). A phenolic and flavonoid analysis that was conducted by using HPLC indicated the presence of numerous compounds in the ME. Through an HPLC analysis, chlorogenic acid at a concentration of 7144.66 µg/mL was the main detected component in the ME, while catechin, gallic acid, naringenin, ellagic acid, rutin, daidzein, cinnamic acid, and hesperetin were identified in varying concentrations. AgNPs were synthesized by using ME and were confirmed via UV-visible spectroscopy at 412 nm of the maximum absorption. The mean diameter of the synthesized AgNPs was measured by TEM to be 17.77 nm. Spectra obtained by using energy-dispersive X-ray spectroscopy indicated that silver was the main element formation in the created AgNPs. The presence of various functional groups, analyzed by using Fourier transform infrared spectroscopy (FTIR), indicated that the mint extract was responsible for reducing Ag+ to Ag0. The spherical structure of the synthesized AgNPs was confirmed by X-ray diffraction (XRD). Furthermore, the ME showed reduced antimicrobial activity (a zone of inhibition of 30, 24, 27, 29, and 22 mm) compared with the synthesized AgNPs (a zone of inhibition of 33, 25, 30, 32, 32, and 27 mm) against B. subtilis, E. faecalis, E. coli, P. vulgaris, and C. albicans, respectively. The minimum inhibitory concentration of the AgNPs was lower than that of the ME for all of the tested micro-organisms, except for P. vulgaris. The MBC/MIC index suggested that the AgNPs revealed a higher bactericidal effect compared to the ME. The synthesized AgNPs exhibited antioxidant activity with a reduced IC50 (IC50 of 8.73 µg/mL) compared to that of the ME (IC50 of 13.42 µg/mL). These findings demonstrate that ME could be applied as a mediator for AgNPs synthesis and natural antimicrobial and antioxidant agents.
Collapse
Affiliation(s)
- Husam Qanash
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Ha'il 55476, Saudi Arabia
| | - Abdulrahman S Bazaid
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Ha'il 55476, Saudi Arabia
| | - Naif K Binsaleh
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Ha'il 55476, Saudi Arabia
| | - Bandar Alharbi
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Ha'il 55476, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biological Sciences, University of Ha'il, Hail 81451, Saudi Arabia
| | - Safa H Qahl
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Hayaa M Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | | |
Collapse
|
72
|
Wu Y, Ma Y, Cao J, Xie R, Chen F, Hu W, Huang Y. Feasibility study on the use of "Qi-tonifying medicine compound" as an anti-fatigue functional food ingredient based on network pharmacology and molecular docking. Front Nutr 2023; 10:1131972. [PMID: 37215213 PMCID: PMC10196032 DOI: 10.3389/fnut.2023.1131972] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Fatigue has attracted broad attention in recent years due to its high morbidity rates. The use of functional foods to relieve fatigue-associated symptoms is becoming increasingly popular and has achieved relatively good results. In this study, network pharmacology and molecular docking strategies were used to establish the material basis and mechanisms of Chinese herbal compounds in fatigue treatment. According to traditional medicine theories and relevant guidance documents published by the Chinese Ministry of Health, four herbal medicines, including Eucommia ulmoides Oliver bark, Eucommia ulmoides Oliver male flower, Panax notoginseng, and Syzygium aromaticum (EEPS), were selected to constitute the anti-fatigue herbal compound that may be suitable as functional food ingredients. Methods The major active ingredients in EEPS were identified via comprehensive literature search and Traditional Chinese Medicine Systems Pharmacology database search. Corresponding targets for these ingredients were predicted using SwissTargetPrediction. The network was constructed using Cytoscape 3.9.1 to obtain key ingredients. Prediction of absorption, distribution, metabolism, excretion and toxicity properties was performed using the ADMETIab 2.0 database. The anti-fatigue targets were retrieved from GeneCards v5.13, OMIM, TTD and DisGeNET 7.0 databases. Then, the potential targets of EEPS in fatigue treatment were screened through a Venn diagram. A protein-protein interaction (PPI) network of these overlapping targets was constructed, and the hub targets in the network selected through topological screening. Gene Ontology and KEGG pathway enrichment analyses were performed using the DAVID database and the bioinformatics online platform. Finally, AutoDock tools were used to verify the binding capacity between the key active ingredients and the core targets. Results and Discussion This study identified the active ingredients and potential molecular mechanisms of EEPS in fatigue treatment, which will provide a foundation for future research on applications of herbal medicines in the functional food industry.
Collapse
Affiliation(s)
- Yi Wu
- Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China
| | - Yixuan Ma
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Jinguo Cao
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Rui Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Feng Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- Department of Pediatric Surgery, The First Affiliated Hospital of GanNan Medical University, Ganzhou, China
| | - Wen Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Yushan Huang
- Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
73
|
Choi JH, Kim KM, Park SE, Kim MK, Kim S. Short-Term Effects of PJE Administration on Metabolic Parameters in Diet-Induced Obesity Mice. Foods 2023; 12:1675. [PMID: 37107470 PMCID: PMC10137377 DOI: 10.3390/foods12081675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The study investigated the effects of Petasites japonicus (Siebold & Zucc.) Maxim. extract (PJE) and fenofibrate on diet-induced obesity (DIO) in mice. PJE was found to contain various bio-active polyphenolic compounds, including kaempferol, p-hydroxybenzoic acid, ferulic acid, gallic acid, chlorogenic acid, 3,4-dicaffeoylquinic acid, caffeic acid, quercetin, rutin, protocatechuic acid, 3,5-dicaffeoylquinic acid, 4,5-dicaffeoylquinic acid, p-coumaric acid, apigenin, and 1,3-dicaffeoylquinic acid. The results showed that PJE treatment up to 1000 μg/mL did not affect the viability of 3T3-L1 cell line, and it reduced the feed efficiency ratio in DIO mice. PJE administration also resulted in a significant reduction in body weight gain and fat accumulation in the liver compared to the DIO control group. Additionally, PJE administration improved the levels of lipid and related parameters, including total cholesterol, triacylglycerol, low-density lipoprotein, very low-density lipoprotein, glucose, insulin, insulin resistance, leptin, and atherogenic or cardiac indexes compared to the DIO control group. The study suggested that PJE may have a beneficial effect on insulin resistance, lipid profiles, atherogenesis, adipokines, and cardiac risk associated with diet-induced obesity.
Collapse
Affiliation(s)
- Jun-Hui Choi
- Department of Health Functional Food, Gwangju University, Gwangju 61743, Republic of Korea; (J.-H.C.); (K.-M.K.)
| | - Ki-Man Kim
- Department of Health Functional Food, Gwangju University, Gwangju 61743, Republic of Korea; (J.-H.C.); (K.-M.K.)
| | - Se-Eun Park
- Department of Health Functional Food, Gwangju University, Gwangju 61743, Republic of Korea; (J.-H.C.); (K.-M.K.)
| | - Myung-Kon Kim
- Department of Food Science and Technology, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Seung Kim
- Department of Health Functional Food, Gwangju University, Gwangju 61743, Republic of Korea; (J.-H.C.); (K.-M.K.)
| |
Collapse
|
74
|
Tessema FB, Gonfa YH, Asfaw TB, Tadesse MG, Tadesse TG, Bachheti A, Alshaharni MO, Kumar P, Kumar V, Širić I, Abou Fayssal S, Chaubey KK, Bachheti RK. Targeted HPTLC Profile, Quantification of Flavonoids and Phenolic Acids, and Antimicrobial Activity of Dodonaea angustifolia (L.f.) Leaves and Flowers. Molecules 2023; 28:molecules28062870. [PMID: 36985842 PMCID: PMC10052987 DOI: 10.3390/molecules28062870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
In East Africa, Dodonaea angustifolia (L.f.) is a well-known medicinal herb. Its leaf is primarily studied in light of its ethnobotanical use. In terms of phytochemistry and biological activity, its flower is not studied. In a prior study, our team looked into phytochemical screening, antioxidant activity, and total phenolic levels. This study aims to compare the profiles and biological activities of the leaf and flower samples of D. angustifolia and to present therapeutic alternatives. The leaf and flower sample powders were extracted with methanol using ultrasound-assisted extraction (UAE). HPTLC profile was obtained using CAMAG-HPTLC equipped with VisionCATS software. Antimicrobial agar well diffusion assay and minimum inhibition concentration (MIC) were determined. The leaf and flower extracts of D. angustifolia showed antibacterial activity with a MIC value of 20 µg/mL against Enterococcus faecalis and Listeria monocytogenes. Similarly, 40 µg/mL was found to be effective against Aspergillus flavus. D. angustifolia flower is a rich source of flavonoids and phenolic acids. Because of its antibacterial properties and profile, which are almost the same, the flower is emerging as a viable option for medicinal alternatives.
Collapse
Affiliation(s)
- Fekade Beshah Tessema
- Department of Industrial Chemistry, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia
- Centre of Excellence in Biotechnology and Bioprocess, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia
- Department of Chemistry, Faculty of Natural and Computational Science, Woldia University, Woldia P.O. Box. 400, Ethiopia
| | - Yilma Hunde Gonfa
- Department of Industrial Chemistry, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia
- Centre of Excellence in Biotechnology and Bioprocess, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia
- Department of Chemistry, Faculty of Natural and Computational Science, Ambo University, Ambo P.O. Box 19, Ethiopia
| | - Tilahun Belayneh Asfaw
- Department of Industrial Chemistry, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia
- Department of Chemistry, College of Natural and Computational Science, Gondar University, Gondar P.O. Box 196, Ethiopia
| | - Mesfin Getachew Tadesse
- Department of Industrial Chemistry, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia
- Centre of Excellence in Biotechnology and Bioprocess, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia
| | - Tigist Getachew Tadesse
- Bio and Emerging Technology Institute, Health Biotechnology Directorate, Addis Ababa P.O. Box 5954, Ethiopia
| | - Archana Bachheti
- Department of Environment Science, Graphic Era (Deemed to be University), Dehradun 248002, India
| | - Mohammed O Alshaharni
- Department of Biology, College of Science, King Khalid University, Abha 61321, Saudi Arabia
| | - Pankaj Kumar
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar 249404, India
| | - Vinod Kumar
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar 249404, India
| | - Ivan Širić
- University of Zagreb, Faculty of Agriculture, Svetosimunska 25, 10000 Zagreb, Croatia
| | - Sami Abou Fayssal
- Department of Agronomy, Faculty of Agronomy, University of Forestry, 10 Kliment Ohridski Blvd, 1797 Sofia, Bulgaria
- Department of Plant Production, Faculty of Agriculture, Lebanese University, Beirut 1302, Lebanon
| | - Kundan Kumar Chaubey
- Division of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Arcadia Grant, P.O. Chandanwari, Prem Nagar, Dehradun 248007, India
| | - Rakesh Kumar Bachheti
- Department of Industrial Chemistry, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia
- Centre of Excellence in Biotechnology and Bioprocess, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia
| |
Collapse
|
75
|
Makhumbila P, Rauwane ME, Muedi HH, Madala NE, Figlan S. Metabolome profile variations in common bean (Phaseolus vulgaris L.) resistant and susceptible genotypes incited by rust (Uromyces appendiculatus). Front Genet 2023; 14:1141201. [PMID: 37007949 PMCID: PMC10060544 DOI: 10.3389/fgene.2023.1141201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/10/2023] [Indexed: 03/18/2023] Open
Abstract
The causal agent of rust, Uromyces appendiculatus is a major constraint for common bean (Phaseolus vulgaris) production. This pathogen causes substantial yield losses in many common bean production areas worldwide. U. appendiculatus is widely distributed and although there have been numerous breakthroughs in breeding for resistance, its ability to mutate and evolve still poses a major threat to common bean production. An understanding of plant phytochemical properties can aid in accelerating breeding for rust resistance. In this study, metabolome profiles of two common bean genotypes Teebus-RR-1 (resistant) and Golden Gate Wax (susceptible) were investigated for their response to U. appendiculatus races (1 and 3) at 14- and 21-days post-infection (dpi) using liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (LC-qTOF-MS). Non-targeted data analysis revealed 71 known metabolites that were putatively annotated, and a total of 33 were statistically significant. Key metabolites including flavonoids, terpenoids, alkaloids and lipids were found to be incited by rust infections in both genotypes. Resistant genotype as compared to the susceptible genotype differentially enriched metabolites including aconifine, D-sucrose, galangin, rutarin and others as a defence mechanism against the rust pathogen. The results suggest that timely response to pathogen attack by signalling the production of specific metabolites can be used as a strategy to understand plant defence. This is the first study to illustrate the utilization of metabolomics to understand the interaction of common bean with rust.
Collapse
Affiliation(s)
- Penny Makhumbila
- Department of Agriculture and Animal Health, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Roodeport, South Africa
- *Correspondence: Penny Makhumbila,
| | - Molemi E. Rauwane
- Department of Agriculture and Animal Health, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Roodeport, South Africa
- Department of Botany, Nelson Mandela University, Port Elizabeth, South Africa
| | - Hangwani H. Muedi
- Research Support Services, North-West Provincial Department of Agriculture and Rural Development, Potchefstroom, South Africa
| | - Ntakadzeni E. Madala
- Department of Biochemistry, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, South Africa
| | - Sandiswa Figlan
- Department of Agriculture and Animal Health, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Roodeport, South Africa
| |
Collapse
|
76
|
Liu Y, Nie X, Wang J, Zhao Z, Wang Z, Ju F. Visualizing the distribution of flavonoids in litchi ( Litchi chinenis) seeds through matrix-assisted laser desorption/ionization mass spectrometry imaging. FRONTIERS IN PLANT SCIENCE 2023; 14:1144449. [PMID: 36909412 PMCID: PMC9998689 DOI: 10.3389/fpls.2023.1144449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Flavonoids are one of the most important bioactive components in litchi (Litchi chinensis Sonn.) seeds and have broad-spectrum antiviral and antitumor activities. Litchi seeds have been shown to inhibit the proliferation of cancer cells and induce apoptosis, particularly effective against breast and liver cancers. Elucidating the distribution of flavonoids is important for understanding their physiological and biochemical functions and facilitating their efficient extraction and utilization. However, the spatial distribution patterns and expression states of flavonoids in litchi seeds remain unclear. Herein, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was used for in situ detection and imaging of the distribution of flavonoids in litchi seed tissue sections for the first time. Fifteen flavonoid ion signals, including liquiritigenin, apigenin, naringenin, luteolin, dihydrokaempferol, daidzein, quercetin, taxifolin, kaempferol, isorhamnetin, myricetin, catechin, quercetin 3-β-d-glucoside, baicalin, and rutin, were successfully detected and imaged in situ through MALDI-MSI in the positive ion mode using 2-mercaptobenzothiazole as a matrix. The results clearly showed the heterogeneous distribution of flavonoids, indicating the potential of litchi seeds for flavonoid compound extraction. MALDI-MS-based multi-imaging enhanced the visualization of spatial distribution and expression states of flavonoids. Thus, apart from improving our understanding of the spatial distribution of flavonoids in litchi seeds, our findings also facilitate the development of MALDI-MSI-based metabolomics as a novel effective molecular imaging tool for evaluating the spatial distribution of endogenous compounds.
Collapse
Affiliation(s)
- Yukun Liu
- Department of Breast Surgery, Breast Disease Center, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Xiaofei Nie
- Department of Oncology, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Jilong Wang
- Department of Acupuncture and Moxibustion, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Zhenqi Zhao
- Department of Radiology, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Zhimei Wang
- Department of Gynecological Neoplasms, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Fang Ju
- Department of Oncology, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
77
|
Sgadari F, Cerulli A, Schicchi R, Badalamenti N, Bruno M, Piacente S. Sicilian Populations of Capparis spinosa L. and Capparis orientalis Duhamel as Source of the Bioactive Flavonol Quercetin. PLANTS (BASEL, SWITZERLAND) 2023; 12:197. [PMID: 36616326 PMCID: PMC9823727 DOI: 10.3390/plants12010197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The genus Capparis is a taxon of difficult delimitation that has several species and ecotypes due to its wide heterogeneity, its extreme phenotypic diversity, and the presence of intermediate forms linked to hybridization phenomena. The Sicilian territory hosts numerous wild and cultivated populations of two spp. Capparis spinosa L. and Capparis orientalis Duhamel, which are ecologically and morphologically distinct. The caper has considerable interest and economic value for its medicinal properties, culinary uses, and cultivation characteristics. It is one of the foods with the highest quercetin content. Quercetin is a flavonol with antioxidant, anti-inflammatory, and immunostimulant properties. Recently, patents and clinical studies have highlighted the inhibitory effect of this compound against several SARS-CoV-2 enzymes (MPro, PLPro, and RdRp). Therefore, the aim of this study was to quantify the amount of quercetin in C. spinosa and C. orientalis by LC-ESI/QTrap/MS/MS and to correlate it with the pedoclimatic features. The results obtained showed that quercetin is more abundant in C. orientalis than in C. spinosa. The highest values of quercetin were recorded in C. orientalis flowers, leaves, and flower buttons of volcanic islands with southwest and east warm exposures. In conclusion, the data acquired can provide a good basis for further scientific investigations to support the identification of possible ecotypes as a source of quercetin for food or pharmaceutical purposes.
Collapse
Affiliation(s)
- Francesco Sgadari
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Viale delle Scienze, ed. 4, 90128 Palermo, Italy
| | | | - Rosario Schicchi
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Viale delle Scienze, ed. 4, 90128 Palermo, Italy
| | - Natale Badalamenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, ed. 17, 90128 Palermo, Italy
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, ed. 17, 90128 Palermo, Italy
- Centro Interdipartimentale di Ricerca “Riutilizzo bio-Based Degli Scarti da Matrici Agroalimentari” (RIVIVE), Università di Palermo, 90128 Palermo, Italy
| | - Sonia Piacente
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
78
|
Kim S, Lim SW, Choi J. Drug discovery inspired by bioactive small molecules from nature. Anim Cells Syst (Seoul) 2022; 26:254-265. [PMID: 36605590 PMCID: PMC9809404 DOI: 10.1080/19768354.2022.2157480] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Natural products (NPs) have greatly contributed to the development of novel treatments for human diseases such as cancer, metabolic disorders, and infections. Compared to synthetic chemical compounds, primary and secondary metabolites from medicinal plants, fungi, microorganisms, and our bodies are promising resources with immense chemical diversity and favorable properties for drug development. In addition to the well-validated significance of secondary metabolites, endogenous small molecules derived from central metabolism and signaling events have shown great potential as drug candidates due to their unique metabolite-protein interactions. In this short review, we highlight the values of NPs, discuss recent scientific and technological advances including metabolomics tools, chemoproteomics approaches, and artificial intelligence-based computation platforms, and explore potential strategies to overcome the current challenges in NP-driven drug discovery.
Collapse
Affiliation(s)
- Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea, Seyun Kim
| | - Seol-Wa Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jiyeon Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|