51
|
An Update on the Emerging Role of Resistin on the Pathogenesis of Osteoarthritis. Mediators Inflamm 2019; 2019:1532164. [PMID: 30809105 PMCID: PMC6369476 DOI: 10.1155/2019/1532164] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/19/2018] [Indexed: 12/19/2022] Open
Abstract
Background Resistin may be involved in the pathogenesis of osteoarthritis (OA), but a systematic understanding of the role of resistin in OA is lacking. Methods We reviewed studies that evaluated the role of resistin in OA. The expression levels of resistin in vitro experiments and OA/rheumatoid arthritis (RA) patients were analyzed. We also studied potential resistin receptors and the signaling pathways that these receptors activate, ultimately leading to cartilage degeneration. Results Resistin levels in both the serum and synovial fluid were higher in OA and RA patients than in healthy subjects. Overall, resistin levels are much higher in serum than in synovial fluid. In human cartilage, resistin induces the expression of proinflammatory factors such as degradative enzymes, leading to the inhibition of cartilage matrix synthesis, perhaps by binding to Toll-like receptor 4 and the adenylyl cyclase-associated protein 1 receptor, which then activates the p38-mitogen-activated phosphate kinase, protein kinase A–cyclic AMP, nuclear factor-κB, and C/enhancer-binding protein β signaling pathways. Conclusion Resistin levels are higher in OA patients than in healthy controls; however, the precise role of resistin in the pathogenesis of OA needs to be studied further. Resistin may be a novel therapeutic target in OA in the future.
Collapse
|
52
|
Forrest OA, Chopyk DM, Gernez Y, Brown MR, Conrad CK, Moss RB, Tangpricha V, Peng L, Tirouvanziam R. Resistin is elevated in cystic fibrosis sputum and correlates negatively with lung function. J Cyst Fibros 2019; 18:64-70. [DOI: 10.1016/j.jcf.2018.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 01/04/2023]
|
53
|
Moraes JA, Frony AC, Barcellos-de-Souza P, Menezes da Cunha M, Brasil Barbosa Calcia T, Benjamim CF, Boisson-Vidal C, Barja-Fidalgo C. Downregulation of Microparticle Release and Pro-Inflammatory Properties of Activated Human Polymorphonuclear Neutrophils by LMW Fucoidan. J Innate Immun 2018; 11:330-346. [PMID: 30557873 PMCID: PMC6738154 DOI: 10.1159/000494220] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 12/16/2022] Open
Abstract
Exposition of neutrophils (polymorphonuclear neutrophils, PMNs) to bacterial products triggers exacerbated activation of these cells, increasing their harmful effects on host tissues. We evaluated the possibility of interfering with the classic immune innate responses of human PMNs exposed to bacterial endotoxin (lipopolysaccharide, LPS), and further stimulated with bacterial formyl peptide (N-formyl-methionine-leucine-phenylalanine, fMLP). We showed that the low- molecular-weight fucoidan (LMW-Fuc), a polysaccharide extracted from brown algae, attenuated the exacerbated activation induced by fMLP on LPS-primed PMNs, in vitro, impairing chemotaxis, NET formation, and the pro-survival and pro-oxidative effects. LMW-Fuc also inhibited the activation of canonical signaling pathways, AKT, bad, p47phox and MLC, activated by the exposition of PMN to bacterial products. The activation of PMN by sequential exposure to LPS and fMLP induced the release of L-selectin+ microparticles, which were able to trigger extracellular reactive oxygen species production by fresh PMNs and macrophages. Furthermore, we observed that LMW-Fuc inhibited microparticle release from activated PMN. In vivo experiments showed that circulating PMN-derived microparticles could be detected in mice exposed to bacterial products (LPS/fMLP), being downregulated in animals treated with LMW-Fuc. The data highlight the autocrine and paracrine role of pro-inflammatory microparticles derived from activated PMN and demonstrate the anti-inflammatory effects of LMW-Fuc on these cells.
Collapse
Affiliation(s)
- João Alfredo Moraes
- Laboratório de Farmacologia Celular e Molecular, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biologia RedOx, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Clara Frony
- Laboratório de Farmacologia Celular e Molecular, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Barcellos-de-Souza
- Laboratório de Farmacologia Celular e Molecular, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcel Menezes da Cunha
- Núcleo Multidisciplinar de Pesquisa em Biologia-NUMPEX-BIO, Universidade Federal do Rio de Janeiro, Xerém, Brazil
| | | | - Claudia Farias Benjamim
- Laboratório de Imunologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Christina Barja-Fidalgo
- Laboratório de Farmacologia Celular e Molecular, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil,
| |
Collapse
|
54
|
Rangarajan S, Bone NB, Zmijewska AA, Jiang S, Park DW, Bernard K, Locy ML, Ravi S, Deshane J, Mannon RB, Abraham E, Darley-Usmar V, Thannickal VJ, Zmijewski JW. Metformin reverses established lung fibrosis in a bleomycin model. Nat Med 2018; 24:1121-1127. [PMID: 29967351 PMCID: PMC6081262 DOI: 10.1038/s41591-018-0087-6] [Citation(s) in RCA: 410] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 05/14/2018] [Indexed: 12/18/2022]
Abstract
Fibrosis is a pathological result of a dysfunctional repair response to tissue injury and occurs in a number of organs, including the lungs1. Cellular metabolism regulates tissue repair and remodelling responses to injury2-4. AMPK is a critical sensor of cellular bioenergetics and controls the switch from anabolic to catabolic metabolism5. However, the role of AMPK in fibrosis is not well understood. Here, we demonstrate that in humans with idiopathic pulmonary fibrosis (IPF) and in an experimental mouse model of lung fibrosis, AMPK activity is lower in fibrotic regions associated with metabolically active and apoptosis-resistant myofibroblasts. Pharmacological activation of AMPK in myofibroblasts from lungs of humans with IPF display lower fibrotic activity, along with enhanced mitochondrial biogenesis and normalization of sensitivity to apoptosis. In a bleomycin model of lung fibrosis in mice, metformin therapeutically accelerates the resolution of well-established fibrosis in an AMPK-dependent manner. These studies implicate deficient AMPK activation in non-resolving, pathologic fibrotic processes, and support a role for metformin (or other AMPK activators) to reverse established fibrosis by facilitating deactivation and apoptosis of myofibroblasts.
Collapse
Affiliation(s)
- Sunad Rangarajan
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nathaniel B Bone
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anna A Zmijewska
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shaoning Jiang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dae Won Park
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Infectious Diseases, Korea University Ansan Hospital, Ansan, South Korea
| | - Karen Bernard
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Morgan L Locy
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Saranya Ravi
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessy Deshane
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Roslyn B Mannon
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Edward Abraham
- Office of the Dean, School of Medicine, University of Miami, Miami, FL, USA
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victor J Thannickal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Jaroslaw W Zmijewski
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
55
|
Pine GM, Batugedara HM, Nair MG. Here, there and everywhere: Resistin-like molecules in infection, inflammation, and metabolic disorders. Cytokine 2018; 110:442-451. [PMID: 29866514 DOI: 10.1016/j.cyto.2018.05.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 02/07/2023]
Abstract
The Resistin-Like Molecules (RELM) α, β, and γ and their namesake, resistin, share structural and sequence homology but exhibit significant diversity in expression and function within their mammalian host. RELM proteins are expressed in a wide range of diseases, such as: microbial infections (eg. bacterial and helminth), inflammatory diseases (eg. asthma, fibrosis) and metabolic disorders (eg. diabetes). While the expression pattern and molecular regulation of RELM proteins are well characterized, much controversy remains over their proposed functions, with evidence of host-protective and pathogenic roles. Moreover, the receptors for RELM proteins are unclear, although three receptors for resistin, decorin, adenylyl cyclase-associated protein 1 (CAP1), and Toll-like Receptor 4 (TLR4) have recently been proposed. In this review, we will first summarize the molecular regulation of the RELM gene family, including transcription regulation and tissue expression in humans and mouse disease models. Second, we will outline the function and receptor-mediated signaling associated with RELM proteins. Finally, we will discuss recent studies suggesting that, despite early misconceptions that these proteins are pathogenic, RELM proteins have a more nuanced and potentially beneficial role for the host in certain disease settings.
Collapse
Affiliation(s)
- Gabrielle M Pine
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Hashini M Batugedara
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Meera G Nair
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States.
| |
Collapse
|
56
|
Luo J, Zhan J, You H, Cheng X. MicroRNA‑146a/Toll‑like receptor 4 signaling protects against severe burn‑induced remote acute lung injury in rats via anti‑inflammation. Mol Med Rep 2018; 17:8377-8384. [PMID: 29658581 DOI: 10.3892/mmr.2018.8877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/14/2017] [Indexed: 11/06/2022] Open
Abstract
The present study investigated the preventive effects of microRNA (miR)‑146a against severe burn‑induced remote acute lung injury (ALI) in rats and the underlying mechanism. The surface area of the skin was immersed in 100˚C water for 5‑10 sec on the dorsal surface. The expression level of miR‑146a was significantly downregulated in rats with burn‑induced ALI. Downregulation of miR‑146a increased inflammation, and inducible nitric oxide synthase (iNOS) and cyclooxygenase‑2 (COX‑2) expression in a model of ALI in vitro via the promotion of the Toll‑like receptor (TLR)4/nuclear factor (NF)‑κB signaling pathway. In addition, the overexpression of miR‑146a reduced inflammation, and iNOS and COX‑2 protein expression in the model of ALI in vitro via the suppression of the TLR4/NF‑κB signaling pathway. A TLR4 inhibitor reduced the function of anti‑miR‑146a on inflammation in the model of ALI. Collectively, the results of the present study demonstrated the preventive effects of miR‑146a against severe burn‑induced remote ALI in rats through the anti‑inflammatory‑regulated TLR4/NF‑κB signaling pathway.
Collapse
Affiliation(s)
- Jinhua Luo
- Department of Burns, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jianhua Zhan
- Department of Burns, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Haoyuan You
- Department of Burns, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xing Cheng
- Department of Burns, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
57
|
Li B, Fang J, Zuo Z, Yin S, He T, Yang M, Deng J, Shen L, Ma X, Yu S, Wang Y, Ren Z, Cui H. Activation of the porcine alveolar macrophages via toll-like receptor 4/NF-κB mediated pathway provides a mechanism of resistin leading to inflammation. Cytokine 2018; 110:357-366. [PMID: 29655569 DOI: 10.1016/j.cyto.2018.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/13/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022]
Abstract
Resistin, a previously discovered cysteine-rich adipokine known to regulate glucose metabolism, has been emerged as a mediator in inflammation and immunity. Its level was supposed to be related to the expression of indicators, such as interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) in inflammation. Toll-like receptor 4 (TLR4) was reported to be a receptor for resistin in cells, like leukocytes and peripheral blood mononuclear cells (PBMC). However, the pro-inflammatory role of resistin and its intracellular mechanisms in alveolar macrophages have not been thoroughly validated. Here we found that the pro-inflammatory cytokine expression in porcine alveolar macrophages (PAMs) was positively correlated with resistin. Our results also showed that resistin induced the expression of TLR4, intracellular molecules myeloid differentiation primary response protein 88 (MyD88), TRIF-related adaptor molecule (TRAM) and nuclear factor κB (NF-κB) in PAMs. In contrast, inhibition of TLR4, MyD88, TRAM and NF-κB abrogated the pro-inflammatory effect of resistin on PAMs. Additionally, the associations among TLR4, MyD88/TRAM and NF-κB were investigated by introducing TLR4-siRNA, MyD88-siRNA and TRAM-siRNA respectively into PAMs prior to the treatment with resistin. Taken together, our findings demonstrated that resistin promoted the production of pro-inflammatory cytokine in PAMs via TLR4/NF-κB-mediated pathway (TLR4/MyD88/TRAM/NF-κB).
Collapse
Affiliation(s)
- Bi Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, 611130, China
| | - Jing Fang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, 611130, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, 611130, China.
| | - Sirui Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, 611130, China
| | - Tingting He
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, 611130, China
| | - Mingxian Yang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, 611130, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, 611130, China
| | - Liuhong Shen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, 611130, China
| | - Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, 611130, China
| | - Shumin Yu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, 611130, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, 611130, China
| | - Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, 611130, China
| | - Hengmin Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, 611130, China
| |
Collapse
|
58
|
Hu H, Shi D, Hu C, Yuan X, Zhang J, Sun H. Dexmedetomidine mitigates CLP-stimulated acute lung injury via restraining the RAGE pathway. Am J Transl Res 2017; 9:5245-5258. [PMID: 29312480 PMCID: PMC5752878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE RAGE pathway plays crucial effects in causing acute lung injury (ALI). Dexmedetomidine (DEX) is showed to mitigate sepsis-stimulated ALI. However, its mechanisms have not been verified. The study was to evaluate whether the RAGE pathway participated in the actions of DEX on sepsis-stimulated ALI in rats. METHODS Male rats were administrated with intravenously DEX 30 min after sepsis. At 24 h of sepsis, lung myeloperoxidase (MPO) and macrophages in the bronchoalveolarlavage fluid (BALF) were observed. The actions of DEX on pro-inflammatory molecules and related mechanisms were determined by immunological methods. RESULTS It was indicated that DEX markedly attenuated CLP-stimulated augment of lung inflammatory cells infiltration, along with significantly mitigated MPO activity. Besides, DEX obviously reduced lung wet/dry weight ratio and the levels of HMGB1 and RAGE in BALF and lung tissue. Moreover, DEX post-treatment apparently attenuated the histopathological lung injury compared with CLP model group. Furthermore, western blot analysis revealed that DEX efficiently restrained the activation of IκB-α, NF-κB p65, and MAPK. CONCLUSION Our studies demonstrated that DEX attenuates the aggravation of sepsis-stimulated ALI via down regulation of RAGE pathway, which has a potential value in the clinical therapy.
Collapse
Affiliation(s)
- Hongyi Hu
- Department of Anesthesiology, Zhejiang Provincial Hospital of TCMHangzhou 310006, Zhejiang, China
| | - Dongsheng Shi
- Department of Anesthesiology, Zhejiang Provincial Hospital of TCMHangzhou 310006, Zhejiang, China
| | - Chenlu Hu
- Department of General Surgery, The Second Affiliated Hospital Zhejiang University School of MedicineZhejiang, China
| | - Xiao Yuan
- Department of Endocrinology, Zhejiang Provincial Hospital of TCMHangzhou 310006, Zhejiang, China
| | - Juan Zhang
- Department of Anesthesiology, Zhejiang Provincial Hospital of TCMHangzhou 310006, Zhejiang, China
| | - Huaqin Sun
- Department of Anesthesiology, Zhejiang Provincial Hospital of TCMHangzhou 310006, Zhejiang, China
| |
Collapse
|
59
|
Human resistin protects against endotoxic shock by blocking LPS-TLR4 interaction. Proc Natl Acad Sci U S A 2017; 114:E10399-E10408. [PMID: 29133417 DOI: 10.1073/pnas.1716015114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Helminths trigger multiple immunomodulatory pathways that can protect from sepsis. Human resistin (hRetn) is an immune cell-derived protein that is highly elevated in helminth infection and sepsis. However, the function of hRetn in sepsis, or whether hRetn influences helminth protection against sepsis, is unknown. Employing hRetn-expressing transgenic mice (hRETNTg+) and recombinant hRetn, we identify a therapeutic function for hRetn in lipopolysaccharide (LPS)-induced septic shock. hRetn promoted helminth-induced immunomodulation, with increased survival of Nippostrongylus brasiliensis (Nb)-infected hRETNTg+ mice after a fatal LPS dose compared with naive mice or Nb-infected hRETNTg- mice. Employing immunoprecipitation assays, hRETNTg+Tlr4-/- mice, and human immune cell culture, we demonstrate that hRetn binds the LPS receptor Toll-like receptor 4 (TLR4) through its N terminal and modulates STAT3 and TBK1 signaling, triggering a switch from proinflammatory to anti-inflammatory responses. Further, we generate hRetn N-terminal peptides that are able to block LPS proinflammatory function. Together, our studies identify a critical role for hRetn in blocking LPS function with important clinical significance in helminth-induced immunomodulation and sepsis.
Collapse
|
60
|
Hägglund S, Blodörn K, Näslund K, Vargmar K, Lind SB, Mi J, Araínga M, Riffault S, Taylor G, Pringle J, Valarcher JF. Proteome analysis of bronchoalveolar lavage from calves infected with bovine respiratory syncytial virus-Insights in pathogenesis and perspectives for new treatments. PLoS One 2017; 12:e0186594. [PMID: 29036182 PMCID: PMC5643112 DOI: 10.1371/journal.pone.0186594] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/04/2017] [Indexed: 12/31/2022] Open
Abstract
Human and bovine respiratory syncytial viruses (HRSV/BRSV) are major causes of severe lower respiratory tract infections in children and calves, respectively. Shared epidemiological, clinical, pathological and genetic characteristics of these viruses make comparative research highly relevant. To characterise the host response against BRSV infection, bronchoalveolar lavage supernatant (BAL) from i) non-vaccinated, BRSV-infected ii) vaccinated, BRSV-infected and iii) non-infected calves was analysed by tandem mass spectrometry. Proteins were semi-quantified and protein expression was validated by immunoblotting. Correlations between selected proteins and pathology, clinical signs and virus shedding were investigated. Calves with BRSV-induced disease had increased total protein concentrations and a decreased number of proteins identified in BAL. The protein profile was characterised by neutrophil activation and a reduction in identified antioxidant enzymes. The presence of neutrophils in alveolar septa, the expression level of neutrophil-related or antioxidant proteins and LZTFL1 correlated significantly with disease. Citrullinated histone 3, an indicator of extracellular traps (ETs), was only detected in non-vaccinated, BRSV-infected animals. By bringing disequilibrium in the release and detoxification of reactive oxygen species, generating ETs and causing elastine degradation, exaggerated neutrophil responses might exacerbate RSV-induced disease. Neutrophil-mitigating or antioxidant treatments should be further explored.
Collapse
Affiliation(s)
- Sara Hägglund
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Dept. of Clinical Sciences, Uppsala, Sweden
- * E-mail:
| | - Krister Blodörn
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Dept. of Clinical Sciences, Uppsala, Sweden
| | - Katarina Näslund
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Dept. of Clinical Sciences, Uppsala, Sweden
| | - Karin Vargmar
- Swedish University of Agricultural Sciences, Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Uppsala, Sweden
| | - Sara Bergström Lind
- Uppsala University, Science for Life Laboratory, Analytical Chemistry, Department of Chemistry-BMC, Uppsala, Sweden
| | - Jia Mi
- Uppsala University, Science for Life Laboratory, Analytical Chemistry, Department of Chemistry-BMC, Uppsala, Sweden
- Binzhou Medical University, Medicine and Pharmarcy Research Center, Yantai, China
| | - Mariluz Araínga
- University of Nebraska Medical Center (UNMC), Omaha, Nebraska, United States of America
| | - Sabine Riffault
- INRA, Unité de Virologie et Immunologie Moléculaires, Université Paris-Saclay, Jouy-en-Josas, France
| | - Geraldine Taylor
- The Pirbright Institute Ash Road, Pirbright, Surrey, United Kingdom
| | - John Pringle
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Dept. of Clinical Sciences, Uppsala, Sweden
| | - Jean François Valarcher
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Dept. of Clinical Sciences, Uppsala, Sweden
| |
Collapse
|
61
|
Morrison MI, Pither TL, Fisher AJ. Pathophysiology and classification of primary graft dysfunction after lung transplantation. J Thorac Dis 2017; 9:4084-4097. [PMID: 29268419 DOI: 10.21037/jtd.2017.09.09] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The term primary graft dysfunction (PGD) incorporates a continuum of disease severity from moderate to severe acute lung injury (ALI) within 72 h of lung transplantation. It represents the most significant obstacle to achieving good early post-transplant outcomes, but is also associated with increased incidence of bronchiolitis obliterans syndrome (BOS) subsequently. PGD is characterised histologically by diffuse alveolar damage, but is graded on clinical grounds with a combination of PaO2/FiO2 (P/F) and the presence of radiographic infiltrates, with 0 being absence of disease and 3 being severe PGD. The aetiology is multifactorial but commonly results from severe ischaemia-reperfusion injury (IRI), with tissue-resident macrophages largely responsible for stimulating a secondary 'wave' of neutrophils and lymphocytes that produce severe and widespread tissue damage. Donor history, recipient health and operative factors may all potentially contribute to the likelihood of PGD development. Work that aims to minimise the incidence of PGD in ongoing, with techniques such as ex vivo perfusion of donor lungs showing promise both in research and in clinical studies. This review will summarise the current clinical status of PGD before going on to discuss its pathophysiology, current therapies available and future directions for clinical management of PGD.
Collapse
Affiliation(s)
- Morvern Isabel Morrison
- Institute of Transplantation, Freeman Hospital, Newcastle Upon Tyne, UK.,Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Thomas Leonard Pither
- Institute of Transplantation, Freeman Hospital, Newcastle Upon Tyne, UK.,Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Andrew John Fisher
- Institute of Transplantation, Freeman Hospital, Newcastle Upon Tyne, UK.,Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
62
|
Li Y, Xiao J, Tan Y, Wang J, Zhang Y, Deng X, Luo Y. Inhibition of PKR ameliorates lipopolysaccharide-induced acute lung injury by suppressing NF-κB pathway in mice. Immunopharmacol Immunotoxicol 2017; 39:165-172. [PMID: 28511573 DOI: 10.1080/08923973.2017.1303839] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Acute lung injury (ALI) is characterized by dramatic lung inflammation and alveolar epithelial cell death. Although protein kinase R (PKR) (double-stranded RNA-activated serine/threonine kinase) has been implicated in inflammatory response to bacterial cell wall components, whether it plays roles in lipopolysaccharide (LPS)-induced ALI remains unclear. This study was aimed to reveal whether and how PKR was involved in LPS-induced ALI pathology and the potential effects of its specific inhibitor, C16 (C13H8N4OS). During the experiment, mice received C16 (100 or 500 ug/kg) intraperitoneally 1 h before intratracheal LPS instillation. Then, whole lung lavage was collected for analysis of total protein levels and proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6. The lungs were tested for Western blot, transferase-mediated dUTP nick-end labeling (TUNEL) stain and immunohistochemistry. Results showed that PKR phosphorylation increased significantly after LPS instillation. Furthermore, PKR specific inhibition attenuated LPS-induced lung injury (hematoxylin and eosin stain), reduced lung protein permeability (total protein levels in whole lung lavage) and suppressed proinflammatory cytokines (TNF-α, IL-1β and IL-6) and lung apoptosis (TUNEL stain and caspase3 activation). Moreover, mechanism-study showed that C16 significantly suppressed I kappa B kinase (IKK)/I kappa B alpha (IκBα)/NF-κB signaling pathway after LPS challenge. These findings suggested that PKR inhibition ameliorated LPS-induced lung inflammation and apoptosis in mice by suppressing NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yinjiao Li
- a Department of Anesthesiology , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jinglei Xiao
- a Department of Anesthesiology , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yongchang Tan
- a Department of Anesthesiology , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jun Wang
- b Department of Anesthesiology and Intensive Care , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Yan Zhang
- b Department of Anesthesiology and Intensive Care , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Xiaoming Deng
- b Department of Anesthesiology and Intensive Care , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Yan Luo
- a Department of Anesthesiology , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
63
|
Dicker AJ, Crichton ML, Pumphrey EG, Cassidy AJ, Suarez-Cuartin G, Sibila O, Furrie E, Fong CJ, Ibrahim W, Brady G, Einarsson GG, Elborn JS, Schembri S, Marshall SE, Palmer CNA, Chalmers JD. Neutrophil extracellular traps are associated with disease severity and microbiota diversity in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 2017; 141:117-127. [PMID: 28506850 PMCID: PMC5751731 DOI: 10.1016/j.jaci.2017.04.022] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 03/28/2017] [Accepted: 04/05/2017] [Indexed: 11/25/2022]
Abstract
Background Neutrophil extracellular traps (NETs) have been observed in the airway in patients with chronic obstructive pulmonary disease (COPD), but their clinical and pathophysiologic implications have not been defined. Objective We sought to determine whether NETs are associated with disease severity in patients with COPD and how they are associated with microbiota composition and airway neutrophil function. Methods NET protein complexes (DNA-elastase and histone-elastase complexes), cell-free DNA, and neutrophil biomarkers were quantified in soluble sputum and serum from patients with COPD during periods of disease stability and during exacerbations and compared with clinical measures of disease severity and the sputum microbiome. Peripheral blood and airway neutrophil function were evaluated by means of flow cytometry ex vivo and experimentally after stimulation of NET formation. Results Sputum NET complexes were associated with the severity of COPD evaluated by using the composite Global Initiative for Obstructive Lung Disease scale (P < .0001). This relationship was due to modest correlations between NET complexes and FEV1, symptoms evaluated by using the COPD assessment test, and higher levels of NET complexes in patients with frequent exacerbations (P = .002). Microbiota composition was heterogeneous, but there was a correlation between NET complexes and both microbiota diversity (P = .009) and dominance of Haemophilus species operational taxonomic units (P = .01). Ex vivo airway neutrophil phagocytosis of bacteria was reduced in patients with increased sputum NET complexes. Consistent results were observed regardless of the method of quantifying sputum NETs. Failure of phagocytosis could be induced experimentally by incubating healthy control neutrophils with soluble sputum from patients with COPD. Conclusion NET formation is increased in patients with severe COPD and associated with more frequent exacerbations and a loss of microbiota diversity.
Collapse
Affiliation(s)
- Alison J Dicker
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Megan L Crichton
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Eleanor G Pumphrey
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Andrew J Cassidy
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Guillermo Suarez-Cuartin
- Respiratory Department, Hospital de la Santa Creu i Sant Pau, Institut d'Invesitgacio Biomedica (IIB) Sant Pau, Barcelona, Spain
| | - Oriol Sibila
- Respiratory Department, Hospital de la Santa Creu i Sant Pau, Institut d'Invesitgacio Biomedica (IIB) Sant Pau, Barcelona, Spain
| | - Elizabeth Furrie
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Christopher J Fong
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Wasyla Ibrahim
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Gill Brady
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Gisli G Einarsson
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - J Stuart Elborn
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stuart Schembri
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Sara E Marshall
- Division of Molecular & Clinical Medicine, School of Medicine, University of Dundee, and the Wellcome Trust, London, United Kingdom
| | - Colin N A Palmer
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - James D Chalmers
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom.
| |
Collapse
|
64
|
Deng Q, Zhang J, Gao Y, She X, Wang Y, Wang Y, Ge X. MLN4924 protects against bleomycin-induced pulmonary fibrosis by inhibiting the early inflammatory process. Am J Transl Res 2017; 9:1810-1821. [PMID: 28469786 PMCID: PMC5411929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/18/2017] [Indexed: 06/07/2023]
Abstract
Pulmonary fibrosis is a complex pathological process characterized by massive destruction of the structure of lung tissues and aggravated pulmonary function impairment. The underlying mechanisms of pulmonary fibrosis are incompletely understood and therefore limited treatment options are available currently. Here, we report that MLN4924, an NEDD8 activation enzyme (NAE) activity-inhibiting molecule, blocks the maintenance and progression of established pulmonary fibrosis. We found that MLN4924 acts against bleomycin-induced pulmonary fibrosis mainly at the early inflammatory stage. Pharmacologically targeting the neddylation of Cullin-Ring E3 ligase (CRL) by MLN4924, significantly abrogated NF-κB responses, suppressed MAPK activity, and reduced secretion of TNF-α-elicited pro-inflammatory cytokines and MCP1-induced chemokines. MLN4924 inhibited pro-inflammatory responses while maintaining or increasing the production of the anti-inflammatory mediators such as anti-inflammatory interleukins (ILs) following bleomycin administration, which is closely correlated to its blocking NF-κB-mediated signaling. Consistently, our studies identified MLN4924 as a promising therapeutic drug for pulmonary fibrosis and suggested a potential role of MLN4924 that fine tunes the MAPK signaling pathway controlling the inflammatory reactions at the early stages of pulmonary fibrosis. In addition, our findings may broaden the potential practical application of MLN4924 as an effective therapeutic strategy against other inflammation-associated diseases.
Collapse
Affiliation(s)
- Qi Deng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University500 Dongchuan Road, Shanghai 200241, China
- Bio-X Institutes, Key Laboratory for The Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiaotong UniversityShanghai 200240, China
| | - Jiaojiao Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University500 Dongchuan Road, Shanghai 200241, China
| | - Yaqun Gao
- School of Life Sciences and Technology, Tongji UniversityShanghai 200092, China
| | - Xiaofei She
- School of Life Sciences and Technology, Tongji UniversityShanghai 200092, China
| | - Yunchao Wang
- The First People’s Hospital of XiaoshanHangzhou 311200, Zhejiang, China
| | - Yilin Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| | - Xin Ge
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji UniversityShanghai 200072, China
| |
Collapse
|
65
|
Preventive Effects of Carnosine on Lipopolysaccharide-induced Lung Injury. Sci Rep 2017; 7:42813. [PMID: 28205623 PMCID: PMC5311717 DOI: 10.1038/srep42813] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/16/2017] [Indexed: 12/16/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a potentially devastating form of acute lung injury, which involves neutrophilic inflammation and pulmonary cell death. Reactive oxygen species (ROS) play important roles in ARDS development. New compounds for inhibiting the onset and progression of ARDS are required. Carnosine (β-alanyl-L-histidine) is a small di-peptide with numerous activities, including antioxidant effects, metal chelation, proton buffering capacity and the inhibition of protein carbonylation and glycoxidation. We have examined the preventive effects of carnosine on tissue injury, oedema and inflammation in a murine model for ARDS. Oral administration of carnosine suppressed lipopolysaccharide (LPS)-induced vascular permeability, tissue injury and inflammation in the lung. In vivo imaging analysis revealed that LPS administration increased the level of ROS and that this increase was inhibited by carnosine administration. Carnosine also suppressed LPS-induced neutrophilic inflammation (evaluated by activation of myeloperoxidase in the lung and increased extracellular DNA in bronchoalveolar lavage fluid). Furthermore, carnosine administration suppressed the LPS-induced endoplasmic reticulum stress response in vivo. These results suggest that the oral administration of carnosine suppresses LPS-induced lung injury via carnosine's ROS-reducing activity. Therefore, carnosine may be beneficial for suppressing the onset and progression of ARDS.
Collapse
|
66
|
Agraz-Cibrian JM, Giraldo DM, Mary FM, Urcuqui-Inchima S. Understanding the molecular mechanisms of NETs and their role in antiviral innate immunity. Virus Res 2016; 228:124-133. [PMID: 27923601 DOI: 10.1016/j.virusres.2016.11.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 01/09/2023]
Abstract
Polymorphonuclear neutrophils (PMNs) are the most abundant cells in the context of innate immunity; they are one of the first cells to arrive at the site of viral infection constituting the first line of defense in response to invading pathogens. Indeed, neutrophils are provided with several defense mechanisms including release of cytokines, cytotoxic granules and the last recently described neutrophil extracellular traps (NETs). The main components of NETs are DNA, granular antimicrobial peptides, and nuclear and cytoplasmic proteins, that together play an important role in the innate immune response. While NETs were first described as a mechanism against bacteria and fungi, recently, several studies are beginning to elucidate how NETs are involved in the host antiviral response and the prominent characteristics of this new mechanism are discussed in the present review.
Collapse
Affiliation(s)
- Juan Manuel Agraz-Cibrian
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico.
| | - Diana M Giraldo
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Fafutis-Morris Mary
- Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
67
|
Circulating Resistin Levels and Risk of Colorectal Cancer: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7367485. [PMID: 27642602 PMCID: PMC5013211 DOI: 10.1155/2016/7367485] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/20/2016] [Indexed: 12/20/2022]
Abstract
Objectives. Published data on resistin levels in patients with colorectal cancer (CRC) were conflicting and heterogeneous. We conducted a meta-analysis of observational studies to examine the association of circulating resistin levels with carcinogenesis of the CRC. Methods. Potentially eligible studies published up to November 2015 were searched through MEDLINE, EMBASE, Science Citation Index Expanded database, CNKI, and WanFang database. The pooled weighted mean differences (WMDs) with 95% confidence intervals (CIs) calculated by fixed- or random-effect model were used to estimate the effects. Results. A total of 11 studies involving 965 patients were admitted in our meta-analysis. The pooled effects indicated that resistin levels were higher in CRC patients compared to healthy controls (WMD: 1.47 ng/mL; 95% CI: 0.78 to 2.16), with significant heterogeneity across the studies (I2 = 72%, p < 0.0001). Subgroup analyses and sensitivity analyses revealed that study quality, design, sample type, and resistin assays may account for this heterogeneity. No publication bias was observed. Conclusions. Our meta-analysis suggests that increased circulating resistin levels are associated with greater risk of colorectal cancer. Given the limited number of available studies and significant heterogeneity, larger well-designed randomized studies are warranted.
Collapse
|
68
|
Regulation and function of AMPK in physiology and diseases. Exp Mol Med 2016; 48:e245. [PMID: 27416781 PMCID: PMC4973318 DOI: 10.1038/emm.2016.81] [Citation(s) in RCA: 784] [Impact Index Per Article: 87.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 04/23/2016] [Accepted: 04/26/2016] [Indexed: 12/18/2022] Open
Abstract
5′-adenosine monophosphate (AMP)-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase that was originally identified as the key player in maintaining cellular energy homeostasis. Intensive research over the last decade has identified diverse molecular mechanisms and physiological conditions that regulate the AMPK activity. AMPK regulates diverse metabolic and physiological processes and is dysregulated in major chronic diseases, such as obesity, inflammation, diabetes and cancer. On the basis of its critical roles in physiology and pathology, AMPK is emerging as one of the most promising targets for both the prevention and treatment of these diseases. In this review, we discuss the current understanding of the molecular and physiological regulation of AMPK and its metabolic and physiological functions. In addition, we discuss the mechanisms underlying the versatile roles of AMPK in diabetes and cancer.
Collapse
|
69
|
Liu Z, Bone N, Jiang S, Park DW, Tadie JM, Deshane J, Rodriguez CA, Pittet JF, Abraham E, Zmijewski JW. AMP-Activated Protein Kinase and Glycogen Synthase Kinase 3β Modulate the Severity of Sepsis-Induced Lung Injury. Mol Med 2016; 21:937-950. [PMID: 26650187 PMCID: PMC4818252 DOI: 10.2119/molmed.2015.00198] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/27/2015] [Indexed: 12/29/2022] Open
Abstract
Alterations in metabolic and bioenergetic homeostasis contribute to sepsis-mediated organ injury. However, how AMP-activated protein kinase (AMPK), a major sensor and regulator of energy expenditure and production, affects development of organ injury and loss of innate capacity during polymicrobial sepsis remains unclear. In the present experiments, we found that cross-talk between the AMPK and GSK3β signaling pathways controls chemotaxis and the ability of neutrophils and macrophages to kill bacteria ex vivo. In mice with polymicrobial abdominal sepsis or more severe sepsis induced by the combination of hemorrhage and intraabdominal infection, administration of the AMPK activator metformin or the GSK3β inhibitor SB216763 reduced the severity of acute lung injury (ALI). Improved survival in metformin-treated septic mice was correlated with preservation of mitochondrial complex V (ATP synthase) function and increased amounts of ETC complex III and IV. Although immunosuppression is a consequence of sepsis, metformin effectively increased innate immune capacity to eradicate P. aeruginosa in the lungs of septic mice. We also found that AMPK activation diminished accumulation of the immunosuppressive transcriptional factor HIF-1α as well as the development of endotoxin tolerance in LPS-treated macrophages. Furthermore, AMPK-dependent preservation of mitochondrial membrane potential also prevented LPS-mediated dysfunction of neutrophil chemotaxis. These results indicate that AMPK activation reduces the severity of polymicrobial sepsis-induced lung injury and prevents the development of sepsis-associated immunosuppression.
Collapse
Affiliation(s)
- Zhongyu Liu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Nathaniel Bone
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Shaoning Jiang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Dae Won Park
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jean-Marc Tadie
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jessy Deshane
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Cilina Ann Rodriguez
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jean-Francois Pittet
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Edward Abraham
- Office of the Dean, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Jaroslaw W Zmijewski
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
70
|
Sass LA, Ziemba KJ, Heiser EA, Mauriello CT, Werner AL, Aguiar MA, Nyalwidhe JO, Cunnion KM. A 1-Year-Old with Mycobacterium tuberculosis Endocarditis with Mass Spectrometry Analysis of Cardiac Vegetation Composition. J Pediatric Infect Dis Soc 2016; 5:85-8. [PMID: 26908495 DOI: 10.1093/jpids/piu087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/29/2014] [Indexed: 11/12/2022]
Abstract
In this study, we report the first case of Mycobacterium tuberculosis endocarditis in an immunocompetent child born in the United States. Mass spectrometry of the vegetation identified coagulation, humoral immune proteins, neutrophil granule proteins, and histones. Few neutrophils on histopathology suggest that neutrophil extracellular traps may contribute to tuberculous endocardiac mass formation.
Collapse
Affiliation(s)
- Laura A Sass
- The Departments of Pediatrics The Children's Hospital of The King's Daughters, Norfolk, Virginia Children's Specialty Group, Norfolk, Virginia
| | | | | | | | - Alice L Werner
- The Departments of Pediatrics The Children's Hospital of The King's Daughters, Norfolk, Virginia Children's Specialty Group, Norfolk, Virginia
| | - Maria A Aguiar
- The Departments of Pediatrics The Children's Hospital of The King's Daughters, Norfolk, Virginia Children's Specialty Group, Norfolk, Virginia
| | - Julius O Nyalwidhe
- Microbiology The Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Kenji M Cunnion
- The Departments of Pediatrics Microbiology The Children's Hospital of The King's Daughters, Norfolk, Virginia Children's Specialty Group, Norfolk, Virginia
| |
Collapse
|
71
|
Gazendam RP, van de Geer A, van Hamme JL, Tool ATJ, van Rees DJ, Aarts CEM, van den Biggelaar M, van Alphen F, Verkuijlen P, Meijer AB, Janssen H, Roos D, van den Berg TK, Kuijpers TW. Impaired killing of Candida albicans by granulocytes mobilized for transfusion purposes: a role for granule components. Haematologica 2016; 101:587-96. [PMID: 26802050 DOI: 10.3324/haematol.2015.136630] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/14/2016] [Indexed: 12/21/2022] Open
Abstract
Granulocyte transfusions are used to treat neutropenic patients with life-threatening bacterial or fungal infections that do not respond to anti-microbial drugs. Donor neutrophils that have been mobilized with granulocyte-colony stimulating factor (G-CSF) and dexamethasone are functional in terms of antibacterial activity, but less is known about their fungal killing capacity. We investigated the neutrophil-mediated cytotoxic response against C. albicans and A. fumigatus in detail. Whereas G-CSF/dexamethasone-mobilized neutrophils appeared less mature as compared to neutrophils from untreated controls, these cells exhibited normal ROS production by the NADPH oxidase system and an unaltered granule mobilization capacity upon stimulation. G-CSF/dexamethasone-mobilized neutrophils efficiently inhibited A. fumigatus germination and killed Aspergillus and Candida hyphae, but the killing of C. albicans yeasts was distinctly impaired. Following normal Candida phagocytosis, analysis by mass spectrometry of purified phagosomes after fusion with granules demonstrated that major constituents of the antimicrobial granule components, including major basic protein (MBP), were reduced. Purified MBP showed candidacidal activity, and neutrophil-like Crisp-Cas9 NB4-KO-MBP differentiated into phagocytes were impaired in Candida killing. Together, these findings indicate that G-CSF/dexamethasone-mobilized neutrophils for transfusion purposes have a selectively impaired capacity to kill Candida yeasts, as a consequence of an altered neutrophil granular content.
Collapse
Affiliation(s)
- Roel P Gazendam
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Annemarie van de Geer
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - John L van Hamme
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Anton T J Tool
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Dieke J van Rees
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Cathelijn E M Aarts
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Maartje van den Biggelaar
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Floris van Alphen
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Paul Verkuijlen
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Alexander B Meijer
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Hans Janssen
- The Netherlands Netherlands Cancer Institute, Division of Cell Biology, Amsterdam, The Netherlands
| | - Dirk Roos
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Timo K van den Berg
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
72
|
Razvi SS, Richards JB, Malik F, Cromar KR, Price RE, Bell CS, Weng T, Atkins CL, Spencer CY, Cockerill KJ, Alexander AL, Blackburn MR, Alcorn JL, Haque IU, Johnston RA. Resistin deficiency in mice has no effect on pulmonary responses induced by acute ozone exposure. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1174-85. [PMID: 26386120 DOI: 10.1152/ajplung.00270.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/14/2015] [Indexed: 01/10/2023] Open
Abstract
Acute exposure to ozone (O3), an air pollutant, causes pulmonary inflammation, airway epithelial desquamation, and airway hyperresponsiveness (AHR). Pro-inflammatory cytokines-including IL-6 and ligands of chemokine (C-X-C motif) receptor 2 [keratinocyte chemoattractant (KC) and macrophage inflammatory protein (MIP)-2], TNF receptor 1 and 2 (TNF), and type I IL-1 receptor (IL-1α and IL-1β)-promote these sequelae. Human resistin, a pleiotropic hormone and cytokine, induces expression of IL-1α, IL-1β, IL-6, IL-8 (the human ortholog of murine KC and MIP-2), and TNF. Functional differences exist between human and murine resistin; yet given the aforementioned observations, we hypothesized that murine resistin promotes O3-induced lung pathology by inducing expression of the same inflammatory cytokines as human resistin. Consequently, we examined indexes of O3-induced lung pathology in wild-type and resistin-deficient mice following acute exposure to either filtered room air or O3. In wild-type mice, O3 increased bronchoalveolar lavage fluid (BALF) resistin. Furthermore, O3 increased lung tissue or BALF IL-1α, IL-6, KC, TNF, macrophages, neutrophils, and epithelial cells in wild-type and resistin-deficient mice. With the exception of KC, which was significantly greater in resistin-deficient compared with wild-type mice, no genotype-related differences in the other indexes existed following O3 exposure. O3 caused AHR to acetyl-β-methylcholine chloride (methacholine) in wild-type and resistin-deficient mice. However, genotype-related differences in airway responsiveness to methacholine were nonexistent subsequent to O3 exposure. Taken together, these data demonstrate that murine resistin is increased in the lungs of wild-type mice following acute O3 exposure but does not promote O3-induced lung pathology.
Collapse
Affiliation(s)
- Shehla S Razvi
- Division of Critical Care Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Jeremy B Richards
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Farhan Malik
- Division of Critical Care Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Kevin R Cromar
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Roger E Price
- Comparative Pathology Laboratory, Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas
| | - Cynthia S Bell
- Division of Nephrology, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Tingting Weng
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas
| | - Constance L Atkins
- Division of Pulmonary Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Chantal Y Spencer
- Pediatric Pulmonary Section, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Katherine J Cockerill
- Pediatric Research Center, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Amy L Alexander
- Pediatric Research Center, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas
| | - Joseph L Alcorn
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas; Pediatric Research Center, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas; Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas; and
| | - Ikram U Haque
- Division of Critical Care Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Richard A Johnston
- Division of Critical Care Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas; Pediatric Research Center, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas; Department of Integrative Biology and Pharmacology, The University of Texas Medical School at Houston, Houston, Texas
| |
Collapse
|
73
|
Stearoyl lysophosphatidylcholine prevents lipopolysaccharide-induced extracellular release of high mobility group box-1 through AMP-activated protein kinase activation. Int Immunopharmacol 2015. [DOI: 10.1016/j.intimp.2015.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
74
|
Bao S, Zou Y, Wang B, Li Y, Zhu J, Luo Y, Li J. Ginsenoside Rg1 improves lipopolysaccharide-induced acute lung injury by inhibiting inflammatory responses and modulating infiltration of M2 macrophages. Int Immunopharmacol 2015; 28:429-34. [PMID: 26122136 DOI: 10.1016/j.intimp.2015.06.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 05/31/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
Ginsenoside Rg1 (Rg1), the major effective component of ginseng, has been reported to have potent anti-inflammatory properties. However, the effect of ginsenoside Rg1 on lipopolysaccharide (LPS) -induced acute lung injury (ALI) in mice was unknown. The present study was designed to investigate the protective role of Rg1 on LPS-induced ALI and explore the potential mechanisms. The mice were divided randomly into four groups: the sham group, the LPS group and the LPS+Rg1 (40 mg/kg or 200mg/kg) pretreatment groups. All mice received Rg1 or an equivalent volume of phosphate buffer saline (PBS) intraperitoneally 1h before LPS administration. Edema quantification, histology, and apoptosis were detected 6h after LPS administration. The number of inflammatory cells, the percentage of alternative activated (M2) macrophages and the exudate quantification in bronchoalveolar lavage fluid (BALF) were evaluated. The caspase 3 expression, and the levels of phosphorylated IκB-α and p65 were tested. The results showed that the Rg1 pretreatment group markedly improved lung damage, modulated the infiltration of neutrophils and M2 macrophages, prevented the production of protein and proinflammatory cytokines in BALF, and inhibited apoptosis in lung. We also found that Rg1 suppressed NF-κB and caspase 3 activation. These data suggest that Rg1 plays a protective role against LPS-induced ALI by ameliorating inflammatory responses, regulating the infiltration of M2 macrophages, and inhibiting pulmonary cell apoptosis.
Collapse
Affiliation(s)
- Suhong Bao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou 221004, Jiangsu, China; Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yun Zou
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Bing Wang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yinjiao Li
- Department of Anesthesiology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Jiali Zhu
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China.
| | - Jinbao Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou 221004, Jiangsu, China; Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
75
|
Forno E, Han YY, Muzumdar RH, Celedón JC. Insulin resistance, metabolic syndrome, and lung function in US adolescents with and without asthma. J Allergy Clin Immunol 2015; 136:304-11.e8. [PMID: 25748066 DOI: 10.1016/j.jaci.2015.01.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/13/2015] [Accepted: 01/21/2015] [Indexed: 01/19/2023]
Abstract
BACKGROUND Obesity increases both the risk of asthma and asthma severity and is a well-known risk factor for insulin resistance and the metabolic syndrome (MS) in children and adolescents. OBJECTIVE We aimed to examine the association among obesity, insulin sensitivity, MS, and lung function in US adolescents with and without asthma. METHODS We performed a cross-sectional study of 1429 adolescents aged 12 to 17 years in the 2007-2010 National Health and Nutrition Examination Survey. Adjusted regression was used to assess the relationships among obesity, insulin sensitivity/resistance, MS, and lung function in children with and without asthma. RESULTS Insulin resistance was negatively associated with FEV1 and forced vital capacity (FVC) in adolescents with and without asthma, whereas MS was associated with lower FEV1/FVC ratios, with a more pronounced decrease found among asthmatic patients; these associations were driven by overweight/obese adolescents. Higher body mass index was associated with a decrease in FEV1/FVC ratios among adolescents with insulin resistance. Compared with healthy participants, adolescents with MS had an approximately 2% decrease in FEV1/FVC ratios, adolescents with asthma had an approximately 6% decrease, and those with MS and asthma had approximately 10% decreased FEV1/FVC ratios (P < .05). CONCLUSION Insulin resistance and MS are associated with worsened lung function in overweight/obese adolescents. Asthma and MS synergistically decrease lung function, as do obesity and insulin resistance. These factors might contribute to the pathogenesis of asthma severity in obese patients and warrant further investigation.
Collapse
Affiliation(s)
- Erick Forno
- Division of Pediatric Pulmonary Medicine, Allergy, and Immunology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pa.
| | - Yueh-Ying Han
- Division of Pediatric Pulmonary Medicine, Allergy, and Immunology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Radhika H Muzumdar
- Division of Pediatric Endocrinology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, Allergy, and Immunology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| |
Collapse
|
76
|
Jang JC, Chen G, Wang SH, Barnes MA, Chung JI, Camberis M, Le Gros G, Cooper PJ, Steel C, Nutman TB, Lazar MA, Nair MG. Macrophage-derived human resistin is induced in multiple helminth infections and promotes inflammatory monocytes and increased parasite burden. PLoS Pathog 2015; 11:e1004579. [PMID: 25568944 PMCID: PMC4287580 DOI: 10.1371/journal.ppat.1004579] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/14/2014] [Indexed: 01/07/2023] Open
Abstract
Parasitic helminth infections can be associated with lifelong morbidity such as immune-mediated organ failure. A better understanding of the host immune response to helminths could provide new avenues to promote parasite clearance and/or alleviate infection-associated morbidity. Murine resistin-like molecules (RELM) exhibit pleiotropic functions following helminth infection including modulating the host immune response; however, the relevance of human RELM proteins in helminth infection is unknown. To examine the function of human resistin (hResistin), we utilized transgenic mice expressing the human resistin gene (hRetnTg+). Following infection with the helminth Nippostrongylus brasiliensis (Nb), hResistin expression was significantly upregulated in infected tissue. Compared to control hRetnTg− mice, hRetnTg+ mice suffered from exacerbated Nb-induced inflammation characterized by weight loss and increased infiltration of inflammatory monocytes in the lung, along with elevated Nb egg burdens and delayed parasite expulsion. Genome-wide transcriptional profiling of the infected tissue revealed that hResistin promoted expression of proinflammatory cytokines and genes downstream of toll-like receptor signaling. Moreover, hResistin preferentially bound lung monocytes, and exogenous treatment of mice with recombinant hResistin promoted monocyte recruitment and proinflammatory cytokine expression. In human studies, increased serum resistin was associated with higher parasite load in individuals infected with soil-transmitted helminths or filarial nematode Wuchereria bancrofti, and was positively correlated with proinflammatory cytokines. Together, these studies identify human resistin as a detrimental factor induced by multiple helminth infections, where it promotes proinflammatory cytokines and impedes parasite clearance. Targeting the resistin/proinflammatory cytokine immune axis may provide new diagnostic or treatment strategies for helminth infection and associated immune-mediated pathology. Parasitic helminths, which infect an estimated two billion people worldwide, represent a significant global public health problem. Infection is associated with life-long morbidity including growth retardation and organ failure. Despite these debilitating conditions, there are currently no successful vaccines against helminths. Further, great variability in the host immune response to helminths exists, with the ability of some individuals to develop immunity, while others are susceptible when re-exposed or maintain life-long chronic infections. Identifying new factors that are differentially expressed in immune versus susceptible individuals could provide new targeting strategies for diagnosis or treatment of helminth infection. Here, we identify an important immunoregulatory function for human resistin in helminth infection. Employing transgenic mice in which the human resistin gene was inserted, we show that human resistin is induced by infection with the helminth Nippostrongylus brasiliensis, where it promotes excessive inflammation and impedes parasite killing. Moreover, analysis of clinical samples from two cohorts of individuals infected with filarial nematodes or soil-transmitted helminths revealed increased resistin and serum proinflammatory cytokines compared to putatively immune individuals. Together, these studies suggest that human resistin is a detrimental cytokine that is expressed in multiple helminth infections, mediates pathogenic inflammation, and delays parasite clearance.
Collapse
Affiliation(s)
- Jessica C. Jang
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, United States of America
| | - Gang Chen
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, United States of America
| | - Spencer H. Wang
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, United States of America
| | - Mark A. Barnes
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, United States of America
| | - Josiah I. Chung
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, United States of America
| | - Mali Camberis
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Graham Le Gros
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Philip J. Cooper
- Laboratorio de Investigaciones FEPIS, Quinindé, Ecuador
- Centro de Investigación en Enfermedades Infecciosas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- St George's University of London, London, United Kingdom
| | - Cathy Steel
- Laboratory of Parasitic Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas B. Nutman
- Laboratory of Parasitic Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mitchell A. Lazar
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Meera G. Nair
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
77
|
Codoñer-Franch P, Alonso-Iglesias E. Resistin: insulin resistance to malignancy. Clin Chim Acta 2015; 438:46-54. [PMID: 25128719 DOI: 10.1016/j.cca.2014.07.043] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 07/24/2014] [Accepted: 07/29/2014] [Indexed: 12/17/2022]
Abstract
Adipose tissue is recognized as an endocrine organ that secretes bioactive substances known as adipokines. Excess adipose tissue and adipose tissue dysfunction lead to dysregulated adipokine production that can contribute to the development of obesity-related co-morbidities. Among the various adipokines, resistin, which was initially considered as a determinant of the emergence of insulin resistance in obesity, has appeared as an important link between obesity and inflammatory processes. Several experimental and clinical studies have suggested an association between increased resistin levels and severe conditions associated with obesity such as cardiovascular disease and malignancies. In this review, we present the growing body of evidence that human resistin is an inflammatory biomarker and potential mediator of obesity-associated diseases. A common pathway seems to involve the combined alteration of immune and inflammatory processes that favor metabolic disturbances, atherosclerosis and carcinogenesis. The mode of action and the signaling pathways utilized by resistin in its interactions with target cells could involve oxidative and nitrosative stress. Therefore, resistin could function as a key molecule in the complications of obesity development and could potentially be used as a diagnostic and prognostic marker.
Collapse
Affiliation(s)
- Pilar Codoñer-Franch
- Department of Pediatrics, Dr. Peset University Hospital, Valencia 46017, Spain; Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia 46010, Spain.
| | - Eulalia Alonso-Iglesias
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia 46010, Spain
| |
Collapse
|
78
|
Al Hannan F, Culligan KG. Human resistin and the RELM of Inflammation in diabesity. Diabetol Metab Syndr 2015; 7:54. [PMID: 26097512 PMCID: PMC4474570 DOI: 10.1186/s13098-015-0050-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/05/2015] [Indexed: 12/11/2022] Open
Abstract
The initial discovery of resistin and resistin-like molecules (RELMs) in rodents suggested a role for these adipocytokines in molecular linkage of obesity, Type 2 Diabetes mellitus and metabolic syndrome. Since then, it became apparent that the story of resistin and RELMs was very much of mice and men. The putative role of this adipokine family evolved from that of a conveyor of insulin resistance in rodents to instigator of inflammatory processes in humans. Structural dissimilarity, variance in distribution profiles and a lack of corroborating evidence for functional similarities separate the biological functions of resistin in humans from that of rodents. Although present in gross visceral fat deposits in humans, resistin is a component of inflammation, being released from infiltrating white blood cells of the sub-clinical chronic low grade inflammatory response accompanying obesity, rather than from the adipocyte itself. This led researchers to further explore the functions of the resistin family of proteins in inflammatory-related conditions such as atherosclerosis, as well as in cancers such as endometrial and gastric cancers. Although elevated levels of resistin have been found in these conditions, whether it is causative or as a result of these conditions still remains to be determined.
Collapse
Affiliation(s)
- Fatima Al Hannan
- />Department of Biomedical Sciences, Royal College of Surgeons in Ireland – Bahrain, Building No. 2441, Road 2835, Busaiteen, Kingdom of Bahrain
| | - Kevin Gerard Culligan
- />Department of Biomedical Sciences, Royal College of Surgeons in Ireland – Bahrain, Building No. 2441, Road 2835, Busaiteen, Kingdom of Bahrain
- />Royal College of Surgeons in Ireland – Bahrain, PO Box 15503, Adliya, Kingdom of Bahrain
| |
Collapse
|
79
|
Park DW, Jiang S, Liu Y, Siegal GP, Inoki K, Abraham E, Zmijewski JW. GSK3β-dependent inhibition of AMPK potentiates activation of neutrophils and macrophages and enhances severity of acute lung injury. Am J Physiol Lung Cell Mol Physiol 2014; 307:L735-45. [PMID: 25239914 PMCID: PMC4233296 DOI: 10.1152/ajplung.00165.2014] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although AMP-activated protein kinase (AMPK) is involved in regulating carbohydrate and lipid metabolism, activated AMPK also plays an anti-inflammatory role in many cell populations. However, despite the ability of AMPK activation to diminish the severity of inflammatory responses, previous studies have found that AMPK activity is diminished in LPS-treated neutrophils and also in lungs of mice with LPS-induced acute lung injury (ALI). Since GSK3β participates in regulating AMPK activity, we examined potential roles for GSK3β in modulating LPS-induced activation of neutrophils and macrophages and in influencing severity of ALI. We found that GSK3β-dependent phosphorylation of T479-AMPK was associated with pT172 dephosphorylation and inactivation of AMPK following TLR4 engagement. GSK3β inhibitors BIO (6-bromoindirubin-3'-oxime), SB216763, or siRNA knockdown of GSK3β, but not the PI3K/AKT inhibitor LY294002, prevented Thr172-AMPK dephosphorylation. Exposure to LPS resulted in rapid binding between IKKβ and AMPKα, and phosphorylation of S485-AMPK by IKKβ. These results suggest that IKKβ-dependent phosphorylation of S485-AMPK was an essential step in subsequent phosphorylation and inactivation AMPK by GSK3β. Inhibition of GSK3β activity delayed IκBα degradation and diminished expression of the proinflammatory TNF-α in LPS-stimulated neutrophils and macrophages. In vivo, inhibition of GSK3β decreased the severity of LPS-induced lung injury as assessed by development of pulmonary edema, production of TNF-α and MIP-2, and release of the alarmins HMGB1 and histone 3 in the lungs. These results show that inhibition of AMPK by GSK3β plays an important contributory role in enhancing LPS-induced inflammatory responses, including worsening the severity of ALI.
Collapse
Affiliation(s)
- Dae Won Park
- 1Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; ,2Division of Infectious Diseases, Korea University Ansan Hospital, Ansan, Korea;
| | - Shaoning Jiang
- 1Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama;
| | - Yanping Liu
- 1Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama;
| | - Gene P. Siegal
- 3Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama;
| | - Ken Inoki
- 4University of Michigan Medical School, Ann Arbor, Michigan; and
| | - Edward Abraham
- 5Office of the Dean, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | | |
Collapse
|