51
|
Tashiro H, Shore SA. Obesity and severe asthma. Allergol Int 2019; 68:135-142. [PMID: 30509734 PMCID: PMC6540088 DOI: 10.1016/j.alit.2018.10.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 12/11/2022] Open
Abstract
Obesity is an important global health issue for both children and adults. Obesity increases the prevalence and incidence of asthma and also increases the risk for severe asthma. Here we describe the features of severe asthma phenotypes for which obesity is a defining characteristic, including steroid resistance, airway inflammation, and co-morbidities. We also review current concepts regarding the mechanistic basis for the impact of obesity in severe asthma, including possible roles for vitamin D deficiency, systemic inflammation, and the microbiome. Finally, we describe data indicating a role for diet, weight loss, and exercise in the treatment of severe asthma with obesity. Better understanding of the mechanistic basis for the role of obesity in severe asthma could lead to new therapeutic options for this population.
Collapse
Affiliation(s)
- Hiroki Tashiro
- Department of Environmental Health, Harvard University T.H. Chan School of Public Health, Boston, MA, USA
| | - Stephanie A Shore
- Department of Environmental Health, Harvard University T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
52
|
Mudroňová D, Karaffová V, Csank T, Király J, Revajová V, Gancarčíková S, Nemcová R, Pistl J, Vilček Š, Levkut M. Systemic immune response of gnotobiotic mice infected with porcine circovirus type 2 after administration of Lactobacillus reuteri L26 Biocenol™. Benef Microbes 2018; 9:951-961. [PMID: 30232907 DOI: 10.3920/bm2017.0147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In our previous study we confirmed an antiviral activity of probiotic Lactobacillus reuteri L26 which was mediated by stimulation of local intestinal immunity. The aim of this paper was to evaluate the influence of L. reuteri L26 on the systemic immune response in gnotobiotic mice infected with porcine circovirus type 2 (PCV2). A total of 30 germ-free mice were divided into 3 groups and animals in noninfected and infected control groups (NC and IC; n=10) received sterile de Man-Rogosa-Sharpe broth for 7 days and animals in experimental group L+PCV (n=10) were inoculated with L. reuteri L26. Subsequently, mice in L+PCV and IC groups were infected with PCV2; however, mice in the control group received virus cultivation medium (mock). The results showed an increase of percentage of cytotoxic cells (CD8+ and CD49b+CD8-) and oxidative burst of phagocytes, up-regulation of the gene expression of RANTES, granulocyte-macrophage colony-stimulating factor, interferon-γ and immunoglobulin A in blood above all in the later phase of infection (14 dpi) in L+PCV group accompanied by higher load of PCV2 in the serum. These findings indicate that L. reuteri L26 has a potential to induce systemic immune reaction, but in gnotobiotic mice immune stimulation can increase virus replication.
Collapse
Affiliation(s)
- D Mudroňová
- 2 Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - V Karaffová
- 1 Department of Pathological Anatomy and Pathological Physiology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - T Csank
- 2 Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - J Király
- 2 Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - V Revajová
- 1 Department of Pathological Anatomy and Pathological Physiology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - S Gancarčíková
- 2 Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - R Nemcová
- 2 Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - J Pistl
- 2 Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - Š Vilček
- 3 Department of Epizootiology and Parasitology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - M Levkut
- 1 Department of Pathological Anatomy and Pathological Physiology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| |
Collapse
|
53
|
Abstract
Most older individuals develop inflammageing, a condition characterized by elevated levels of blood inflammatory markers that carries high susceptibility to chronic morbidity, disability, frailty, and premature death. Potential mechanisms of inflammageing include genetic susceptibility, central obesity, increased gut permeability, changes to microbiota composition, cellular senescence, NLRP3 inflammasome activation, oxidative stress caused by dysfunctional mitochondria, immune cell dysregulation, and chronic infections. Inflammageing is a risk factor for cardiovascular diseases (CVDs), and clinical trials suggest that this association is causal. Inflammageing is also a risk factor for chronic kidney disease, diabetes mellitus, cancer, depression, dementia, and sarcopenia, but whether modulating inflammation beneficially affects the clinical course of non-CVD health problems is controversial. This uncertainty is an important issue to address because older patients with CVD are often affected by multimorbidity and frailty - which affect clinical manifestations, prognosis, and response to treatment - and are associated with inflammation by mechanisms similar to those in CVD. The hypothesis that inflammation affects CVD, multimorbidity, and frailty by inhibiting growth factors, increasing catabolism, and interfering with homeostatic signalling is supported by mechanistic studies but requires confirmation in humans. Whether early modulation of inflammageing prevents or delays the onset of cardiovascular frailty should be tested in clinical trials.
Collapse
Affiliation(s)
- Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA.
| | - Elisa Fabbri
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
54
|
Mechanistic Basis for Obesity-related Increases in Ozone-induced Airway Hyperresponsiveness in Mice. Ann Am Thorac Soc 2018; 14:S357-S362. [PMID: 29161088 DOI: 10.1513/annalsats.201702-140aw] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Obesity is a risk factor for asthma, especially nonallergic asthma. Ozone, a common air pollutant, is a nonallergic asthma trigger. Importantly, ozone-induced decrements in lung function are greater in obese and overweight human subjects than in lean individuals. Obese mice also exhibit exaggerated pulmonary responses to ozone. Ozone causes greater increases in pulmonary resistance, in bronchoalveolar lavage neutrophils, and in airway hyperresponsiveness in obese than in lean mice. Our data indicate that IL-33 plays a role in mediating these events. Ozone causes greater release of IL-33 into bronchoalveolar lavage fluid in obese than in lean mice. Furthermore, an antibody blocking the IL-33 receptor, ST2, attenuates ozone-induced airway hyperresponsiveness in obese but not in lean mice. Our data also indicate a complex role for tumor necrosis factor (TNF)-α in obesity-related effects on the response to ozone. In obese mice, genetic deficiency in either TNF-α or TNF-α receptor 2 augments ozone-induced airway hyperresponsiveness, whereas TNF-α receptor 2 deficiency virtually abolishes ozone-induced airway hyperresponsiveness in lean mice. Finally, obesity is known to alter the gut microbiome. In female mice, antibiotics attenuate obesity-related increases in the effect of ozone on airway hyperresponsiveness, possibly by altering microbial production of short-chain fatty acids. Asthma control is often difficult to achieve in obese patients with asthma. Our data suggest that therapeutics directed against IL-33 may ultimately prove effective in these patients. The data also suggest that dietary manipulations and other strategies (prebiotics, probiotics) that alter the microbiome and/or its metabolic products may represent a new frontier for treating asthma in obese individuals.
Collapse
|
55
|
Liu B, Zhang Y, Wang R, An Y, Gao W, Bai L, Li Y, Zhao S, Fan J, Liu E. Western diet feeding influences gut microbiota profiles in apoE knockout mice. Lipids Health Dis 2018; 17:159. [PMID: 30021609 PMCID: PMC6052692 DOI: 10.1186/s12944-018-0811-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gut microbiota plays an important role in many metabolic diseases such as diabetes and atherosclerosis. Apolipoprotein E (apoE) knock-out (KO) mice are frequently used for the study of hyperlipidemia and atherosclerosis. However, it is unknown whether apoE KO mice have altered gut microbiota when challenged with a Western diet. METHODS In the current study, we assessed the gut microbiota profiling of apoE KO mice and compared with wild-type mice fed either a normal chow or Western diet for 12 weeks using 16S pyrosequencing. RESULTS On a western diet, the gut microbiota diversity was significantly decreased in apoE KO mice compared with wild type (WT) mice. Firmicutes and Erysipelotrichaceae were significantly increased in WT mice but Erysipelotrichaceae was unchanged in apoE KO mice on a Western diet. The weighted UniFrac principal coordinate analysis exhibited clear separation between WT and apoE KO mice on the first vector (58.6%) with significant changes of two dominant phyla (Bacteroidetes and Firmicutes) and seven dominant families (Porphyromonadaceae, Lachnospiraceae, Ruminococcaceae, Desulfovibrionaceae, Helicobacteraceae, Erysipelotrichaceae and Veillonellaceae). Lachnospiraceae was significantly enriched in apoE KO mice on a Western diet. In addition, Lachnospiraceae and Ruminococcaceae were positively correlated with relative atherosclerosis lesion size in apoE KO. CONCLUSIONS Collectively, our study showed that there are marked changes in the gut microbiota of apoE KO mice, particularly challenged with a Western diet and these alterations may be possibly associated with atherosclerosis.
Collapse
Affiliation(s)
- Baoning Liu
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, 710061 Shaanxi China
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an, 710061 Shaanxi China
| | - Yali Zhang
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, 710061 Shaanxi China
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an, 710061 Shaanxi China
| | - Rong Wang
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, 710061 Shaanxi China
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an, 710061 Shaanxi China
| | - Yingfeng An
- Shaanxi Province Centre for Disease Control and Prevention, Xi’an, 710054 Shaanxi China
| | - Weiman Gao
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, 710061 Shaanxi China
| | - Liang Bai
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, 710061 Shaanxi China
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an, 710061 Shaanxi China
| | - Yandong Li
- Department of Pathology, First Affiliated Hospital of Xi’an Medical University, Xi’an, 710000 Shaanxi China
| | - Sihai Zhao
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, 710061 Shaanxi China
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an, 710061 Shaanxi China
| | - Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898 Japan
| | - Enqi Liu
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, 710061 Shaanxi China
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an, 710061 Shaanxi China
| |
Collapse
|
56
|
Nagpal R, Mainali R, Ahmadi S, Wang S, Singh R, Kavanagh K, Kitzman DW, Kushugulova A, Marotta F, Yadav H. Gut microbiome and aging: Physiological and mechanistic insights. NUTRITION AND HEALTHY AGING 2018; 4:267-285. [PMID: 29951588 PMCID: PMC6004897 DOI: 10.3233/nha-170030] [Citation(s) in RCA: 418] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of human gut microbiota begins as soon as the neonate leaves the protective environment of the uterus (or maybe in-utero) and is exposed to innumerable microorganisms from the mother as well as the surrounding environment. Concurrently, the host responses to these microbes during early life manifest during the development of an otherwise hitherto immature immune system. The human gut microbiome, which comprises an extremely diverse and complex community of microorganisms inhabiting the intestinal tract, keeps on fluctuating during different stages of life. While these deviations are largely natural, inevitable and benign, recent studies show that unsolicited perturbations in gut microbiota configuration could have strong impact on several features of host health and disease. Our microbiota undergoes the most prominent deviations during infancy and old age and, interestingly, our immune health is also in its weakest and most unstable state during these two critical stages of life, indicating that our microbiota and health develop and age hand-in-hand. However, the mechanisms underlying these interactions are only now beginning to be revealed. The present review summarizes the evidences related to the age-associated changes in intestinal microbiota and vice-versa, mechanisms involved in this bi-directional relationship, and the prospective for development of microbiota-based interventions such as probiotics for healthy aging.
Collapse
Affiliation(s)
- Ravinder Nagpal
- Center for Obesity, Diabetes and Metabolism (Internal Medicine-Molecular Medicine), Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Rabina Mainali
- Center for Obesity, Diabetes and Metabolism (Internal Medicine-Molecular Medicine), Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Shokouh Ahmadi
- Center for Obesity, Diabetes and Metabolism (Internal Medicine-Molecular Medicine), Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Shaohua Wang
- Center for Obesity, Diabetes and Metabolism (Internal Medicine-Molecular Medicine), Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ria Singh
- Center for Obesity, Diabetes and Metabolism (Internal Medicine-Molecular Medicine), Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Kylie Kavanagh
- Department of Pathology (Comparative Medicine), Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Dalane W. Kitzman
- Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Almagul Kushugulova
- Center for Life Sciences, NLA, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Francesco Marotta
- ReGenera Research and Development for Aging Interventions, and San Babila Clinic, Corso Matteotti 1/A, Milano, Italy
| | - Hariom Yadav
- Center for Obesity, Diabetes and Metabolism (Internal Medicine-Molecular Medicine), Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
57
|
Nagpal R, Shively CA, Appt SA, Register TC, Michalson KT, Vitolins MZ, Yadav H. Gut Microbiome Composition in Non-human Primates Consuming a Western or Mediterranean Diet. Front Nutr 2018; 5:28. [PMID: 29922651 PMCID: PMC5996930 DOI: 10.3389/fnut.2018.00028] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/06/2018] [Indexed: 01/18/2023] Open
Abstract
The mammalian gastrointestinal tract harbors a highly diverse and dynamic community of bacteria. The array of this gut bacterial community, which functions collectively as a fully unified organ in the host metabolism, varies greatly among different host species and can be shaped by long-term nutritional interventions. Non-human primates, our close phylogenetic relatives and ancestors, provide an excellent model for studying diet-microbiome interaction; however, compared to clinical and rodent studies, research targeting primate gut microbiome has been limited. Herein, we analyze the gut microbiome composition in female cynomolgus macaques (Macaca fascicularis; n = 20) after the long-term (2.5 years) consumption of diets designed to mimic recent human Western- (WD; n = 10) or Mediterranean-type (MD; n = 10) diets. Microbiome diversity in MD consumers was significantly higher by the Shannon diversity index compared to the WD consumers, with similar but non-significant trends noted for the diversity metrics of species richness (Chao 1), observed operational taxonomic units (OTUs) and phylogenetic diversity (PD) whole Tree. Compared to the MD, the WD group demonstrated a higher Firmicutes-Bacteroides ratio and a significantly higher abundance of families Clostridiacea and Lactobacillaceae. Further analyses reveal significantly higher abundance of genera Lactobacillus, Clostridium, Faecalibacterium, and Oscillospira and lower abundance of Ruminococcus and Coprococcus in MD consumers relative to WD consumers. OTUs belonging to several species also show significant differences between the two groups, with Lactobacillus species demonstrating a prominently higher abundance in the MD consumers. The data reveal several differences in the gut microbiome of primates consuming the two different diets and should be useful for further studies aimed at understanding the diet-microbiome-health interactions in primates.
Collapse
Affiliation(s)
- Ravinder Nagpal
- Department of Internal Medicine-Molecular Medicine and Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Carol A Shively
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Susan A Appt
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Thomas C Register
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Kristofer T Michalson
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Mara Z Vitolins
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Hariom Yadav
- Department of Internal Medicine-Molecular Medicine and Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
58
|
Jeong JJ, Lee HJ, Jang SE, Han MJ, Kim DH. Lactobacillus plantarum C29 alleviates NF-κB activation and Th17/Treg imbalance in mice with TNBS-induced colitis. FOOD AGR IMMUNOL 2018. [DOI: 10.1080/09540105.2017.1418841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Jin-Ju Jeong
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Hae-Ji Lee
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Se-Eun Jang
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Korea
- Department of Food and Nutrition, Kyung Hee University, Seoul, Korea
| | - Myung Joo Han
- Department of Food and Nutrition, Kyung Hee University, Seoul, Korea
| | - Dong-Hyun Kim
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Korea
| |
Collapse
|
59
|
Nagpal R, Newman TM, Wang S, Jain S, Lovato JF, Yadav H. Obesity-Linked Gut Microbiome Dysbiosis Associated with Derangements in Gut Permeability and Intestinal Cellular Homeostasis Independent of Diet. J Diabetes Res 2018; 2018:3462092. [PMID: 30250849 PMCID: PMC6140100 DOI: 10.1155/2018/3462092] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/11/2018] [Accepted: 07/15/2018] [Indexed: 02/07/2023] Open
Abstract
This study aimed to determine the association between non-high-fat diet-induced obesity- (non-DIO-) associated gut microbiome dysbiosis with gut abnormalities like cellular turnover of intestinal cells, tight junctions, and mucin formation that can impact gut permeability. We used leptin-deficient (Lepob/ob) mice in comparison to C57BL/6J control mice, which are fed on identical diets, and performed comparative and correlative analyses of gut microbiome composition, gut permeability, intestinal structural changes, tight junction-mucin formation, cellular turnover, and stemness genes. We found that obesity impacted cellular turnover of the intestine with increased cell death and cell survival/proliferation gene expression with enhanced stemness, which are associated with increased intestinal permeability, changes in villi/crypt length, and decreased expression of tight junctions and mucus synthesis genes along with dysbiotic gut microbiome signature. Obesity-induced gut microbiome dysbiosis is also associated with abnormal intestinal organoid formation characterized with decreased budding and higher stemness. Results suggest that non-DIO-associated gut microbiome dysbiosis is associated with changes in the intestinal cell death versus cell proliferation homeostasis and functions to control tight junctions and mucous synthesis-regulating gut permeability.
Collapse
Affiliation(s)
- Ravinder Nagpal
- Department of Internal Medicine-Molecular Medicine and Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Tiffany M. Newman
- Department of Internal Medicine-Molecular Medicine and Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Shaohua Wang
- Department of Internal Medicine-Molecular Medicine and Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Shalini Jain
- Department of Internal Medicine-Molecular Medicine and Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - James F. Lovato
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Hariom Yadav
- Department of Internal Medicine-Molecular Medicine and Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
60
|
Park SS, Yang G, Kim E. Lactobacillus acidophilus NS1 Reduces Phosphoenolpyruvate Carboxylase Expression by Regulating HNF4α Transcriptional Activity. Korean J Food Sci Anim Resour 2017; 37:529-534. [PMID: 28943765 PMCID: PMC5599573 DOI: 10.5851/kosfa.2017.37.4.529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 12/19/2022] Open
Abstract
Probiotics have been known to reduce high-fat diet (HFD)-induced metabolic diseases, such as obesity, insulin resistance, and type 2 diabetes. We recently observed that Lactobacillus acidophilus NS1 (LNS1), distinctly suppresses increase of blood glucose levels and insulin resistance in HFD-fed mice. In the present study, we demonstrated that oral administration of LNS1 with HFD feeding to mice significantly reduces hepatic expression of phosphoenolpyruvate carboxykinase (PEPCK), a key enzyme in gluconeogenesis which is highly increased by HFD feeding. This suppressive effect of LNS1 on hepatic expression of PEPCK was further confirmed in HepG2 cells by treatment of LNS1 conditioned media (LNS1-CM). LNS1-CM strongly and specifically inhibited HNF4α-induced PEPCK promoter activity in HepG2 cells without change of HNF4α mRNA levels. Together, these data demonstrate that LNS1 suppresses PEPCK expression in the liver by regulating HNF4α transcriptional activity, implicating its role as a preventive or therapeutic approach for metabolic diseases.
Collapse
Affiliation(s)
- Sung-Soo Park
- Department of Biological Sciences, College of Science, Chonnam National University, Gwangju 61186, Korea
| | - Garam Yang
- Department of Biological Sciences, College of Science, Chonnam National University, Gwangju 61186, Korea
| | - Eungseok Kim
- Department of Biological Sciences, College of Science, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
61
|
Vinke PC, El Aidy S, van Dijk G. The Role of Supplemental Complex Dietary Carbohydrates and Gut Microbiota in Promoting Cardiometabolic and Immunological Health in Obesity: Lessons from Healthy Non-Obese Individuals. Front Nutr 2017; 4:34. [PMID: 28791292 PMCID: PMC5523113 DOI: 10.3389/fnut.2017.00034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022] Open
Abstract
Dietary supplementation with complex carbohydrates is known to alter the composition of gut microbiota, and optimal implementation of the use of these so called "prebiotics" could be of great potential in prevention and possibly treatment of obesity and associated cardiometabolic and inflammatory diseases via changes in the gut microbiota. An alternative to this "microbiocentric view" is the idea that health-promoting effects of certain complex carbohydrates reside in the host, and could secondarily affect the diversity and abundance of gut microbiota. To circumvent this potential interpretational problem, we aimed at providing an overview about whether and how dietary supplementation of different complex carbohydrates changes the gut microbiome in healthy non-obese individuals. We then reviewed whether the reported changes in gut bacterial members found to be established by complex carbohydrates would benefit or harm the cardiometabolic and immunological health of the host taking into account the alterations in the microbiome composition and abundance known to be associated with obesity and its associated disorders. By combining these research areas, we aimed to give a better insight into the potential of (foods containing) complex carbohydrates in the treatment and prevention of above-mentioned diseases. We conclude that supplemental complex carbohydrates that increase Bifidobacteria and Lactobacilli, without increasing the deleterious Bacteroides, are most likely promoting cardiometabolic and immunological health in obese subjects. Because certain complex carbohydrates also affect the host's immunity directly, it is likely that host-microbiome interactions in determination of health and disease characteristics are indeed bidirectional. Overall, this review article shows that whereas it is relatively clear in which direction supplemental fermentable carbohydrates can alter the gut microbiome, the relevance of these changes regarding health remains controversial. Future research should take into account the different causes of obesity and its adverse health conditions, which in turn have drastic effects on the microbiome balance.
Collapse
Affiliation(s)
- Petra C. Vinke
- Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES) – Neurobiology, University of Groningen, Groningen, Netherlands
| | - Sahar El Aidy
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, Netherlands
| | - Gertjan van Dijk
- Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES) – Neurobiology, University of Groningen, Groningen, Netherlands
| |
Collapse
|
62
|
De Lorenzo A, Costacurta M, Merra G, Gualtieri P, Cioccoloni G, Marchetti M, Varvaras D, Docimo R, Di Renzo L. Can psychobiotics intake modulate psychological profile and body composition of women affected by normal weight obese syndrome and obesity? A double blind randomized clinical trial. J Transl Med 2017; 15:135. [PMID: 28601084 PMCID: PMC5466767 DOI: 10.1186/s12967-017-1236-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023] Open
Abstract
Background Evidence of probiotics effects on gut function, brain activity and emotional behaviour were provided. Probiotics can have dramatic effects on behaviour through the microbiome–gut–brain axis, through vagus nerve. We investigated whether chronic probiotic intake could modulate psychological state, eating behaviour and body composition of normal weight obese (NWO) and preobese–obese (PreOB/OB) compared to normal weight lean women (NWL). Methods 60 women were enrolled. At baseline and after a 3-week probiotic oral suspension (POS) intake, all subjects underwent evaluation of body composition by anthropometry and dual X-ray absorptiometry, and psychological profile assessment by self-report questionnaires (i.e. EDI-2, SCL90R and BUT). Statistical analysis was carried out using paired t test or a non-parametric Wilcoxon test to evaluate differences between baseline and after POS intake, one-way ANOVA to compare all three groups and, where applicable, Chi square or t test were used to assess symptoms. Results Of the 48 women that concluded the study, 24% were NWO, 26% were NWL and 50% were PreOB/OB. Significant differences in body composition were highlighted among groups both at baseline and after a POS (p < 0.05). After POS intake, a significant reduction of BMI, resistance, FM (kg and %) (p < 0.05), and a significant increase of FFM (kg and %) (p < 0.05) were observed in all subjects in NOW and PreOB/OB. After POS intake, reduction of bacterial overgrowth syndrome (p < 0.05) and lower psychopathological scores (p < 0.05) were observed in NWO and PreOB/OB women. At baseline and after POS intake, all subjects tested were negative to SCL90R_GSI scale, but after treatment subjects positive to BUT_GSI scale were significantly reduced (8.33%) (p < 0.05) compared to the baseline (33.30%). In NWO and PreOB/OB groups significant differences (p < 0.05) in response to the subscales of the EDI-2 were observed. Significant improvement of the orocecal transit time was observed (p < 0.05) after POS intake. Furthermore, significant differences were observed for meteorism (p < 0.05) and defecation frequency (p < 0.05). Conclusions A 3-week intake of selected psychobiotics modulated body composition, bacterial contamination, psychopathological scores of NWO and PreOB/OB women. Further research is needed on a larger population and for a longer period of treatment before definitive conclusions can be made. Trial registration ClinicalTrials.gov Id: NCT01890070
Collapse
Affiliation(s)
- Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy. .,Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00136, Rome, Italy.
| | - Micaela Costacurta
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Giuseppe Merra
- Emergency Department, "A. Gemelli" General Hospital Foundation, Catholic University of Sacred Heart, 00168, Rome, Italy
| | - Paola Gualtieri
- PhD School of Applied Medical-Surgical Sciences, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Giorgia Cioccoloni
- PhD School of Applied Medical-Surgical Sciences, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Massimiliano Marchetti
- USL 1 UmbriaCastiglione del Lago, 06061, Perugia, Italy.,Department of Surgical Sciences, University Hospital "Umberto I", "Sapienza" University of Rome, 00161, Rome, Italy
| | - Dimitrios Varvaras
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Raffaella Docimo
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy
| |
Collapse
|
63
|
Luo XM, Edwards MR, Reilly CM, Mu Q, Ahmed SA. Diet and Microbes in the Pathogenesis of Lupus. Lupus 2017. [DOI: 10.5772/68110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
64
|
Galla S, Chakraborty S, Mell B, Vijay-Kumar M, Joe B. Microbiotal-Host Interactions and Hypertension. Physiology (Bethesda) 2017; 32:224-233. [PMID: 28404738 DOI: 10.1152/physiol.00003.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 12/12/2022] Open
Abstract
Hypertension, or elevated blood pressure (BP), has been extensively researched over decades and clearly demonstrated to be caused due to a combination of host genetic and environmental factors. Although much research remains to be conducted to pin-point the precise genetic elements on the host genome that control BP, new lines of evidence are emerging to indicate that, besides the host genome, the genomes of all indigenous commensal micro-organisms, collectively referred to as the microbial metagenome or microbiome, are important, but largely understudied, determinants of BP. Unlike the rigid host genome, the microbiome or the "second genome" can be altered by diet or microbiotal transplantation in the host. This possibility is attractive from the perspective of exploiting the microbiotal composition for clinical management of inherited hypertension. Thus, focusing on the limited current literature supporting a role for the microbiome in BP regulation, this review highlights the need to further explore the role of the co-existence of host and the microbiota as an organized biological unit called the "holobiont" in the context of BP regulation.
Collapse
Affiliation(s)
- Sarah Galla
- Physiological Genomics Laboratory, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio; and
| | - Saroj Chakraborty
- Physiological Genomics Laboratory, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio; and
| | - Blair Mell
- Physiological Genomics Laboratory, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio; and
| | - Matam Vijay-Kumar
- Department of Nutritional Sciences and Medicine, The Pennsylvania State University, University Park, Pennsylvania
| | - Bina Joe
- Physiological Genomics Laboratory, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio; and
| |
Collapse
|
65
|
Esposito S, Bonavita S, Sparaco M, Gallo A, Tedeschi G. The role of diet in multiple sclerosis: A review. Nutr Neurosci 2017; 21:377-390. [PMID: 28338444 DOI: 10.1080/1028415x.2017.1303016] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) is a multifactorial, inflammatory, and neurodegenerative disease of the central nervous system, where environmental factors interact with genetic susceptibility. The role of diet on MS has not been comprehensively elucidated; therefore, through an extensive search of relevant literature, this review reports the most significant evidence regarding nutrition as a possible co-factor influencing the inflammatory cascade by acting on both its molecular pathways and gut microbiota. Since nutritional status and dietary habits in MS patients have not been extensively reported, the lack of a scientific-based consensus on dietary recommendation in MS could encourage many patients to experiment alternative dietetic regimens, increasing the risk of malnutrition. This work investigates the health implications of an unbalanced diet in MS, and collects recent findings on nutrients of great interest among MS patients and physicians. The aim of this review is to elucidate the role of an accurate nutritional counseling in MS to move toward a multidisciplinary management of the disease and to encourage future studies demonstrating the role of a healthy diet on the onset and course of MS.
Collapse
Affiliation(s)
- Sabrina Esposito
- a I Clinic of Neurology, Second University of Naples , 80138 , Italy.,b Department of Neuroscience, Psychology, Drug Research and Child Health , University of Florence , Italy
| | - Simona Bonavita
- a I Clinic of Neurology, Second University of Naples , 80138 , Italy.,c MRI Research Center SUN-FISM, Second University of Naples , Italy.,d Institute for Diagnosis and Care "Hermitage Capodimonte" , Naples , Italy
| | - Maddalena Sparaco
- a I Clinic of Neurology, Second University of Naples , 80138 , Italy
| | - Antonio Gallo
- a I Clinic of Neurology, Second University of Naples , 80138 , Italy.,c MRI Research Center SUN-FISM, Second University of Naples , Italy.,d Institute for Diagnosis and Care "Hermitage Capodimonte" , Naples , Italy
| | - Gioacchino Tedeschi
- a I Clinic of Neurology, Second University of Naples , 80138 , Italy.,c MRI Research Center SUN-FISM, Second University of Naples , Italy.,d Institute for Diagnosis and Care "Hermitage Capodimonte" , Naples , Italy
| |
Collapse
|
66
|
Altered gut microbiome in a mouse model of Gulf War Illness causes neuroinflammation and intestinal injury via leaky gut and TLR4 activation. PLoS One 2017; 12:e0172914. [PMID: 28328972 PMCID: PMC5362211 DOI: 10.1371/journal.pone.0172914] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/10/2017] [Indexed: 02/06/2023] Open
Abstract
Many of the symptoms of Gulf War Illness (GWI) that include neurological abnormalities, neuroinflammation, chronic fatigue and gastrointestinal disturbances have been traced to Gulf War chemical exposure. Though the association and subsequent evidences are strong, the mechanisms that connect exposure to intestinal and neurological abnormalities remain unclear. Using an established rodent model of Gulf War Illness, we show that chemical exposure caused significant dysbiosis in the gut that included increased abundance of phylum Firmicutes and Tenericutes, and decreased abundance of Bacteroidetes. Several gram negative bacterial genera were enriched in the GWI-model that included Allobaculum sp. Altered microbiome caused significant decrease in tight junction protein Occludin with a concomitant increase in Claudin-2, a signature of a leaky gut. Resultant leaching of gut caused portal endotoxemia that led to upregulation of toll like receptor 4 (TLR4) activation in the small intestine and the brain. TLR4 knock out mice and mice that had gut decontamination showed significant decrease in tyrosine nitration and inflammatory mediators IL1β and MCP-1 in both the small intestine and frontal cortex. These events signified that gut dysbiosis with simultaneous leaky gut and systemic endotoxemia-induced TLR4 activation contributes to GW chemical-induced neuroinflammation and gastrointestinal disturbances.
Collapse
|
67
|
Wu T, Horowitz M, Rayner CK. New insights into the anti-diabetic actions of metformin: from the liver to the gut. Expert Rev Gastroenterol Hepatol 2017; 11:157-166. [PMID: 27983877 DOI: 10.1080/17474124.2017.1273769] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metformin is established as the first-line therapy for type 2 diabetes (T2DM), but its mode of action remains elusive. Elucidation of the mechanisms underlying the anti-diabetic action of metformin may have the potential to optimise its glucose-lowering efficacy and lead to the development of agents acting on novel targets for the management of type 2 diabetes. Areas covered: This review highlights key pharmacokinetic features of metformin, summarises recent insights into its hepatic and gastrointestinal actions relevant to blood glucose homeostasis, and discusses the common gastrointestinal side effects of metformin. Literature concerning these areas was reviewed on PubMed. Expert commentary: The mechanisms by which metformin improves glycaemic control in type 2 diabetes are complex. Although novel hepatic pathways continue to be reported in preclinical studies, there is a lack of human evidence for most of these. Considering the fundamental role of the gastrointestinal tract in the regulation of blood glucose homeostasis and pleiotropic actions of metformin on several gastrointestinal targets relevant to glycaemic control, the gut is likely to represent at least as important a site of metformin action as the liver in the management of type 2 diabetes.
Collapse
Affiliation(s)
- Tongzhi Wu
- a Discipline of Medicine and Centre of Research Excellence in Translating Nutritional Science to Good Health , The University of Adelaide , Adelaide , Australia
| | - Michael Horowitz
- a Discipline of Medicine and Centre of Research Excellence in Translating Nutritional Science to Good Health , The University of Adelaide , Adelaide , Australia
| | - Christopher K Rayner
- a Discipline of Medicine and Centre of Research Excellence in Translating Nutritional Science to Good Health , The University of Adelaide , Adelaide , Australia
| |
Collapse
|
68
|
Wei Y, Yang J, Wang J, Yang Y, Huang J, Gong H, Cui H, Chen D. Successful treatment with fecal microbiota transplantation in patients with multiple organ dysfunction syndrome and diarrhea following severe sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:332. [PMID: 27751177 PMCID: PMC5067912 DOI: 10.1186/s13054-016-1491-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 09/15/2016] [Indexed: 02/06/2023]
Abstract
Background The dysbiosis of intestinal microbiota plays an important role in the development of gut-derived infections, making it a potential therapeutic target against multiple organ dysfunction syndrome (MODS) after sepsis. However, the effectiveness of fecal microbiota transplantation (FMT) in treating this disease has been rarely investigated. Methods Two male patients, a 65-year-old and an 84-year-old, were initially diagnosed with cerebellar hemorrhage and cerebral infarction, respectively, after admission. During the course of hospitalization, both patients developed MODS, septic shock, and severe watery diarrhea. Demographic and clinical data were collected. Intestinal dysbiosis was confirmed by 16S rDNA-based molecular analysis of microbiota composition in fecal samples from the two patients. The two patients each received a single nasogastric infusion of sterile-filtered, pathogen-free feces from a healthy donor. Fecal samples were collected every two days post infusion to monitor changes in microbiota composition in response to treatment. Results Following FMT, MODS and severe diarrhea were alleviated in both patients. Their stool output and body temperature markedly declined and normalized. Significant modification of microbiota composition, characterized by a profound increase of commensals in the Firmicutes phylum and depletion of opportunistic organisms in the Proteobacteria phylum, was observed in both patients. Furthermore, we identified a reconstituted bacterial community enriched in Firmicutes and depleted of Proteobacteria that was associated with a decrease in the patients’ fecal output and in the levels of plasma inflammation markers. Conclusions The outcome of treating two patients with FMT indicates that restoration of the intestinal microbiota barrier can alleviate the infection and modulate the immune response. These findings warrant further investigation of FMT as a putative new therapy for treating microbiota-related diseases such as MODS.
Collapse
Affiliation(s)
- Yanling Wei
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Jun Yang
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Jun Wang
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yang Yang
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Juan Huang
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Hao Gong
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Hongli Cui
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Dongfeng Chen
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| |
Collapse
|
69
|
Deans E. Microbiome and mental health in the modern environment. J Physiol Anthropol 2016; 36:1. [PMID: 27405349 PMCID: PMC4940716 DOI: 10.1186/s40101-016-0101-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/23/2016] [Indexed: 12/19/2022] Open
Abstract
A revolution in the understanding of the pathophysiology of mental illness combined with new knowledge about host/microbiome interactions and psychoneuroimmunology has opened an entirely new field of study, the “psychobiotics”. The modern microbiome is quite changed compared to our ancestral one due to diet, antibiotic exposure, and other environmental factors, and these differences may well impact our brain health. The sheer complexity and scope of how diet, probiotics, prebiotics, and intertwined environmental variables could influence mental health are profound obstacles to an organized and useful study of the microbiome and psychiatric disease. However, the potential for positive anti-inflammatory effects and symptom amelioration with perhaps few side effects makes the goal of clarifying the role of the microbiota in mental health a vital one.
Collapse
Affiliation(s)
- Emily Deans
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Wellcare Physicians Group, 100 Morse St. Ste 105, Norwood, MA, 02062, USA.
| |
Collapse
|
70
|
Serrano-Villar S, Rojo D, Martínez-Martínez M, Deusch S, Vázquez-Castellanos JF, Sainz T, Vera M, Moreno S, Estrada V, Gosalbes MJ, Latorre A, Margolles A, Seifert J, Barbas C, Moya A, Ferrer M. HIV infection results in metabolic alterations in the gut microbiota different from those induced by other diseases. Sci Rep 2016; 6:26192. [PMID: 27189771 PMCID: PMC4870624 DOI: 10.1038/srep26192] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/28/2016] [Indexed: 12/14/2022] Open
Abstract
Imbalances in gut bacteria have been associated with multiple diseases. However, whether there are disease-specific changes in gut microbial metabolism remains unknown. Here, we demonstrate that human immunodeficiency virus (HIV) infection (n = 33) changes, at quantifiable levels, the metabolism of gut bacteria. These changes are different than those observed in patients with the auto-immune disease systemic lupus erythaematosus (n = 18), and Clostridium difficile-associated diarrhoea (n = 6). Using healthy controls as a baseline (n = 16), we demonstrate that a trend in the nature and directionality of the metabolic changes exists according to the type of the disease. The impact on the gut microbial activity, and thus the metabolite composition and metabolic flux of gut microbes, is therefore disease-dependent. Our data further provide experimental evidence that HIV infection drastically changed the microbial community, and the species responsible for the metabolism of 4 amino acids, in contrast to patients with the other two diseases and healthy controls. The identification in this present work of specific metabolic deficits in HIV-infected patients may define nutritional supplements to improve the health of these patients.
Collapse
Affiliation(s)
- Sergio Serrano-Villar
- Department of Infectious Diseases, University Hospital Ramón y Cajal and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
| | - David Rojo
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Madrid, Spain
| | | | - Simon Deusch
- Institute of Animal Science, Universität Hohenheim, Stuttgart, Germany
| | - Jorge F Vázquez-Castellanos
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO) - Public Health, Valencia, Spain.,Network Research Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain
| | - Talía Sainz
- Department of Pediatric Infectious Diseases, University Hospital La Paz, and La Paz Research Institute (IdiPAZ), Madrid, Spain
| | - Mar Vera
- Centro Sanitario Sandoval, Madrid, Spain
| | - Santiago Moreno
- Department of Infectious Diseases, University Hospital Ramón y Cajal and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
| | - Vicente Estrada
- HIV Unit, Department of Internal Medicine, University Hospital Clínico San Carlos, Madrid, Spain
| | - María José Gosalbes
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO) - Public Health, Valencia, Spain.,Network Research Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain
| | - Amparo Latorre
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO) - Public Health, Valencia, Spain.,Network Research Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain.,Instituto Cavanilles de Biodiversidad y Biología Evolutiva (Universidad de Valencia), Valencia, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute (IPLA), CSIC, Villaviciosa, Asturias, Spain
| | - Jana Seifert
- Institute of Animal Science, Universität Hohenheim, Stuttgart, Germany
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Madrid, Spain
| | - Andrés Moya
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO) - Public Health, Valencia, Spain.,Network Research Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain.,Instituto Cavanilles de Biodiversidad y Biología Evolutiva (Universidad de Valencia), Valencia, Spain
| | - Manuel Ferrer
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|