51
|
Su H, Wu Y, Yuan Q, Guo J, Zhang W, Wu W. Optimal time point for neuronal generation of transplanted neural progenitor cells in injured spinal cord following root avulsion. Cell Transplant 2010; 20:167-76. [PMID: 20719091 DOI: 10.3727/096368910x522090] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Root avulsion of the brachial plexus results in a progressive and pronounced loss of motoneurons. Cell replacement strategies have therapeutic potential in the treatment of motoneuron degenerative neurological disorders. Here, we transplanted spinal cord-derived neural progenitor cells (NPCs) into the cervical ventral horn of adult rats immediately, 2 weeks, or 6 weeks after root avulsion to determine an optimal time scale for the survival and differentiation of grafted cells. We showed that grafted NPCs survived robustly at all three time points and there was no statistical difference in survival rate. Interestingly, however, transplantation at 2 weeks postavulsion significantly increased the neuronal differentiation of transplanted NPCs compared to transplantation immediately or at 6 weeks postavulsion. Moreover, only NPCs transplanted at 2 weeks postavulsion were able to differentiate into choline acetyltransferase (ChAT)-positive neurons. Specific ELISAs and quantitative reverse transcriptase polymerase chain reaction (RT-PCR) demonstrated that expression levels of BDNF and GDNF were significantly upregulated in the ventral cord at 2 weeks postavulsion compared to immediately or at 6 weeks postavulsion. Our study suggests that the cervical ventral horn at 2 weeks postavulsion both supports neuronal differentiation and induces region-specific neuronal generation possibly because of its higher expression of BDNF and GDNF.
Collapse
Affiliation(s)
- Huanxing Su
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
52
|
Yu H, Cao B, Feng M, Zhou Q, Sun X, Wu S, Jin S, Liu H, Lianhong J. Combinated transplantation of neural stem cells and collagen type I promote functional recovery after cerebral ischemia in rats. Anat Rec (Hoboken) 2010; 293:911-7. [PMID: 20191618 DOI: 10.1002/ar.20941] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Using tissue engineering, a complex of neural stem cells (NSCs) and collagen type I was transplanted for the therapy of cerebral ischemic injury. NSCs from E14 d rats were dissociated and cultured by neurosphere formation in serum-free medium in the presence of basic fibroblast growth factor (bFGF), then seeded onto collagen to measure cell adhesive ability. BrdU was added to the culture medium to label the NSCs. Wistar rats (n=100) were subjected to 2-hour middle cerebral artery occlusion. After 24 hours of reperfusion, rats were assigned randomly to five groups: NSCs-collagen repair group, NSCs repair group, unseeded collagen repair group, MCAO medium group, and sham group. Neurological, immunohistological and electronic microscope assessments were performed to examine the effects of these treatments. Scanning electronic microscopy showed that NSCs assemble in the pores of collagen. At 3, 7, 15, and 30 d after transplantation of the NSC-collagen complex, some of the engrafted NSCs survive, differentiate and form synapses in the brains of rats subjected to cerebral ischemia. Six d after transplantation of the NSC-collagen complex into the brains of ischemic rats, the collagen began to degrade; 30 d after transplantation, the collagen had degraded completely. The implantation of NSCs and type I collagen facilitated the structural and functional recovery of neural tissue following ischemic injury.
Collapse
Affiliation(s)
- Hongwei Yu
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Chen YC, Lee DC, Tsai TY, Hsiao CY, Liu JW, Kao CY, Lin HK, Chen HC, Palathinkal TJ, Pong WF, Tai NH, Lin IN, Chiu IM. Induction and regulation of differentiation in neural stem cells on ultra-nanocrystalline diamond films. Biomaterials 2010; 31:5575-87. [PMID: 20427083 DOI: 10.1016/j.biomaterials.2010.03.061] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 03/25/2010] [Indexed: 02/06/2023]
Abstract
The interaction of ultra-nanocrystalline diamond (UNCD) with neural stem cells (NSCs) has been studied in order to evaluate its potential as a biomaterial. Hydrogen-terminated UNCD (H-UNCD) films were compared with standard grade polystyrene in terms of their impact on the differentiation of NSCs. When NSCs were cultured on these substrates in medium supplemented with low concentration of serum and without any differentiating factors, H-UNCD films spontaneously induced neuronal differentiation on NSCs. By direct suppression of mitogen-activated protein kinase/extracellular signaling-regulated kinase1/2 (MAPK/Erk1/2) signaling pathway in NSCs using U0126, known to inhibit the activation of Erk1/2, we demonstrated that the enhancement of Erk1/2 pathway is one of the effects of H-UNCD-induced NSCs differentiation. Moreover, functional-blocking antibody directed against integrin beta1 subunit inhibited neuronal differentiation on H-UNCD films. This result demonstrated the involvement of integrin beta1 in H-UNCD-mediated neuronal differentiation. Mechanistic studies revealed the cell adhesion to H-UNCD films associated with focal adhesion kinase (Fak) and initiated MAPK/Erk1/2 signaling. Our study demonstrated that H-UNCD films-mediated NSCs differentiation involves fibronectin-integrin beta1 and Fak-MAPK/Erk signaling pathways in the absence of differentiation factors. These observations raise the potential for the use of UNCD as a biomaterial for central nervous system transplantation and tissue engineering.
Collapse
Affiliation(s)
- Ying-Chieh Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Simamura E, Shimada H, Higashi N, Uchishiba M, Otani H, Hatta T. Maternal leukemia inhibitory factor (LIF) promotes fetal neurogenesis via a LIF-ACTH-LIF signaling relay pathway. Endocrinology 2010; 151:1853-62. [PMID: 20160138 DOI: 10.1210/en.2009-0985] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Leukemia inhibitory factor (LIF) promotes the proliferation of neuronal progenitor cells in the cerebrum. However, it remains unclear how fetal LIF level is regulated. Here we show evidence that maternal LIF signals drive fetal LIF levels via the placenta, thereby promoting neurogenesis in the fetal brain in rats. Chronological changes showed that LIF concentration in fetal sera (FS) and fetal cerebrospinal fluid peaked at gestational day (GD) 15.5, after the peak of maternal LIF at GD14.5. LIF injection into rat dams at GD15.5 increased the level of ACTH in FS and subsequently increased LIF levels in FS and fetal cerebrospinal fluid. The elevation of fetal LIF after LIF injection into dams was inhibited by in utero injection of anti-ACTH antibody into fetuses. Cultured syncytiotrophoblasts, which express the LIF receptor and glycoprotein 130, were induced to secrete ACTH and up-regulate Pomc expression by the addition of LIF. Nucleated red blood cells from fetuses at GD15.5, but not GD13.5 or GD17.5, displayed LIF secretion in response to ACTH. Moreover, injection of LIF into dams at GD13.5 or GD17.5 did not result in elevation of ACTH or LIF in fetuses. The labeling index of 5-bromo-2'-deoxyuridine-positive cells in the ventricular zone of the cerebral neocortex increased 24 h after injection of LIF into dams at GD15.5 but not GD13.5 or GD17.5. These results suggest that in rats maternal LIF induces ACTH from the placenta, which in turn induces fetal nucleated red blood cells to secrete LIF that finally increases neurogenesis in fetuses around GD15.
Collapse
Affiliation(s)
- Eriko Simamura
- Department of Molecular and Cell Structural Science, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | | | | | | | | | | |
Collapse
|
55
|
Directed neural lineage differentiation of adult hippocampal progenitor cells via modulation of hippocampal cholinergic neurostimulating peptide precursor expression. Brain Res 2010; 1327:107-17. [PMID: 20206149 DOI: 10.1016/j.brainres.2010.02.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 02/22/2010] [Accepted: 02/22/2010] [Indexed: 01/02/2023]
Abstract
Hippocampal cholinergic neurostimulating peptide (HCNP), originally purified from young rat hippocampus, has been known to promote the differentiation of septo-hippocampal cholinergic neurons. Recently, the precursor protein of HCNP (HCNP-pp) has also received attention as a multifunctional protein with roles, in addition to serving as the HCNP precursor, such as acting as an ATP-binding protein, a Raf kinase inhibitor protein (RKIP), and phosphatidylethanolamine-binding protein (PEBP). In particular, the function of RKIP has attracted attention over several years for its role in controlling cellular proliferation and metastasis in cancer cells. HCNP-pp is also thought to be important in regulating the proliferation and differentiation of neuronal cells in vitro and in vivo by modification of the MAPK cascade. In the present study, we used cultured adult rat hippocampal progenitor cells (AHPs), which are thought to be important for memory formation, and focused on the role of HCNP-pp in adult neurogenesis, namely, the production of new neurons from neural stem/progenitor cells. We found that HCNP-pp expression in AHPs was closely associated with differentiation into MAP2ab-positive neurons and RIP-positive oligodendrocytes, but not into GFAP-positive astrocytes. By contrast, a down-regulated HCNP-pp expression in AHPs accompanied differentiation into GFAP-positive astrocytes. Direct manipulations of HCNP-pp via viral over-expression or siRNA downregulation further confirmed the HCNP-pp contribution to specific neural lineage commitment of AHPs. Our results show that the expression level of HCNP-pp acts as a key regulator for differentiation of cultured AHPs into specific neural lineages, indicating that the control of neural stem cell fate can be achieved via the HCNP-pp pathway.
Collapse
|
56
|
Ronaghi M, Erceg S, Moreno-Manzano V, Stojkovic M. Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells? Stem Cells 2010; 28:93-9. [PMID: 19904738 DOI: 10.1002/stem.253] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Spinal cord injury (SCI) causes myelopathy, damage to white matter, and myelinated fiber tracts that carry sensation and motor signals to and from the brain. The gray matter damage causes segmental losses of interneurons and motoneurons and restricts therapeutic options. Recent advances in stem cell biology, neural injury, and repair, and the progress toward development of neuroprotective and regenerative interventions are the basis for increased optimism. This review summarizes the pathophysiological mechanisms following SCI and compares human embryonic, adult neural, and the induced pluripotent stem cell-based therapeutic strategies for SCI.
Collapse
Affiliation(s)
- Mohammad Ronaghi
- Cellular Reprogramming Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | | |
Collapse
|
57
|
Vidaltamayo R, Bargas J, Covarrubias L, Hernández A, Galarraga E, Gutiérrez-Ospina G, Drucker-Colin R. Stem Cell Therapy for Parkinson’s Disease: A Road Map for a Successful Future. Stem Cells Dev 2010; 19:311-20. [DOI: 10.1089/scd.2009.0205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Román Vidaltamayo
- Grupo de Celulas Troncales Neurales (IMPULSA-02), Universidad Nacional Autónoma de México, México
- Depto. de Neurociencias and Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México
| | - José Bargas
- Grupo de Celulas Troncales Neurales (IMPULSA-02), Universidad Nacional Autónoma de México, México
- Depto. de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | - Luis Covarrubias
- Grupo de Celulas Troncales Neurales (IMPULSA-02), Universidad Nacional Autónoma de México, México
- Depto. de Biofísica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México
| | - Arturo Hernández
- Grupo de Celulas Troncales Neurales (IMPULSA-02), Universidad Nacional Autónoma de México, México
- Depto. de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | - Elvira Galarraga
- Grupo de Celulas Troncales Neurales (IMPULSA-02), Universidad Nacional Autónoma de México, México
- Depto. de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | - Gabriel Gutiérrez-Ospina
- Grupo de Celulas Troncales Neurales (IMPULSA-02), Universidad Nacional Autónoma de México, México
- Depto. Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | - René Drucker-Colin
- Grupo de Celulas Troncales Neurales (IMPULSA-02), Universidad Nacional Autónoma de México, México
- Depto. de Neurociencias and Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México
| |
Collapse
|
58
|
Angelucci F, Colantoni L. Facioscapulohumeral muscular dystrophy: do neurotrophins play a role? Muscle Nerve 2010; 41:120-7. [PMID: 19813193 DOI: 10.1002/mus.21505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although the molecular defect of facioscapulohumeral muscular dystrophy (FSHD) is well established and involves the contraction of the polymorphic 3.3 kb D4Z4 repeat on the subtelomeric region of chromosome 4q35, the pathologic effects of this deletion remain largely unknown. As a consequence, no specific treatment for FSHD is at present available. Thus, there is the need to explore new areas in an attempt to better characterize pathophysiological alterations in FSHD that might be useful for managing the disease. Neurotrophins (nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5) are a class of proteins involved in the development, maintenance, and function of neurons of the peripheral and central nervous systems. In addition, neurotrophins and their RNAs are expressed in muscle, where they have a role in development and regeneration. In this article we put together the experimental evidence that indicates neurotrophins might be involved in the pathophysiology of FSHD and discuss the possible implications of this assumption.
Collapse
Affiliation(s)
- Francesco Angelucci
- IRCCS Santa Lucia Foundation, Department of Clinical and Behavioural Neurology, 00179, Rome, Italy.
| | | |
Collapse
|
59
|
Bio-released gold ions modulate expression of neuroprotective and hematopoietic factors after brain injury. Brain Res 2010; 1307:1-13. [DOI: 10.1016/j.brainres.2009.10.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 10/06/2009] [Accepted: 10/12/2009] [Indexed: 12/21/2022]
|
60
|
Aranha MM, Solá S, Low WC, Steer CJ, Rodrigues CMP. Caspases and p53 modulate FOXO3A/Id1 signaling during mouse neural stem cell differentiation. J Cell Biochem 2009; 107:748-58. [PMID: 19415678 DOI: 10.1002/jcb.22172] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Neural stem cells (NSCs) differentiate into neurons and glia, and a large percentage undergoes apoptosis. The engagement and activity of apoptotic pathways may favor either cell death or differentiation. In addition, Akt represses differentiation by up-regulating the inhibitor of differentiation 1 (Id1), through phosphorylation of its repressor FOXO3A. The aim of this study was to investigate the potential cross-talk between apoptosis and proliferation during mouse NSC differentiation. We determined the time of neurogenesis and gliogenesis using neuronal beta-III tubulin and astroglial GFAP to confirm that both processes occurred at approximately 3 and 8 days, respectively. p-Akt, p-FOXO3A, and Id1 were significantly reduced throughout differentiation. Caspase-3 processing, p53 phosphorylation, and p53 transcriptional activation increased at 3 days of differentiation, with no evidence of apoptosis. Importantly, in cells exposed to the pancaspase inhibitor z-VAD.fmk, p-FOXO3A and Id1 were no longer down-regulated, p53 phosphorylation and transcriptional activation were reduced, while neurogenesis and gliogenesis were significantly delayed. The effect of siRNA-mediated silencing of p53 on FOXO3A/Id1 was similar to that of z-VAD.fmk only at 3 days of differentiation. Interestingly, caspase inhibition further increased the effect of p53 knockdown during neurogenesis. In conclusion, apoptosis-associated factors such as caspases and p53 temporally modulate FOXO3A/Id1 signaling and differentiation of mouse NSCs.
Collapse
|
61
|
Rosales FJ, Reznick JS, Zeisel SH. Understanding the role of nutrition in the brain and behavioral development of toddlers and preschool children: identifying and addressing methodological barriers. Nutr Neurosci 2009; 12:190-202. [PMID: 19761650 PMCID: PMC2776771 DOI: 10.1179/147683009x423454] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The preschool years (i.e. 1-5 years of age) is a time of rapid and dramatic postnatal brain development (i.e. neural plasticity), and of fundamental acquisition of cognitive development (i.e. working memory, attention and inhibitory control). Also, it is a time of transition from a direct maternal mediation/selection of diet-based nutrition to food selection that is more based on self-selection and self-gratification. However, there have been fewer published studies in preschool children than in infants or school-aged children that examined the role of nutrition in brain/mental development (125 studies versus 232 and 303 studies, respectively during the last 28 years). This may arise because of age-related variability, in terms of individual differences in temperament, linguistic ability, and patterns of neural activity that may affect assessment of neural and cognitive development in pre-school children. In this review, we suggest several approaches for assessing brain function in children that can be refined. It would be desirable if the discipline developed some common elements to be included in future studies of diet and brain function, with the idea that they would complement more targeted measures based on time of exposure and understanding of data from animal models. Underlining this approach is the concept of 'window of sensitivity' during which nutrients may affect postnatal neural development: investigators and expert panels need to look specifically for region-specific changes and do so with understanding of the likely time window during which the nutrient was, or was not available.
Collapse
Affiliation(s)
- Francisco J Rosales
- Global Research and Development, Mead Johnson Nutritionals, Evansville, Indiana, USA.
| | | | | |
Collapse
|
62
|
Singh RP, Cheng YH, Nelson P, Zhou FC. Retentive multipotency of adult dorsal root ganglia stem cells. Cell Transplant 2009; 18:55-68. [PMID: 19476209 DOI: 10.3727/096368909788237177] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Preservation of neural stem cells (NSCs) in the adult peripheral nervous system (PNS) has recently been confirmed. However, it is not clear whether peripheral NSCs possess predestined, bona fide phenotypes or a response to innate developmental cues. In this study, we first demonstrated the longevity, multipotency, and high fidelity of sensory features of postmigrating adult dorsal root ganglia (aDRG) stem cells. Derived from aDRG and after 4-5 years in culture without dissociating, the aDRG NSCs were found capable of proliferation, expressing neuroepithelial, neuronal, and glial markers. Remarkably, these aDRG NSCs expressed sensory neuronal markers vesicular glutamate transporter 2 (VGluT2--glutamate terminals), transient receptor potential vanilloid 1 (TrpV1--capsaicin sensitive), phosphorylated 200 kDa neurofilaments (pNF200--capsaicin insensitive, myelinated), and the serotonin transporter (5-HTT), which normally is transiently expressed in developing DRG. Furthermore, in response to neurotrophins, the aDRG NSCs enhanced TrpV1 expression upon exposure to nerve growth factor (NGF), but not to brain-derived neurotrophic factor (BDNF). On the contrary, BDNF increased the expression of NeuN. Third, the characterization of aDRG NSCs was demonstrated by transplantation of red fluorescent-expressing aDRG NSCs into injured spinal cord. These cells expressed nestin, Hu, and beta-III-tubulin (immature neuronal markers), GFAP (astrocyte marker) as well as sensory neural marker TrpV1 (capsaicin sensitive) and pNF200 (mature, capsaicin insensitive, myelinated). Our results demonstrated that the postmigrating neural crest adult DRG stem cells not only preserved their multipotency but also were retentive in sensory potency despite the age and long-term ex vivo status.
Collapse
Affiliation(s)
- Rabindra P Singh
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
63
|
Iwatsuki H, Suda M. Transient expression of keratin during neuronal development in the adult rabbit spinal ganglion. Anat Sci Int 2009; 85:46-55. [PMID: 19629632 DOI: 10.1007/s12565-009-0054-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 06/19/2009] [Indexed: 12/31/2022]
Abstract
A few neurons of the adult rabbit spinal ganglion express keratin. To examine the characters of these keratin-positive neurons, six kinds of intermediate filament proteins, namely keratin 8, keratin 14, nestin, vimentin, neurofilament 68 (NF-L) and glial fibrillary acidic protein (GFAP), were investigated immunohistochemically in developing and adult rabbit spinal ganglia. At 15 days of gestation, the spinal ganglion increased rapidly in volume and mainly consisted of three kinds of cells: small cells expressing vimentin, spindle-shaped cells co-expressing vimentin and nestin, and ovoid cells with an eccentric nucleus expressing nestin. Since some ovoid cells co-expressed nestin with either NF-L or GFAP, the ovoid cell may be considered to be an embryonic neural stem cell of the ganglion. In addition, a few keratin-positive polymorphic cells could be observed among these three kinds of cells. These polymorphic cells expressed five kinds of intermediate filament proteins, namely keratin 8, keratin 14, nestin, NF-L and GFAP. These cells were also detected in newborn and adult ganglia. A few neurons in the adult ganglion also expressed these five kinds of proteins as a Golgi-associated network. However, neurons expressing these proteins could not be detected in embryonic and newborn ganglia. Therefore, it may be considered that the keratin-positive polymorphic cell is a postnatal neural stem cell of the ganglion and that neurons transiently express keratin when polymorphic cells differentiate into neurons.
Collapse
|
64
|
Hsu YC, Lee DC, Chen SL, Liao WC, Lin JW, Chiu WT, Chiu IM. Brain-specific 1B promoter of FGF1 gene facilitates the isolation of neural stem/progenitor cells with self-renewal and multipotent capacities. Dev Dyn 2009; 238:302-14. [PMID: 18855895 DOI: 10.1002/dvdy.21753] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Fibroblast growth factor 1 (FGF1) has been shown to maintain proliferation and self-renewal capacities of neural stem/progenitor cells (NSPCs) in vitro. We have previously identified FGF1B as the major transcript of FGF1 gene expressed exclusively in brain areas that are known to be abundant for NSPCs in vivo. The 540-bp (-540 to +31) sequence upstream of the 1B transcription start site (F1B) is sufficient to drive the expression of a heterologous luciferase reporter in cultured cells. In this study, we report a direct genetic and functional approach to isolate F1B(+) NSPCs using green fluorescent protein (GFP) reporter gene under the control of human F1B promoter. The F1B-GFP reporter could facilitate the isolation of NSPCs with self-renewal and multipotent capacities from human glioblastoma tissues, developing or adult mouse brains by fluorescence-activated cell sorting. Future work elucidating the mechanisms that control FGF1B expression will help to identify new NSPC-related genes.
Collapse
Affiliation(s)
- Yi-Chao Hsu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | | | | | | | | | | | | |
Collapse
|
65
|
Braun A, Dang J, Johann S, Beyer C, Kipp M. Selective regulation of growth factor expression in cultured cortical astrocytes by neuro-pathological toxins. Neurochem Int 2009; 55:610-8. [PMID: 19524632 DOI: 10.1016/j.neuint.2009.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 06/02/2009] [Accepted: 06/03/2009] [Indexed: 12/14/2022]
Abstract
Astrocytes are integrated in the complex regulation of neurodegeneration and neuronal damage in the CNS. It is well-known that astroglia produces a plethora of growth factors which might be protective for neurons. Growth factors prevent neurons from cell death and promote proliferation and differentiation of precursor cells. Previous data suggest that astrocytes may respond to toxic stimuli by a selective mobilization of guarding molecules. In the present study, we have investigated the potency of different pathological stimuli such as lipopolysaccharides, tumor necrosis factor alpha, glutamate, and hydrogen peroxide to activate cultured cortical astroglia and stimulate growth factor expression. Astroglial cultures were exposed to the above factors for 24h at non-toxic concentrations for astrocytes. Growth factor expression was analyzed by real-time PCR, oligo-microarray technique, and ELISA. Insulin-like growth factor-1 was selectively down-regulated by lipopolysaccharides and tumor necrosis factor alpha, bone morphogenetic protein 6 by all stimuli. In contrast, lipopolysaccharides, tumor necrosis factor alpha, and glutamate increased leukemia inhibitory factor. Fibroblast growth factor 2 was up-regulated by lipopolysaccharides and tumor necrosis factor alpha and down-regulated by hydrogen peroxide. Besides hydrogen peroxide, all other stimuli promoted vascular epithelial growth factor A mRNA and protein expression. It appears that lipopolysaccharides but not tumor necrosis factor alpha effects on vascular epithelial growth factor A depend on the classic NFkappaB pathway. Our data clearly demonstrate that astroglia actively responses to diverse pathological compounds by a selective expression pattern of growth factors. These findings make astrocytes likely candidates to participate in disease-specific characteristics of neuronal support or damage.
Collapse
Affiliation(s)
- Alena Braun
- Institute of Neuroanatomy, RWTH Aachen University, Germany
| | | | | | | | | |
Collapse
|
66
|
Lee DC, Hsu YC, Chung YF, Hsiao CY, Chen SL, Chen MS, Lin HK, Chiu IM. Isolation of neural stem/progenitor cells by using EGF/FGF1 and FGF1B promoter-driven green fluorescence from embryonic and adult mouse brains. Mol Cell Neurosci 2009; 41:348-63. [DOI: 10.1016/j.mcn.2009.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 03/27/2009] [Accepted: 04/22/2009] [Indexed: 01/24/2023] Open
|
67
|
Abstract
Tissue engineering is a newly emerging biomedical technology and methodology to assist and accelerate the regeneration and repairing of defective and damaged tissues based on the natural healing potentials of patients themselves. For the new therapeutic strategy, it is indispensable to provide cells with a local environment that enhances and regulates their proliferation and differentiation for cell-based tissue regeneration. Biomaterial technology plays an important role in the creation of this cell environment. For example, the biomaterial scaffolds and the drug delivery system (DDS) of biosignalling molecules have been investigated to enhance the proliferation and differentiation of cell potential for tissue regeneration. In addition, the scaffold and DDS technologies contribute to develop the basic research of stem cell biology and medicine as well as obtain a large number of cells with a high quality for cell transplantation therapy. A technology to genetically engineer cells for their functional manipulation is also useful for cell research and therapy. Several examples of tissue engineering applications with the cell scaffold and DDS of growth factors and genes are introduced to emphasize the significance of biomaterial technology in new therapeutic and research fields.
Collapse
Affiliation(s)
- Yasuhiko Tabata
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
68
|
Mathai KI, Shashivadhanan, Sudumbraker S, Sahoo PK. The role of stem cells in neural injury - emerging paradigms. Indian J Surg 2008; 70:212-4. [PMID: 23133064 DOI: 10.1007/s12262-008-0061-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 07/31/2008] [Indexed: 01/14/2023] Open
Abstract
Stem cells capable of proliferating along neuronal and glial lines persist in the adult central nervous system (CNS). These cells are found pedominantly in the subventricular zones and in the hippocampus. The therapeutic potential of both endogenous and exogenous stem cells in achieving repair of the injured CNS is being explored. Stem cells from embyonal lines, mescnchymal stromal cells and neural stem cells are being investigated for their potential role in the management of neural loss due to traumatic hypoxic or inflammatory insult.
Collapse
Affiliation(s)
- K I Mathai
- Armed Forces Medical College / CH(SC), Pune - 40, India
| | | | | | | |
Collapse
|
69
|
Legume lectin FRIL preserves neural progenitor cells in suspension culture in vitro. Clin Dev Immunol 2008; 2008:531317. [PMID: 18695740 PMCID: PMC2496955 DOI: 10.1155/2008/531317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 05/03/2008] [Indexed: 12/02/2022]
Abstract
In vitro maintenance of stem cells is crucial for many clinical applications. Stem cell preservation factor FRIL (Flt3 receptor-interacting lectin) is a plant lectin extracted from Dolichos Lablab and has been found preserve hematopoietic stem cells in vitro for a month in our previous studies. To investigate whether FRIL can preserve neural progenitor cells (NPCs), it was supplemented into serum-free suspension culture media. FRIL made NPC grow slowly, induced cell adhesion, and delayed neurospheres formation. However, FRIL did not initiate NPC differentiation according to immunofluorescence and semiquantitive RT-PCR results. In conclusion, FRIL could also preserve neural progenitor cells in vitro by inhibiting both cell proliferation and differentiation.
Collapse
|
70
|
Liu W, Shen G, Shi Z, Shen F, Zheng X, Wen L, Yang X. Brain tumour stem cells and neural stem cells: still explored by the same approach? J Int Med Res 2008; 36:890-5. [PMID: 18831881 DOI: 10.1177/147323000803600504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Brain tumour stem cells (BTSCs) are chiefly responsible for the in vivo long-term growth and recurrence of malignant gliomas and may be a potential treatment target. They resemble neural stem cells (NSCs), so their self-renewal and differentiation are currently investigated by the same methods used to study NSCs. There are, however, essential differences between these cell types: in many cases the marker expression pattern of BTSCs does not match the CD133(+)/NSE(-)/FAP(-) pattern of NSCs; BTSC tumourigenicity is independent of marker expression; and while attachment, serum-containing medium and withdrawal of mitogens (epidermal growth factor [EGF] and basic fibroblast growth factor [bFGF]) are essential to induce NSCs to differentiate, they do not affect BTSC tumourigenicity. Evidence implies that research on the renewal and differentiation of BTSCs should be orientated towards tumourigenicity and is essentially a pharmaceutical problem. Such an approach may contribute to the development of an accurate definition of BTSCs and to the search for selective differentiation-inducing drugs for BTSCs.
Collapse
Affiliation(s)
- W Liu
- Institute of Brain Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
71
|
Skalnikova H, Vodicka P, Gadher SJ, Kovarova H. Proteomics of neural stem cells. Expert Rev Proteomics 2008; 5:175-86. [PMID: 18466050 DOI: 10.1586/14789450.5.2.175] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The isolation of neural stem cells from fetal and adult mammalian CNS and the demonstration of functional neurogenesis in adult CNS have offered perspectives for treatment of many devastating hereditary and acquired neurological diseases. Due to this enormous potential, neural stem cells are a subject of extensive molecular profiling studies with a search for new markers and regulatory pathways governing their self-renewal as opposed to differentiation. Several in-depth proteomic studies have been conducted on primary or immortalized cultures of neural stem cells and neural progenitor cells, and yet more remains to be done. Additionally, neurons and glial cells have been obtained from embryonic stem cells and mesenchymal stem cells, and proteins associated with the differentiation process have been characterized to a certain degree with a view to further investigations. This review summarizes recent findings relevant to the proteomics of neural stem cells and discusses major proteins significantly regulated during neural stem cell differentiation with a view to their future use in cell-based regenerative and reparative therapy.
Collapse
Affiliation(s)
- Helena Skalnikova
- Institute of Animal Physiology & Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 277 21 Libechov, Czech Republic.
| | | | | | | |
Collapse
|
72
|
Karussis D, Kassis I. The potential use of stem cells in multiple sclerosis: an overview of the preclinical experience. Clin Neurol Neurosurg 2008; 110:889-96. [PMID: 18375051 DOI: 10.1016/j.clineuro.2008.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 02/02/2008] [Accepted: 02/07/2008] [Indexed: 12/22/2022]
Abstract
The reported neurodegeneration process in multiple sclerosis may explain the lack of efficacy of the currently used immunomodulating modalities and the irreversible axonal damage, which results in accumulating disability. Efforts for neuroprotective treatments have not been, so far, successful in clinical studies in other CNS diseases. Therefore, for MS, the use of stem cells may provide a logical solution, since these cells can migrate locally into the areas of white matter lesions (plaques) and have the potential to support local neurogenesis and rebuilding of the affected myelin. This may be achieved both by support of the resident CNS stem cells repertoire and by differentiation of the transplanted cells into neurons and myelin-producing cells (oligodendrocytes). Stem cells were also shown to possess immunomodulating properties, inducing systemic and local suppression of the myelin-targeting autoimmune lymphocytes. Several types of stem cells (embryonic and adult) have been described and extensively studied in animal models of CNS diseases. In this review, we summarize the experience with the use of different types of stem cells in the animal models of MS (EAE) and we describe the advantages and disadvantages of each stem cell type for future clinical applications in MS.
Collapse
Affiliation(s)
- Dimitrios Karussis
- Department of Neurology, Laboratory of Neuroimmunology, Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Hospital, Ein-Karem, Jerusalem, Israel.
| | | |
Collapse
|
73
|
Duncan ID, Goldman S, Macklin WB, Rao M, Weiner LP, Reingold SC. Stem cell therapy in multiple sclerosis: promise and controversy. Mult Scler 2008; 14:541-6. [DOI: 10.1177/1352458507087324] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stem cells offer the potential for regeneration of lost tissue in neurological disease, including multiple sclerosis (MS). Their development in vitro and their use in vivo in animal models of degenerative neurological disease and recent first efforts in human clinical trials were the topics of a recent international meeting sponsored by the Multiple Sclerosis International Federation and the National Multiple Sclerosis Society on “Stem Cells & MS: Prospects and Strategies” Participants reviewed the current state of knowledge about the potential use of stem and progenitor cells in MS and other degenerative neurological disorders and outlined a series of urgent fundamental and applied clinical research priorities that should allow the potential of regeneration of damaged tissue in MS to be assessed and pursued.
Collapse
Affiliation(s)
- ID Duncan
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - S Goldman
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | - WB Macklin
- Department of Neurosciences, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - M Rao
- Regenerative Medicine, Invitrogen Corporation, Timonium, Maryland, USA
| | - LP Weiner
- Keck School of Medicine, Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - SC Reingold
- National Multiple Sclerosis Society and Scientific and Clinical Review Associates, LLC, New York City, New York, USA,
| |
Collapse
|
74
|
Tabata Y. Current status of regenerative medical therapy based on drug delivery technology. Reprod Biomed Online 2008; 16:70-80. [DOI: 10.1016/s1472-6483(10)60558-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
75
|
Tabata Y. Regenerative medical therapy from the viewpoint of biomaterials. Inflamm Regen 2008. [DOI: 10.2492/inflammregen.28.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
76
|
TWEAKing tissue remodeling by a multifunctional cytokine: role of TWEAK/Fn14 pathway in health and disease. Cytokine 2007; 40:1-16. [PMID: 17981048 DOI: 10.1016/j.cyto.2007.09.007] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 09/14/2007] [Accepted: 09/21/2007] [Indexed: 12/26/2022]
Abstract
First described as a weak apoptosis inducer, the TNF superfamily ligand TWEAK has since emerged as a cytokine that regulates multiple cellular responses, including proinflammatory activity, angiogenesis and cell proliferation, suggesting roles in inflammation and cancer. More recently TWEAK's ability to regulate progenitor cell fate was elucidated. Experiments using genetic overexpression and pathway inhibition or deficiency in mice indicate that TWEAK coordinates inflammatory and progenitor cell responses in settings of acute injury through its highly inducible receptor, FGF-inducible molecule 14 (Fn14), establishing the pathway's physiological role in facilitating acute tissue repair. In contrast, in chronic inflammatory disease models characterized by persistent TWEAK/Fn14 activation, TWEAK functions as a novel pathogenic mediator by amplifying inflammation, promoting tissue damage and potentially impeding endogenous repair mechanisms. Herein we aim not only to review the multifaceted functions of this emerging pathway, but also propose a conceptual framework for TWEAK/Fn14 pathway function in health and disease, supported by studies employing TWEAK and Fn14 deficient mice and anti-TWEAK blocking mAbs in acute injury and inflammatory disease settings. In addition to a perspective of the biology, we discuss potential therapeutic strategies targeting this pathway for the treatment of tissue injury, chronic inflammatory diseases and cancer.
Collapse
|
77
|
Abstract
The reported evidence of neurodegeneration in multiple sclerosis (MS) may explain the lack of efficacy of the currently used immunomodulating modalities and the irreversible axonal damage, which results in accumulating disability. To date, efforts for neuroprotective treatments have not been successful in clinical studies in other CNS diseases. Therefore, for MS, the use of stem cells may provide a logical solution, since these cells can migrate locally into the areas of white-matter lesions (plaques) and have the potential to support local neurogenesis and rebuilding of the affected myelin. This is achieved both by support of the resident CNS stem cell repertoire and by differentiation of the transplanted cells into neurons and myelin-producing cells (oligodendrocytes). Stem cells were also shown to possess immunomodulating properties, inducing systemic and local suppression of the myelin-targeting autoimmune lymphocytes. Several types of stem cells (embryonic and adult) have been described and extensively studied in animal models of CNS diseases and the various models of MS (experimental autoimmune encephalomyelitis [EAE]). In this review, we summarize the experience with the use of different types of stem cells in CNS disease models, focusing on the models of EAE and describe the advantages and disadvantages of each stem cell type for future clinical applications in MS.
Collapse
Affiliation(s)
- Dimitrios Karussis
- Department of Neurology, Laboratory of Neuroimmunology, Hadassah-Hebrew University Center, Jerusalem, Ein-Karem, IL-91120, Israel.
| | | |
Collapse
|
78
|
Lin SZ. 9th International Conference on Neural Transplantation and Repair. Cell Transplant 2007; 16:99. [PMID: 28863741 DOI: 10.3727/000000007783464641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Shinn-Zong Lin
- Neurosurgery of Tzu-Chi University, Superintendent of Buddhist Tzu-Chi General Hospital Hualien, Taiwan
| |
Collapse
|