51
|
Abstract
PREMISE OF THE STUDY The Lamiidae, a clade composed of approximately 15% of all flowering plants, consists of five orders: Boraginales, Gentianales, Garryales, Lamiales, and Solanales; and four families unplaced in an order: Icacinaceae, Metteniusiaceae, Oncothecaceae, and Vahliaceae. Our understanding of the phylogenetic relationships of Lamiidae has improved significantly in recent years, however, relationships among the orders and unplaced families of the clade remain partly unresolved. Here, we present a phylogenetic analysis of the Lamiidae based on an expanded sampling, including all families together, for the first time, in a single phylogenetic analyses. METHODS Phylogenetic analyses were conducted using maximum parsimony, maximum likelihood, and Bayesian approaches. Analyses included nine plastid regions (atpB, matK, ndhF, psbBTNH, rbcL, rps4, rps16, trnL-F, and trnV-atpE) and the mitochondrial rps3 region, and 129 samples representing all orders and unplaced families of Lamiidae. KEY RESULTS Maximum Likelihood (ML) and Bayesian trees provide good support for Boraginales sister to Lamiales, with successive outgroups (Solanales + Vahlia) and Gentianales, together comprising the core Lamiidae. Early branching patterns are less well supported, with Garryales only poorly supported as sister to the above 'core' and a weakly supported clade composed of Icacinaceae, Metteniusaceae, and Oncothecaceae sister to all other Lamiidae. CONCLUSIONS Our phylogeny of Lamiidae reveals increased resolution and support for internal relationships that have remained elusive. Within Lamiales, greater resolution also is obtained, but some family interrelationships remain a challenge.
Collapse
|
52
|
Tsymbalyuk Z, Mosyakin S. Palynomorphology of species of Orobanche L. subgenus Orobanche L. (Orobanchaceae) in the flora of Ukraine. UKRAINIAN BOTANICAL JOURNAL 2013. [DOI: 10.15407/ukrbotj70.06.723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
53
|
Turner B, Munzinger J, Duangjai S, Temsch EM, Stockenhuber R, Barfuss MHJ, Chase MW, Samuel R. Molecular phylogenetics of New Caledonian Diospyros (Ebenaceae) using plastid and nuclear markers. Mol Phylogenet Evol 2013; 69:740-63. [PMID: 23850609 PMCID: PMC3913082 DOI: 10.1016/j.ympev.2013.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 01/11/2023]
Abstract
To clarify phylogenetic relationships among New Caledonian species of Diospyros, sequences of four plastid markers (atpB, rbcL, trnK-matK and trnS-trnG) and two low-copy nuclear markers (ncpGS and PHYA) were analysed. New Caledonian Diospyros species fall into three clades, two of which have only a few members (1 or 5 species); the third has 21 closely related species for which relationships among species have been mostly unresolved in a previous study. Although species of the third group (NC clade III) are morphologically distinct and largely occupy different habitats, they exhibit little molecular variability. Diospyros vieillardii is sister to the rest of the NC clade III, followed by D. umbrosa and D. flavocarpa, which are sister to the rest of this clade. Species from coastal habitats of western Grande Terre (D. cherrieri and D. veillonii) and some found on coralline substrates (D. calciphila and D. inexplorata) form two well-supported subgroups. The species of NC clade III have significantly larger genomes than found in diploid species of Diospyros from other parts of the world, but they all appear to be diploids. By applying a molecular clock, we infer that the ancestor of the NC clade III arrived in New Caledonia around 9 million years ago. The oldest species are around 7 million years old and the youngest ones probably much less than 1 million years.
Collapse
Affiliation(s)
- Barbara Turner
- Department of Systematic and Evolutionary Botany, Faculty of Life Sciences, University Vienna, Rennweg 14, 1030 Wien, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Spallek T, Mutuku M, Shirasu K. The genus Striga: a witch profile. MOLECULAR PLANT PATHOLOGY 2013; 14:861-9. [PMID: 23841683 PMCID: PMC6638688 DOI: 10.1111/mpp.12058] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The genus Striga comprises about 30 obligate root-parasitic plants, commonly known as witchweeds. In particular, S. hermonthica, S. asiatica and S. gesnerioides cause immense losses to major stable crops in sub-Saharan Africa. Most Striga species parasitize grass species (Poaceae), but Striga gesnerioides has evolved to parasitize dicotyledonous plants. Aspects of phylogeny, economic impact, parasitic life style and molecular discoveries are briefly reviewed to profile one of the main biotic constraints to African agriculture. TAXONOMY Striga Lour.; Kingdom Plant; Division Angiospermae; Clade Eudicots; Order Laminales; Family Orobanchaceae. IMPORTANT HOSTS Sorghum Moench., maize (Zea mays L.), rice (Oryza L.), sugarcane (Saccharum L.), pearl millet [Pennisetum glaucum (L.) R. Br.], cowpea [Vigna unguiculata (L.) Walp.]. DISEASE SYMPTOMS Stunted growth, drought-stressed-like appearance, in severe cases chlorosis and necrosis. ECONOMIC IMPORTANCE 1 billion $US per annum. DISEASE CONTROL Hand weeding, breeding, chemical control, intercropping with catch or trap crops. USEFUL WEBPAGES http://ppgp.huck.psu.edu; http://striga.psc.riken.jp.
Collapse
Affiliation(s)
- Thomas Spallek
- RIKEN Centre for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | | | | |
Collapse
|
55
|
Tsymbalyuk Z, Mosyakin S. Palynomorphology of species of Orobanche L. subgenus Phelipanche (Pomel) Tzvelev (Orobanchaceae) in the flora of Ukraine. UKRAINIAN BOTANICAL JOURNAL 2013. [DOI: 10.15407/ukrbotj70.05.600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
56
|
Bellot S, Renner SS. Pollination and mating systems of Apodanthaceae and the distribution of reproductive traits in parasitic angiosperms. AMERICAN JOURNAL OF BOTANY 2013; 100:1083-1094. [PMID: 23703856 DOI: 10.3732/ajb.1200627] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PREMISE OF THE STUDY The most recent reviews of the reproductive biology and sexual systems of parasitic angiosperms were published 17 yr ago and reported that dioecy might be associated with parasitism. We use current knowledge on parasitic lineages and their sister groups, and data on the reproductive biology and sexual systems of Apodanthaceae, to readdress the question of possible trends in the reproductive biology of parasitic angiosperms. • METHODS Fieldwork in Zimbabwe and Iran produced data on the pollinators and sexual morph frequencies in two species of Apodanthaceae. Data on pollinators, dispersers, and sexual systems in parasites and their sister groups were compiled from the literature. • KEY RESULTS With the possible exception of some Viscaceae, most of the ca. 4500 parasitic angiosperms are animal-pollinated, and ca. 10% of parasites are dioecious, but the gain and loss of dioecy across angiosperms is too poorly known to infer a statistical correlation. The studied Apodanthaceae are dioecious and pollinated by nectar- or pollen-foraging Calliphoridae and other flies. • CONCLUSIONS Sister group comparisons so far do not reveal any reproductive traits that evolved (or were lost) concomitant with a parasitic life style, but the lack of wind pollination suggests that this pollen vector may be maladaptive in parasites, perhaps because of host foliage or flowers borne close to the ground.
Collapse
Affiliation(s)
- Sidonie Bellot
- Systematic Botany and Mycology, University of Munich (LMU), Menzinger Str. 67 80638 Munich, Germany.
| | | |
Collapse
|
57
|
Zimmer EA, Wen J. Reprint of: using nuclear gene data for plant phylogenetics: progress and prospects. Mol Phylogenet Evol 2013; 66:539-50. [PMID: 23375140 DOI: 10.1016/j.ympev.2013.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 06/14/2012] [Accepted: 07/16/2012] [Indexed: 12/25/2022]
Abstract
The paper reviews the current state of low and single copy nuclear markers that have been applied successfully in plant phylogenetics to date, and discusses case studies highlighting the potential of massively parallel high throughput or next-generation sequencing (NGS) approaches for molecular phylogenetic and evolutionary investigations. The current state, prospects and challenges of specific single- or low-copy plant nuclear markers as well as phylogenomic case studies are presented and evaluated.
Collapse
Affiliation(s)
- Elizabeth A Zimmer
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20013-7012, USA.
| | | |
Collapse
|
58
|
Li X, Zhang TC, Qiao Q, Ren Z, Zhao J, Yonezawa T, Hasegawa M, Crabbe MJC, Li J, Zhong Y. Complete chloroplast genome sequence of holoparasite Cistanche deserticola (Orobanchaceae) reveals gene loss and horizontal gene transfer from its host Haloxylon ammodendron (Chenopodiaceae). PLoS One 2013; 8:e58747. [PMID: 23554920 PMCID: PMC3598846 DOI: 10.1371/journal.pone.0058747] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 02/05/2013] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The central function of chloroplasts is to carry out photosynthesis, and its gene content and structure are highly conserved across land plants. Parasitic plants, which have reduced photosynthetic ability, suffer gene losses from the chloroplast (cp) genome accompanied by the relaxation of selective constraints. Compared with the rapid rise in the number of cp genome sequences of photosynthetic organisms, there are limited data sets from parasitic plants. PRINCIPAL FINDINGS/SIGNIFICANCE: Here we report the complete sequence of the cp genome of Cistanche deserticola, a holoparasitic desert species belonging to the family Orobanchaceae. The cp genome of C. deserticola is greatly reduced both in size (102,657 bp) and in gene content, indicating that all genes required for photosynthesis suffer from gene loss and pseudogenization, except for psbM. The striking difference from other holoparasitic plants is that it retains almost a full set of tRNA genes, and it has lower dN/dS for most genes than another close holoparasitic plant, E. virginiana, suggesting that Cistanche deserticola has undergone fewer losses, either due to a reduced level of holoparasitism, or to a recent switch to this life history. We also found that the rpoC2 gene was present in two copies within C. deserticola. Its own copy has much shortened and turned out to be a pseudogene. Another copy, which was not located in its cp genome, was a homolog of the host plant, Haloxylon ammodendron (Chenopodiaceae), suggesting that it was acquired from its host via a horizontal gene transfer.
Collapse
Affiliation(s)
- Xi Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Ti-Cao Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Qin Qiao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhumei Ren
- College of Life Science and Technology, Shanxi University, Taiyuan, China
| | - Jiayuan Zhao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Takahiro Yonezawa
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Masami Hasegawa
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - M. James C Crabbe
- Faculty of Creative Arts, Technologies and Science, Institute of Biomedical, Environmental Science and Technology, University of Bedfordshire, Luton, United Kingdom
| | - Jianqiang Li
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (JL); (YZ)
| | - Yang Zhong
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Institute of Biodiversity Science and Geobiology, Tibet University, Lhasa, China
- * E-mail: (JL); (YZ)
| |
Collapse
|
59
|
Těšitel J, Tesařová M. Ultrastructure of hydathode trichomes of hemiparasitic Rhinanthus alectorolophus and Odontites vernus: how important is their role in physiology and evolution of parasitism in Orobanchaceae? PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:119-125. [PMID: 22676139 DOI: 10.1111/j.1438-8677.2012.00610.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The Rhinanthoid clade of the family Orobanchaceae comprises plants displaying a hemiparasitic or holoparasitic strategy of resource acquisition. Some of its species (mainly Rhinanthus spp.) are often used as models for studies of hemiparasite physiology. Although there is a well-developed concept covering their physiological processes, most recent studies have neglected the existence of hydathode trichomes present on leaves of these hemiparasitic plants. As a first step for the proposed integration of these structures in the theory of physiological processes of the hemiparasites, we described the outer micromorphology and ultrastructure of the hydathode trichomes on leaves of hemiparasitic Rhinanthus alectorolophus and Odontites vernus with scanning and transmission electron microscopy (SEM and TEM, respectively). The TEM inspections of both types of trichome revealed typical ultrastructural features: labyrinthine cell wall, high content of cytoplasm in cells with numerous mitochondria and presence of plasmodesmata. All these features indicate high metabolic activity complying with their function as glandular trichomes actively secreting water. The active secretion of water by the hydathode trichomes (evidence for which is summarised here) also presents a possible mechanism explaining results of previous gas exchange measurements detecting high dark respiration and transpiration rates and a tight inter-correlation between them in hemiparasitic Orobanchaceae. In addition, this process is hypothesised to have allowed multiple evolutionary transitions from facultative to obligate hemiparasitism and unique xylem-feeding holoparasitism of Lathraea with a long-lived underground stage featuring a rhizome covered by scales of leaf origin.
Collapse
Affiliation(s)
- J Těšitel
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic. jakub.
| | | |
Collapse
|
60
|
Zimmer EA, Wen J. Using nuclear gene data for plant phylogenetics: Progress and prospects. Mol Phylogenet Evol 2012; 65:774-85. [DOI: 10.1016/j.ympev.2012.07.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 06/14/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
|
61
|
Piednoël M, Aberer AJ, Schneeweiss GM, Macas J, Novak P, Gundlach H, Temsch EM, Renner SS. Next-generation sequencing reveals the impact of repetitive DNA across phylogenetically closely related genomes of Orobanchaceae. Mol Biol Evol 2012; 29:3601-11. [PMID: 22723303 PMCID: PMC3859920 DOI: 10.1093/molbev/mss168] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We used next-generation sequencing to characterize the genomes of nine species of Orobanchaceae of known phylogenetic relationships, different life forms, and including a polyploid species. The study species are the autotrophic, nonparasitic Lindenbergia philippensis, the hemiparasitic Schwalbea americana, and seven nonphotosynthetic parasitic species of Orobanche (Orobanche crenata, Orobanche cumana, Orobanche gracilis (tetraploid), and Orobanche pancicii) and Phelipanche (Phelipanche lavandulacea, Phelipanche purpurea, and Phelipanche ramosa). Ty3/Gypsy elements comprise 1.93%-28.34% of the nine genomes and Ty1/Copia elements comprise 8.09%-22.83%. When compared with L. philippensis and S. americana, the nonphotosynthetic species contain higher proportions of repetitive DNA sequences, perhaps reflecting relaxed selection on genome size in parasitic organisms. Among the parasitic species, those in the genus Orobanche have smaller genomes but higher proportions of repetitive DNA than those in Phelipanche, mostly due to a diversification of repeats and an accumulation of Ty3/Gypsy elements. Genome downsizing in the tetraploid O. gracilis probably led to sequence loss across most repeat types.
Collapse
Affiliation(s)
- Mathieu Piednoël
- Systematic Botany and Mycology, University of Munich (LMU), Munich, Germany
| | - Andre J. Aberer
- Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Gerald M. Schneeweiss
- Department of Systematic and Evolutionary Botany, University of Vienna, Vienna, Austria
| | - Jiri Macas
- Institute of Plant Molecular Biology, Biology Centre ASCR, České Budějovice, Czech Republic
| | - Petr Novak
- Institute of Plant Molecular Biology, Biology Centre ASCR, České Budějovice, Czech Republic
| | - Heidrun Gundlach
- Institute for Bioinformatics and System Biology, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Eva M. Temsch
- Department of Systematic and Evolutionary Botany, University of Vienna, Vienna, Austria
| | - Susanne S. Renner
- Systematic Botany and Mycology, University of Munich (LMU), Munich, Germany
| |
Collapse
|
62
|
Hardy NB, Cook LG. Testing for Ecological Limitation of Diversification: A Case Study Using Parasitic Plants. Am Nat 2012; 180:438-49. [DOI: 10.1086/667588] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
63
|
Vrancken J, Brochmann C, Wesselingh RA. A European phylogeography of Rhinanthus minor compared to Rhinanthus angustifolius: unexpected splits and signs of hybridization. Ecol Evol 2012; 2:1531-48. [PMID: 22957160 PMCID: PMC3434919 DOI: 10.1002/ece3.276] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/11/2012] [Accepted: 04/11/2012] [Indexed: 11/25/2022] Open
Abstract
Rhinanthus minor and Rhinanthus angustifolius (Orobanchaceae) are annual hemiparasites, which occur sympatrically in Europe and are known to hybridize. We studied chloroplast and nuclear (amplified fragment length polymorphism [AFLP]) diversity in R. minor and compared genetic structuring in this species with R. angustifolius by analyzing the AFLP data for both species simultaneously. The AFLP data revealed that populations in Italy, Greece, and southeast Russia initially identified as R. minor were so distant from the other R. minor populations that they probably belong to another, yet unidentified taxon, and we refer to them as Rhinanthus sp. R. minor s.s. showed a clear geographic genetic structure in both the chloroplast DNA (cpDNA) and nuclear genome. The simultaneous analysis of both species shed new light on the previously published findings for R. angustifolius, because some populations now turned out to belong to R. minor. The admixture analysis revealed very few individuals of mixed R. minor–R.angustifolius ancestry in the natural populations in the west of Europe, while admixture levels were higher in the east. The combined haplotype network showed that haplotype H1 was shared among all species and is likely to be ancestral. H2 was more abundant in R. angustifolius and H3 in R. minor, and the latter probably arose from H1 in this species in the east of Europe. The occurrence of H3 in R. angustifolius may be explained by introgression from R. minor, but without interspecific admixture, these are likely to have been old hybridization events. Our study underlines the importance of including related species in phylogeographic studies.
Collapse
|
64
|
Braukmann T, Stefanović S. Plastid genome evolution in mycoheterotrophic Ericaceae. PLANT MOLECULAR BIOLOGY 2012; 79:5-20. [PMID: 22442035 DOI: 10.1007/s11103-012-9884-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 01/12/2012] [Indexed: 05/09/2023]
Abstract
Unlike parasitic plants, which are linked to their hosts directly through haustoria, mycoheterotrophic (MHT) plants derive all or part of their water and nutrients from autothrophs via fungal mycorrhizal intermediaries. Ericaceae, the heather family, are a large and diverse group of plants known to form elaborate symbiotic relationships with mycorrhizal fungi. Using PHYA sequence data, we first investigated relationships among mycoheterotrophic Ericaceae and their close autotrophic relatives. Phylogenetic results suggest a minimum of two independent origins of MHT within this family. Additionally, a comparative investigation of plastid genomes (plastomes) grounded within this phylogenetic framework was conducted using a slot-blot Southern hybridization approach. This survey encompassed numerous lineages of Ericaceae with different life histories and trophic levels, including multiple representatives from mixotrophic Pyroleae and fully heterotrophic Monotropeae and Pterosporeae. Fifty-four probes derived from all categories of protein coding genes typically found within the plastomes of flowering plants were used. Our results indicate that the holo-mycoheterotrophic Ericaceae exhibit extensive loss of genes relating to photosynthetic function and expression of the plastome but retain genes with possible functions outside photosynthesis. Mixotrophic taxa tend to retain most genes relating to photosynthetic functions but are varied regarding the plastid ndh gene content. This investigation extends previous inferences that the loss of the NDH complex occurs prior to becoming holo-heterotrophic and it shows that the pattern of gene losses among mycoheterotrophic Ericaceae is similar to that of haustorial parasites. Additionally, we identify the most desirable candidate species for entire plastome sequencing.
Collapse
Affiliation(s)
- Thomas Braukmann
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| | | |
Collapse
|
65
|
Jansen RK, Ruhlman TA. Plastid Genomes of Seed Plants. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2012. [DOI: 10.1007/978-94-007-2920-9_5] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
66
|
Tsuchiya Y, McCourt P. Strigolactones as small molecule communicators. ACTA ACUST UNITED AC 2012; 8:464-9. [DOI: 10.1039/c1mb05195d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
67
|
Transcriptomes of the Parasitic Plant Family Orobanchaceae Reveal Surprising Conservation of Chlorophyll Synthesis. Curr Biol 2011; 21:2098-104. [DOI: 10.1016/j.cub.2011.11.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 08/17/2011] [Accepted: 11/04/2011] [Indexed: 11/18/2022]
|
68
|
Hall JC, Tisdale TE, Donohue K, Wheeler A, Al-Yahya MA, Kramer EM. Convergent evolution of a complex fruit structure in the tribe Brassiceae (Brassicaceae). AMERICAN JOURNAL OF BOTANY 2011; 98:1989-2003. [PMID: 22081414 DOI: 10.3732/ajb.1100203] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
PREMISE OF STUDY Many angiosperms have fruit morphologies that result in seeds from the same plant having different dispersal capabilities. A prime example is found in the Brassiceae (Brassicaceae), which has many members with segmented or heteroarthrocarpic fruits. Since only 40% of the genera are heteroarthrocarpic, this tribe provides an opportunity to study the evolution of an ecologically significant novelty and its variants. METHODS We analyzed nuclear (PHYA) and plastid (matK) sequences from 66 accessions using maximum parsimony, maximum likelihood, and Bayesian inference approaches. The evolution of heteroarthrocarpy and its variants was evaluated using maximum parsimony and maximum likelihood ancestral state reconstructions. KEY RESULTS Although nuclear and plastid phylogenies are incongruent with each other, the following findings are consistent: (1) Cakile, Crambe, Vella, and Zilla lineages are monophyletic; (2) the Nigra lineage is not monophyletic; and (3) within the Cakile clade, Cakile, Didesmus, and Erucaria are paraphyletic. Despite differences in the matK and PHYA topologies at both deep and shallow nodes, similar patterns of morphological evolution emerge. Heteroarthrocarpy, a complex morphological trait, has evolved multiple times across the tribe. Moreover, there are convergent transitions in dehiscence capabilities and fruit disarticulation across the tribe. CONCLUSIONS We present the first explicit analysis of fruit evolution within the Brassiceae, which exemplifies evolutionary lability. The repeated loss and gain of segment dehiscence and disarticulation suggests conservation in the genetic pathway controlling abscission with differential expression across taxa. This study provides a strong foundation for future studies of mechanisms underlying variation in dispersal capabilities of Brassiceae.
Collapse
Affiliation(s)
- Jocelyn C Hall
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.
| | | | | | | | | | | |
Collapse
|
69
|
Ishida JK, Yoshida S, Ito M, Namba S, Shirasu K. Agrobacterium rhizogenes-mediated transformation of the parasitic plant Phtheirospermum japonicum. PLoS One 2011; 6:e25802. [PMID: 21991355 PMCID: PMC3185032 DOI: 10.1371/journal.pone.0025802] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 09/11/2011] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Plants within the Orobanchaceae are an agriculturally important group of parasites that attack economically important crops to obtain water and nutrients from their hosts. Despite their agricultural importance, molecular mechanisms of the parasitism are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS We developed transient and stable transformation systems for Phtheirospermum japonicum, a facultative parasitic plant in the Orobanchaceae. The transformation protocol was established by a combination of sonication and acetosyringone treatments using the hairy-root-inducing bacterium, Agrobacterium rhizogenes and young seedlings. Transgenic hairy roots of P. japonicum were obtained from cotyledons 2 to 3 weeks after A. rhizogenes inoculation. The presence and the expression of transgenes in P. japonicum were verified by genomic PCR, Southern blot and RT-PCR methods. Transgenic roots derived from A. rhizogenes-mediated transformation were able to develop haustoria on rice and maize roots. Transgenic roots also formed apparently competent haustoria in response to 2,6-dimethoxy-1,4-benzoquinone (DMBQ), a haustorium-inducing chemical. Using this system, we introduced a reporter gene with a Cyclin B1 promoter into P. japonicum, and visualized cell division during haustorium formation. CONCLUSIONS We provide an easy and efficient method for hairy-root transformation of P. japonicum. Transgenic marker analysis revealed that cell divisions during haustorium development occur 24 h after DMBQ treatment. The protocols described here will allow functional analysis of genes involved in plant parasitism.
Collapse
Affiliation(s)
- Juliane K. Ishida
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
- Plant Science Center, RIKEN, Yokohama, Japan
| | | | - Masaki Ito
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Shigetou Namba
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Ken Shirasu
- Plant Science Center, RIKEN, Yokohama, Japan
| |
Collapse
|
70
|
Schäferhoff B, Fleischmann A, Fischer E, Albach DC, Borsch T, Heubl G, Müller KF. Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences. BMC Evol Biol 2010; 10:352. [PMID: 21073690 PMCID: PMC2992528 DOI: 10.1186/1471-2148-10-352] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 11/12/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. RESULTS Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. CONCLUSIONS Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales. The multiple independent evolution of the carnivorous syndrome, once in Lentibulariaceae and a second time in Byblidaceae, is strongly supported by all analyses and topological tests. The evolution of selected morphological characters such as flower symmetry is discussed. The addition of further sequence data from introns and spacers holds promise to eventually obtain a fully resolved plastid tree of Lamiales.
Collapse
Affiliation(s)
- Bastian Schäferhoff
- Institute for Evolution and Biodiversity, University of Muenster, Hüfferstraße 1, 48149 Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
71
|
Marx HE, O'Leary N, Yuan YW, Lu-Irving P, Tank DC, Múlgura ME, Olmstead RG. A molecular phylogeny and classification of Verbenaceae. AMERICAN JOURNAL OF BOTANY 2010; 97:1647-1663. [PMID: 21616800 DOI: 10.3732/ajb.1000144] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
PREMISE OF THE STUDY Verbenaceae consist of trees, shrubs, lianas, and herbs distributed primarily in Latin America, where they occur in a wide array of ecosystems. A second center of diversity exists in Africa. Competing morphology-based classifications that rely on different traits conflict in significant ways. A broad phylogenetic study was undertaken to assess those classifications and to examine the historical geography of the family. • METHODS Analysis of seven chloroplast DNA regions for 109 species, representing all genera except one monotypic genus, provide inference into evolutionary relationships in Verbenaceae. • KEY RESULTS The phylogeny shows that none of the traditional classifications reflect phylogenetic relationships very well. Eight clades are recognized as tribes (Casselieae, Citharexyleae, Duranteae, Lantaneae, Neospartoneae trib. nov., Petreeae, Priveae, and Verbeneae). Two genera, Dipyrena and Rhaphithamnus, remain unplaced in these larger clades. Petreeae, which consist of Neotropical lianas, are sister to the rest of the family. Lantaneae and Verbeneae together form a derived clade that comprises approximately two-thirds of the species in Verbenaceae. • CONCLUSIONS We present a new tribal classification, including one new tribe, Neospartoneae trib. nov., to accommodate three small genera of Argentine species (Diostea, Neosparton, and Lampaya). Phylogenetic inference suggests a South American origin for Verbenaceae, with approximately six colonization events having given rise to the Old World species.
Collapse
Affiliation(s)
- Hannah E Marx
- Department of Biology and Burke Museum, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Yoshida S, Maruyama S, Nozaki H, Shirasu K. Horizontal Gene Transfer by the Parasitic Plant Striga hermonthica. Science 2010; 328:1128. [DOI: 10.1126/science.1187145] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
73
|
Tesitel J, Plavcová L, Cameron DD. Heterotrophic carbon gain by the root hemiparasites, Rhinanthus minor and Euphrasia rostkoviana (Orobanchaceae). PLANTA 2010; 231:1137-44. [PMID: 20179964 DOI: 10.1007/s00425-010-1114-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 02/01/2010] [Indexed: 05/08/2023]
Abstract
Hemiparasitic plants gain virtually all mineral nutrients and water from their host plant whilst organic carbon is provided, at least in part, by their own photosynthetic activity, although their rates of assimilation are substantially lower than that found in non-parasitic plants. Hence, hemiparasites must gain at least some of their organic carbon heterotrophically from the host plant. Despite this, heterotrophic carbon gain by root hemiparasites has been investigated only for a few genera. We investigated heterotrophic carbon gain by two root hemiparasites, Rhinanthus minor L. and Euphrasia rostkoviana Hayne (Orobanchaceae), using natural abundance stable isotope (delta(13)C) profiles of both parasites attached to C(3) (wheat) and C(4) (maize) hosts coupled to a linear two-source isotope-mixing model to estimate the percentage of carbon in the parasite that was derived from the host. Both R. minor and E. rostkoviana attached to maize hosts were significantly more enriched in (13)C than those attached to wheat hosts with R. minor becoming more enriched in (13)C than E. rostkoviana. The natural abundance (13)C profiles of both parasites were not significantly different from their wheat hosts, but were less enriched in (13)C than maize hosts. Using a linear two-source isotope-mixing model, we estimated that R. minor and E. rostkoviana adult plants derive c. 50 and 25% of their carbon from their hosts, respectively. In light of these results, we hypothesise that repeatedly observed negative effect of competition for light on hemiparasites acts predominantly in early ontogenetic stages when parasites grow unattached or the abstraction of host nutrients is less effective.
Collapse
Affiliation(s)
- Jakub Tesitel
- Department of Botany, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.
| | | | | |
Collapse
|
74
|
Fay MF, Bennett JR, Dixon KW, Christenhusz MJM. PARASITES, THEIR RELATIONSHIPS AND THE DISINTEGRATION OF SCROPHULARIACEAESENSU LATO. ACTA ACUST UNITED AC 2010. [DOI: 10.1111/j.1467-8748.2009.01668.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
75
|
Xia Z, Wang YZ, Smith JF. Familial placement and relations of Rehmannia and Triaenophora (Scrophulariaceae s.l.) inferred from five gene regions. AMERICAN JOURNAL OF BOTANY 2009; 96:519-30. [PMID: 21628207 DOI: 10.3732/ajb.0800195] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Accurate classification systems based on evolution are imperative for biological investigations. The recent explosion of molecular phylogenetics has resulted in a much improved classification of angiosperms. More than five phylogenetic lineages have been recognized from Scrophulariaceae sensu lato since the family was determined to be polyphyletic; however, questions remain about the genera that have not been assigned to one of the segregate families of Scrophulariaceae s.l. Rehmannia Liboschitz and Triaenophora Solereder are such genera with uncertain familial placement. There also is debate whether Triaenophora should be segregated from Rehmannia. To evaluate the phylogenetic relations between Rehmannia and Triaenophora, to find their closest relatives, and to verify their familial placement, we conducted phylogenetic analyses of the sequences of one nuclear DNA (ITS) region and four chloroplast DNA gene regions (trnL-F, rps16, rbcL, and rps2) individually and combined. The analyses showed that Rehmannia and Triaenophora are each strongly supported as monophyletic and together are sister to Orobanchaceae. This relation was corroborated by phytochemical and morphological data. Based on these data, we suggest that Rehmannia and Triaenophora represent the second nonparasitic branch sister to the remainder of Orobanchaceae (including Lindenbergia).
Collapse
Affiliation(s)
- Zhi Xia
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
| | | | | |
Collapse
|
76
|
Selosse MA, Roy M. Green plants that feed on fungi: facts and questions about mixotrophy. TRENDS IN PLANT SCIENCE 2009; 14:64-70. [PMID: 19162524 DOI: 10.1016/j.tplants.2008.11.004] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 11/07/2008] [Accepted: 11/11/2008] [Indexed: 05/08/2023]
Abstract
Several green, photosynthetic plants in orchids and Ericaceae were recently found to recover carbon from the mycorrhizal fungi associated with their roots, a dual nutritional capability called mixotrophy. The physiological and cellular processes allowing carbon gain from the fungus are not well understood. We believe that this phenomenon is overlooked and propose several land plant families and ecosystems that should be investigated for possible mixotrophy. We speculate that mixotrophy allowed, in some lineages, the evolution of heterotrophic plants, that is, non-photosynthetic plants that obtain their carbon from organic compounds. Moreover, the amount of carbon gained from the fungus varies from one site to another in mixotrophs. Drawing a parallel with mixotrophy in planktonic algae, we propose some hypotheses that could account for this.
Collapse
Affiliation(s)
- Marc-André Selosse
- Centre d'Ecologie Fonctionnelle et Evolutive (CNRS, UMR 5175), Equipe Interactions Biotiques, 1919 Route de Mende, 34293 Montpellier cédex 5, France.
| | | |
Collapse
|
77
|
Beilstein MA, Al-Shehbaz IA, Mathews S, Kellogg EA. Brassicaceae phylogeny inferred from phytochrome A and ndhF sequence data: tribes and trichomes revisited. AMERICAN JOURNAL OF BOTANY 2008; 95:1307-27. [PMID: 21632335 DOI: 10.3732/ajb.0800065] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The family Brassicaceae comprises 3710 species in 338 genera, 25 recently delimited tribes, and three major lineages based on phylogenetic results from the chloroplast gene ndhF. To assess the credibility of the lineages and newly delimited tribes, we sequenced an approximately 1.8-kb region of the nuclear phytochrome A (PHYA) gene for taxa previously sampled for the chloroplast gene ndhF. Using parsimony, likelihood, and Bayesian methods, we reconstructed the phylogeny of the gene and used the approximately unbiased (AU) test to compare phylogenetic results from PHYA with findings from ndhF. We also combined ndhF and PHYA data and used a Bayesian mixed model approach to infer phylogeny. PHYA and combined analyses recovered the same three large lineages as those recovered in ndhF trees, increasing confidence in these lineages. The combined tree confirms the monophyly of most of the recently delimited tribes (only Alysseae, Anchonieae, and Descurainieae are not monophyletic), while 13 of the 23 sampled tribes are monophyletic in PHYA trees. In addition to phylogenetic results, we documented the trichome branching morphology of species across the phylogeny and explored the evolution of different trichome morphologies using the AU test. Our results indicate that dendritic, medifixed, and stellate trichomes likely evolved independently several times in the Brassicaceae.
Collapse
Affiliation(s)
- Mark A Beilstein
- Department of Biology, University of Missouri-St. Louis, 1 University Boulevard, St. Louis, Missouri 63121 USA
| | | | | | | |
Collapse
|
78
|
Li M, Wunder J, Bissoli G, Scarponi E, Gazzani S, Barbaro E, Saedler H, Varotto C. Development of COS genes as universally amplifiable markers for phylogenetic reconstructions of closely related plant species. Cladistics 2008. [DOI: 10.1111/j.1096-0031.2008.00207.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
79
|
Pettengill JB, Neel MC. Phylogenetic patterns and conservation among North American members of the genus Agalinis (Orobanchaceae). BMC Evol Biol 2008; 8:264. [PMID: 18822144 PMCID: PMC2564944 DOI: 10.1186/1471-2148-8-264] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 09/26/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND North American Agalinis Raf. species represent a taxonomically challenging group and there have been extensive historical revisions at the species, section, and subsection levels of classification. The genus contains many rare species, including the federally listed endangered species Agalinis acuta. In addition to evaluating the degree to which historical classifications at the section and subsection levels are supported by molecular data sampled from 79 individuals representing 29 Agalinis species, we assessed the monophyly of 27 species by sampling multiple individuals representing different populations of those species. Twenty-one of these species are of conservation concern in at least some part of their range. RESULTS Phylogenetic relationships estimated using maximum likelihood analyses of seven chloroplast DNA loci (aligned length = 11,076 base pairs (bp) and the nuclear ribosomal DNA ITS (internal transcribed spacer) locus (733 bp); indicated no support for the historically recognized sections except for Section Erectae. Our results suggest that North American members of the genus comprise six major lineages, however we were not able to resolve branching order among many of these lineages. Monophyly of 24 of the 29 sampled species was supported based on significant branch lengths of and high bootstrap support for subtending branches. However, there was no statistical support for the monophyly of A. acuta with respect to Agalinis tenella and Agalinis decemloba. Although most species were supported, deeper relationships among many species remain ambiguous. CONCLUSION The North American Agalinis species sampled form a well supported, monophyletic group within the family Orobanchaceae relative to the outgroups sampled. Most hypotheses regarding section- and subsection-level relationships based on morphology were not supported and taxonomic revisions are warranted. Lack of support for monophyly of Agalinis acuta leaves the important question regarding its taxonomic status unanswered. Lack of resolution is potentially due to incomplete lineage sorting of ancestral polymorphisms among recently diverged species; however the gene regions examined did distinguish among almost all other species in the genus. Due to the important policy implications of this finding we are further evaluating the evolutionary distinctiveness of A. acuta using morphological data and loci with higher mutation rates.
Collapse
Affiliation(s)
- James B Pettengill
- Behavior, Ecology, Evolution, and Systematics Graduate Program, University of Maryland College Park, College Park, MD 20742 USA
| | - Maile C Neel
- Behavior, Ecology, Evolution, and Systematics Graduate Program, University of Maryland College Park, College Park, MD 20742 USA
- Department of Plant Science and Landscape Architecture and Department of Entomology, University of Maryland College Park, College Park, MD 20742 USA
| |
Collapse
|
80
|
Gussarova G, Popp M, Vitek E, Brochmann C. Molecular phylogeny and biogeography of the bipolar Euphrasia (Orobanchaceae): Recent radiations in an old genus. Mol Phylogenet Evol 2008; 48:444-60. [DOI: 10.1016/j.ympev.2008.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 04/09/2008] [Accepted: 05/02/2008] [Indexed: 10/22/2022]
|
81
|
Park JM, Manen JF, Colwell AE, Schneeweiss GM. A plastid gene phylogeny of the non-photosynthetic parasitic Orobanche (Orobanchaceae) and related genera. JOURNAL OF PLANT RESEARCH 2008; 121:365-76. [PMID: 18483784 DOI: 10.1007/s10265-008-0169-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 04/18/2008] [Indexed: 05/17/2023]
Abstract
The phylogenetic relationships of the non-photosynthetic Orobanche sensu lato (Orobanchaceae), which includes some of the economically most important parasitic weeds, remain insufficiently understood and controversial. This concerns both the phylogenetic relationships within the genus, in particular its monophyly or lack thereof, and the relationships to other holoparasitic genera such as Cistanche or Conopholis. Here we present the first comprehensive phylogenetic study of this group based on a region from the plastid genome (rps2 gene). Although substitution rates appear to be elevated compared to the photosynthetic members of Orobanchaceae, relationships among the major lineages Cistanche, Conopholis plus Epifagus, Boschniakia rossica (Cham. & Schltdl.) B. Fedtsch., B. himalaica Hook. f. & Thomson, B. hookeri Walp. plus B. strobilacea A. Gray, and Orobanche s. l. remain unresolved. Resolution within Orobanche, however, is much better. In agreement with morphological, cytological and other molecular phylogenetic evidence, five lineages, corresponding to the four traditionally recognised sections (Gymnocaulis, Myzorrhiza, Orobanche, Trionychon) and O. latisquama Reut. ex Boiss. (of sect. Orobanche), can be distinguished. A combined analysis of plastid rps2 and nuclear ITS sequences of the holoparasitic genera results in more resolved and better supported trees, although the relationships among Orobanche s. l., Cistanche, and the clade including the remaining genera is unresolved. Therefore, rps2 is a marker from the plastid genome that is well-suited to be used in combination with other already established nuclear markers for resolving generic relationships of Orobanche and related genera.
Collapse
Affiliation(s)
- Jeong-Mi Park
- Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | | | | | | |
Collapse
|
82
|
Tank DC, Olmstead RG. From annuals to perennials: phylogeny of subtribe Castillejinae (Orobanchaceae). AMERICAN JOURNAL OF BOTANY 2008; 95:608-625. [PMID: 21632387 DOI: 10.3732/ajb.2007346] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Variation in life history strategies is a fundamental question in evolutionary biology, and the cooccurrence of annual and perennial habits in Castilleja and Castillejinae provides the opportunity to study the evolution of plant life history in a phylogenetic context. Molecular phylogenetic analysis of two chloroplast (rps16 and trnL/F) and two nuclear ribosomal (internal and external transcribed spacers) DNA regions support the monophyly of subtribe Castillejinae (Orobanchaceae). A well-supported phylogeny of the six genera (Castilleja [∼180 spp.], Clevelandia [1 sp.], Cordylanthus [18 spp.], Ophiocephalus [1 sp.], Orthocarpus [9 spp.], and Triphysaria [5 spp.]) comprising the subtribe is presented, and morphological synapomorphies are identified for the major lineages recovered. Orthocarpus and Triphysaria are both monophyletic; Cordylanthus is biphyletic. Clevelandia and Ophiocephalus are derived from within Castilleja. The perennial Castilleja clade (∼160 spp.) is derived from a grade of annual taxa including Castilleja sect. Oncorhynchus (16 spp.), Cordylanthus, Orthocarpus, and Triphysaria. This suggests that the perennial habit evolved a single time from an annual ancestral lineage that persisted throughout the diversification of Castillejinae, contrary to classical interpretations of life history evolution in plants. Given the prevalence of polyploidy among perennial Castilleja species, perenniality may have played an important role in the origin and establishment of polyploidy in Castilleja.
Collapse
Affiliation(s)
- David C Tank
- Department of Biology, University of Washington, Box 355325, Seattle, Washington 98195-5325 USA
| | | |
Collapse
|
83
|
Richardson BA, Zambino PJ, Klopfenstein NB, McDonald GI, Carris LM. Assessing host specialization among aecial and telial hosts of the white pine blister rust fungus,Cronartium ribicola. ACTA ACUST UNITED AC 2007. [DOI: 10.1139/b07-031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The white-pine blister rust fungus, Cronartium ribicola Fisch. in Rabenh., continues to spread in North America, utilizing various aecial (primary) and telial (alternate) hosts, some of which have only recently been discovered. This introduced pathogen has been characterized as having low genetic diversity in North America, yet it has demonstrated a capacity to invade diverse environments. The recent discovery of this rust fungus on the telial host Pedicularis racemosa Dougl. ex Benth., raises questions of whether this host association represents a recent acquisition by C. ribicola or a long-standing host association that was overlooked. Here we explore two questions: (i) is host specialization detectable at a local scale and (ii) is the capacity to infect Pedicularis racemosa local or widespread? Genetic analysis of C. ribicola isolates from different aecial and telial hosts provided no evidence for genetic differentiation and showed similar levels of expected heterozygosity within a geographic population. An inoculation test showed that diverse C. ribicola sources from across North America had the capacity to infect Pedicularis racemosa. These results support a hypothesis that ability to infect Pedicularis racemosa is common in C. ribicola from North America. Utilization of Pedicularis racemosa by C. ribicola may be dependent on the co-occurrence of this host, inoculum, and favorable environments.
Collapse
Affiliation(s)
- Bryce A. Richardson
- USDA Forest Service, Rocky Mountain Research Station, 1221 S. Main St, Moscow, ID 83843, USA
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Paul J. Zambino
- USDA Forest Service, Rocky Mountain Research Station, 1221 S. Main St, Moscow, ID 83843, USA
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Ned B. Klopfenstein
- USDA Forest Service, Rocky Mountain Research Station, 1221 S. Main St, Moscow, ID 83843, USA
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Geral I. McDonald
- USDA Forest Service, Rocky Mountain Research Station, 1221 S. Main St, Moscow, ID 83843, USA
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Lori M. Carris
- USDA Forest Service, Rocky Mountain Research Station, 1221 S. Main St, Moscow, ID 83843, USA
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
84
|
Mathews S. Phytochrome-mediated development in land plants: red light sensing evolves to meet the challenges of changing light environments. Mol Ecol 2006; 15:3483-503. [PMID: 17032252 DOI: 10.1111/j.1365-294x.2006.03051.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Phytochromes are photoreceptors that provide plants with circadian, seasonal, and positional information critical for the control of germination, seedling development, shade avoidance, reproduction, dormancy, and sleep movements. Phytochromes are unique among photoreceptors in their capacity to interconvert between a red-absorbing form (absorption maximum of approximately 660 nm) and a far-red absorbing form (absorption maximum of approximately 730 nm), which occur in a dynamic equilibrium within plant cells, corresponding to the proportions of red and far-red energy in ambient light. Because pigments in stems and leaves absorb wavelengths below about 700 nm, this provides plants with an elegant system for detecting their position relative to other plants, with which the plants compete for light. Certain aspects of phytochrome-mediated development outside of flowering plants are strikingly similar to those that have been characterized in Arabidopsis thaliana and other angiosperms. However, early diverging land plants have fewer distinct phytochrome gene lineages, suggesting that both diversification and subfunctionalization have been important in the evolution of the phytochrome gene family. There is evidence that subfunctionalization proceeded by the partitioning among paralogues of photosensory specificity, physiological response modes, and light-regulated gene expression and protein stability. Parallel events of duplication and functional divergence may have coincided with the evolution of canopy shade and the increasing complexity of the light environment. Within angiosperms, patterns of functional divergence are clade-specific and the roles of phytochromes in A. thaliana change across environments, attesting to the evolutionary flexibility and contemporaneous plasticity of phytochrome signalling in the control of development.
Collapse
Affiliation(s)
- Sarah Mathews
- Arnold Arboretum of Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
85
|
Park JM, Manen JF, Schneeweiss GM. Horizontal gene transfer of a plastid gene in the non-photosynthetic flowering plants Orobanche and Phelipanche (Orobanchaceae). Mol Phylogenet Evol 2006; 43:974-85. [PMID: 17116411 DOI: 10.1016/j.ympev.2006.10.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 09/07/2006] [Accepted: 10/06/2006] [Indexed: 10/24/2022]
Abstract
Plastid sequences are among the most widely used in phylogenetic and phylogeographic studies in flowering plants, where they are usually assumed to evolve like non-recombining, uniparentally transmitted, single-copy genes. Among others, this assumption can be violated by intracellular gene transfer (IGT) within cells or by the exchange of genes across mating barriers (horizontal gene transfer, HGT). We report on HGT of a plastid region including rps2, trnL-F, and rbcL in a group of non-photosynthetic flowering plants. Species of the parasitic broomrape genus Phelipanche harbor two copies of rps2, a plastid ribosomal gene, one corresponding to the phylogenetic position of the respective species, the other being horizontally acquired from the related broomrape genus Orobanche. While the vertically transmitted copies probably reside within the plastid genome, the localization of the horizontally acquired copies is not known. With both donor and recipient being parasitic plants, a possible pathway for the exchange of genetic material is via a commonly attacked host.
Collapse
Affiliation(s)
- Jeong-Mi Park
- Department of Evolutionary and Systematic Botany, University of Vienna, Rennweg 14, Vienna, Austria
| | | | | |
Collapse
|