51
|
Misiak A, Wilk MM, Raverdeau M, Mills KHG. IL-17-Producing Innate and Pathogen-Specific Tissue Resident Memory γδ T Cells Expand in the Lungs of Bordetella pertussis-Infected Mice. THE JOURNAL OF IMMUNOLOGY 2016; 198:363-374. [PMID: 27864475 DOI: 10.4049/jimmunol.1601024] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022]
Abstract
γδ T cells play a role in protective immunity to infection at mucosal surface, but also mediate pathology in certain autoimmune diseases through innate IL-17 production. Recent reports have suggested that γδ T cells can have memory analogous to conventional αβ T cells. In this study we have examined the role of γδ T cells in immunity to the respiratory pathogen Bordetella pertussis γδ T cells, predominantly Vγ4-γ1- cells, produced IL-17 in the lungs as early as 2 h after infection. The bacterial burden during primary infection was significantly enhanced and the induction of antimicrobial peptides was reduced in the absence of early IL-17. A second peak of γδ T cells is detected in the lungs 7-14 d after challenge and these γδ T cells were pathogen specific. γδ T cells, exclusively Vγ4, from the lungs of infected but not naive mice produced IL-17 in response to heat-killed B. pertussis in the presence of APC. Furthermore, γδ T cells from the lungs of mice reinfected with B. pertussis produced significantly more IL-17 than γδ T cells from infected unprimed mice. γδ T cells with a tissue resident memory T cell phenotype (CD69+CD103+) were expanded in the lungs during infection with B. pertussis and proliferated rapidly after rechallenge of convalescent mice. Our findings demonstrate that lung γδ T cells provide an early source of innate IL-17, which promotes antimicrobial peptide production, whereas pathogen-specific Vγ4 cells function in adaptive immunological memory against B. pertussis.
Collapse
Affiliation(s)
- Alicja Misiak
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Mieszko M Wilk
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Mathilde Raverdeau
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Kingston H G Mills
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
52
|
Serum cathelicidin, nasopharyngeal microbiota, and disease severity among infants hospitalized with bronchiolitis. J Allergy Clin Immunol 2016; 139:1383-1386.e6. [PMID: 27845236 DOI: 10.1016/j.jaci.2016.09.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/08/2016] [Accepted: 09/14/2016] [Indexed: 11/21/2022]
|
53
|
Currie SM, Gwyer Findlay E, McFarlane AJ, Fitch PM, Böttcher B, Colegrave N, Paras A, Jozwik A, Chiu C, Schwarze J, Davidson DJ. Cathelicidins Have Direct Antiviral Activity against Respiratory Syncytial Virus In Vitro and Protective Function In Vivo in Mice and Humans. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:2699-710. [PMID: 26873992 PMCID: PMC4777919 DOI: 10.4049/jimmunol.1502478] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/15/2016] [Indexed: 12/20/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of respiratory tract infection in infants, causing significant morbidity and mortality. No vaccine or specific, effective treatment is currently available. A more complete understanding of the key components of effective host response to RSV and novel preventative and therapeutic interventions are urgently required. Cathelicidins are host defense peptides, expressed in the inflamed lung, with key microbicidal and modulatory roles in innate host defense against infection. In this article, we demonstrate that the human cathelicidin LL-37 mediates an antiviral effect on RSV by inducing direct damage to the viral envelope, disrupting viral particles and decreasing virus binding to, and infection of, human epithelial cells in vitro. In addition, exogenously applied LL-37 is protective against RSV-mediated disease in vivo, in a murine model of pulmonary RSV infection, demonstrating maximal efficacy when applied concomitantly with virus. Furthermore, endogenous murine cathelicidin, induced by infection, has a fundamental role in protection against disease in vivo postinfection with RSV. Finally, higher nasal levels of LL-37 are associated with protection in a healthy human adult RSV infection model. These data lead us to propose that cathelicidins are a key, nonredundant component of host defense against pulmonary infection with RSV, functioning as a first point of contact antiviral shield and having additional later-phase roles in minimizing the severity of disease outcome. Consequently, cathelicidins represent an inducible target for preventative strategies against RSV infection and may inform the design of novel therapeutic analogs for use in established infection.
Collapse
Affiliation(s)
- Silke M Currie
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Emily Gwyer Findlay
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Amanda J McFarlane
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Paul M Fitch
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Bettina Böttcher
- Institute for Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Nick Colegrave
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom; and
| | - Allan Paras
- National Heart and Lung Institute, Imperial College London, London W2 1PG, United Kingdom
| | - Agnieszka Jozwik
- National Heart and Lung Institute, Imperial College London, London W2 1PG, United Kingdom
| | - Christopher Chiu
- National Heart and Lung Institute, Imperial College London, London W2 1PG, United Kingdom
| | - Jürgen Schwarze
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Donald J Davidson
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom;
| |
Collapse
|
54
|
Wertenbruch S, Drescher H, Grossarth V, Kroy D, Giebeler A, Erschfeld S, Heinrichs D, Soehnlein O, Trautwein C, Brandenburg LO, Streetz K. The Anti-Microbial Peptide LL-37/CRAMP Is Elevated in Patients with Liver Diseases and Acts as a Protective Factor during Mouse Liver Injury. Digestion 2016; 91:307-17. [PMID: 25998843 DOI: 10.1159/000368304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 09/11/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND Antimicrobial peptides (AMP) are an important defense mechanism of the innate immune system and can modulate the course of various diseases. However, their significance during liver pathogenesis is currently not well defined. METHODS Patients with liver diseases were analyzed for LL-37/CRAMP, human beta-defensin-2 (hBD2), and complement 5a (C5a) serum levels. Mice deficient in CRAMP (Cathelicidin-related Antimicrobial Peptide), the mouse homolog for human LL-37, were fed with a methionine- and choline-deficient diet (MCD) and underwent bile-duct ligation (BDL). RESULTS First, serum samples from patients with chronic liver diseases were investigated. Therefore, significantly enhanced levels for LL-37, hBD2, and complement C5a were detected, all of which comprise antimicrobial properties. Next, CRAMP-knockout (CRAMP-KO) mice were investigated, to better define a functional role of LL-37/CRAMP in animal models of liver diseases. MCD feeding and bile-duct ligation of CRAMP-KO mice resulted in an enhanced degree of liver injury during the early treatment phase. MCD feeding in CRAMP-KO mice led to stronger intrahepatic fat accumulation and significantly enhanced matrix remodeling, whereas BDL caused more extensive liver necrosis. At the late 28 days time point, MCD-fed CRAMP-KO mice displayed a higher intrahepatic fat load. Long-term changes in bile-duct-ligated mice included higher collagen content as a sign of enhanced fibrosis progression if CRAMP was absent. CONCLUSION The study shows a clear correlation of antimicrobial peptide serum levels in patients with chronic liver diseases. Furthermore, we were able to demonstrate protective functions of LL-37/CRAMP in two independent mouse models of chronic liver injury.
Collapse
Affiliation(s)
- Svenja Wertenbruch
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Kaufmann SH, Dorhoi A. Molecular Determinants in Phagocyte-Bacteria Interactions. Immunity 2016; 44:476-491. [DOI: 10.1016/j.immuni.2016.02.014] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 01/28/2016] [Accepted: 02/17/2016] [Indexed: 12/24/2022]
|
56
|
Antimicrobial Properties of Mesenchymal Stem Cells: Therapeutic Potential for Cystic Fibrosis Infection, and Treatment. Stem Cells Int 2016; 2016:5303048. [PMID: 26925108 PMCID: PMC4746399 DOI: 10.1155/2016/5303048] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/22/2015] [Indexed: 01/08/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease in which the battle between pulmonary infection and inflammation becomes the major cause of morbidity and mortality. We have previously shown that human MSCs (hMSCs) decrease inflammation and infection in the in vivo murine model of CF. The studies in this paper focus on the specificity of the hMSC antimicrobial effectiveness using Pseudomonas aeruginosa (gram negative bacteria) and Staphylococcus aureus (gram positive bacteria). Our studies show that hMSCs secrete bioactive molecules which are antimicrobial in vitro against Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumonia, impacting the rate of bacterial growth and transition into colony forming units regardless of the pathogen. Further, we show that the hMSCs have the capacity to enhance antibiotic sensitivity, improving the capacity to kill bacteria. We present data which suggests that the antimicrobial effectiveness is associated with the capacity to slow bacterial growth and the ability of the hMSCs to secrete the antimicrobial peptide LL-37. Lastly, our studies demonstrate that the tissue origin of the hMSCs (bone marrow or adipose tissue derived), the presence of functional cystic fibrosis transmembrane conductance regulator (CFTR: human, Cftr: mouse) activity, and response to effector cytokines can impact both hMSC phenotype and antimicrobial potency and efficacy. These studies demonstrate, the unique capacity of the hMSCs to manage different pathogens and the significance of their phenotype in both the antimicrobial and antibiotic enhancing activities.
Collapse
|
57
|
Hiemstra PS, Amatngalim GD, van der Does AM, Taube C. Antimicrobial Peptides and Innate Lung Defenses: Role in Infectious and Noninfectious Lung Diseases and Therapeutic Applications. Chest 2016; 149:545-551. [PMID: 26502035 DOI: 10.1378/chest.15-1353] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/31/2015] [Accepted: 09/21/2015] [Indexed: 11/01/2022] Open
Abstract
Respiratory infections are a major clinical problem, and treatment is increasingly complicated by the emergence of microbial antibiotic resistance. Development of new antibiotics is notoriously costly and slow; therefore, alternative strategies are needed. Antimicrobial peptides, central effector molecules of the immune system, are being considered as alternatives to conventional antibiotics. These peptides display a range of activities, including not only direct antimicrobial activity, but also immunomodulation and wound repair. In the lung, airway epithelial cells and neutrophils in particular contribute to their synthesis. The relevance of antimicrobial peptides for host defense against infection has been demonstrated in animal models and is supported by observations in patient studies, showing altered expression and/or unfavorable circumstances for their action in a variety of lung diseases. Importantly, antimicrobial peptides are active against microorganisms that are resistant against conventional antibiotics, including multidrug-resistant bacteria. Several strategies have been proposed to use these peptides in the treatment of infections, including direct administration of antimicrobial peptides, enhancement of their local production, and creation of more favorable circumstances for their action. In this review, recent developments in antimicrobial peptides research in the lung and clinical applications for novel therapies of lung diseases are discussed.
Collapse
Affiliation(s)
- Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Gimano D Amatngalim
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne M van der Does
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christian Taube
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
58
|
Lu J, Chatterjee M, Schmid H, Beck S, Gawaz M. CXCL14 as an emerging immune and inflammatory modulator. JOURNAL OF INFLAMMATION-LONDON 2016; 13:1. [PMID: 26733763 PMCID: PMC4700668 DOI: 10.1186/s12950-015-0109-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 12/23/2015] [Indexed: 12/14/2022]
Abstract
CXCL14, a relatively novel chemokine, is a non-ELR (glutamic acid-leucine-arginine) chemokine with a broad spectrum of biological activities. CXCL14 mainly contributes to the regulation of immune cell migration, also executes antimicrobial immunity. The identity of the receptor for CXCL14 still remains obscure and therefore the intracellular signaling pathway is not entirely delineated. The present review summarizes the contribution of CXCL14 in these two aspects and discusses the biological mechanisms regulating CXCL14 expression and potential CXCL14 mediated functional implications in a variety of cells.
Collapse
Affiliation(s)
- Jing Lu
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Universität Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Mita Chatterjee
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Universität Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Hannes Schmid
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Universität Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Sandra Beck
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Universität Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Meinrad Gawaz
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Universität Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| |
Collapse
|
59
|
Epand RM. Antiviral Host Defence Peptides. HOST DEFENSE PEPTIDES AND THEIR POTENTIAL AS THERAPEUTIC AGENTS 2016. [PMCID: PMC7123656 DOI: 10.1007/978-3-319-32949-9_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The ongoing global mortality and morbidity associated with viral pathogens highlights the need for the continued development of effective, novel antiviral molecules. The antiviral activity of cationic host defence peptides is of significant interest as novel therapeutics for treating viral infection and predominantly due to their broad spectrum antiviral activity. These peptides also display powerful immunomodulatory activity and are key mediators of inflammation. Therefore, they offer a significant opportunity to inform the development of novel therapeutics for treating viral infections by either directly targeting the pathogen or by enhancing the innate immune response. In this chapter, we review the antiviral activity of cathelicidins and defensins, and examine the potential for these peptides to be used as novel antiviral agents.
Collapse
Affiliation(s)
- Richard M. Epand
- Health Sciences Centre, McMaster University, Hamilton, Ontario Canada
| |
Collapse
|
60
|
Karadottir H, Kulkarni NN, Gudjonsson T, Karason S, Gudmundsson GH. Cyclic mechanical stretch down-regulates cathelicidin antimicrobial peptide expression and activates a pro-inflammatory response in human bronchial epithelial cells. PeerJ 2015; 3:e1483. [PMID: 26664810 PMCID: PMC4675098 DOI: 10.7717/peerj.1483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/18/2015] [Indexed: 12/25/2022] Open
Abstract
Mechanical ventilation (MV) of patients can cause damage to bronchoalveolar epithelium, leading to a sterile inflammatory response, infection and in severe cases sepsis. Limited knowledge is available on the effects of MV on the innate immune defense system in the human lung. In this study, we demonstrate that cyclic stretch of the human bronchial epithelial cell lines VA10 and BCi NS 1.1 leads to down-regulation of cathelicidin antimicrobial peptide (CAMP) gene expression. We show that treatment of VA10 cells with vitamin D3 and/or 4-phenyl butyric acid counteracted cyclic stretch mediated down-regulation of CAMP mRNA and protein expression (LL-37). Further, we observed an increase in pro-inflammatory responses in the VA10 cell line subjected to cyclic stretch. The mRNA expression of the genes encoding pro-inflammatory cytokines IL-8 and IL-1β was increased after cyclic stretching, where as a decrease in gene expression of chemokines IP-10 and RANTES was observed. Cyclic stretch enhanced oxidative stress in the VA10 cells. The mRNA expression of toll-like receptor (TLR) 3, TLR5 and TLR8 was reduced, while the gene expression of TLR2 was increased in VA10 cells after cyclic stretch. In conclusion, our in vitro results indicate that cyclic stretch may differentially modulate innate immunity by down-regulation of antimicrobial peptide expression and increase in pro-inflammatory responses.
Collapse
Affiliation(s)
- Harpa Karadottir
- Biomedical Center and Department of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Nikhil Nitin Kulkarni
- Biomedical Center and Department of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology, Landspitali University Hospital, University of Iceland, Reykjavik, Iceland
| | - Sigurbergur Karason
- Department of Anaesthesia and Intensive Care and Faculty of Medicine, Landspitali University Hospital and University of Iceland, Reykjavik, Iceland
| | - Gudmundur Hrafn Gudmundsson
- Biomedical Center and Department of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
61
|
Hiemstra PS. Parallel activities and interactions between antimicrobial peptides and complement in host defense at the airway epithelial surface. Mol Immunol 2015; 68:28-30. [DOI: 10.1016/j.molimm.2015.07.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 01/28/2023]
|
62
|
LaRock CN, Döhrmann S, Todd J, Corriden R, Olson J, Johannssen T, Lepenies B, Gallo RL, Ghosh P, Nizet V. Group A Streptococcal M1 Protein Sequesters Cathelicidin to Evade Innate Immune Killing. Cell Host Microbe 2015; 18:471-7. [PMID: 26468750 PMCID: PMC4636435 DOI: 10.1016/j.chom.2015.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/06/2015] [Accepted: 09/02/2015] [Indexed: 11/26/2022]
Abstract
The antimicrobial peptide LL-37 is generated upon proteolytic cleavage of cathelicidin and limits invading pathogens by directly targeting microbial membranes as well as stimulating innate immune cell function. However, some microbes evade LL-37-mediated defense. Notably, group A Streptococcus (GAS) strains belonging to the hypervirulent M1T1 serogroup are more resistant to human LL-37 than other GAS serogroups. We show that the GAS surface-associated M1 protein sequesters and neutralizes LL-37 antimicrobial activity through its N-terminal domain. M1 protein also binds the cathelicidin precursor hCAP-18, preventing its proteolytic maturation into antimicrobial forms. Exogenous M1 protein rescues M1-deficient GAS from killing by neutrophils and within neutrophil extracellular traps and neutralizes LL-37 chemotactic properties. M1 also binds murine cathelicidin, and its virulence contribution in a murine model of necrotizing skin infection is largely driven by its ability to neutralize this host defense peptide. Thus, cathelicidin resistance is essential for the pathogenesis of hyperinvasive M1T1 GAS.
Collapse
Affiliation(s)
- Christopher N LaRock
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Simon Döhrmann
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jordan Todd
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ross Corriden
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joshua Olson
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Timo Johannssen
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Bernd Lepenies
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Richard L Gallo
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Partho Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
63
|
Bashir M, Prietl B, Tauschmann M, Mautner SI, Kump PK, Treiber G, Wurm P, Gorkiewicz G, Högenauer C, Pieber TR. Effects of high doses of vitamin D3 on mucosa-associated gut microbiome vary between regions of the human gastrointestinal tract. Eur J Nutr 2015; 55:1479-89. [PMID: 26130323 PMCID: PMC4875045 DOI: 10.1007/s00394-015-0966-2] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/16/2015] [Indexed: 12/12/2022]
Abstract
PURPOSE Vitamin D is well known for its effects on bone mineralisation but has also been attributed immunomodulatory properties. It positively influences human health, but in vivo data describing vitamin D effects on the human gut microbiome are missing. We aimed to investigate the effects of oral vitamin D3 supplementation on the human mucosa-associated and stool microbiome as well as CD8(+) T cells in healthy volunteers. METHODS This was an interventional, open-label, pilot study. Sixteen healthy volunteers (7 females, 9 males) were endoscopically examined to access a total of 7 sites. We sampled stomach, small bowel, colon, and stools before and after 8 weeks of vitamin D3 supplementation. Bacterial composition was assessed by pyrosequencing the 16S rRNA gene (V1-2), and CD8(+) T cell counts were determined by flow cytometry. RESULTS Vitamin D3 supplementation changed the gut microbiome in the upper GI tract (gastric corpus, antrum, and duodenum). We found a decreased relative abundance of Gammaproteobacteria including Pseudomonas spp. and Escherichia/Shigella spp. and increased bacterial richness. No major changes occurred in the terminal ileum, appendiceal orifice, ascending colon, and sigmoid colon or in stools, but the CD8(+) T cell fraction was significantly increased in the terminal ileum. CONCLUSION Vitamin D3 modulates the gut microbiome of the upper GI tract which might explain its positive influence on gastrointestinal diseases, such as inflammatory bowel disease or bacterial infections. The local effects of vitamin D demonstrate pronounced regional differences in the response of the GI microbiome to external factors, which should be considered in future studies investigating the human microbiome.
Collapse
Affiliation(s)
- Mina Bashir
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Barbara Prietl
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Martin Tauschmann
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Selma I Mautner
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Patrizia K Kump
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Gerlies Treiber
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Philipp Wurm
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Christoph Högenauer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.
| | - Thomas R Pieber
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
| |
Collapse
|
64
|
Hayashida A, Amano S, Gallo RL, Linhardt RJ, Liu J, Park PW. 2-O-Sulfated Domains in Syndecan-1 Heparan Sulfate Inhibit Neutrophil Cathelicidin and Promote Staphylococcus aureus Corneal Infection. J Biol Chem 2015; 290:16157-67. [PMID: 25931123 PMCID: PMC4481216 DOI: 10.1074/jbc.m115.660852] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Indexed: 11/06/2022] Open
Abstract
Ablation of syndecan-1 in mice is a gain of function mutation that enables mice to significantly resist infection by several bacterial pathogens. Syndecan-1 shedding is induced by bacterial virulence factors, and inhibition of shedding attenuates bacterial virulence, whereas administration of purified syndecan-1 ectodomain enhances virulence, suggesting that bacteria subvert syndecan-1 ectodomains released by shedding for their pathogenesis. However, the pro-pathogenic functions of syndecan-1 ectodomain have yet to be clearly defined. Here, we examined how syndecan-1 ectodomain enhances Staphylococcus aureus virulence in injured mouse corneas. We found that syndecan-1 ectodomain promotes S. aureus corneal infection in an HS-dependent manner. Surprisingly, we found that this pro-pathogenic activity is dependent on 2-O-sulfated domains in HS, indicating that the effects of syndecan-1 ectodomain are structure-based. Our results also showed that purified syndecan-1 ectodomain and heparan compounds containing 2-O-sulfate motifs inhibit S. aureus killing by antimicrobial factors secreted by degranulated neutrophils, but does not affect intracellular phagocytic killing by neutrophils. Immunodepletion of antimicrobial factors with staphylocidal activities demonstrated that CRAMP, a cationic antimicrobial peptide, is primarily responsible for S. aureus killing among other factors secreted by degranulated neutrophils. Furthermore, we found that purified syndecan-1 ectodomain and heparan compounds containing 2-O-sulfate units potently and specifically inhibit S. aureus killing by synthetic CRAMP. These results provide compelling evidence that a specific subclass of sulfate groups, and not the overall charge of HS, permits syndecan-1 ectodomains to promote S. aureus corneal infection by inhibiting a key arm of neutrophil host defense.
Collapse
Affiliation(s)
| | - Shiro Amano
- From the Division of Respiratory Diseases and
| | - Richard L Gallo
- Division of Dermatology, University of California San Diego, La Jolla, California 92093
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, and
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Pyong Woo Park
- From the Division of Respiratory Diseases and Division of Newborn Medicine, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115,
| |
Collapse
|
65
|
Dai C, Basilico P, Cremona TP, Collins P, Moser B, Benarafa C, Wolf M. CXCL14 displays antimicrobial activity against respiratory tract bacteria and contributes to clearance of Streptococcus pneumoniae pulmonary infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:5980-9. [PMID: 25964486 DOI: 10.4049/jimmunol.1402634] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 04/10/2015] [Indexed: 11/19/2022]
Abstract
CXCL14 is a chemokine with an atypical, yet highly conserved, primary structure characterized by a short N terminus and high sequence identity between human and mouse. Although it induces chemotaxis of monocytic cells at high concentrations, its physiological role in leukocyte trafficking remains elusive. In contrast, several studies have demonstrated that CXCL14 is a broad-spectrum antimicrobial peptide that is expressed abundantly and constitutively in epithelial tissues. In this study, we further explored the antimicrobial properties of CXCL14 against respiratory pathogens in vitro and in vivo. We found that CXCL14 potently killed Pseudomonas aeruginosa, Streptococcus mitis, and Streptococcus pneumoniae in a dose-dependent manner in part through membrane depolarization and rupture. By performing structure-activity studies, we found that the activity against Gram-negative bacteria was largely associated with the N-terminal peptide CXCL141-13. Interestingly, the central part of the molecule representing the β-sheet also maintained ∼62% killing activity and was sufficient to induce chemotaxis of THP-1 cells. The C-terminal α-helix of CXCL14 had neither antimicrobial nor chemotactic effect. To investigate a physiological function for CXCL14 in innate immunity in vivo, we infected CXCL14-deficient mice with lung pathogens and we found that CXCL14 contributed to enhanced clearance of Streptococcus pneumoniae, but not Pseudomonas aeruginosa. Our comprehensive studies reflect the complex bactericidal mechanisms of CXCL14, and we propose that different structural features are relevant for the killing of Gram-negative and Gram-positive bacteria. Taken together, our studies show that evolutionary-conserved features of CXCL14 are important for constitutive antimicrobial defenses against pneumonia.
Collapse
Affiliation(s)
- Chen Dai
- Theodor Kocher Institute, University of Bern, CH-3012 Bern, Switzerland; and
| | - Paola Basilico
- Theodor Kocher Institute, University of Bern, CH-3012 Bern, Switzerland; and
| | | | - Paul Collins
- Department of Medical, Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Bernhard Moser
- Department of Medical, Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Charaf Benarafa
- Theodor Kocher Institute, University of Bern, CH-3012 Bern, Switzerland; and
| | - Marlene Wolf
- Theodor Kocher Institute, University of Bern, CH-3012 Bern, Switzerland; and
| |
Collapse
|
66
|
Kim SH, Yang IY, Kim J, Lee KY, Jang YS. Antimicrobial peptide LL-37 promotes antigen-specific immune responses in mice by enhancing Th17-skewed mucosal and systemic immunities. Eur J Immunol 2015; 45:1402-13. [PMID: 25655317 DOI: 10.1002/eji.201444988] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/13/2015] [Accepted: 02/03/2015] [Indexed: 01/17/2023]
Abstract
The human antimicrobial peptide LL-37 is known to have chemotactic and modulatory activities on various cells including monocytes, T cells, and epithelial cells. Given that LL-37 enhances chemotactic attraction and modulates the activity of DCs, it is conceivable that it might play a role as an immune adjuvant by skewing the immune environment toward immunostimulatory conditions. In this study, we characterized the mucosal adjuvant activity of LL-37 using model and pathogenic Ags. When LL-37-conjugated Ag was administered orally to mice, a tolerogenic Peyer's patch environment was altered to cell populations containing IL-6-secreting CD11c(+), CD11c(+) CD70(+), and Th17 cells capable of evoking a subsequent LL-37-conjugated Ag-specific immune response in both systemic and mucosal immune compartments. In addition, we showed presentation of formyl peptide receptor, an LL-37 receptor, on M cells, which may aid the initiation of an LL-37-mediated enhanced immune response through targeting and transcytosis of the conjugated Ag. Based on our findings, we conclude that LL-37 has potential as an oral mucosal adjuvant, not only by enhancing the delivery of LL-37-conjugated Ag to M cells, but also by triggering T-cell-mediated Ag-specific immune responses through modulation of the mucosal immune environment.
Collapse
Affiliation(s)
- Sae-Hae Kim
- Department of Molecular Biology, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Korea.,Research Center of Bioactive Materials, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Korea
| | - In-Young Yang
- Department of Molecular Biology, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Korea
| | - Ju Kim
- Jeonju Biomaterials Institute, Chonbuk National University, Jeonju, Korea
| | - Kyung-Yeol Lee
- Department of Oral Microbiology, Institute of Oral Bioscience, Chonbuk National University, Jeonju, Korea
| | - Yong-Suk Jang
- Department of Molecular Biology, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Korea.,Research Center of Bioactive Materials, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Korea
| |
Collapse
|
67
|
Antimicrobial and biophysical properties of surfactant supplemented with an antimicrobial peptide for treatment of bacterial pneumonia. Antimicrob Agents Chemother 2015; 59:3075-83. [PMID: 25753641 DOI: 10.1128/aac.04937-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/05/2015] [Indexed: 11/20/2022] Open
Abstract
Antibiotic-resistant bacterial infections represent an emerging health concern in clinical settings, and a lack of novel developments in the pharmaceutical pipeline is creating a "perfect storm" for multidrug-resistant bacterial infections. Antimicrobial peptides (AMPs) have been suggested as future therapeutics for these drug-resistant bacteria, since they have potent broad-spectrum activity, with little development of resistance. Due to the unique structure of the lung, bacterial pneumonia has the additional problem of delivering antimicrobials to the site of infection. One potential solution is coadministration of AMPs with exogenous surfactant, allowing for distribution of the peptides to distal airways and opening of collapsed lung regions. The objective of this study was to test various surfactant-AMP mixtures with regard to maintaining pulmonary surfactant biophysical properties and bactericidal functions. We compared the properties of four AMPs (CATH-1, CATH-2, CRAMP, and LL-37) suspended in bovine lipid-extract surfactant (BLES) by assessing surfactant-AMP mixture biophysical and antimicrobial functions. Antimicrobial activity was tested against methillicin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. All AMP/surfactant mixtures exhibited an increase of spreading compared to a BLES control. BLES+CATH-2 mixtures had no significantly different minimum surface tension versus the BLES control. Compared to the other cathelicidins, CATH-2 retained the most bactericidal activity in the presence of BLES. The BLES+CATH-2 mixture appears to be an optimal surfactant-AMP mixture based on in vitro assays. Future directions involve investigating the potential of this mixture in animal models of bacterial pneumonia.
Collapse
|
68
|
Hiemstra PS, McCray PB, Bals R. The innate immune function of airway epithelial cells in inflammatory lung disease. Eur Respir J 2015; 45:1150-62. [PMID: 25700381 DOI: 10.1183/09031936.00141514] [Citation(s) in RCA: 293] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The airway epithelium is now considered to be central to the orchestration of pulmonary inflammatory and immune responses, and is also key to tissue remodelling. It acts as the first barrier in the defence against a wide range of inhaled challenges, and is critically involved in the regulation of both innate and adaptive immune responses to these challenges. Recent progress in our understanding of the developmental regulation of this tissue, the differentiation pathways, recognition of pathogens and antimicrobial responses is now exploited to help understand how epithelial cell function and dysfunction contributes to the pathogenesis of a variety of inflammatory lung diseases. Herein, advances in our knowledge of the biology of airway epithelium, as well as its role and (dys)function in asthma, chronic obstructive pulmonary fibrosis and cystic fibrosis will be discussed.
Collapse
Affiliation(s)
- Pieter S Hiemstra
- Dept of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Paul B McCray
- Dept of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Robert Bals
- Dept of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
69
|
Zimmer J, Hobkirk J, Mohamed F, Browning MJ, Stover CM. On the Functional Overlap between Complement and Anti-Microbial Peptides. Front Immunol 2015; 5:689. [PMID: 25646095 PMCID: PMC4298222 DOI: 10.3389/fimmu.2014.00689] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/22/2014] [Indexed: 12/19/2022] Open
Abstract
Intriguingly, activated complement and anti-microbial peptides share certain functionalities; lytic, phagocytic, and chemo-attractant activities and each may, in addition, exert cell instructive roles. Each has been shown to have distinct LPS detoxifying activity and may play a role in the development of endotoxin tolerance. In search of the origin of complement, a functional homolog of complement C3 involved in opsonization has been identified in horseshoe crabs. Horseshoe crabs possess anti-microbial peptides able to bind to acyl chains or phosphate groups/saccharides of endotoxin, LPS. Complement activity as a whole is detectable in marine invertebrates. These are also a source of anti-microbial peptides with potential pharmaceutical applicability. Investigating the locality for the production of complement pathway proteins and their role in modulating cellular immune responses are emerging fields. The significance of local synthesis of complement components is becoming clearer from in vivo studies of parenchymatous disease involving specifically generated, complement-deficient mouse lines. Complement C3 is a central component of complement activation. Its provision by cells of the myeloid lineage varies. Their effector functions in turn are increased in the presence of anti-microbial peptides. This may point to a potentiating range of activities, which should serve the maintenance of health but may also cause disease. Because of the therapeutic implications, this review will consider closely studies dealing with complement activation and anti-microbial peptide activity in acute inflammation (e.g., dialysis-related peritonitis, appendicitis, and ischemia).
Collapse
Affiliation(s)
- Jana Zimmer
- Department of Infectious Diseases - Medical Microbiology and Hygiene, Ruprecht-Karls-University of Heidelberg , Heidelberg , Germany
| | - James Hobkirk
- Department of Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, University of Hull , Hull , UK
| | - Fatima Mohamed
- Department of Infection, Immunity and Inflammation, University of Leicester , Leicester , UK
| | - Michael J Browning
- Department of Infection, Immunity and Inflammation, University of Leicester , Leicester , UK ; Department of Immunology, Leicester Royal Infirmary , Leicester , UK
| | - Cordula M Stover
- Department of Infection, Immunity and Inflammation, University of Leicester , Leicester , UK
| |
Collapse
|
70
|
Complexity of antimicrobial peptide regulation during pathogen-host interactions. Int J Antimicrob Agents 2014; 45:447-54. [PMID: 25532742 DOI: 10.1016/j.ijantimicag.2014.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/10/2014] [Accepted: 11/07/2014] [Indexed: 12/16/2022]
Abstract
Antimicrobial peptides (AMPs) are a key component of the immune system and are expressed by a large variety of organisms. AMPs are capable of eliminating a broad range of micro-organisms, illustrated by murine models where lack of AMP expression resulted in enhanced susceptibility to infection. Despite the importance of AMPs in immune defences, it is not clear whether a change in AMP expression is pathogen-specific or reflects a general response to groups of pathogens. Furthermore, it is unclear how the evoked change in AMP expression affects the host. To fully exploit the therapeutic potential of AMPs - by direct application of peptides or by using AMP-inducers - it is crucial to gain an insight into the complexity involved in pathogen-mediated regulation of AMP expression. This review summarises current knowledge on how AMP expression is affected by pathogens. In addition, the relevance and specificity of these changes in AMPs during infection will be discussed.
Collapse
|
71
|
Heimlich DR, Harrison A, Mason KM. Host Antimicrobial Peptides in Bacterial Homeostasis and Pathogenesis of Disease. Antibiotics (Basel) 2014; 3:645-76. [PMID: 26029470 PMCID: PMC4448142 DOI: 10.3390/antibiotics3040645] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 01/10/2023] Open
Abstract
Innate immune responses function as a first line of host defense against the development of bacterial infection, and in some cases to preserve the sterility of privileged sites in the human host. Bacteria that enter these sites must counter host responses for colonization. From the host's perspective, the innate immune system works expeditiously to minimize the bacterial threat before colonization and subsequent dysbiosis. The multifactorial nature of disease further challenges predictions of how each independent variable influences bacterial pathogenesis. From bacterial colonization to infection and through disease, the microenvironments of the host are in constant flux as bacterial and host factors contribute to changes at the host-pathogen interface, with the host attempting to eradicate bacteria and the bacteria fighting to maintain residency. A key component of this innate host response towards bacterial infection is the production of antimicrobial peptides (AMPs). As an early component of the host response, AMPs modulate bacterial load and prevent establishment of infection. Under quiescent conditions, some AMPs are constitutively expressed by the epithelium. Bacterial infection can subsequently induce production of other AMPs in an effort to maintain sterility, or to restrict colonization. As demonstrated in various studies, the absence of a single AMP can influence pathogenesis, highlighting the importance of AMP concentration in maintaining homeostasis. Yet, AMPs can increase bacterial virulence through the co-opting of the peptides or alteration of bacterial virulence gene expression. Further, bacterial factors used to subvert AMPs can modify host microenvironments and alter colonization of the residential flora that principally maintain homeostasis. Thus, the dynamic interplay between host defense peptides and bacterial factors produced to quell peptide activity play a critical role in the progression and outcome of disease.
Collapse
Affiliation(s)
- Derek R. Heimlich
- The Research Institute at Nationwide Children’s Center for Microbial Pathogenesis, Columbus, OH 43205, USA; E-Mails: (D.R.H.); (A.H.)
| | - Alistair Harrison
- The Research Institute at Nationwide Children’s Center for Microbial Pathogenesis, Columbus, OH 43205, USA; E-Mails: (D.R.H.); (A.H.)
| | - Kevin M. Mason
- The Research Institute at Nationwide Children’s Center for Microbial Pathogenesis, Columbus, OH 43205, USA; E-Mails: (D.R.H.); (A.H.)
- The Ohio State University College of Medicine, Department of Pediatrics, Columbus, OH 43205, USA
| |
Collapse
|
72
|
Danka ES, Hunstad DA. Cathelicidin augments epithelial receptivity and pathogenesis in experimental Escherichia coli cystitis. J Infect Dis 2014; 211:1164-73. [PMID: 25336727 DOI: 10.1093/infdis/jiu577] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cathelicidin is a proposed defender against infection of the urinary tract via its antimicrobial properties, but its activity has not been delineated in a dedicated cystitis model. METHODS Female C57Bl/6 mice, wild type or deficient in cathelin-related antimicrobial peptide (CRAMP; an ortholog of the sole human cathelicidin, LL-37), were infected transurethrally with the cystitis-derived uropathogenic Escherichia coli (UPEC) strain UTI89. Infection course was evaluated by bladder titers, intracellular bacterial community quantification, and histological analysis. Immune responses and resolution were characterized through cytokine profiling, microscopy, and quantitation of epithelial recovery from exfoliation. RESULTS CRAMP-deficient mice exhibited significantly lower bladder bacterial loads and fewer intracellular bacterial communities during acute cystitis. Although differences in bacterial titers were evident as early as 1 hour after infection, CRAMP-deficient mice showed no baseline alterations in immune activation, uroepithelial structure, apical expression of uroplakins (which serve as bacterial receptors), or intracellular bacterial growth rate. CRAMP-deficient hosts demonstrated less intense cytokine responses, diminished neutrophil infiltration, and accelerated uroepithelial recovery. CONCLUSIONS Mice lacking the antimicrobial peptide cathelicidin experienced less severe infection than wild-type mice in a well-established model of cystitis. Although CRAMP exhibits in vitro antibacterial activity against UPEC, it may enhance UPEC infection in the bladder by promoting epithelial receptivity and local inflammation.
Collapse
Affiliation(s)
- Elizabeth S Danka
- Department of Pediatrics Division of Biology and Biomedical Sciences
| | - David A Hunstad
- Department of Pediatrics Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
73
|
Quinton LJ, Mizgerd JP. Dynamics of lung defense in pneumonia: resistance, resilience, and remodeling. Annu Rev Physiol 2014; 77:407-30. [PMID: 25148693 DOI: 10.1146/annurev-physiol-021014-071937] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pneumonia is initiated by microbes in the lung, but physiological processes integrating responses across diverse cell types and organ systems dictate the outcome of respiratory infection. Resistance, or actions of the host to eradicate living microbes, in the lungs involves a combination of innate and adaptive immune responses triggered by air-space infection. Resilience, or the ability of the host tissues to withstand the physiologically damaging effects of microbial and immune activities, is equally complex, precisely regulated, and determinative. Both immune resistance and tissue resilience are dynamic and change throughout the lifetime, but we are only beginning to understand such remodeling and how it contributes to the incidence of severe pneumonias, which diminishes as childhood progresses and then increases again among the elderly. Here, we review the concepts of resistance, resilience, and remodeling as they apply to pneumonia, highlighting recent advances and current significant knowledge gaps.
Collapse
|
74
|
Roles of cathelicidins in inflammation and bone loss. Odontology 2014; 102:137-46. [DOI: 10.1007/s10266-014-0167-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/01/2014] [Indexed: 11/25/2022]
|
75
|
Abstract
There is a pressing need to develop new antiviral treatments; of the 60 drugs currently available, half are aimed at HIV-1 and the remainder target only a further six viruses. This demand has led to the emergence of possible peptide therapies, with 15 currently in clinical trials. Advancements in understanding the antiviral potential of naturally occurring host defence peptides highlights the potential of a whole new class of molecules to be considered as antiviral therapeutics. Cationic host defence peptides, such as defensins and cathelicidins, are important components of innate immunity with antimicrobial and immunomodulatory capabilities. In recent years they have also been shown to be natural, broad-spectrum antivirals against both enveloped and non-enveloped viruses, including HIV-1, influenza virus, respiratory syncytial virus and herpes simplex virus. Here we review the antiviral properties of several families of these host peptides and their potential to inform the design of novel therapeutics.
Collapse
Affiliation(s)
- Emily Gwyer Findlay
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ Scotland, UK
| | - Silke M. Currie
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ Scotland, UK
| | - Donald J. Davidson
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ Scotland, UK
| |
Collapse
|
76
|
Cathelicidin host defence peptide augments clearance of pulmonary Pseudomonas aeruginosa infection by its influence on neutrophil function in vivo. PLoS One 2014; 9:e99029. [PMID: 24887410 PMCID: PMC4041793 DOI: 10.1371/journal.pone.0099029] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/09/2014] [Indexed: 01/13/2023] Open
Abstract
Cathelicidins are multifunctional cationic host-defence peptides (CHDP; also known as antimicrobial peptides) and an important component of innate host defence against infection. In addition to microbicidal potential, these peptides have properties with the capacity to modulate inflammation and immunity. However, the extent to which such properties play a significant role during infection in vivo has remained unclear. A murine model of acute P. aeruginosa lung infection was utilised, demonstrating cathelicidin-mediated enhancement of bacterial clearance in vivo. The delivery of exogenous synthetic human cathelicidin LL-37 was found to enhance a protective pro-inflammatory response to infection, effectively promoting bacterial clearance from the lung in the absence of direct microbicidal activity, with an enhanced early neutrophil response that required both infection and peptide exposure and was independent of native cathelicidin production. Furthermore, although cathelicidin-deficient mice had an intact early cellular inflammatory response, later phase neutrophil response to infection was absent in these animals, with significantly impaired clearance of P. aeruginosa. These findings demonstrate the importance of the modulatory properties of cathelicidins in pulmonary infection in vivo and highlight a key role for cathelicidins in the induction of protective pulmonary neutrophil responses, specific to the infectious milieu. In additional to their physiological roles, CHDP have been proposed as future antimicrobial therapeutics. Elucidating and utilising the modulatory properties of cathelicidins has the potential to inform the development of synthetic peptide analogues and novel therapeutic approaches based on enhancing innate host defence against infection with or without direct microbicidal targeting of pathogens.
Collapse
|
77
|
Turner TL, Kopp BT, Paul G, Landgrave LC, Hayes D, Thompson R. Respiratory syncytial virus: current and emerging treatment options. CLINICOECONOMICS AND OUTCOMES RESEARCH 2014; 6:217-25. [PMID: 24812523 PMCID: PMC4008286 DOI: 10.2147/ceor.s60710] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Respiratory syncytial virus (RSV) is an important respiratory pathogen in infants and children worldwide. Although RSV typically causes mild upper respiratory infections, it frequently causes severe morbidity and mortality, especially in premature infants and children with other chronic diseases. Treatment of RSV is limited by a lack of effective antiviral treatments; however, ribavirin has been used in complicated cases, along with the addition of intravenous immune globulin in specific patients. Vaccination strategies for RSV prevention are heavily studied, but only palivizumab (Synagis®) has been approved for use in the United States in very select patient populations. Research is ongoing in developing additional vaccines, along with alternative therapies that may help prevent or decrease the severity of RSV infections in infants and children. To date, we have not seen a decrement in RSV morbidity and mortality with our current options; therefore, there is a clear need for novel RSV preventative and therapeutic strategies. In this review, we discuss the current and evolving trends in RSV treatment for infants and children.
Collapse
Affiliation(s)
- Tiffany L Turner
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, USA
| | - Benjamin T Kopp
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, USA
| | - Grace Paul
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Don Hayes
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, USA
| | - Rohan Thompson
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
78
|
Lambert AA, Kirk GD, Astemborski J, Neptune ER, Mehta SH, Wise RA, Drummond MB. A cross sectional analysis of the role of the antimicrobial peptide cathelicidin in lung function impairment within the ALIVE cohort. PLoS One 2014; 9:e95099. [PMID: 24743155 PMCID: PMC3990590 DOI: 10.1371/journal.pone.0095099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/21/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Vitamin D deficiency is associated with reduced lung function. Cathelicidin, an antimicrobial peptide regulated by vitamin D, plays a role within the innate immune system. The association of cathelicidin with lung function decrement and respiratory infection is undefined. We determined the independent relationship of cathelicidin with lung function. METHODS In a cross-sectional analysis of 650 participants in an urban observational cohort with high smoking prevalence, plasma 25(OH)-vitamin D and cathelicidin levels were measured from stored samples obtained within 6 months of spirometry study visits. Multivariable linear regression was used to determine the independent association between low cathelicidin (defined as the lowest quartile of the cohort) and absolute forced expiratory volume in 1 second (FEV1). RESULTS The mean age of the cohort was 49 years; 91% were black, 35% female and 41% HIV-infected. Participants with low cathelicidin had a 183 mL lower FEV1 compared to higher cathelicidin (p = 0.009); this relationship was maintained (115 ml lower; p = 0.035) after adjusting for demographics, BMI, and smoking. Neither HIV serostatus, heavy smoking history, nor 25(OH)-vitamin D levels were associated with cathelicidin levels. Participants with low cathelicidin had a greater prevalence of prior bacterial pneumonia (21% versus 14%; p = 0.047). Inclusion of pneumonia in adjusted models did not substantially reduce the FEV1 decrement observed with low cathelicidin (104 mL lower FEV1; p = 0.05). Lung function decrements associated with low cathelicidin were greatest among individuals with lower 25(OH)-vitamin D levels. CONCLUSIONS In a cohort at risk for airflow obstruction, low cathelicidin was independently associated with lower FEV1. These clinical data support a mechanistic link between 25(OH)-vitamin D deficiency and lung function impairment, independent of pneumonia risk.
Collapse
Affiliation(s)
- Allison A. Lambert
- Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Gregory D. Kirk
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jacquie Astemborski
- Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Enid R. Neptune
- Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Shruti H. Mehta
- Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Robert A. Wise
- Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, Maryland, United States of America
| | | |
Collapse
|
79
|
Barlow PG, Findlay EG, Currie SM, Davidson DJ. Antiviral potential of cathelicidins. Future Microbiol 2014; 9:55-73. [DOI: 10.2217/fmb.13.135] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
ABSTRACT: The global burden of morbidity and mortality arising from viral infections is high; however, the development of effective therapeutics has been slow. As our understanding of innate immunity has expanded over recent years, knowledge of natural host defenses against viral infections has started to offer potential for novel therapeutic strategies. An area of current research interest is in understanding the roles played by naturally occurring cationic host defense peptides, such as the cathelicidins, in these innate antiviral host defenses across different species. This research also has the potential to inform the design of novel synthetic antiviral peptide analogs and/or provide rationale for therapies aimed at boosting the natural production of these peptides. In this review, we will discuss our knowledge of the antiviral activities of cathelicidins, an important family of cationic host defense peptides, and consider the implications for novel antiviral therapeutic approaches.
Collapse
Affiliation(s)
- Peter G Barlow
- Health, Life & Social Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh, EH11 4BN, UK
| | - Emily Gwyer Findlay
- University of Edinburgh/MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Silke M Currie
- University of Edinburgh/MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Donald J Davidson
- University of Edinburgh/MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
80
|
Horibe K, Nakamichi Y, Uehara S, Nakamura M, Koide M, Kobayashi Y, Takahashi N, Udagawa N. Roles of cathelicidin-related antimicrobial peptide in murine osteoclastogenesis. Immunology 2013; 140:344-51. [PMID: 23826736 DOI: 10.1111/imm.12146] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 06/20/2013] [Accepted: 07/01/2013] [Indexed: 12/17/2022] Open
Abstract
Cathelicidin-related antimicrobial peptide (CRAMP) not only kills bacteria but also binds to lipopolysaccharide (LPS) to neutralize its activity. CRAMP is highly expressed in bone marrow and its expression is reported to be up-regulated by inflammatory and infectious stimuli. Here, we examined the role of CRAMP in murine osteoclastogenesis. Osteoclasts were formed in co-cultures of osteoblasts and bone marrow cells in response to 1α,25-dihydroxyvitamin D3 [1α,25(OH)2 D3 ], prostaglandin E2 (PGE2 ), and Toll-like receptor (TLR) ligands such as LPS and flagellin through the induction of receptor activator of nuclear factor-κB ligand (RANKL) expression in osteoblasts. CRAMP inhibited the osteoclastogenesis in co-cultures treated with LPS and flagellin, but not in those treated with 1α,25(OH)2 D3 or PGE2 . Although bone marrow macrophages (BMMs) highly expressed formyl peptide receptor 2 (a receptor of CRAMP), CRAMP showed no inhibitory effect on osteoclastogenesis in BMM cultures treated with RANKL. CRAMP suppressed both LPS- and flagellin-induced RANKL expression in osteoblasts and tumour necrosis factor-α (TNF-α) expression in BMMs, suggesting that CRAMP neutralizes the actions of LPS and flagellin. LPS and flagellin enhanced the expression of CRAMP mRNA in osteoblasts. Extracellularly added CRAMP suppressed LPS- and flagellin-induced CRAMP expression. These results suggest that the production of CRAMP promoted by LPS and flagellin is inhibited by CRAMP released by osteoblasts through a feedback regulation. Even though CRAMP itself has no effect on osteoclastogenesis in mice, we propose that CRAMP is an osteoblast-derived protector in bacterial infection-induced osteoclastic bone resorption.
Collapse
Affiliation(s)
- Kanji Horibe
- Graduate School of Oral Medicine, Matsumoto Dental University, Nagano, Japan
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Feng X, Sambanthamoorthy K, Palys T, Paranavitana C. The human antimicrobial peptide LL-37 and its fragments possess both antimicrobial and antibiofilm activities against multidrug-resistant Acinetobacter baumannii. Peptides 2013; 49:131-7. [PMID: 24071034 DOI: 10.1016/j.peptides.2013.09.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/12/2013] [Accepted: 09/12/2013] [Indexed: 02/06/2023]
Abstract
Acinetobacter baumannii infections are difficult to treat due to multidrug resistance. Biofilm formation by A. baumannii is an additional factor in its ability to resist antimicrobial therapy. The antibacterial and antibiofilm activities of the human antimicrobial peptide LL-37 and its fragments KS-30, KR-20 and KR-12 against clinical isolates of multidrug-resistant (MDR) A. baumannii were evaluated. The minimal inhibitory concentration (MIC) of LL-37 against MDR A. baumannii isolates ranged from 16 to 32 μg/mL. The MIC of KS-30 fragment varied from 8.0 to 16 μg/mL and the KR-20 fragment MIC ranged from 16 to 64 μg/mL. LL-37 and KS-30 fragment exhibited 100% bactericidal activity against five A. baumannii strains, including four MDR clinical isolates, within 30 min at concentrations of 0.25-1 μg/mL. By 0.5h, the fragments KR-20 and KR-12 eliminated all tested strains at 8 and 64 μg/mL respectively. LL-37 and its fragments displayed anti-adherence activities between 32-128 μg/mL. A minimum biofilm eradication concentration (MBEC) biofilm assay demonstrated that LL-37 inhibited and dispersed A. baumannii biofilms at 32 μg/mL respectively. Truncated fragments of LL-37 inhibited biofilms at concentrations of 64-128 μg/mL. KS-30, the truncated variant of LL-37, effectively dispersed biofilms at 64 μg/mL. At 24h, no detectable toxicity was observed at the efficacious doses when cytotoxicity assays were performed. Thus, LL-37, KS-30 and KR-20 exhibit significant antimicrobial activity against MDR A. baumannii. The prevention of biofilm formation in vitro by LL-37, KS-30 and KR-20 adds significance to their efficacy. These peptides can be potential therapeutics against MDR A. baumannii infections.
Collapse
Affiliation(s)
- Xiaorong Feng
- Department of Wound Infections, Bacterial Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | | | | | | |
Collapse
|
82
|
Lee JK, Park SC, Hahm KS, Park Y. A helix-PXXP-helix peptide with antibacterial activity without cytotoxicity against MDRPA-infected mice. Biomaterials 2013; 35:1025-39. [PMID: 24176194 DOI: 10.1016/j.biomaterials.2013.10.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
Abstract
In response to the growing problem of multidrug-resistant pathogenic microbes, much attention is being paid to naturally occurring and synthetic antimicrobial peptides (AMPs) and the effects of their structural modification. Among these modifications, amino acid substitution is a simple approach to enhancing biological activity and reducing cytotoxicity. An earlier study indicated that HPA3, an analog of HP (2-20) derived from the N-terminus of Helicobacter pylori ribosomal protein L1, forms large pores and shows considerable cytotoxicity. However, HPA3P, in which a proline (Pro) is substituted for glutamic acid (Glu) at position 9 of HPA3, shows markedly less cytotoxicity. This may be attributable to the presence of a Pro-kink into middle of the HPA3P structure within the membrane environment. Unfortunately, HPA3P is not an effective antibacterial agent in vivo. We therefore designed a helix-PXXP-helix structure (HPA3P2), in which Pro was substituted for the Glu and phenylalanine (Phe) at positions 9 and 12 of HPA3, yielding a molecule with a flexible central hinge. As compared to HPA3P, HPA3P3 exhibited dramatically increased antibacterial activity in vivo. ICR mice infected with clinically isolated multidrug-resistant Pseudomonas aeruginosa showed 100% survival when administered one 0.5-mg/kg dose of HPA3P2 or three 0.1-mg/kg doses of HPA3P2. Moreover, in a mouse model of septic shock induced by P. aeruginosa LPS, HPA3P2 reduced production of pro-inflammatory mediators and correspondingly reduced lung (alveolar) and liver tissue damage. The changes in HPA3 behavior with the introduction of Pro likely reflects alterations of the mechanism of action: i) HPA3 forms pores in the bacterial cell membranes, ii) HPA3P permeates the cell membranes and binds to intracellular RNA and DNA, and iii) HPA3P2 acts on the outer cellular membrane component LPS. Collectively, these results suggest HPA3P2 has the potential to be an effective antibiotic for use against multidrug-resistant bacterial strains.
Collapse
Affiliation(s)
- Jong-Kook Lee
- Research Center for Proteinaceous Materials (RCPM), Chosun University, Kwangju 501-759, Republic of Korea
| | | | | | | |
Collapse
|
83
|
Merres J, Höss J, Albrecht LJ, Kress E, Soehnlein O, Jansen S, Pufe T, Tauber SC, Brandenburg LO. Role of the cathelicidin-related antimicrobial peptide in inflammation and mortality in a mouse model of bacterial meningitis. J Innate Immun 2013; 6:205-18. [PMID: 23969854 DOI: 10.1159/000353645] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/06/2013] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial peptides (AP) are important components of the innate immune system, yet little is known about their expression and function in the brain. Our previous work revealed upregulated gene expression of cathelicidin-related AP (CRAMP) following bacterial meningitis in primary rat glial cells as well as bactericidal activity against frequent meningitis-causing bacteria. However, the effect of cathelicidin expression on the progression of inflammation and mortality in bacterial meningitis remains unknown. Therefore, we used CRAMP-deficient mice to investigate the effect of CRAMP on bacterial growth, inflammatory responses and mortality in meningitis. Meningitis was induced by intracerebral injection of type 3 Streptococcus pneumoniae. The degree of inflammation was analyzed in various brain regions by means of immunohistochemistry and real-time RT-PCR. CRAMP deficiency led to a higher mortality rate that was associated with increased bacterial titers in the cerebellum, blood and spleen as well as decreased meningeal neutrophil infiltration. CRAMP-deficient mice displayed a higher degree of glial cell activation that was accompanied by a more pronounced proinflammatory response. Taken together, this work provides insight into the important role of CRAMP as part of the innate immune defense against pathogens in bacterial CNS infections.
Collapse
Affiliation(s)
- Julika Merres
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Parra M, Liu X, Derrick SC, Yang A, Tian J, Kolibab K, Kumar S, Morris SL. Molecular analysis of non-specific protection against murine malaria induced by BCG vaccination. PLoS One 2013; 8:e66115. [PMID: 23861742 PMCID: PMC3701530 DOI: 10.1371/journal.pone.0066115] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/01/2013] [Indexed: 12/14/2022] Open
Abstract
Although the effectiveness of BCG vaccination in preventing adult pulmonary tuberculosis (TB) has been highly variable, epidemiologic studies have suggested that BCG provides other general health benefits to vaccinees including reducing the impact of asthma, leprosy, and possibly malaria. To further evaluate whether BCG immunization protects against malarial parasitemia and to define molecular correlates of this non-specific immunity, mice were vaccinated with BCG and then challenged 2 months later with asexual blood stage Plasmodium yoelii 17XNL (PyNL) parasites. Following challenge with PyNL, significant decreases in parasitemia were observed in BCG vaccinated mice relative to naïve controls. To identify immune molecules that may be associated with the BCG-induced protection, gene expression was evaluated by RT-PCR in i) naïve controls, ii) BCG-vaccinated mice, iii) PyNL infected mice and iv) BCG vaccinated/PyNL infected mice at 0, 1, 5, and 9 days after the P. yoelii infection. The expression results showed that i) BCG immunization induces the expression of at least 18 genes including the anti-microbial molecules lactoferrin, eosinophil peroxidase, eosinophil major basic protein and the cathelicidin-related antimicrobial peptide (CRAMP); ii) an active PyNL infection suppresses the expression of important immune response molecules; and iii) the extent of PyNL-induced suppression of specific genes is reduced in BCG-vaccinated/PyNL infected mice. To validate the gene expression data, we demonstrated that pre-treatment of malaria parasites with lactoferrin or the cathelicidin LL-37 peptide decreases the level of PyNL parasitemias in mice. Overall, our study suggests that BCG vaccination induces the expression of non-specific immune molecules including antimicrobial peptides which may provide an overall benefit to vaccinees by limiting infections of unrelated pathogens such as Plasmodium parasites.
Collapse
Affiliation(s)
- Marcela Parra
- Center for Biologics Evaluation and Review, USFDA, Bethesda, Maryland, United States of America
| | - Xia Liu
- Center for Biologics Evaluation and Review, USFDA, Bethesda, Maryland, United States of America
| | - Steven C. Derrick
- Center for Biologics Evaluation and Review, USFDA, Bethesda, Maryland, United States of America
| | - Amy Yang
- Center for Biologics Evaluation and Review, USFDA, Bethesda, Maryland, United States of America
| | - Jinhua Tian
- Center for Biologics Evaluation and Review, USFDA, Bethesda, Maryland, United States of America
| | - Kristopher Kolibab
- Center for Biologics Evaluation and Review, USFDA, Bethesda, Maryland, United States of America
| | - Sanjai Kumar
- Center for Biologics Evaluation and Review, USFDA, Bethesda, Maryland, United States of America
| | - Sheldon L. Morris
- Center for Biologics Evaluation and Review, USFDA, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
85
|
Expression of the antimicrobial peptide cathelicidin in myeloid cells is required for lung tumor growth. Oncogene 2013; 33:2709-16. [PMID: 23812430 DOI: 10.1038/onc.2013.248] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 04/09/2013] [Accepted: 05/16/2013] [Indexed: 12/16/2022]
Abstract
Antimicrobial peptides, such as the cathelicidin LL-37/hCAP-18 and its mouse homolog cathelicidin-related antimicrobial peptide (CRAMP), are important effectors of the innate immune system with direct anti-bacterial activity. Cathelicidin is possibly involved in the regulation of tumor cell growth. The aim of this study was to characterize the role of cathelicidin expressed in non-tumorous cells in a preclinical mouse model of tumor growth. Wild-type and CRAMP-deficient animals were exposed to cigarette smoke (CS) and Lewis lung carcinoma cells were injected to initiate the growth of tumors in the lung. CS exposure significantly increased the proliferation of lung tumors in wild-type mice, but not in CRAMP-deficient mice. CS exposure induced the recruitment of myeloid cell into tumor tissue in a CRAMP-dependent manner. Mice lacking RelA/p65 specifically in myeloid cells showed impaired recruitment of CRAMP-positive cells into the lung. In vitro studies with human cells showed that LL-37/hCAP-18 in macrophages is induced by soluble factors derived from cancer cells. Taken together, these data indicate that cathelicidin expressed from myeloid cells promotes CS-induced lung tumor growth by further recruitment of inflammatory cells. The regulation of cathelicidin expression involves myeloid p65/RelA and soluble factor from tumor cells.
Collapse
|
86
|
Reversible control by vitamin D of granulocytes and bacteria in the lungs of mice: an ovalbumin-induced model of allergic airway disease. PLoS One 2013; 8:e67823. [PMID: 23826346 PMCID: PMC3691156 DOI: 10.1371/journal.pone.0067823] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/21/2013] [Indexed: 12/26/2022] Open
Abstract
Vitamin D may be essential for restricting the development and severity of allergic diseases and asthma, but a direct causal link between vitamin D deficiency and asthma has yet to be established. We have developed a 'low dose' model of allergic airway disease induced by intraperitoneal injection with ovalbumin (1 µg) and aluminium hydroxide (0.2 mg) in which characteristics of atopic asthma are recapitulated, including airway hyperresponsiveness, antigen-specific immunoglobulin type-E and lung inflammation. We assessed the effects of vitamin D deficiency throughout life (from conception until adulthood) on the severity of ovalbumin-induced allergic airway disease in vitamin D-replete and -deficient BALB/c mice using this model. Vitamin D had protective effects such that deficiency significantly enhanced eosinophil and neutrophil numbers in the bronchoalveolar lavage fluid of male but not female mice. Vitamin D also suppressed the proliferation and T helper cell type-2 cytokine-secreting capacity of airway-draining lymph node cells from both male and female mice. Supplementation of initially vitamin D-deficient mice with vitamin D for four weeks returned serum 25-hydroxyvitamin D to levels observed in initially vitamin D-replete mice, and also suppressed eosinophil and neutrophil numbers in the bronchoalveolar lavage fluid of male mice. Using generic 16 S rRNA primers, increased bacterial levels were detected in the lungs of initially vitamin D-deficient male mice, which were also reduced by vitamin D supplementation. These results indicate that vitamin D controls granulocyte levels in the bronchoalveolar lavage fluid in an allergen-sensitive manner, and may contribute towards the severity of asthma in a gender-specific fashion through regulation of respiratory bacteria.
Collapse
|
87
|
Chen K, Liu M, Liu Y, Wang C, Yoshimura T, Gong W, Le Y, Tessarollo L, Wang JM. Signal relay by CC chemokine receptor 2 (CCR2) and formylpeptide receptor 2 (Fpr2) in the recruitment of monocyte-derived dendritic cells in allergic airway inflammation. J Biol Chem 2013; 288:16262-16273. [PMID: 23603910 PMCID: PMC3675565 DOI: 10.1074/jbc.m113.450635] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/08/2013] [Indexed: 12/24/2022] Open
Abstract
Chemoattractant receptors regulate leukocyte accumulation at sites of inflammation. In allergic airway inflammation, although a chemokine receptor CCR2 was implicated in mediating monocyte-derived dendritic cell (DC) recruitment into the lung, we previously also discovered reduced accumulation of DCs in the inflamed lung in mice deficient in formylpeptide receptor Fpr2 (Fpr2(-/-)). We therefore investigated the role of Fpr2 in the trafficking of monocyte-derived DCs in allergic airway inflammation in cooperation with CCR2. We report that in allergic airway inflammation, CCR2 mediated the recruitment of monocyte-derived DCs to the perivascular region, and Fpr2 was required for further migration of the cells into the bronchiolar area. We additionally found that the bronchoalveolar lavage liquid from mice with airway inflammation contained both the CCR2 ligand CCL2 and an Fpr2 agonist CRAMP. Furthermore, similar to Fpr2(-/-) mice, in the inflamed airway of CRAMP(-/-) mice, DC trafficking into the peribronchiolar areas was diminished. Our study demonstrates that the interaction of CCR2 and Fpr2 with their endogenous ligands sequentially mediates the trafficking of DCs within the inflamed lung.
Collapse
Affiliation(s)
- Keqiang Chen
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research
| | - Mingyong Liu
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research
| | - Ying Liu
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research
| | - Chunyan Wang
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research
| | - Teizo Yoshimura
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research
| | | | - Yingying Le
- Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Ji Ming Wang
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research.
| |
Collapse
|
88
|
Xu F, Kang Y, Zhang H, Piao Z, Yin H, Diao R, Xia J, Shi L. Akt1-Mediated Regulation of Macrophage Polarization in a Murine Model of Staphylococcus aureus Pulmonary Infection. J Infect Dis 2013; 208:528-38. [DOI: 10.1093/infdis/jit177] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|