51
|
Ciudad-Mulero M, Domínguez L, Morales P, Fernández-Ruiz V, Cámara M. A Review of Foods of Plant Origin as Sources of Vitamins with Proven Activity in Oxidative Stress Prevention according to EFSA Scientific Evidence. Molecules 2023; 28:7269. [PMID: 37959689 PMCID: PMC10650406 DOI: 10.3390/molecules28217269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Beyond their nutritional benefits, vitamins could decrease the risk of chronic diseases due to their potent antioxidant capacity. The present work is aimed at reviewing the state of the art regarding (1) the vitamins involved in oxidative stress prevention in accordance with the requirements established by the European Food Safety Authority (EFSA) and (2) the foods of plant origin that are sources of those vitamins and have potential benefits against oxidative stress in humans. According to the European regulations based on EFSA scientific evidence, riboflavin, vitamin C, and vitamin E are those vitamins subjected to the approved health claim "contribute to the protection of cells from oxidative stress". Scientific studies conducted in humans with some natural food sources of riboflavin (almonds, wheat germ, mushrooms, oat bran), vitamin C (guava, kale, black currant, Brussels sprouts, broccoli, orange), and vitamin E (hazelnuts, almonds, peanuts, pistachio nuts, extra virgin olive oil, dates, rye) have been performed and published in the literature. However, no food of plant origin has obtained a favorable EFSA opinion to substantiate the approval of health claims related to its potential properties related to oxidative stress prevention. Further studies (concretely, well-controlled human intervention studies) must be carried out in accordance with EFSA requirements to provide the highest level of scientific evidence that could demonstrate the potential relationship between foods of plant origin and antioxidant capacity. This review could be useful for the scientific community to study the application of health claims referring to the antioxidant capacity potentially exerted by foods of plant origin.
Collapse
Affiliation(s)
| | | | | | - Virginia Fernández-Ruiz
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Pza Ramón y Cajal, s/n, E-28040 Madrid, Spain; (M.C.-M.); (L.D.); (P.M.); (M.C.)
| | | |
Collapse
|
52
|
Kılıç M, Käpylä V, Gollan PJ, Aro EM, Rintamäki E. PSI Photoinhibition and Changing CO 2 Levels Initiate Retrograde Signals to Modify Nuclear Gene Expression. Antioxidants (Basel) 2023; 12:1902. [PMID: 38001755 PMCID: PMC10669900 DOI: 10.3390/antiox12111902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
Photosystem I (PSI) is a critical component of the photosynthetic machinery in plants. Under conditions of environmental stress, PSI becomes photoinhibited, leading to a redox imbalance in the chloroplast. PSI photoinhibition is caused by an increase in electron pressure within PSI, which damages the iron-sulfur clusters. In this study, we investigated the susceptibility of PSI to photoinhibition in plants at different concentrations of CO2, followed by global gene expression analyses of the differentially treated plants. PSI photoinhibition was induced using a specific illumination protocol that inhibited PSI with minimal effects on PSII. Unexpectedly, the varying CO2 levels combined with the PSI-PI treatment neither increased nor decreased the likelihood of PSI photodamage. All PSI photoinhibition treatments, independent of CO2 levels, upregulated genes generally involved in plant responses to excess iron and downregulated genes involved in iron deficiency. PSI photoinhibition also induced genes encoding photosynthetic proteins that act as electron acceptors from PSI. We propose that PSI photoinhibition causes a release of iron from damaged iron-sulfur clusters, which initiates a retrograde signal from the chloroplast to the nucleus to modify gene expression. In addition, the deprivation of CO2 from the air initiated a signal that induced flavonoid biosynthesis genes, probably via jasmonate production.
Collapse
Affiliation(s)
| | | | | | | | - Eevi Rintamäki
- Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland; (M.K.); (V.K.); (P.J.G.); (E.-M.A.)
| |
Collapse
|
53
|
Zhu J, Cai Y, Wakisaka M, Yang Z, Yin Y, Fang W, Xu Y, Omura T, Yu R, Zheng ALT. Mitigation of oxidative stress damage caused by abiotic stress to improve biomass yield of microalgae: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165200. [PMID: 37400020 DOI: 10.1016/j.scitotenv.2023.165200] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/15/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
Microalgae have been recognized as emerging cell factories due to the high value-added bio-products. However, the balance between algal growth and the accumulation of metabolites is always the main contradiction in algal biomass production. Hence, the security and effectiveness of regulating microalgal growth and metabolism simultaneously have drawn substantial attention. Since the correspondence between microalgal growth and reactive oxygen species (ROS) level has been confirmed, improving its growth under oxidative stress and promoting biomass accumulation under non-oxidative stress by exogenous mitigators is feasible. This paper first introduced ROS generation in microalgae and described the effects of different abiotic stresses on the physiological and biochemical status of microalgae from these aspects associated with growth, cell morphology and structure, and antioxidant system. Secondly, the role of exogenous mitigators with different mechanisms in alleviating abiotic stress was concluded. Finally, the possibility of exogenous antioxidants regulating microalgal growth and improving the accumulation of specific products under non-stress conditions was discussed.
Collapse
Affiliation(s)
- Jiangyu Zhu
- School of Food Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou 225127, China; Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Fukuoka 808-0196, Japan.
| | - Yifei Cai
- School of Food Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou 225127, China
| | - Minato Wakisaka
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Fukuoka 808-0196, Japan; Food Study Centre, Fukuoka Women's University, 1-1-1 Kasumigaoka, Fukuoka 813-8529, Japan.
| | - Zhengfei Yang
- School of Food Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou 225127, China
| | - Yongqi Yin
- School of Food Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou 225127, China
| | - Weiming Fang
- School of Food Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou 225127, China
| | - Yan Xu
- School of Food Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou 225127, China
| | - Taku Omura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ruihui Yu
- School of International Trade, Anhui University of Finance and Economics, Bengbu 233030, China
| | - Alvin Lim Teik Zheng
- Faculty of Humanities, Management and Science, Universiti Putra Malaysia Bintulu Campus, Bintulu, Sarawak 97008, Malaysia
| |
Collapse
|
54
|
Singh A, Rajput VD, Sharma R, Ghazaryan K, Minkina T. Salinity stress and nanoparticles: Insights into antioxidative enzymatic resistance, signaling, and defense mechanisms. ENVIRONMENTAL RESEARCH 2023; 235:116585. [PMID: 37437867 DOI: 10.1016/j.envres.2023.116585] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/13/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Salinized land is slowly spreading across the world. Reduced crop yields and quality due to salt stress threaten the ability to feed a growing population. We discussed the mechanisms behind nano-enabled antioxidant enzyme-mediated plant tolerance, such as maintaining reactive oxygen species (ROS) homeostasis, enhancing the capacity of plants to retain K+ and eliminate Na+, increasing the production of nitric oxide, involving signaling pathways, and lowering lipoxygenase activities to lessen oxidative damage to membranes. Frequently used techniques were highlighted like protecting cells from oxidative stress and keeping balance in ionic state. Salt tolerance in plants enabled by nanotechnology is also discussed, along with the potential role of physiobiochemical and molecular mechanisms. As a whole, the goal of this review is meant to aid researchers in fields as diverse as plant science and nanoscience in better-comprehending potential with novel solutions to addressing salinity issues for sustainable agriculture.
Collapse
Affiliation(s)
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | | | | | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| |
Collapse
|
55
|
Hu C, Elias E, Nawrocki WJ, Croce R. Drought affects both photosystems in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2023; 240:663-675. [PMID: 37530066 DOI: 10.1111/nph.19171] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/14/2023] [Indexed: 08/03/2023]
Abstract
Drought is a major abiotic stress that impairs plant growth and development. Despite this, a comprehensive understanding of drought effects on the photosynthetic apparatus is lacking. In this work, we studied the consequences of 14-d drought treatment on Arabidopsis thaliana. We used biochemical and spectroscopic methods to examine photosynthetic membrane composition and functionality. Drought led to the disassembly of PSII supercomplexes and the degradation of PSII core. The light-harvesting complexes (LHCII) instead remain in the membrane but cannot act as an antenna for active PSII, thus representing a potential source of photodamage. This effect can also be observed during nonphotochemical quenching (NPQ) induction when even short pulses of saturating light can lead to photoinhibition. At a later stage, under severe drought stress, the PSI antenna size is also reduced and the PSI-LHCI supercomplexes disassemble. Surprisingly, although we did not observe changes in the PSI core protein content, the functionality of PSI is severely affected, suggesting the accumulation of nonfunctional PSI complexes. We conclude that drought affects both photosystems, although at a different stage, and that the operative quantum efficiency of PSII (ΦPSII ) is very sensitive to drought and can thus be used as a parameter for early detection of drought stress.
Collapse
Affiliation(s)
- Chen Hu
- Biophysics of Photosynthesis, Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands
| | - Eduard Elias
- Biophysics of Photosynthesis, Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands
| | - Wojciech J Nawrocki
- Biophysics of Photosynthesis, Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands
| | - Roberta Croce
- Biophysics of Photosynthesis, Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
56
|
Gollan PJ, Grebe S, Roling L, Grimm B, Spetea C, Aro E. Photosynthetic and transcriptome responses to fluctuating light in Arabidopsis thylakoid ion transport triple mutant. PLANT DIRECT 2023; 7:e534. [PMID: 37886682 PMCID: PMC10598627 DOI: 10.1002/pld3.534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/29/2023] [Accepted: 09/14/2023] [Indexed: 10/28/2023]
Abstract
Fluctuating light intensity challenges fluent photosynthetic electron transport in plants, inducing photoprotection while diminishing carbon assimilation and growth, and also influencing photosynthetic signaling for regulation of gene expression. Here, we employed in vivo chlorophyll-a fluorescence and P700 difference absorption measurements to demonstrate the enhancement of photoprotective energy dissipation of both photosystems in wild-type Arabidopsis thaliana after 6 h exposure to fluctuating light as compared with constant light conditions. This acclimation response to fluctuating light was hampered in a triple mutant lacking the thylakoid ion transport proteins KEA3, VCCN1, and CLCe, leading to photoinhibition of photosystem I. Transcriptome analysis revealed upregulation of genes involved in biotic stress and defense responses in both genotypes after exposure to fluctuating as compared with constant light, yet these responses were demonstrated to be largely upregulated in triple mutant already under constant light conditions compared with wild type. The current study illustrates the rapid acclimation of plants to fluctuating light, including photosynthetic, transcriptomic, and metabolic adjustments, and highlights the connection among thylakoid ion transport, photosynthetic energy balance, and cell signaling.
Collapse
Affiliation(s)
- Peter J. Gollan
- Department of Life Technologies, Molecular Plant BiologyUniversity of TurkuTurkuFinland
| | - Steffen Grebe
- Department of Life Technologies, Molecular Plant BiologyUniversity of TurkuTurkuFinland
- Present address:
Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Center (ViPS)University of HelsinkiHelsinkiFinland
| | - Lena Roling
- Institute of Biology/Plant PhysiologyHumboldt‐Universität zu BerlinBerlinGermany
| | - Bernhard Grimm
- Institute of Biology/Plant PhysiologyHumboldt‐Universität zu BerlinBerlinGermany
| | - Cornelia Spetea
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Eva‐Mari Aro
- Department of Life Technologies, Molecular Plant BiologyUniversity of TurkuTurkuFinland
| |
Collapse
|
57
|
Atta K, Mondal S, Gorai S, Singh AP, Kumari A, Ghosh T, Roy A, Hembram S, Gaikwad DJ, Mondal S, Bhattacharya S, Jha UC, Jespersen D. Impacts of salinity stress on crop plants: improving salt tolerance through genetic and molecular dissection. FRONTIERS IN PLANT SCIENCE 2023; 14:1241736. [PMID: 37780527 PMCID: PMC10540871 DOI: 10.3389/fpls.2023.1241736] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023]
Abstract
Improper use of water resources in irrigation that contain a significant amount of salts, faulty agronomic practices such as improper fertilization, climate change etc. are gradually increasing soil salinity of arable lands across the globe. It is one of the major abiotic factors that inhibits overall plant growth through ionic imbalance, osmotic stress, oxidative stress, and reduced nutrient uptake. Plants have evolved with several adaptation strategies at morphological and molecular levels to withstand salinity stress. Among various approaches, harnessing the crop genetic variability across different genepools and developing salinity tolerant crop plants offer the most sustainable way of salt stress mitigation. Some important major genetic determinants controlling salinity tolerance have been uncovered using classical genetic approaches. However, its complex inheritance pattern makes breeding for salinity tolerance challenging. Subsequently, advances in sequence based breeding approaches and functional genomics have greatly assisted in underpinning novel genetic variants controlling salinity tolerance in plants at the whole genome level. This current review aims to shed light on physiological, biochemical, and molecular responses under salt stress, defense mechanisms of plants, underlying genetics of salt tolerance through bi-parental QTL mapping and Genome Wide Association Studies, and implication of Genomic Selection to breed salt tolerant lines.
Collapse
Affiliation(s)
- Kousik Atta
- ICAR-Indian Agricultural Research Institute, New Delhi, India
- Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| | - Saptarshi Mondal
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, United States
| | - Shouvik Gorai
- Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| | - Aditya Pratap Singh
- Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
- School of Agriculture, GIET University, Gunupur, Rayagada, Odisha, India
| | - Amrita Kumari
- Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| | - Tuhina Ghosh
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Arkaprava Roy
- ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR- National Institute of Biotic Stress Management, Raipur, India
| | - Suryakant Hembram
- WBAS (Research), Government of West Bengal, Field Crop Research Station, Burdwan, India
| | | | - Subhasis Mondal
- Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| | | | | | - David Jespersen
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, United States
| |
Collapse
|
58
|
Sun Z, Bai C, Liu Y, Ma M, Zhang S, Liu H, Bai R, Han X, Yong JWH. Resilient and sustainable production of peanut (Arachis hypogaea) in phosphorus-limited environment by using exogenous gamma-aminobutyric acid to sustain photosynthesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115388. [PMID: 37611478 DOI: 10.1016/j.ecoenv.2023.115388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Globally, many low to medium yielding peanut fields have the potential for further yield improvement. Low phosphorus (P) limitation is one of the significant factors curtailing Arachis hypogaea productivity in many regions. In order to demonstrate the effects of gamma-aminobutyric acid (GABA) on peanuts growing under P deficiency, we used a pot-based experiment to examine the effects of exogenous GABA on alleviating P deficiency-induced physiological changes and growth inhibition in peanuts. The key physiological parameters examined were foliar gas exchange, photochemical efficiency, proton motive force, reactive oxygen species (ROS), and adenosine triphosphate (ATP) synthase activity of peanuts under cultivation with low P (LP, 0.5 mM P) and control conditions. During low P, the cyclic electron flow (CEF) maintained the high proton gradient (∆pH) induced by low ATP synthetic activity. Applying GABA during low P conditions stimulated CEF and reduced the concomitant ROS generation and thereby protecting the foliar photosystem II (PSII) from photoinhibition. Specifically, GABA enhanced the rate of electronic transmission of PSII (ETRII) by pausing the photoprotection mechanisms including non-photochemical quenching (NPQ) and ∆pH regulation. Thus, GABA was shown to be effective in restoring peanut growth when encountering P deficiency. Exogenous GABA alleviated two symptoms (increased root-shoot ratio and photoinhibition) of P-deficient peanuts. This is possibly the first report of using exogenous GABA to restore photosynthesis and growth under low P availability. Therefore, foliar applications of GABA could be a simple, safe and effective approach to overcome low yield imposed by limited P resources (low P in soils or P-fertilizers are unavailable) for sustainable peanut cultivation and especially in low to medium yielding fields.
Collapse
Affiliation(s)
- Zhiyu Sun
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Chunming Bai
- Liaoning Academy of Agricultural Sciences, Shenyang, China; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Yifei Liu
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, Perth, WA, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia.
| | - Mingzhu Ma
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Siwei Zhang
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Huan Liu
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Rui Bai
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Xiaori Han
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Jean Wan Hong Yong
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia; Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| |
Collapse
|
59
|
Takagi D, Tani S. Impact of growth light environment on oxygen sensitivity in rice: Pseudo-first-order response of photosystem I photoinhibition to O 2 partial pressure. PHYSIOLOGIA PLANTARUM 2023; 175:e14009. [PMID: 37882280 DOI: 10.1111/ppl.14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 10/27/2023]
Abstract
Photosynthetic organisms generate reactive oxygen species (ROS) during photosynthetic electron transport reactions on the thylakoid membranes within both photosystems (PSI and PSII), leading to the impairment of photosynthetic activity, known as photoinhibition. In PSI, ROS production has been suggested to follow Michaelis-Menten- or second-order reaction-dependent kinetics in response to changes in the partial pressure of O2 . However, it remains unclear whether ROS-mediated PSI photoinhibition follows the kinetics mentioned above. In this study, we aimed to elucidate the ROS production kinetics from the aspect of PSI photoinhibition in vivo. For this research objective, we investigated the O2 dependence of PSI photoinhibition by examining intact rice leaves grown under varying photon flux densities. Subsequently, we found that the degree of O2 -dependent PSI photoinhibition linearly increased in response to the increase in O2 partial pressure. Furthermore, we observed that the higher photon flux density on plant growth reduced the O2 sensitivity of PSI photoinhibition. Based on the obtained data, we investigated the O2 -dependent kinetics of PSI photoinhibition by model fitting analysis to elucidate the mechanism of PSI photoinhibition in leaves grown under various photon flux densities. Remarkably, we found that the pseudo-first-order reaction formula successfully replicated the O2 -dependent PSI photoinhibition kinetics in intact leaves. These results suggest that ROS production, which triggers PSI photoinhibition, occurs by an electron-leakage reaction from electron carriers within PSI, consistent with previous in vitro studies.
Collapse
Affiliation(s)
- Daisuke Takagi
- Department of Agricultural Science and Technology, Faculty of Agriculture, Setsunan University, Hirakata, Japan
- Department of Agricultural Science, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Japan
| | - Saya Tani
- Department of Agricultural Science and Technology, Faculty of Agriculture, Setsunan University, Hirakata, Japan
| |
Collapse
|
60
|
Yadav P, Ansari MW, Kaula BC, Rao YR, Meselmani MA, Siddiqui ZH, Brajendra, Kumar SB, Rani V, Sarkar A, Rakwal R, Gill SS, Tuteja N. Regulation of ethylene metabolism in tomato under salinity stress involving linkages with important physiological signaling pathways. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 334:111736. [PMID: 37211221 DOI: 10.1016/j.plantsci.2023.111736] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/16/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
The tomato is well-known for its anti-oxidative and anti-cancer properties, and with a wide range of health benefits is an important cash crop for human well-being. However, environmental stresses (especially abiotic) are having a deleterious effect on plant growth and productivity, including tomato. In this review, authors describe how salinity stress imposes risk consequences on growth and developmental processes of tomato through toxicity by ethylene (ET) and cyanide (HCN), and ionic, oxidative, and osmotic stresses. Recent research has clarified how salinity stress induced-ACS and - β-CAS expressions stimulate the accumulation of ET and HCN, wherein the action of salicylic acid (SA),compatible solutes (CSs), polyamines (PAs) and ET inhibitors (ETIs) regulate ET and HCN metabolism. Here we emphasize how ET, SA and PA cooperates with mitochondrial alternating oxidase (AOX), salt overly sensitive (SOS) pathways and the antioxidants (ANTOX) system to better understand the salinity stress resistance mechanism. The current literature evaluated in this paper provides an overview of salinity stress resistance mechanism involving synchronized routes of ET metabolism by SA and PAs, connecting regulated network of central physiological processes governing through the action of AOX, β-CAS, SOS and ANTOX pathways, which might be crucial for the development of tomato.
Collapse
Affiliation(s)
- Priya Yadav
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India
| | - Mohammad Wahid Ansari
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India.
| | - Babeeta C Kaula
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India
| | - Yalaga Rama Rao
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur 522213, Andhra Pradesh, India
| | - Moaed Al Meselmani
- School of Biosciences, Alfred Denny Building, Grantham Centre, The University of Sheffield, Firth Court, Western Bank, Sheffield, South Yorkshire, England, UK
| | | | - Brajendra
- Division of Soil Science, ICAR-IIRR, Hyderabad, Telangana, India
| | - Shashi Bhushan Kumar
- Department of Soil Science, Birsa Agricultural University, Kanke, Ranchi, Jharkhand, India
| | - Varsha Rani
- Department of Crop Physiology, Birsa Agricultural University, Kanke, Ranchi, Jharkhand, India
| | - Abhijit Sarkar
- Department of Botany, University of GourBanga, Malda 732103, West Bengal, India
| | - Randeep Rakwal
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Sarvajeet Singh Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, MD University, Rohtak 124001, India
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
61
|
Guo W, Xing Y, Luo X, Li F, Ren M, Liang Y. Reactive Oxygen Species: A Crosslink between Plant and Human Eukaryotic Cell Systems. Int J Mol Sci 2023; 24:13052. [PMID: 37685857 PMCID: PMC10487619 DOI: 10.3390/ijms241713052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Reactive oxygen species (ROS) are important regulating factors that play a dual role in plant and human cells. As the first messenger response in organisms, ROS coordinate signals in growth, development, and metabolic activity pathways. They also can act as an alarm mechanism, triggering cellular responses to harmful stimuli. However, excess ROS cause oxidative stress-related damage and oxidize organic substances, leading to cellular malfunctions. This review summarizes the current research status and mechanisms of ROS in plant and human eukaryotic cells, highlighting the differences and similarities between the two and elucidating their interactions with other reactive substances and ROS. Based on the similar regulatory and metabolic ROS pathways in the two kingdoms, this review proposes future developments that can provide opportunities to develop novel strategies for treating human diseases or creating greater agricultural value.
Collapse
Affiliation(s)
- Wei Guo
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yadi Xing
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China;
| | - Fuguang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572000, China
| | - Maozhi Ren
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China;
- Hainan Yazhou Bay Seed Laboratory, Sanya 572000, China
| | - Yiming Liang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
62
|
Jia L, Liu L, Zhang Y, Fu W, Liu X, Wang Q, Tanveer M, Huang L. Microplastic stress in plants: effects on plant growth and their remediations. FRONTIERS IN PLANT SCIENCE 2023; 14:1226484. [PMID: 37636098 PMCID: PMC10452891 DOI: 10.3389/fpls.2023.1226484] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/10/2023] [Indexed: 08/29/2023]
Abstract
Microplastic (MP) pollution is becoming a global problem due to the resilience, long-term persistence, and robustness of MPs in different ecosystems. In terrestrial ecosystems, plants are exposed to MP stress, thereby affecting overall plant growth and development. This review article has critically analyzed the effects of MP stress in plants. We found that MP stress-induced reduction in plant physical growth is accompanied by two complementary effects: (i) blockage of pores in seed coat or roots to alter water and nutrient uptake, and (ii) induction of drought due to increased soil cracking effects of MPs. Nonetheless, the reduction in physiological growth under MP stress is accompanied by four complementary effects: (i) excessive production of ROS, (ii) alteration in leaf and root ionome, (iii) impaired hormonal regulation, and (iv) decline in chlorophyll and photosynthesis. Considering that, we suggested that targeting the redox regulatory mechanisms could be beneficial in improving tolerance to MPs in plants; however, antioxidant activities are highly dependent on plant species, plant tissue, MP type, and MP dose. MP stress also indirectly reduces plant growth by altering soil productivity. However, MP-induced negative effects vary due to the presence of different surface functional groups and particle sizes. In the end, we suggested the utilization of agronomic approaches, including the application of growth regulators, biochar, and replacing plastic mulch with crop residues, crop diversification, and biological degradation, to ameliorate the effects of MP stress in plants. The efficiency of these methods is also MP-type-specific and dose-dependent.
Collapse
Affiliation(s)
- Li Jia
- College of Food and Drug, Luoyang Normal University, Luoyang, Henan, China
| | - Lining Liu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Yujing Zhang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Wenxuan Fu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Xing Liu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Qianqian Wang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Liping Huang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
63
|
Smythers AL, Crislip JR, Slone DR, Flinn BB, Chaffins JE, Camp KA, McFeeley EW, Kolling DRJ. Excess manganese increases photosynthetic activity via enhanced reducing center and antenna plasticity in Chlorella vulgaris. Sci Rep 2023; 13:11301. [PMID: 37438371 DOI: 10.1038/s41598-023-35895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/25/2023] [Indexed: 07/14/2023] Open
Abstract
Photosynthesis relies on many easily oxidizable/reducible transition metals found in the metalloenzymes that make up much of the photosynthetic electron transport chain (ETC). One of these is manganese, an essential cofactor of photosystem II (PSII) and a component of the oxygen-evolving complex, the only biological entity capable of oxidizing water. Additionally, manganese is a cofactor in enzymatic antioxidants, notably the superoxide dismutases-which are localized to the chloroplastic membrane. However, unlike other metals found in the photosynthetic ETC, previous research has shown exposure to excess manganese enhances photosynthetic activity rather than diminishing it. In this study, the impact of PSII heterogeneity on overall performance was investigated using chlorophyll fluorescence, a rapid, non-invasive technique that probed for overall photosynthetic efficiency, reducing site activity, and antenna size and distribution. These measurements unveiled an enhanced plasticity of PSII following excess manganese exposure, in which overall performance and reducing center activity increased while antenna size and proportion of PSIIβ centers decreased. This enhanced activity suggests manganese may hold the key to improving photosynthetic efficiency beyond that which is observed in nature.
Collapse
Affiliation(s)
- Amanda L Smythers
- Department of Chemistry, Marshall University, Huntington, WV, USA
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Danielle R Slone
- Department of Chemistry, Marshall University, Huntington, WV, USA
| | - Brendin B Flinn
- Department of Chemistry, Marshall University, Huntington, WV, USA
| | | | - Kristen A Camp
- Department of Chemistry, Marshall University, Huntington, WV, USA
| | - Eli W McFeeley
- Department of Chemistry, Marshall University, Huntington, WV, USA
| | | |
Collapse
|
64
|
Casatejada A, Puerto-Galán L, Pérez-Ruiz JM, Cejudo FJ. The contribution of glutathione peroxidases to chloroplast redox homeostasis in Arabidopsis. Redox Biol 2023; 63:102731. [PMID: 37245286 DOI: 10.1016/j.redox.2023.102731] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/30/2023] Open
Abstract
Oxidizing signals mediated by the thiol-dependent peroxidase activity of 2-Cys peroxiredoxins (PRXs) plays an essential role in fine-tuning chloroplast redox balance in response to changes in light intensity, a function that depends on NADPH-dependent thioredoxin reductase C (NTRC). In addition, plant chloroplasts are equipped with glutathione peroxidases (GPXs), thiol-dependent peroxidases that rely on thioredoxins (TRXs). Despite having a similar reaction mechanism than 2-Cys PRXs, the contribution of oxidizing signals mediated by GPXs to the chloroplast redox homeostasis remains poorly known. To address this issue, we have generated the Arabidopsis (Arabidopsis thaliana) double mutant gpx1gpx7, which is devoid of the two GPXs, 1 and 7, localized in the chloroplast. Furthermore, to analyze the functional relationship of chloroplast GPXs with the NTRC-2-Cys PRXs redox system, the 2cpab-gpx1gpx7 and ntrc-gpx1gpx7 mutants were generated. The gpx1gpx7 mutant displayed wild type-like phenotype indicating that chloroplast GPXs are dispensable for plant growth at least under standard conditions. However, the 2cpab-gpx1gpx7 showed more retarded growth than the 2cpab mutant. The simultaneous lack of 2-Cys PRXs and GPXs affected PSII performance and caused higher delay of enzyme oxidation in the dark. In contrast, the ntrc-gpx1gpx7 mutant combining the lack of NTRC and chloroplast GPXs behaved like the ntrc mutant indicating that the contribution of GPXs to chloroplast redox homeostasis is independent of NTRC. Further supporting this notion, in vitro assays showed that GPXs are not reduced by NTRC but by TRX y2. Based on these results, we propose a role for GPXs in the chloroplast redox hierarchy.
Collapse
Affiliation(s)
- Azahara Casatejada
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | - Leonor Puerto-Galán
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | - Juan M Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda. Américo Vespucio 49, 41092-Sevilla, Spain.
| | - Francisco J Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda. Américo Vespucio 49, 41092-Sevilla, Spain.
| |
Collapse
|
65
|
Doering T, Maire J, Chan WY, Perez-Gonzalez A, Meyers L, Sakamoto R, Buthgamuwa I, Blackall LL, van Oppen MJH. Comparing the Role of ROS and RNS in the Thermal Stress Response of Two Cnidarian Models, Exaiptasia diaphana and Galaxea fascicularis. Antioxidants (Basel) 2023; 12:antiox12051057. [PMID: 37237923 DOI: 10.3390/antiox12051057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/24/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Coral reefs are threatened by climate change, because it causes increasingly frequent and severe summer heatwaves, resulting in mass coral bleaching and mortality. Coral bleaching is believed to be driven by an excess production of reactive oxygen (ROS) and nitrogen species (RNS), yet their relative roles during thermal stress remain understudied. Here, we measured ROS and RNS net production, as well as activities of key enzymes involved in ROS scavenging (superoxide dismutase and catalase) and RNS synthesis (nitric oxide synthase) and linked these metrics to physiological measurements of cnidarian holobiont health during thermal stress. We did this for both an established cnidarian model, the sea anemone Exaiptasia diaphana, and an emerging scleractinian model, the coral Galaxea fascicularis, both from the Great Barrier Reef (GBR). Increased ROS production was observed during thermal stress in both species, but it was more apparent in G. fascicularis, which also showed higher levels of physiological stress. RNS did not change in thermally stressed G. fascicularis and decreased in E. diaphana. Our findings in combination with variable ROS levels in previous studies on GBR-sourced E. diaphana suggest G. fascicularis is a more suitable model to study the cellular mechanisms of coral bleaching.
Collapse
Affiliation(s)
- Talisa Doering
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Justin Maire
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Wing Yan Chan
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexis Perez-Gonzalez
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute of Infection and Immunity, Parkville, VIC 3010, Australia
- Melbourne Cytometry Platform, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Luka Meyers
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Rumi Sakamoto
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Isini Buthgamuwa
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Linda L Blackall
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Madeleine J H van Oppen
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| |
Collapse
|
66
|
Jedličková V, Hejret V, Demko M, Jedlička P, Štefková M, Robert HS. Transcriptome analysis of thermomorphogenesis in ovules and during early seed development in Brassica napus. BMC Genomics 2023; 24:236. [PMID: 37142980 PMCID: PMC10158150 DOI: 10.1186/s12864-023-09316-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/16/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Plant sexual reproduction is highly sensitive to elevated ambient temperatures, impacting seed development and production. We previously phenotyped this effect on three rapeseed cultivars (DH12075, Topas DH4079, and Westar). This work describes the transcriptional response associated with the phenotypic changes induced by heat stress during early seed development in Brassica napus. RESULTS We compared the differential transcriptional response in unfertilized ovules and seeds bearing embryos at 8-cell and globular developmental stages of the three cultivars exposed to high temperatures. We identified that all tissues and cultivars shared a common transcriptional response with the upregulation of genes linked to heat stress, protein folding and binding to heat shock proteins, and the downregulation of cell metabolism. The comparative analysis identified an enrichment for a response to reactive oxygen species (ROS) in the heat-tolerant cultivar Topas, correlating with the phenotypic changes. The highest heat-induced transcriptional response in Topas seeds was detected for genes encoding various peroxidases, temperature-induced lipocalin (TIL1), or protein SAG21/LEA5. On the contrary, the transcriptional response in the two heat-sensitive cultivars, DH12075 and Westar, was characterized by heat-induced cellular damages with the upregulation of genes involved in the photosynthesis and plant hormone signaling pathways. Particularly, the TIFY/JAZ genes involved in jasmonate signaling were induced by stress, specifically in ovules of heat-sensitive cultivars. Using a weighted gene co-expression network analysis (WGCNA), we identified key modules and hub genes involved in the heat stress response in studied tissues of either heat-tolerant or sensitive cultivars. CONCLUSIONS Our transcriptional analysis complements a previous phenotyping analysis by characterizing the growth response to elevated temperatures during early seed development and reveals the molecular mechanisms underlying the phenotypic response. The results demonstrated that response to ROS, seed photosynthesis, and hormonal regulation might be the critical factors for stress tolerance in oilseed rape.
Collapse
Affiliation(s)
- Veronika Jedličková
- Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Václav Hejret
- Bioinformatics Core Facility, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Martin Demko
- Bioinformatics Core Facility, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Pavel Jedlička
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Marie Štefková
- Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Hélène S Robert
- Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
67
|
Stefanov M, Rashkov G, Borisova P, Apostolova E. Sensitivity of the Photosynthetic Apparatus in Maize and Sorghum under Different Drought Levels. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091863. [PMID: 37176921 PMCID: PMC10180982 DOI: 10.3390/plants12091863] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Drought is one of the main environmental stress factors affecting plant growth and yield. The impact of different PEG concentrations on the photosynthetic performance of maize (Zea mays L. Mayflower) and sorghum (Sorghum bicolor L. Foehn) was investigated. The activity of the photosynthetic apparatus was assessed using chlorophyll fluorescence (PAM and JIP test) and photooxidation of P700. The data revealed that water deficiency decreased the photochemical quenching (qP), the ratio of photochemical to nonphotochemical processes (Fv/Fo), the effective quantum yield of the photochemical energy conversion in PSII (ΦPSII), the rate of the electron transport (ETR), and the performance indexes PItotal and PIABS, as the impact was stronger in sorghum than in maize and depended on drought level. The PSI photochemistry (P700 photooxidation) in sorghum was inhibited after the application of all studied drought levels, while in maize, it was registered only after treatment with higher PEG concentrations (30% and 40%). Enhanced regulated energy losses (ΦNPQ) and activation of the state transition under drought were also observed in maize, while in sorghum, an increase mainly in nonregulated energy losses (ΦNO). A decrease in pigment content and relative water content and an increase in membrane damage were also registered after PEG treatment. The experimental results showed better drought tolerance of maize than sorghum. This study provides new information about the role of regulated energy losses and state transition for the protection of the photosynthetic apparatus under drought and might be a practical approach to the determination of the drought tolerance of plants.
Collapse
Affiliation(s)
- Martin Stefanov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Georgi Rashkov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Preslava Borisova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Emilia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
68
|
Knieper M, Viehhauser A, Dietz KJ. Oxylipins and Reactive Carbonyls as Regulators of the Plant Redox and Reactive Oxygen Species Network under Stress. Antioxidants (Basel) 2023; 12:antiox12040814. [PMID: 37107189 PMCID: PMC10135161 DOI: 10.3390/antiox12040814] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Reactive oxygen species (ROS), and in particular H2O2, serve as essential second messengers at low concentrations. However, excessive ROS accumulation leads to severe and irreversible cell damage. Hence, control of ROS levels is needed, especially under non-optimal growth conditions caused by abiotic or biotic stresses, which at least initially stimulate ROS synthesis. A complex network of thiol-sensitive proteins is instrumental in realizing tight ROS control; this is called the redox regulatory network. It consists of sensors, input elements, transmitters, and targets. Recent evidence revealed that the interplay of the redox network and oxylipins–molecules derived from oxygenation of polyunsaturated fatty acids, especially under high ROS levels–plays a decisive role in coupling ROS generation and subsequent stress defense signaling pathways in plants. This review aims to provide a broad overview of the current knowledge on the interaction of distinct oxylipins generated enzymatically (12-OPDA, 4-HNE, phytoprostanes) or non-enzymatically (MDA, acrolein) and components of the redox network. Further, recent findings on the contribution of oxylipins to environmental acclimatization will be discussed using flooding, herbivory, and establishment of thermotolerance as prime examples of relevant biotic and abiotic stresses.
Collapse
|
69
|
Redox Signaling in Plant Heat Stress Response. Antioxidants (Basel) 2023; 12:antiox12030605. [PMID: 36978852 PMCID: PMC10045013 DOI: 10.3390/antiox12030605] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The increase in environmental temperature due to global warming is a critical threat to plant growth and productivity. Heat stress can cause impairment in several biochemical and physiological processes. Plants sense and respond to this adverse environmental condition by activating a plethora of defense systems. Among them, the heat stress response (HSR) involves an intricate network of heat shock factors (HSFs) and heat shock proteins (HSPs). However, a growing amount of evidence suggests that reactive oxygen species (ROS), besides potentially being responsible for cellular oxidative damage, can act as signal molecules in HSR, leading to adaptative responses. The role of ROS as toxic or signal molecules depends on the fine balance between their production and scavenging. Enzymatic and non-enzymatic antioxidants represent the first line of defense against oxidative damage and their activity is critical to maintaining an optimal redox environment. However, the HS-dependent ROS burst temporarily oxidizes the cellular environment, triggering redox-dependent signaling cascades. This review provides an overview of the redox-activated mechanisms that participate in the HSR.
Collapse
|
70
|
Hu W, Liu J, Liu T, Zhu C, Wu F, Jiang C, Wu Q, Chen L, Lu H, Shen G, Zheng H. Exogenous calcium regulates the growth and development of Pinus massoniana detecting by physiological, proteomic, and calcium-related genes expression analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:1122-1136. [PMID: 36907700 DOI: 10.1016/j.plaphy.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Pinus massoniana is an important industrial crop tree species commonly used for timber and wood pulp for papermaking, rosin, and turpentine. This study investigated the effects of exogenous calcium (Ca) on P. massoniana seedling growth, development, and various biological processes and revealed the underlying molecular mechanisms. The results showed that Ca deficiency led to severe inhibition of seedling growth and development, whereas adequate exogenous Ca markedly improved growth and development. Many physiological processes were regulated by exogenous Ca. The underlying mechanisms involved diverse Ca-influenced biological processes and metabolic pathways. Calcium deficiency inhibited or impaired these pathways and processes, whereas sufficient exogenous Ca improved and benefited these cellular events by regulating several related enzymes and proteins. High levels of exogenous Ca facilitated photosynthesis and material metabolism. Adequate exogenous Ca supply relieved oxidative stress that occurred at low Ca levels. Enhanced cell wall formation, consolidation, and cell division also played a role in exogenous Ca-improved P. massoniana seedling growth and development. Calcium ion homeostasis and Ca signal transduction-related gene expression were also activated at high exogenous Ca levels. Our study facilitates the elucidation of the potential regulatory role of Ca in P. massoniana physiology and biology and is of guiding significance in Pinaceae plant forestry.
Collapse
Affiliation(s)
- Wenjun Hu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Jiyun Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, Fujian, China.
| | - Tingwu Liu
- School of Life Science, Huaiyin Normal University, Huai'an, 223300, Jiangsu, China.
| | - Chunquan Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China.
| | - Feihua Wu
- Department of Horticulture, Foshan University, Foshan, 528051, Guangdong, China.
| | - Chenkai Jiang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Qian Wu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, Fujian, China.
| | - Lin Chen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Hongling Lu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Hailei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, Fujian, China.
| |
Collapse
|
71
|
Kayoumu M, Iqbal A, Muhammad N, Li X, Li L, Wang X, Gui H, Qi Q, Ruan S, Guo R, Zhang X, Song M, Dong Q. Phosphorus Availability Affects the Photosynthesis and Antioxidant System of Contrasting Low-P-Tolerant Cotton Genotypes. Antioxidants (Basel) 2023; 12:antiox12020466. [PMID: 36830024 PMCID: PMC9952849 DOI: 10.3390/antiox12020466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Phosphorus (P) is an essential macronutrient, and an important component of plant metabolism. However, little is known about the effects of low P availability on P absorption, the photosynthetic electron transport chain, and the antioxidant system in cotton. This study used cotton genotypes (sensitive FJA and DLNTDH and tolerant BX014 and LuYuan343) with contrasting low-P tolerance in a hydroponic experiment under 15 µM, 50 µM, and 500 μM P concentrations. The results showed that low P availability reduced plant development and leaf area, shoot length, and dry weight in FJA and DLNADH, compared to BX014 and LuYuan343. The low P availability decreased the gas-exchange parameters such as the net photosynthetic rate, transpiration rate, and stomatal conductance, and increased the intercellular CO2 concentration. Chlorophyll a fluorescence demonstrated that the leaves' absorption and trapped-energy flux were largely steady. In contrast, considerable gains in absorption and trapped-energy flux per reaction center resulted from decreases in the electron transport per reaction center under low-P conditions. In addition, low P availability reduced the activities of antioxidant enzymes and increased the content of malondialdehyde in the cotton genotypes, especially in FJA and DLNTDH. Moreover, low P availability reduced the activity of PEPC and generated a decline in the content of ATP and NADPH. Our research can provide a theoretical physiological basis for the growth and tolerance of cotton under low-P conditions.
Collapse
Affiliation(s)
- Mirezhatijiang Kayoumu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology/School of Agricultural Sciences, Zhengzhou University, Anyang 455000, China
| | - Asif Iqbal
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology/School of Agricultural Sciences, Zhengzhou University, Anyang 455000, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji 831100, China
- Department of Agriculture, Hazara University, Mansehra 21120, Pakistan
| | - Noor Muhammad
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology/School of Agricultural Sciences, Zhengzhou University, Anyang 455000, China
| | - Xiaotong Li
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology/School of Agricultural Sciences, Zhengzhou University, Anyang 455000, China
| | - Leilei Li
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiangru Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology/School of Agricultural Sciences, Zhengzhou University, Anyang 455000, China
| | - Huiping Gui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology/School of Agricultural Sciences, Zhengzhou University, Anyang 455000, China
| | - Qian Qi
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology/School of Agricultural Sciences, Zhengzhou University, Anyang 455000, China
| | - Sijia Ruan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology/School of Agricultural Sciences, Zhengzhou University, Anyang 455000, China
| | - Ruishi Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology/School of Agricultural Sciences, Zhengzhou University, Anyang 455000, China
| | - Xiling Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology/School of Agricultural Sciences, Zhengzhou University, Anyang 455000, China
- Correspondence: (X.Z.); (M.S.); (Q.D.); Tel.: +86-0372-2562-308 (Q.D.)
| | - Meizhen Song
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology/School of Agricultural Sciences, Zhengzhou University, Anyang 455000, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji 831100, China
- Correspondence: (X.Z.); (M.S.); (Q.D.); Tel.: +86-0372-2562-308 (Q.D.)
| | - Qiang Dong
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology/School of Agricultural Sciences, Zhengzhou University, Anyang 455000, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji 831100, China
- Correspondence: (X.Z.); (M.S.); (Q.D.); Tel.: +86-0372-2562-308 (Q.D.)
| |
Collapse
|
72
|
Wang Q, Chen H, Zhu L, Feng P, Fan M, Wang J. WSL214 negatively regulates ROS accumulation and pathogen defense response in rice. PLANT CELL REPORTS 2023; 42:449-460. [PMID: 36585972 DOI: 10.1007/s00299-022-02970-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
WSL214 plays an important role in promoting cellular ROS homeostasis by enhancing catalase activity and reducing photosynthetic ROS production. ROS are the important regulator of cellular homeostasis, and balancing ROS production and clearance contributes to cellular activity. Although many genes associated with ROS have been cloned, the mechanism of this balance is not fully understood. In this study, we obtained the rice mutant wsl214 that arose from a natural mutation. Compared to WT, wsl214 exhibited white-striped leaves, defective chloroplast development, reduced net photosynthetic rate, and overexcitation of photosynthetically active reaction centers. In addition, the ROS accumulation level was significantly elevated, and the ROS scavenging enzyme activity was significantly decreased in wsl214 leaf tissue. As a result of elevated ROS levels, wsl214 leaf cells underwent DNA damage and programmed cell death. However, wsl214 defense response to exogenous pathogens was also enhanced by high ROS levels. Based on the mapping cloning, we discovered that WSL214 had a single base mutation (C to T) in the third exon, resulting in decreased expression of wsl214. The WSL214 encodes an HD domain phosphohydrolase and is widely expressed in various tissues of rice, especially at the highest level in leaf tissue. Further research showed that WSL214 promoted the homeostasis of rice leaf cellular ROS in two ways. First, WSL214 increased the expression of the catalase gene OsCATC, making the intracellular ROS scavenging enzyme more active. Second, WSL214 promoted chloroplast development, kept photosynthesis working properly, and reduced ROS produced by photosynthesis. In conclusion, our report emphasizes that WSL214 is a key part of balancing ROS levels in cells.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Rice Biology & Genetic Breeding in Northeast China (Ministry of Agriculture and Rural Areas)/Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Hongwei Chen
- Key Laboratory of Rice Biology & Genetic Breeding in Northeast China (Ministry of Agriculture and Rural Areas)/Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Lin Zhu
- Key Laboratory of Rice Biology & Genetic Breeding in Northeast China (Ministry of Agriculture and Rural Areas)/Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Pulin Feng
- Key Laboratory of Rice Biology & Genetic Breeding in Northeast China (Ministry of Agriculture and Rural Areas)/Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Mingqian Fan
- Key Laboratory of Rice Biology & Genetic Breeding in Northeast China (Ministry of Agriculture and Rural Areas)/Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Jiayu Wang
- Key Laboratory of Rice Biology & Genetic Breeding in Northeast China (Ministry of Agriculture and Rural Areas)/Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
73
|
Havaux M. Review of Lipid Biomarkers and Signals of Photooxidative Stress in Plants. Methods Mol Biol 2023; 2642:111-128. [PMID: 36944875 DOI: 10.1007/978-1-0716-3044-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The degree of unsaturation of plant lipids is high, making them sensitive to oxidation. They thus constitute primary targets of reactive oxygen species and oxidative stress. Moreover, the hydroperoxides generated during lipid peroxidation decompose in a variety of secondary products which can propagate oxidative stress or trigger signaling mechanisms. Both primary and secondary products of lipid oxidation are helpful markers of oxidative stress in plants. This chapter describes a number of methods that have been developed to measure those biomarkers and signals, with special emphasis on the monitoring of photooxidative stress. Depending on their characteristics, those lipid markers provide information not only on the oxidation status of plant tissues but also on the origin of lipid peroxidation, the localization of the damage, or the type of reactive oxygen species involved.
Collapse
Affiliation(s)
- Michel Havaux
- Aix-Marseille University, CEA, CNRS, UMR7265, Bioscience and Biotechnology Institute of Aix-Marseille, CEA/Cadarache, Saint-Paul-lez-Durance, France.
| |
Collapse
|
74
|
Early detection of stripe rust infection in wheat using light-induced fluorescence spectroscopy. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023; 22:115-134. [PMID: 36121603 DOI: 10.1007/s43630-022-00303-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/08/2022] [Indexed: 01/12/2023]
Abstract
In the current study, the application of fluorescence spectroscopy along with the advanced statistical technique and confocal microscopy was investigated for the early detection of stripe rust infection in wheat grown under field conditions. The indigenously developed Fluorosensor fitted with LED, emitting monochromatic light was used that covered comparatively larger leaf area for recording fluorescence data thus presenting more reliable current status of the leaf. The examined leaf samples covered the entire range of stripe rust disease infection from no visible symptoms to the complete disease prevalence. The molecular changes were also assessed in the leaves as the disease progresses. The emission spectra mainly produce two fluorescence emission classes, namely the blue-green fluorescence (400-600 nm range) and chlorophyll fluorescence (650-800 nm range). The chlorophyll fluorescence region showed lower chlorophyll bands both at 685 and 735 nm in the asymptomatic (early diseased) and symptomatic (diseased) leaf samples than the healthy ones as a result of partial deactivation of PSII reaction centers. The 735 nm chlorophyll fluorescence band was either slight or completely absent in the leaf samples with lower to higher disease incidence and thus differentiate between the healthy and the infected leaf samples. The Hydroxycinnamic acids (caffeic and sinapic acids) showed decreasing trend, whereas the ferulic acid increased with the rise in disease infection. Peak broadening/shifting has been observed in case of ferulic acid and carotenes/carotenoids, with the increase in the disease intensity. While using the LEDs (365 nm), the peak broadening and the decline in the chlorophyll fluorescence bands could be used for the early prediction of stripe rust disease in wheat crop. The PLSR statistical techniques discriminated well between the healthy and the diseased samples, thus showed promise in early disease detection. Confocal microscopy confirmed the early prevalence of stripe rust disease infection in a susceptible variety at a stage when the disease is not detectable visually. It is inferred that fluorescence emission spectroscopy along with the chemometrics aided in the effective and timely diagnosis of plant diseases and the detected signatures provide the basis for remote sensing.
Collapse
|
75
|
Sorahinobar M, Deldari T, Nazem Bokaeei Z, Mehdinia A. Effect of zinc nanoparticles on the growth and biofortification capability of mungbean ( Vigna radiata) seedlings. Biologia (Bratisl) 2023; 78:951-960. [PMID: 36533139 PMCID: PMC9748875 DOI: 10.1007/s11756-022-01269-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022]
Abstract
Zinc insufficiency is a nutritional trouble worldwide, especially in developing countries. In the current study, an experiment was conducted to evaluate the effect of supplementation of MS media culture with different concentrations of ZnO nanoparticles (NPs) (0, 10, 20, 40, 80, and 160 ppm) on growth, nutrient uptake, and some physiological parameters of 7-days-old mung bean seedlings. ZnO NPs enhanced the Zn concentration of mung bean from 106.41 in control to more than 4600 µg/g dry weight in 80 and 160 ppm ZnO NPs treated seedlings. Our results showed that ZnO NPs in the concentration range from 10 to 20 ppm had a positive influence on growth parameters and photosynthetic pigments. Higher levels of ZnO NPs negatively affected seedling's growth by triggering oxidative stress which in turn caused enhancing antioxidative response in seedlings including polyphenol oxidase and peroxidase activity as well as phenolic compounds and anthocyanine contents. Considering the positive effects of ZnO NPs treatment on mungbean seedlings growth, micronutrents, protein and shoot phenolics content, 20 ppm is recommended as the optimal concentration for biofortification. Our findings confirm the capability of ZnO NPs in the remarkable increase of Zn content of mungbean seedlings which can be an efficient way for plant biofortification and dealing with environmental stress. Supplementary information The online version contains supplementary material available at 10.1007/s11756-022-01269-3.
Collapse
Affiliation(s)
- Mona Sorahinobar
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Tooba Deldari
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Zahra Nazem Bokaeei
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Ali Mehdinia
- Iranian National Institutes for Oceanography and Atmospheric Science, Tehran, Iran
| |
Collapse
|
76
|
Furutani R, Wada S, Ifuku K, Maekawa S, Miyake C. Higher Reduced State of Fe/S-Signals, with the Suppressed Oxidation of P700, Causes PSI Inactivation in Arabidopsis thaliana. Antioxidants (Basel) 2022; 12:antiox12010021. [PMID: 36670882 PMCID: PMC9854443 DOI: 10.3390/antiox12010021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Environmental stress increases the risk of electron accumulation in photosystem I (PSI) of chloroplasts, which can cause oxygen (O2) reduction to superoxide radicals and decreased photosynthetic ability. We used three Arabidopsis thaliana lines: wild-type (WT) and the mutants pgr5hope1 and paa1-7/pox1. These lines have different reduced states of iron/sulfur (Fe/S) signals, including Fx, FA/FB, and ferredoxin, the electron carriers at the acceptor side of PSI. In the dark, short-pulse light was repetitively illuminated to the intact leaves of the plants to provide electrons to the acceptor side of PSI. WT and pgr5hope1 plants showed full reductions of Fe/S during short-pulse light and PSI inactivation. In contrast, paa1-7/pox1 showed less reduction of Fe/S and its PSI was not inactivated. Under continuous actinic-light illumination, pgr5hope1 showed no P700 oxidation with higher Fe/S reduction due to the loss of photosynthesis control and PSI inactivation. These results indicate that the accumulation of electrons at the acceptor side of PSI may trigger the production of superoxide radicals. P700 oxidation, responsible for the robustness of photosynthetic organisms, participates in reactive oxygen species suppression by oxidizing the acceptor side of PSI.
Collapse
Affiliation(s)
- Riu Furutani
- Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Tokyo 102-0076, Japan
| | - Shinya Wada
- Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Tokyo 102-0076, Japan
| | - Kentaro Ifuku
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Tokyo 102-0076, Japan
- Graduate School for Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shu Maekawa
- Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Chikahiro Miyake
- Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Tokyo 102-0076, Japan
- Correspondence:
| |
Collapse
|
77
|
Manoj KM, Bazhin NM, Jacob VD, Parashar A, Gideon DA, Manekkathodi A. Structure-function correlations and system dynamics in oxygenic photosynthesis: classical perspectives and murburn precepts. J Biomol Struct Dyn 2022; 40:10997-11023. [PMID: 34323659 DOI: 10.1080/07391102.2021.1953606] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
HIGHLIGHTS Contemporary beliefs on oxygenic photosynthesis are critiqued.Murburn model is suggested as an alternative explanation.In the new model, diffusible reactive species are the main protagonists.All pigments are deemed photo-redox active in the new stochastic mechanism.NADPH synthesis occurs via simple electron transfers, not via elaborate ETC.Oxygenesis is delocalized and not just centered at Mn-Complex.Energetics of murburn proposal for photophosphorylation is provided.The proposal ushers in a paradigm shift in photosynthesis research.
Collapse
Affiliation(s)
| | | | - Vivian David Jacob
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Kerala, India
| | - Abhinav Parashar
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Kerala, India
| | | | - Afsal Manekkathodi
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Kerala, India
| |
Collapse
|
78
|
Sukhova E, Ratnitsyna D, Sukhov V. Simulated Analysis of Influence of Changes in H +-ATPase Activity and Membrane CO 2 Conductance on Parameters of Photosynthetic Assimilation in Leaves. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11243435. [PMID: 36559546 PMCID: PMC9783116 DOI: 10.3390/plants11243435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 05/09/2023]
Abstract
Photosynthesis is an important process in plants which influences their development and productivity. Many factors can control the efficiency of photosynthesis, including CO2 conductance of leaf mesophyll, which affects the CO2 availability for Rubisco. It is known that electrical stress signals can decrease this conductance, and the response is probably caused by inactivation of H+-ATPase in the plasma membrane. In the current work, we analyzed the influence of both CO2 conductance in the plasma membrane, and chloroplast envelopes and H+-ATPase activity on photosynthetic CO2 assimilation, using a two-dimensional mathematical model of photosynthesis in leaves. The model included a description of assimilation on the basis of the Farquhar-von Caemmerer-Berry model, ion transport through the plasma membrane, diffusion of CO2 in the apoplast, and transport of CO2 through the plasma membrane and chloroplast envelope. The model showed that the photosynthetic CO2 assimilation rate was mainly dependent on the plasma membrane and chloroplast envelope conductance; direct influence of the H+-ATPase activity (through changes in pH and CO2/HCO3- concentration ratio) on this rate was weak. In contrast, both changes in CO2 conductance of the plasma membrane and chloroplast envelopes and changes in the H+-ATPase activity influenced spatial heterogeneity of the CO2 assimilation on the leaf surface in the simulated two-dimensional system. These effects were also observed under simultaneous changes in the CO2 conductance of the plasma membrane and H+-ATPase activity. Qualitatively similar influence of changes in the CO2 conductance of the plasma membrane and chloroplast envelopes, and changes in the H+-ATPase activity on photosynthesis were shown for two different densities of stomata in the simulated leaf; however, lowering the density of stomata decreased the assimilation rate and increased the heterogeneity of assimilation. The results of the model analysis clarify the potential influence of H+-ATPase inactivation on photosynthesis, and can be the basis for development of new methods for remote sensing of the influence of electrical signals.
Collapse
|
79
|
G JM, P P, Dharmarajan A, Warrier S, Gandhirajan RK. Modulation of Reactive Oxygen Species in Cancers: Recent Advances. Free Radic Res 2022; 56:447-470. [PMID: 36214686 DOI: 10.1080/10715762.2022.2133704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Oxidation-reduction reactions played a significant role in the chemical evolution of life forms on oxygenated earth. Cellular respiration is dependent on such redox reactions, and any imbalance leads to the accumulation of reactive oxygen species (ROS), resulting in both chronic and acute illnesses. According to the International Agency for Research on Cancer (IARC), by 2040, the global burden of new cancer cases is expected to be around 27.5 million, with 16.3 million cancer deaths due to an increase in risk factors such as unhealthy lifestyle, environmental factors, aberrant gene mutations, and resistance to therapies. ROS play an important role in cellular signalling, but they can cause severe damage to tissues when present at higher levels. Elevated and chronic levels of ROS are pertinent in carcinogenesis, while several therapeutic strategies rely on altering cellular ROS to eliminate tumour cells as they are more susceptible to ROS-induced damage than normal cells. Given this selective targeting potential, therapies that can effectively modulate ROS levels have been the focus of intense research in recent years. The current review describes biologically relevant ROS, its origins in solid and haematological cancers, and the current status of evolving antioxidant and pro-oxidant therapies in cancers.
Collapse
Affiliation(s)
- Jeyasree M G
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra University, Porur, Chennai 600116, India
| | - Prerana P
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra University, Porur, Chennai 600116, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra University, Porur, Chennai 600116, India.,Stem Cell and Cancer Biology Laboratory, Curtin University, Perth, WA, Australia.,School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia.,Curtin Health and Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India.,Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
| | - Rajesh Kumar Gandhirajan
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra University, Porur, Chennai 600116, India
| |
Collapse
|
80
|
Mostofa MG, Rahman MM, Ghosh TK, Kabir AH, Abdelrahman M, Rahman Khan MA, Mochida K, Tran LSP. Potassium in plant physiological adaptation to abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:279-289. [PMID: 35932652 DOI: 10.1016/j.plaphy.2022.07.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 05/02/2023]
Abstract
Potassium (K) is an integral part of plant nutrition, playing essential roles in plant growth and development. Despite its abundance in soils, the limitedly available form of K ion (K+) for plant uptake is a critical factor for agricultural production. Plants have evolved complex transport systems to maintain appropriate K+ levels in tissues under changing environmental conditions. Adequate stimulation and coordinated actions of multiple K+-channels and K+-transporters are required for nutrient homeostasis, reproductive growth, cellular signaling and stress adaptation responses in plants. Various contemporary studies revealed that K+-homeostasis plays a substantial role in plant responses and tolerance to abiotic stresses. The beneficial effects of K+ in plant responses to abiotic stresses include its roles in physiological and biochemical mechanisms involved in photosynthesis, osmoprotection, stomatal regulation, water-nutrient absorption, nutrient translocation and enzyme activation. Over the last decade, we have seen considerable breakthroughs in K research, owing to the advances in omics technologies. In this aspect, omics investigations (e.g., transcriptomics, metabolomics, and proteomics) in systems biology manner have broadened our understanding of how K+ signals are perceived, conveyed, and integrated for improving plant physiological resilience to abiotic stresses. Here, we update on how K+-uptake and K+-distribution are regulated under various types of abiotic stress. We discuss the effects of K+ on several physiological functions and the interaction of K+ with other nutrients to improve plant potential against abiotic stress-induced adverse consequences. Understanding of how K+ orchestrates physiological mechanisms and contributes to abiotic stress tolerance in plants is essential for practicing sustainable agriculture amidst the climate crisis in global agriculture.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA.
| | - Md Mezanur Rahman
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Totan Kumar Ghosh
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | | | | | - Md Arifur Rahman Khan
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan; Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, Yokohama 230-0045, Japan; Kihara Institute for Biological Research, Yokohama City University, Yokohama 230-0045, Japan; School of Information and Data Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA; Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam.
| |
Collapse
|
81
|
Wang Y, Zhu W, Ren F, Zhao N, Xu S, Sun P. Transcriptional Memory in Taraxacum mongolicum in Response to Long-Term Different Grazing Intensities. PLANTS 2022; 11:plants11172251. [PMID: 36079633 PMCID: PMC9460496 DOI: 10.3390/plants11172251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022]
Abstract
Grazing, as an important land use method in grassland, has a significant impact on the morphological and physiological traits of plants. However, little is known about how the molecular mechanism of plant responds to different grazing intensities. Here, we investigated the response of Taraxacum mongolicum to light grazing and heavy grazing intensities in comparison with a non-grazing control. Using de novo transcriptome assembly, T. mongolicum leaves were compared for the expression of the different genes under different grazing intensities in natural grassland. In total, 194,253 transcripts were de novo assembled and comprised in nine leaf tissues. Among them, 11,134 and 9058 genes were differentially expressed in light grazing and heavy grazing grassland separately, with 5867 genes that were identified as co-expression genes in two grazing treatments. The Nr, SwissProt, String, GO, KEGG, and COG analyses by BLASTx searches were performed to determine and further understand the biological functions of those differentially expressed genes (DEGs). Analysis of the expression patterns of 10 DEGs by quantitative real-time RT-PCR (qRT-PCR) confirmed the accuracy of the RNA-Seq results. Based on a comparative transcriptome analysis, the most significant transcriptomic changes that were observed under grazing intensity were related to plant hormone and signal transduction pathways, carbohydrate and secondary metabolism, and photosynthesis. In addition, heavy grazing resulted in a stronger transcriptomic response compared with light grazing through increasing the of the secondary metabolism- and photosynthesis-related genes. These changes in key pathways and related genes suggest that they may synergistically respond to grazing to increase the resilience and stress tolerance of T. mongolicum. Our findings provide important clues for improving grassland use and protection and understanding the molecular mechanisms of plant response to grazing.
Collapse
Affiliation(s)
- Yalin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Wenyan Zhu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471003, China
| | - Fei Ren
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Na Zhao
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471003, China
| | - Shixiao Xu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471003, China
- Correspondence: (S.X.); (P.S.); Tel.: +86-13997163501 (S.X.); +86-13525415882 (P.S.)
| | - Ping Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Correspondence: (S.X.); (P.S.); Tel.: +86-13997163501 (S.X.); +86-13525415882 (P.S.)
| |
Collapse
|
82
|
Dandapani H, Kankaanpää P, Jones PR, Kallio P. A Plasmid-Based Fluorescence Reporter System for Monitoring Oxidative Damage in E. coli. SENSORS (BASEL, SWITZERLAND) 2022; 22:6334. [PMID: 36080791 PMCID: PMC9459809 DOI: 10.3390/s22176334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Quantitating intracellular oxidative damage caused by reactive oxygen species (ROS) is of interest in many fields of biological research. The current systems primarily rely on supplemented oxygen-sensitive substrates that penetrate the target cells, and react with ROS to produce signals that can be monitored with spectroscopic or imaging techniques. The objective here was to design a new non-invasive analytical strategy for measuring ROS-induced damage inside living cells by taking advantage of the native redox sensor system of E. coli. The developed plasmid-based sensor relies on an oxygen-sensitive transcriptional repressor IscR that controls the expression of a fluorescent marker in vivo. The system was shown to quantitatively respond to oxidative stress induced by supplemented H2O2 and lowered cultivation temperatures. Comparative analysis with fluorescence microscopy further demonstrated that the specificity of the reporter system was equivalent to the commercial chemical probe (CellROX). The strategy introduced here is not dependent on chemical probes, but instead uses a fluorescent expression system to detect enzyme-level oxidative damage in microbial cells. This provides a cheap and simple means for analysing enzyme-level oxidative damage in a biological context in E. coli.
Collapse
Affiliation(s)
- Hariharan Dandapani
- Molecular Plant Biology, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Pasi Kankaanpää
- Turku BioImaging and Turku Bioscience Centre, University of Turku, FI-20014 Turku, Finland
- Turku BioImaging and Turku Bioscience Centre, Åbo Akademi University, FI-20500 Turku, Finland
| | - Patrik R. Jones
- Molecular Plant Biology, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2BX, UK
| | - Pauli Kallio
- Molecular Plant Biology, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
83
|
Foyer CH, Hanke G. ROS production and signalling in chloroplasts: cornerstones and evolving concepts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:642-661. [PMID: 35665548 PMCID: PMC9545066 DOI: 10.1111/tpj.15856] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 05/05/2023]
Abstract
Reactive oxygen species (ROS) such as singlet oxygen, superoxide (O2●- ) and hydrogen peroxide (H2 O2 ) are the markers of living cells. Oxygenic photosynthesis produces ROS in abundance, which act as a readout of a functional electron transport system and metabolism. The concept that photosynthetic ROS production is a major driving force in chloroplast to nucleus retrograde signalling is embedded in the literature, as is the role of chloroplasts as environmental sensors. The different complexes and components of the photosynthetic electron transport chain (PETC) regulate O2●- production in relation to light energy availability and the redox state of the stromal Cys-based redox systems. All of the ROS generated in chloroplasts have the potential to act as signals and there are many sulphhydryl-containing proteins and peptides in chloroplasts that have the potential to act as H2 O2 sensors and function in signal transduction. While ROS may directly move out of the chloroplasts to other cellular compartments, ROS signalling pathways can only be triggered if appropriate ROS-sensing proteins are present at or near the site of ROS production. Chloroplast antioxidant systems serve either to propagate these signals or to remove excess ROS that cannot effectively be harnessed in signalling. The key challenge is to understand how regulated ROS delivery from the PETC to the Cys-based redox machinery is organised to transmit redox signals from the environment to the nucleus. Redox changes associated with stromal carbohydrate metabolism also play a key role in chloroplast signalling pathways.
Collapse
Affiliation(s)
- Christine H. Foyer
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonB15 2TTUK
| | - Guy Hanke
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| |
Collapse
|
84
|
Steen CJ, Burlacot A, Short AH, Niyogi KK, Fleming GR. Interplay between LHCSR proteins and state transitions governs the NPQ response in Chlamydomonas during light fluctuations. PLANT, CELL & ENVIRONMENT 2022; 45:2428-2445. [PMID: 35678230 PMCID: PMC9540987 DOI: 10.1111/pce.14372] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 05/19/2023]
Abstract
Photosynthetic organisms use sunlight as the primary energy source to fix CO2 . However, in nature, light energy is highly variable, reaching levels of saturation for periods ranging from milliseconds to hours. In the green microalga Chlamydomonas reinhardtii, safe dissipation of excess light energy by nonphotochemical quenching (NPQ) is mediated by light-harvesting complex stress-related (LHCSR) proteins and redistribution of light-harvesting antennae between the photosystems (state transition). Although each component underlying NPQ has been documented, their relative contributions to NPQ under fluctuating light conditions remain unknown. Here, by monitoring NPQ in intact cells throughout high light/dark cycles of various illumination periods, we find that the dynamics of NPQ depend on the timescales of light fluctuations. We show that LHCSRs play a major role during the light phases of light fluctuations and describe their role in growth under rapid light fluctuations. We further reveal an activation of NPQ during the dark phases of all high light/dark cycles and show that this phenomenon arises from state transition. Finally, we show that LHCSRs and state transition synergistically cooperate to enable NPQ response during light fluctuations. These results highlight the dynamic functioning of photoprotection under light fluctuations and open a new way to systematically characterize the photosynthetic response to an ever-changing light environment.
Collapse
Affiliation(s)
- Collin J. Steen
- Department of ChemistryUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- Kavli Energy Nanoscience InstituteBerkeleyCaliforniaUSA
| | - Adrien Burlacot
- Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of Plant BiologyCarnegie Institution for ScienceStanfordCaliforniaUSA
| | - Audrey H. Short
- Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- Kavli Energy Nanoscience InstituteBerkeleyCaliforniaUSA
- Graduate Group in BiophysicsUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Krishna K. Niyogi
- Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Graham R. Fleming
- Department of ChemistryUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- Kavli Energy Nanoscience InstituteBerkeleyCaliforniaUSA
- Graduate Group in BiophysicsUniversity of CaliforniaBerkeleyCaliforniaUSA
| |
Collapse
|
85
|
Zhang X, Ai S, Wei J, Yang X, Huang Y, Hu J, Wang Q, Wang H. Biphasic effects of typical chlorinated organophosphorus flame retardants on Microcystis aeruginosa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113813. [PMID: 36068742 DOI: 10.1016/j.ecoenv.2022.113813] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The potential accumulation of chlorinated organophosphorus flame retardants (Cl-OPFRs) in aquatic environments sparked interest in studying the effects of Cl-OPFRs on cyanobacterial blooms. In this work, two common Cl-OPFRs, tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and tris(2-chloroethyl) phosphate (TCEP), induced dose-dependent biphasic effect on bloom-forming M. aeruginosa. The hormetic response to low-dose Cl-OPFRs was associated with the upregulation of the type I NADH dehydrogenase (NDH-1) complex and its mediated cyclic electron transfer (CET) pathway, as reflected by a transient post-illumination increase in chlorophyll fluorescence, the dark reduction of P700+ and the change of NDH-1-related gene expression. The increased CET activity and carotenoid content jointly reduced the intracellular ROS production, facilitating cyanobacterial growth. Conversely, a higher concentration of both Cl-OPFRs induced severe inhibition of growth and photosynthetic oxygen-evolving activity through an imbalance between PSII and PSI. Toxic-dose Cl-OPFRs inhibited state transition and fixed cells into the State I with a higher PSII/PSI ratio, as indicated by chlorophyll fluorescence induction, 77 K fluorescence emission spectra and photosystem stoichiometry. The elevated PSII/PSI ratio created an imbalance between the two photosystems and eventually lead to ROS overproduction, which generate adverse effects on cell growth. This work provides important insights into the hormetic mechanism of Cl-OPFRs on Microcystis aeruginosa and their potential roles in harmful cyanobacteria blooms.
Collapse
Affiliation(s)
- Xin Zhang
- College of Life Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Sijie Ai
- College of Life Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Jialu Wei
- College of Life Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Xu Yang
- College of Life Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Yichen Huang
- College of Life Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Jinlu Hu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Haiying Wang
- College of Life Science, South-Central Minzu University, Wuhan, Hubei 430074, China.
| |
Collapse
|
86
|
Chen S, Cao H, Huang B, Zheng X, Liang K, Wang GL, Sun X. The WRKY10-VQ8 module safely and effectively regulates rice thermotolerance. PLANT, CELL & ENVIRONMENT 2022; 45:2126-2144. [PMID: 35394666 DOI: 10.1111/pce.14329] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
WRKY transcription factors (TFs) play crucial roles in biotic and abiotic stress responses. However, their roles in thermal response are still largely elusive, especially in rice. In this study, we revealed the functions of WRKY10 TF and VQ8 protein containing VQ motif in rice thermotolerance. Overexpression of WRKY10 or loss of VQ8 function increases thermosensitivity, whereas conversely, overexpression of VQ8 or loss of WRKY10 function enhances thermotolerance. Overexpression of WRKY10 accelerates reactive oxygen species (ROS) accumulation in chloroplasts and apoplasts, and it also induces the expression of heat shock TF and protein genes. We also found that WRKY10 regulates nuclear DNA fragmentation and hypersensitive response by modulating NAC4 TF expression. The balance between destructive and protective responses in WRKY10-overexpression plant is more fragile and more easily broken by heat stress compared with wild type. In vitro and in vivo assays revealed that VQ8 interacts with WRKY10 and inhibits the transcription activity via repressing its DNA-binding activity. Our study demonstrates that WRKY10 negatively regulates thermotolerance by modulating the ROS balance and the hypersensitive response and that VQ8 functions antagonistically to positively regulate thermotolerance. The functional module of WRKY10-VQ8 provides safe and effective regulatory mechanisms in the heat stress response.
Collapse
Affiliation(s)
- Sique Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Department of Plant Science and Technology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongrui Cao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Department of Plant Science and Technology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baolin Huang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Department of Plant Science and Technology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiujuan Zheng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Department of Plant Science and Technology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kangjing Liang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Department of Plant Science and Technology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, USA
| | - Xinli Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Department of Plant Science and Technology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
87
|
Katiyar A, Bhaskar M, Singh A, Sharma D, Abhishek A, Garg V. Phytoremediation of chromium, iron and nickel by Indian Rice Plant (Oryza sativa L.): An opportunity for management of multi-metal contaminated tannery wastewaterPhytoremediation of chromium, iron and nickel by Indian Rice Plant (Oryza sativa L.): An opportunity for management of multi-metal contaminated tannery wastewater. JOURNAL OF EXPERIMENTAL BIOLOGY AND AGRICULTURAL SCIENCES 2022; 10:511-523. [DOI: 10.18006/2022.10(3).511.523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
India is the largest producer of leather and leather products. Tannery industries use a large number of synthetic chemicals for the processing of leather and generate a huge amount of wastewater containing a large amount of potentially toxic heavy metals (PTHMs) making them problematic for next-door soil and water system. Currently, phytoremediation is an inexpensive green technology used to move, eradicate, and stabilized heavy metal contamination from contaminated sludge, soil, and wastewater. In this study, the accumulation and distribution of PTHMs found in tannery wastewater and their physio-biochemical effects on Oryza sativa L. have been studied by ICP-MS, GC-MS, and biochemical analysis. The plant was grown in the soil spiked with a mixture of metals (Cr, Fe and Ni) and their five-level of treatment T1 (25mg/kg); T2 (50mg/kg); T3 (100mg/kg); T4 (200mg/kg) and T5 (400mg/kg). During the experiments, various morphological attributes, oxidative stress, enzymatic activities, chlorophyll, and protein content at the different stage was measured. Further, metal accumulation pattern in different parts of plants was also measured. Results of the study revealed that plant root, shoot length, chlorophyll content, and enzymatic activities were significantly reduced after the treatment with 200 mg/kg PTHMs; whereas oxidative stress was increase compared to control levels. Further, treatment of PTHMs suggested that the rice plant (Oryza sativa L.) is well adapted to tolerate and accumulate a high level of heavy metals (up to 200mg/kg) in the root and shoot of the treated plants. If it is treated above this, then seeds were also affected and not safe for human consumption.
Collapse
|
88
|
Mori T, Abe I. Structural basis for endoperoxide-forming oxygenases. Beilstein J Org Chem 2022; 18:707-721. [PMID: 35821691 PMCID: PMC9235837 DOI: 10.3762/bjoc.18.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
Endoperoxide natural products are widely distributed in nature and exhibit various biological activities. Due to their chemical features, endoperoxide and endoperoxide-derived secondary metabolites have attracted keen attention in the field of natural products and organic synthesis. In this review, we summarize the structural analyses, mechanistic investigations, and proposed reaction mechanisms of endoperoxide-forming oxygenases, including cyclooxygenase, fumitremorgin B endoperoxidase (FtmOx1), and the asnovolin A endoperoxygenase NvfI.
Collapse
Affiliation(s)
- Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
89
|
Duan X, Zhou Z, Huang X, Qu Z. Generation of singlet oxygen catalyzed by the room-temperature-stable anthraquinone anion radical. Phys Chem Chem Phys 2022; 24:14165-14171. [PMID: 35666211 DOI: 10.1039/d2cp01819e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chemical nature and the catalytic selectivity of the complex of anthraquinone and potassium tert-butoxide, AQ-KOtBu, in generating singlet oxygen (1O2) have been studied using a high-level ab initio method and density functional theory (DFT). The results suggest that the stable catalytic center of the AQ anion radical (semiquinone, [AQ˙]-) can be produced at room temperature, which is due to the strong delocalization characteristics of electrons in potassium atoms. Two experimentally observed complexes, the ground state AQ-KOtBu, i.e., C(1), and the photoexcited AQ-KOtBu, i.e., C(2), can be distinguished via the two different electronic states (π-type and σ-type) of the tert-butoxide group. More interestingly, the catalytic selectivity of AQ-KOtBu to generate 1O2 was investigated using multistate density functional theory (MSDFT), and the results suggest that only open-shell 1O2 rather than the closed-shell component can be generated. This work explores the electronic structure and the catalytic nature of AQ-KOtBu, which is of great importance for the application of AQ and its derivatives.
Collapse
Affiliation(s)
- Xiaowei Duan
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China.
| | - Zhongjun Zhou
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China.
| | - Xuri Huang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China.
| | - Zexing Qu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China.
| |
Collapse
|
90
|
Li J, Wang L, Li J, Shao Y, Liu Z, Li G, Akkaya EU. Taming of Singlet Oxygen: Towards Artificial Oxygen Carriers Based on 1,4‐Dialkylnaphthalenes. Chemistry 2022; 28:e202200506. [DOI: 10.1002/chem.202200506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Jin Li
- State Key Laboratory of Fine Chemicals Department of Pharmaceutical Science Dalian University of Technology 2 Linggong Road 116024 Dalian P. R. China
| | - Lei Wang
- State Key Laboratory of Fine Chemicals Department of Pharmaceutical Science Dalian University of Technology 2 Linggong Road 116024 Dalian P. R. China
| | - Jinrong Li
- State Key Laboratory of Fine Chemicals Department of Pharmaceutical Science Dalian University of Technology 2 Linggong Road 116024 Dalian P. R. China
| | - Yujie Shao
- State Key Laboratory of Fine Chemicals Department of Pharmaceutical Science Dalian University of Technology 2 Linggong Road 116024 Dalian P. R. China
| | - Ziang Liu
- State Key Laboratory of Fine Chemicals Department of Pharmaceutical Science Dalian University of Technology 2 Linggong Road 116024 Dalian P. R. China
| | - Guangzhe Li
- State Key Laboratory of Fine Chemicals Department of Pharmaceutical Science Dalian University of Technology 2 Linggong Road 116024 Dalian P. R. China
| | - Engin U. Akkaya
- State Key Laboratory of Fine Chemicals Department of Pharmaceutical Science Dalian University of Technology 2 Linggong Road 116024 Dalian P. R. China
| |
Collapse
|
91
|
Singh G, Goldberg S, Schaefer D, Zhang F, Sharma S, Mishra V, Xu J. Biochemical, gas exchange, and chlorophyll fluorescence analysis of maize genotypes under drought stress reveals important insights into their interaction and homeostasis. PHOTOSYNTHETICA 2022; 60:376-388. [PMID: 39650104 PMCID: PMC11558602 DOI: 10.32615/ps.2022.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/25/2022] [Indexed: 12/11/2024]
Abstract
Many studies have been conducted on maize to study the effect of drought on yield at the flowering stage, but understanding biochemical and photosynthetic response against drought at the seedling stage needs to be well established. Thus, to understand differential changes and interaction of biochemical and photosynthetic parameters at the seedling stage under drought, a greenhouse experiment with twelve maize genotypes under severe drought (30% field capacity) and irrigated (90-100% field capacity) conditions were performed. Drought differentially altered biochemical and photosynthetic parameters in all genotypes. A sharp increase in hydrogen peroxide, malondialdehyde (MDA), and total antioxidant capacity (TAOC) were seen and a positive association between H2O2 and TAOC, and MDA and transpiration rate (E) was observed under drought. Nonphotochemical quenching increased under drought to avoid the photosystem damage. PCA biplot analysis showed that reducing E and increasing photosynthetic efficiency would be a better drought adaptation mechanism in maize at the seedling stage.
Collapse
Affiliation(s)
- G.M. Singh
- MARA-CABI Joint Laboratory for Biosafety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, 650201 Kunming, Yunnan, China
| | - S. Goldberg
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, 650201 Kunming, Yunnan, China
- East and Central Asia Regional Office, World Agroforestry, 650201 Kunming, Yunnan, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
| | - D. Schaefer
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, 650201 Kunming, Yunnan, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
| | - F. Zhang
- MARA-CABI Joint Laboratory for Biosafety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
- College of Agriculture and Ecological Engineering, Hexi University, Zhangye, 734000 Gansu, China
| | - S. Sharma
- Department of Genetics and Plant Breeding, Banaras Hindu University, 221005 Varanasi, India
| | - V.K. Mishra
- Department of Genetics and Plant Breeding, Banaras Hindu University, 221005 Varanasi, India
| | - J. Xu
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, 650201 Kunming, Yunnan, China
- East and Central Asia Regional Office, World Agroforestry, 650201 Kunming, Yunnan, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
| |
Collapse
|
92
|
Pospíšil P, Kumar A, Prasad A. Reactive oxygen species in photosystem II: relevance for oxidative signaling. PHOTOSYNTHESIS RESEARCH 2022; 152:245-260. [PMID: 35644020 DOI: 10.1007/s11120-022-00922-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Reactive oxygen species (ROS) are formed in photosystem II (PSII) under various types of abiotic and biotic stresses. It is considered that ROS play a role in chloroplast-to-nucleus retrograde signaling, which changes the nuclear gene expression. However, as ROS lifetime and diffusion are restricted due to the high reactivity towards biomolecules (lipids, pigments, and proteins) and the spatial specificity of signal transduction is low, it is not entirely clear how ROS might transduce signal from the chloroplasts to the nucleus. Biomolecule oxidation was formerly connected solely with damage; nevertheless, the evidence appears that oxidatively modified lipids and pigments are be involved in chloroplast-to-nucleus retrograde signaling due to their long diffusion distance. Moreover, oxidatively modified proteins show high spatial specificity; however, their role in signal transduction from chloroplasts to the nucleus has not been proven yet. The review attempts to summarize and evaluate the evidence for the involvement of ROS in oxidative signaling in PSII.
Collapse
Affiliation(s)
- Pavel Pospíšil
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| | - Aditya Kumar
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Ankush Prasad
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
93
|
Nkole I, Idris S, Abdulkadir I, Onu A. Redox reaction of bis-(2-pyridinealdoximato)dioxomolybdate(IV) complex with thiosulphate ion in aqueous acidic and surfactant media. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
94
|
Tong X, Kim EJ, Lee JK. Sustainability of in vitro light-dependent NADPH generation by the thylakoid membrane of Synechocystis sp. PCC6803. Microb Cell Fact 2022; 21:94. [PMID: 35643504 PMCID: PMC9148488 DOI: 10.1186/s12934-022-01825-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/15/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND NADPH is used as a reductant in various biosynthetic reactions. Cell-free bio-systems have gained considerable attention owing to their high energy utilization and time efficiency. Efforts have been made to continuously supply reducing power to the reaction mixture in a cyclical manner. The thylakoid membrane (TM) is a promising molecular energy generator, producing NADPH under light. Thus, TM sustainability is of major relevance for its in vitro utilization. RESULTS Over 70% of TMs prepared from Synechocystis sp. PCC6803 existed in a sealed vesicular structure, with the F1 complex of ATP synthase facing outward (right-side-out), producing NADPH and ATP under light. The NADPH generation activity of TM increased approximately two-fold with the addition of carbonyl cyanide-p-(trifluoromethoxy) phenylhydrazone (FCCP) or removal of the F1 complex using EDTA. Thus, the uncoupling of proton translocation from the electron transport chain or proton leakage through the Fo complex resulted in greater NADPH generation. Biosilicified TM retained more than 80% of its NADPH generation activity after a week at 30°C in the dark. However, activity declined sharply to below 30% after two days in light. The introduction of engineered water-forming NADPH oxidase (Noxm) to keep the electron transport chain of TM working resulted in the improved sustainability of NADPH generation activity in a ratio (Noxm to TM)-dependent manner, which correlated with the decrease of singlet oxygen generation. Removal of reactive oxygen species (ROS) by catalase further highlighted the sustainable NADPH generation activity of up to 80% in two days under light. CONCLUSION Reducing power generated by light energy has to be consumed for TM sustainability. Otherwise, TM can generate singlet oxygen, causing oxidative damage. Thus, TMs should be kept in the dark when not in use. Although NADPH generation activity by TM can be extended via silica encapsulation, further removal of hydrogen peroxide results in an improvement of TM sustainability. Therefore, as long as ROS formation by TM in light is properly handled, it can be used as a promising source of reducing power for in vitro biochemical reactions.
Collapse
Affiliation(s)
- Xiaomeng Tong
- Department of Life Science, Sogang University, Mapo, Shinsu 1, Seoul, 121-742, Korea
| | - Eui-Jin Kim
- Microbial Research Department, Nakdonggang National Institute of Biological Resources, Gyeongsangbuk-do, Sangju-si, 37242, Korea.
| | - Jeong K Lee
- Department of Life Science, Sogang University, Mapo, Shinsu 1, Seoul, 121-742, Korea.
| |
Collapse
|
95
|
Behr M, Speeckaert N, Kurze E, Morel O, Prévost M, Mol A, Mahamadou Adamou N, Baragé M, Renaut J, Schwab W, El Jaziri M, Baucher M. Leaf necrosis resulting from downregulation of poplar glycosyltransferase UGT72A2. TREE PHYSIOLOGY 2022; 42:1084-1099. [PMID: 34865151 DOI: 10.1093/treephys/tpab161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Reactive species (RS) causing oxidative stress are unavoidable by-products of various plant metabolic processes, such as photosynthesis, respiration or photorespiration. In leaves, flavonoids scavenge RS produced during photosynthesis and protect plant cells against deleterious oxidative damages. Their biosynthesis and accumulation are therefore under tight regulation at the cellular level. Glycosylation has emerged as an essential biochemical reaction in the homeostasis of various specialized metabolites such as flavonoids. This article provides a functional characterization of the Populus tremula x P. alba (poplar) UGT72A2 coding for a UDP-glycosyltransferase that is localized in the chloroplasts. Compared with the wild type, transgenic poplar lines with decreased expression of UGT72A2 are characterized by reduced growth and oxidative damages in leaves, as evidenced by necrosis, higher content of glutathione and lipid peroxidation products as well as diminished soluble peroxidase activity and NADPH to NADP+ ratio under standard growing conditions. They furthermore display lower pools of phenolics, anthocyanins and total flavonoids but higher proanthocyanidins content. Promoter analysis revealed the presence of cis-elements involved in photomorphogenesis, chloroplast biogenesis and flavonoid biosynthesis. The UGT72A2 is regulated by the poplar MYB119, a transcription factor known to regulate the flavonoid biosynthesis pathway. Phylogenetic analysis and molecular docking suggest that UGT72A2 could glycosylate flavonoids; however, the actual substrate(s) was not consistently evidenced with either in vitro assays nor analyses of glycosylated products in leaves of transgenic poplar overexpressing or downregulated for UGT72A2. This article provides elements highlighting the importance of flavonoid glycosylation regarding protection against oxidative stress in poplar leaves and raises new questions about the link between this biochemical reaction and regulation of the redox homeostasis system.
Collapse
Affiliation(s)
- Marc Behr
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
| | - Nathanael Speeckaert
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
| | - Elisabeth Kurze
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Germany
| | - Oriane Morel
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
| | - Martine Prévost
- Unité de recherche Structure et Fonction des Membranes Biologiques, Université libre de Bruxelles, Bruxelles, Belgium
| | - Adeline Mol
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
| | - Nassirou Mahamadou Adamou
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
- Laboratoire de Biotechnologie Végétale et Amélioration des Plantes (LABAP), Université Abdou Moumouni de Niamey, Niamey, Niger
| | - Moussa Baragé
- Laboratoire de Biotechnologie Végétale et Amélioration des Plantes (LABAP), Université Abdou Moumouni de Niamey, Niamey, Niger
| | - Jenny Renaut
- Luxembourg Institute of Science and Technology, 4422 Belvaux, Luxembourg
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Germany
| | - Mondher El Jaziri
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
| | - Marie Baucher
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
| |
Collapse
|
96
|
Yu L, Li T, Ma J, Zhao Q, Wensel P, Lian J, Chen S. A kinetic model of heterotrophic and mixotrophic cultivation of the potential biofuel organism microalgae Chlorella sorokiniana. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
97
|
Coyne KJ, Wang Y, Johnson G. Algicidal Bacteria: A Review of Current Knowledge and Applications to Control Harmful Algal Blooms. Front Microbiol 2022; 13:871177. [PMID: 35464927 PMCID: PMC9022068 DOI: 10.3389/fmicb.2022.871177] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Interactions between bacteria and phytoplankton in aqueous ecosystems are both complex and dynamic, with associations that range from mutualism to parasitism. This review focuses on algicidal interactions, in which bacteria are capable of controlling algal growth through physical association or the production of algicidal compounds. While there is some evidence for bacterial control of algal growth in the field, our understanding of these interactions is largely based on laboratory culture experiments. Here, the range of these algicidal interactions is discussed, including specificity of bacterial control, mechanisms for activity, and insights into the chemical and biochemical analysis of these interactions. The development of algicidal bacteria or compounds derived from bacteria for control of harmful algal blooms is reviewed with a focus on environmentally friendly or sustainable methods of application. Potential avenues for future research and further development and application of bacterial algicides for the control of algal blooms are presented.
Collapse
Affiliation(s)
- Kathryn J. Coyne
- College of Earth, Ocean, and Environment, University of Delaware, Lewes, DE, United States
| | | | | |
Collapse
|
98
|
Ben Hamouda M, Kacem A, Achour L, Krichen Y, Legrand J, Grizeau D, Dupre C. Comparative study on photosynthetic and antioxidant activities of Haematococcus pluvialis vegetative and resting cells; UVA light-induced stimulation. J Appl Microbiol 2022; 132:4338-4348. [PMID: 35332635 DOI: 10.1111/jam.15540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/27/2022]
Abstract
AIM This study aims to determine how photosynthetic and antioxidant activities vary in vegetative and dormant cells of Haematococcus pluvialis subjected to stresses in conditions representative of industrial productions of microalgae under solar light. METHODS AND RESULTS The effects of short-term oxidative treatments were examined on photosynthetic and antioxidant activities of Haematococcus pluvialis vegetative and resting cells. The vegetative cells have 1.6 times higher levels of phenolic compounds, but 1.7 times less catalase, ascorbate peroxidase, and superoxide dismutase activities than the astaxanthin-enriched resting cells. Mainly, a UVA dose of 4 J cm-2 induced increases in photosystem II electron transport rates (ETRmax) (+15%), phenolic compounds (+15%), astaxanthin (+ 48%), catalase (+45%), and superoxide dismutase (+30%) activities in vegetative cells. CONCLUSION The UVA-dose strongly stimulates the photosynthetic and antioxidant activities of vegetative cells, but only the accumulation of astaxanthin in resting cells. SIGNIFICANCE AND IMPACT OF THE STUDY These preliminary results show that oxidative stresses at sub-lethal levels can stimulate the activities of microalgae. Further investigations are needed to estimate the real influence on metabolite productivities in industrial production conditions.
Collapse
Affiliation(s)
- Meriem Ben Hamouda
- Nantes University, Oniris, CNRS, GEPEA, UMR 6144, Saint-Nazaire, France.,Research Laboratory LR14ES06: Integrative Biology and Bioresources Valorization BIOLIVAL, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia.,BioAlguesTunisie, El Alia, Ksour Essef, Mahdia, Tunisia
| | - Adnane Kacem
- Research Laboratory LR14ES06: Integrative Biology and Bioresources Valorization BIOLIVAL, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Lotfi Achour
- Research Laboratory LR14ES06: Integrative Biology and Bioresources Valorization BIOLIVAL, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | | | - Jack Legrand
- Nantes University, Oniris, CNRS, GEPEA, UMR 6144, Saint-Nazaire, France
| | - Dominique Grizeau
- Nantes University, Oniris, CNRS, GEPEA, UMR 6144, Saint-Nazaire, France
| | - Catherine Dupre
- Nantes University, Oniris, CNRS, GEPEA, UMR 6144, Saint-Nazaire, France
| |
Collapse
|
99
|
UGT72, a Major Glycosyltransferase Family for Flavonoid and Monolignol Homeostasis in Plants. BIOLOGY 2022; 11:biology11030441. [PMID: 35336815 PMCID: PMC8945231 DOI: 10.3390/biology11030441] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Phenylpropanoids are specialized metabolites playing crucial roles in plant developmental processes and in plant defense towards pathogens. The attachment of sugar moieties to these small hydrophobic molecules renders them more hydrophilic and increases their solubility. The UDP-glycosyltransferase 72 family (UGT72) of plants has been shown to glycosylate mainly two classes of phenylpropanoids, (i) the monolignols that are the building blocks of lignin, the second most abundant polymer after cellulose, and (ii) the flavonoids, which play determinant roles in plant interactions with other organisms and in response to stress. The purpose of this review is to bring an overview of the current knowledge of the UGT72 family and to highlight its role in the homeostasis of these molecules. Potential applications in pharmacology and in wood, paper pulp, and bioethanol production are given within the perspectives. Abstract Plants have developed the capacity to produce a diversified range of specialized metabolites. The glycosylation of those metabolites potentially decreases their toxicity while increasing their stability and their solubility, modifying their transport and their storage. The UGT, forming the largest glycosyltransferase superfamily in plants, combine enzymes that glycosylate mainly hormones and phenylpropanoids by using UDP-sugar as a sugar donor. Particularly, members of the UGT72 family have been shown to glycosylate the monolignols and the flavonoids, thereby being involved in their homeostasis. First, we explore primitive UGTs in algae and liverworts that are related to the angiosperm UGT72 family and their role in flavonoid homeostasis. Second, we describe the role of several UGT72s glycosylating monolignols, some of which have been associated with lignification. In addition, the role of other UGT72 members that glycosylate flavonoids and are involved in the development and/or stress response is depicted. Finally, the importance to explore the subcellular localization of UGTs to study their roles in planta is discussed.
Collapse
|
100
|
How to Cope with the Challenges of Environmental Stresses in the Era of Global Climate Change: An Update on ROS Stave off in Plants. Int J Mol Sci 2022; 23:ijms23041995. [PMID: 35216108 PMCID: PMC8879091 DOI: 10.3390/ijms23041995] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 02/06/2023] Open
Abstract
With the advent of human civilization and anthropogenic activities in the shade of urbanization and global climate change, plants are exposed to a complex set of abiotic stresses. These stresses affect plants’ growth, development, and yield and cause enormous crop losses worldwide. In this alarming scenario of global climate conditions, plants respond to such stresses through a highly balanced and finely tuned interaction between signaling molecules. The abiotic stresses initiate the quick release of reactive oxygen species (ROS) as toxic by-products of altered aerobic metabolism during different stress conditions at the cellular level. ROS includes both free oxygen radicals {superoxide (O2•−) and hydroxyl (OH−)} as well as non-radicals [hydrogen peroxide (H2O2) and singlet oxygen (1O2)]. ROS can be generated and scavenged in different cell organelles and cytoplasm depending on the type of stimulus. At high concentrations, ROS cause lipid peroxidation, DNA damage, protein oxidation, and necrosis, but at low to moderate concentrations, they play a crucial role as secondary messengers in intracellular signaling cascades. Because of their concentration-dependent dual role, a huge number of molecules tightly control the level of ROS in cells. The plants have evolved antioxidants and scavenging machinery equipped with different enzymes to maintain the equilibrium between the production and detoxification of ROS generated during stress. In this present article, we have focused on current insights on generation and scavenging of ROS during abiotic stresses. Moreover, the article will act as a knowledge base for new and pivotal studies on ROS generation and scavenging.
Collapse
|