51
|
Yawata N, Shirane M, Woon K, Lim X, Tanaka H, Kawano YI, Yawata M, Chee SP, Siak J, Sonoda KH. Molecular Signatures of Natural Killer Cells in CMV-Associated Anterior Uveitis, A New Type of CMV-Induced Disease in Immunocompetent Individuals. Int J Mol Sci 2021; 22:ijms22073623. [PMID: 33807229 PMCID: PMC8037729 DOI: 10.3390/ijms22073623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/16/2022] Open
Abstract
Cytomegalovirus (CMV) causes clinical issues primarily in immune-suppressed conditions. CMV-associated anterior uveitis (CMV-AU) is a notable new disease entity manifesting recurrent ocular inflammation in immunocompetent individuals. As patient demographics indicated contributions from genetic background and immunosenescence as possible underlying pathological mechanisms, we analyzed the immunogenetics of the cohort in conjunction with cell phenotypes to identify molecular signatures of CMV-AU. Among the immune cell types, natural killer (NK) cells are main responders against CMV. Therefore, we first characterized variants of polymorphic genes that encode differences in CMV-related human NK cell responses (Killer cell Immunoglobulin-like Receptors (KIR) and HLA class I) in 122 CMV-AU patients. The cases were then stratified according to their genetic features and NK cells were analyzed for human CMV-related markers (CD57, KLRG1, NKG2C) by flow cytometry. KIR3DL1 and HLA class I combinations encoding strong receptor–ligand interactions were present at substantially higher frequencies in CMV-AU. In these cases, NK cell profiling revealed expansion of the subset co-expressing CD57 and KLRG1, and together with KIR3DL1 and the CMV-recognizing NKG2C receptor. The findings imply that a mechanism of CMV-AU pathogenesis likely involves CMV-responding NK cells co-expressing CD57/KLRG1/NKG2C that develop on a genetic background of KIR3DL1/HLA-B allotypes encoding strong receptor–ligand interactions.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- CD57 Antigens/genetics
- CD57 Antigens/immunology
- Cohort Studies
- Cytomegalovirus/immunology
- Cytomegalovirus/pathogenicity
- Cytomegalovirus Infections/immunology
- Female
- Genes, MHC Class I/genetics
- Hematopoietic Stem Cell Transplantation/adverse effects
- Humans
- Immunocompromised Host/immunology
- Immunocompromised Host/physiology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/physiology
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Male
- Middle Aged
- NK Cell Lectin-Like Receptor Subfamily C/genetics
- NK Cell Lectin-Like Receptor Subfamily C/immunology
- NK Cell Lectin-Like Receptor Subfamily C/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, KIR/genetics
- Transplantation, Homologous/adverse effects
- Uveitis, Anterior/genetics
- Uveitis, Anterior/metabolism
- Uveitis, Anterior/virology
Collapse
Affiliation(s)
- Nobuyo Yawata
- Department of Ocular Pathology and Imaging Science, Kyushu University, Fukuoka 812-8582, Japan
- Singapore Eye Research Institute, Singapore 168751, Singapore; (K.W.); (X.L.); (S.-P.C.); (J.S.)
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Correspondence:
| | - Mariko Shirane
- Department of Ophthalmology, Kyushu University, Fukuoka 812-8582, Japan; (M.S.); (K.-H.S.)
| | - Kaing Woon
- Singapore Eye Research Institute, Singapore 168751, Singapore; (K.W.); (X.L.); (S.-P.C.); (J.S.)
| | - Xinru Lim
- Singapore Eye Research Institute, Singapore 168751, Singapore; (K.W.); (X.L.); (S.-P.C.); (J.S.)
| | | | - Yoh-Ichi Kawano
- Department of Ophthalmology, Fukuoka Dental College, Fukuoka 814-0193, Japan;
| | - Makoto Yawata
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research, A*STAR, Singapore 117609, Singapore;
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- National University Health System, Singapore 119228, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
- NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan
| | - Soon-Phaik Chee
- Singapore Eye Research Institute, Singapore 168751, Singapore; (K.W.); (X.L.); (S.-P.C.); (J.S.)
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Ocular Inflammation and Immunology Department, Singapore National Eye Centre, Singapore 168751, Singapore
| | - Jay Siak
- Singapore Eye Research Institute, Singapore 168751, Singapore; (K.W.); (X.L.); (S.-P.C.); (J.S.)
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Ocular Inflammation and Immunology Department, Singapore National Eye Centre, Singapore 168751, Singapore
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Kyushu University, Fukuoka 812-8582, Japan; (M.S.); (K.-H.S.)
| |
Collapse
|
52
|
Saunders PM, MacLachlan BJ, Widjaja J, Wong SC, Oates CVL, Rossjohn J, Vivian JP, Brooks AG. The Role of the HLA Class I α2 Helix in Determining Ligand Hierarchy for the Killer Cell Ig-like Receptor 3DL1. THE JOURNAL OF IMMUNOLOGY 2021; 206:849-860. [PMID: 33441440 DOI: 10.4049/jimmunol.2001109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/25/2020] [Indexed: 01/16/2023]
Abstract
HLA class I molecules that represent ligands for the inhibitory killer cell Ig-like receptor (KIR) 3DL1 found on NK cells are categorically defined as those HLA-A and HLA-B allotypes containing the Bw4 motif, yet KIR3DL1 demonstrates hierarchical recognition of these HLA-Bw4 ligands. To better understand the molecular basis underpinning differential KIR3DL1 recognition, the HLA-ABw4 family of allotypes were investigated. Transfected human 721.221 cells expressing HLA-A*32:01 strongly inhibited primary human KIR3DL1+ NK cells, whereas HLA-A*24:02 and HLA-A*23:01 displayed intermediate potency and HLA-A*25:01 failed to inhibit activation of KIR3DL1+ NK cells. Structural studies demonstrated that recognition of HLA-A*24:02 by KIR3DL1 used identical contacts as the potent HLA-B*57:01 ligand. Namely, the D1-D2 domains of KIR3DL1 were placed over the α1 helix and α2 helix of the HLA-A*24:02 binding cleft, respectively, whereas the D0 domain contacted the side of the HLA-A*24:02 molecule. Nevertheless, functional analyses showed KIR3DL1 recognition of HLA-A*24:02 was more sensitive to substitutions within the α2 helix of HLA-A*24:02, including residues Ile142 and Lys144 Furthermore, the presence of Thr149 in the α2 helix of HLA-A*25:01 abrogated KIR3DL1+ NK inhibition. Together, these data demonstrate a role for the HLA class I α2 helix in determining the hierarchy of KIR3DL1 ligands. Thus, recognition of HLA class I is dependent on a complex interplay between the peptide repertoire, polymorphisms within and proximal to the Bw4 motif, and the α2 helix. Collectively, the data furthers our understanding of KIR3DL1 ligands and will inform genetic association and immunogenetics studies examining the role of KIR3DL1 in disease settings.
Collapse
Affiliation(s)
- Philippa M Saunders
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia;
| | - Bruce J MacLachlan
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jacqueline Widjaja
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Shu Cheng Wong
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Clare V L Oates
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; and.,Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Julian P Vivian
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; and
| | - Andrew G Brooks
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia;
| |
Collapse
|
53
|
Shaffer BC, Hsu KC. Selection of allogeneic hematopoietic cell transplant donors to optimize natural killer cell alloreactivity. Semin Hematol 2020; 57:167-174. [PMID: 33256909 DOI: 10.1053/j.seminhematol.2020.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/08/2020] [Accepted: 10/22/2020] [Indexed: 12/26/2022]
Abstract
Natural killer (NK) cells are potent mediators of the graft versus leukemia phenomenon critical to the success of allogeneic hematopoietic cell transplantation. Central to calibrating NK effector function via their interaction with class I human leukocyte antigens are the numerous inhibitory killer Ig-like receptors (KIR). The KIR receptors are encoded by a family of polymorphic genes, whose expression is largely stochastic and uninfluenced by human leukocyte antigens genotype. These features provide the opportunity to select hematopoietic cell donors with favorable KIR genotypes that confer enhanced protection from relapse via NK-mediated graft versus leukemia. Over the last 2 decades, a large body of work has emerged examining the use of KIR genotyping to stratify potential donors based on anticipated NK alloreactivity. Overall, these results support KIR-based donor selection for patients undergoing allogeneic hematopoietic cell transplantation for a diagnosis of acute myelogenous leukemia. Despite this, the underlying factors that control NK cell responsiveness are not completely understood, and opportunities remain to refine donor selection using NK cell receptor genotyping. In this review, we will summarize the relevant findings with respect to KIR genotyping as a selection parameter for allogeneic hematopoietic cell donors and address practical considerations with respect to KIR-based selection of donors for patients with myeloid neoplasia.
Collapse
Affiliation(s)
- Brian C Shaffer
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Medicine, Weill Cornell School of Medicine, New York, NY
| | - Katharine C Hsu
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Medicine, Weill Cornell School of Medicine, New York, NY; Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
54
|
External validation of models for KIR2DS1/KIR3DL1-informed selection of hematopoietic cell donors fails. Blood 2020; 135:1386-1395. [PMID: 31932846 DOI: 10.1182/blood.2019002887] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/11/2019] [Indexed: 01/13/2023] Open
Abstract
Several studies suggest that harnessing natural killer (NK) cell reactivity mediated through killer cell immunoglobulin-like receptors (KIRs) could reduce the risk of relapse after allogeneic hematopoietic cell transplantation. Based on one promising model, information on KIR2DS1 and KIR3DL1 and their cognate ligands can be used to classify donors as KIR-advantageous or KIR-disadvantageous. This study was aimed at externally validating this model in unrelated donor hematopoietic cell transplantation. The impact of the predictor on overall survival (OS) and relapse incidence was tested in a Cox regression model adjusted for patient age, a modified disease risk index, Karnofsky performance status, donor age, HLA match, sex match, cytomegalovirus match, conditioning intensity, type of T-cell depletion, and graft type. Data from 2222 patients with acute myeloid leukemia or myelodysplastic syndrome were analyzed. KIR genes were typed by using high-resolution amplicon-based next-generation sequencing. In univariable analyses and subgroup analyses, OS and the cumulative incidence of relapse of patients with a KIR-advantageous donor were comparable to patients with a KIR-disadvantageous donor. The adjusted hazard ratio from the multivariable Cox regression model was 0.99 (Wald test, P = .93) for OS and 1.04 (Wald test, P = .78) for relapse incidence. We also tested the impact of activating donor KIR2DS1 and inhibition by KIR3DL1 separately but found no significant impact on OS and the risk of relapse. Thus, our study shows that the proposed model does not universally predict NK-mediated disease control. Deeper knowledge of NK-mediated alloreactivity is necessary to predict its contribution to graft-versus-leukemia reactions and to eventually use KIR genotype information for donor selection.
Collapse
|
55
|
Camacho-Bydume C, Wang T, Sees JA, Fernandez-Viña M, Abid MB, Askar M, Beitinjaneh A, Brown V, Castillo P, Chhabra S, Gadalla SM, Hsu JM, Kamoun M, Lazaryan A, Nishihori T, Page K, Schetelig J, Fleischhauer K, Marsh SGE, Paczesny S, Spellman SR, Lee SJ, Hsu KC. Specific Class I HLA Supertypes but Not HLA Zygosity or Expression Are Associated with Outcomes following HLA-Matched Allogeneic Hematopoietic Cell Transplant: HLA Supertypes Impact Allogeneic HCT Outcomes. Transplant Cell Ther 2020; 27:142.e1-142.e11. [PMID: 33053450 DOI: 10.1016/j.bbmt.2020.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022]
Abstract
Maximizing the probability of antigen presentation to T cells through diversity in HLAs can enhance immune responsiveness and translate into improved clinical outcomes, as evidenced by the association of heterozygosity and supertypes at HLA class I loci with improved survival in patients with advanced solid tumors treated with immune checkpoint inhibitors. We investigated the impact of HLA heterozygosity, supertypes, and surface expression on outcomes in adult and pediatric patients with acute myeloid leukemia (AML), myelodysplastic syndrome, acute lymphoblastic leukemia, and non-Hodgkin lymphoma who underwent 8/8 HLA-matched, T cell replete, unrelated, allogeneic hematopoietic cell transplant (HCT) from 2000 to 2015 using patient data reported to the Center for International Blood and Marrow Transplant Research. HLA class I heterozygosity and HLA expression were not associated with overall survival, relapse, transplant-related mortality (TRM), disease-free survival (DFS), and acute graft-versus-host disease following HCT. The HLA-B62 supertype was associated with decreased TRM in the entire patient cohort (hazard ratio [HR], 0.79; 95% CI, 0.69 to 0.90; P = .00053). The HLA-B27 supertype was associated with worse DFS in patients with AML (HR = 1.21; 95% CI, 1.10 to 1.32; P = .00005). These findings suggest that the survival benefit of HLA heterozygosity seen in solid tumor patients receiving immune checkpoint inhibitors does not extend to patients undergoing allogeneic HCT. Certain HLA supertypes, however, are associated with TRM and DFS, suggesting that similarities in peptide presentation between supertype members play a role in these outcomes. Beyond implications for prognosis following HCT, these findings support the further investigation of these HLA supertypes and the specific immune peptides important for transplant outcomes.
Collapse
Affiliation(s)
| | - Tao Wang
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI
| | - Jennifer A Sees
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, MN
| | | | - Muhammad Bilal Abid
- Divisions of Hematology/Oncology and Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Medhat Askar
- Department of Pathology and Laboratory Medicine, Baylor University Medical Center, Dallas, Texas
| | - Amer Beitinjaneh
- Department of Medicine, Division of Transplantation and Cellular Therapy, University of Miami, Miami, Florida
| | - Valerie Brown
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Penn State Hershey Children's Hospital and College of Medicine, Hershey, Pennsylvania
| | - Paul Castillo
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Florida Health Shands Children's Hospital, Gainesville, FL
| | - Saurabh Chhabra
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Shahinaz M Gadalla
- Division of Cancer Epidemiology & Genetics, NIH-NCI Clinical Genetics Branch, Rockville, Maryland
| | - Jing-Mei Hsu
- Division of Hematology/Oncology, Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine/New York Presbyterian Hospital, New York, NY
| | - Malek Kamoun
- Deparment of Pathology and Laboratory Medicine, Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Aleksandr Lazaryan
- Department of Blood and Marrow Transplant and Cellular Immunotherapy (BMT CI), Moffitt Cancer Center, Tampa, Florida
| | - Taiga Nishihori
- Department of Blood and Marrow Transplant and Cellular Immunotherapy (BMT CI), Moffitt Cancer Center, Tampa, Florida
| | - Kristin Page
- Division of Pediatric Blood and Marrow Transplantation, Duke University Medical Center, Durham, North Carolina
| | - Johannes Schetelig
- Department of Internal Medicine I, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | | | - Steven G E Marsh
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK; UCL Cancer Institute, London, UK
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, MN
| | - Stephanie J Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, WA
| | - Katharine C Hsu
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York; Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
56
|
Donor and host coexpressing KIR ligands promote NK education after allogeneic hematopoietic stem cell transplantation. Blood Adv 2020; 3:4312-4325. [PMID: 31869417 DOI: 10.1182/bloodadvances.2019000242] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/04/2019] [Indexed: 12/20/2022] Open
Abstract
The rate and extent of natural killer (NK)-cell education after hematopoietic cell transplantation correlates with leukemia control. To study the effect of donor and host HLA on NK-cell reconstitution, single killer-cell immunoglobulin-like receptor (KIR)+ NK cells (exhibiting KIR2DL1, KIR2DL2/KIR2DL3, or KIR3DL1 as their sole receptor) were grouped into 4 groups based on the interaction between donor/host HLA and donor inhibitory KIR in 2 cohorts (n = 114 and n = 276, respectively). On days 90 to 180 after transplantation, the absolute number and responsiveness against K562 cells (CD107a or interferon-γ expression) of single-KIR+ NK cells were higher in pairs where donor and host HLA both expressed ligands for donor inhibitory KIRs than in pairs where 1 or both of the donor and recipient HLA lacked at least 1 KIR ligand. NK-cell responsiveness was tuned commensurate with the number of inhibitory receptors from the donor. When both donor and host expressed the 3 major KIR ligands (HLA-C1, HLA-C2, and HLA-Bw4), NK cells expressing 3 inhibitory receptors (KIR2DL1/2DL3/3DL1) reached the maximum responsiveness against K562 cells compared with those NK cells expressing only 1 or 2 inhibitory receptors. When donor and host HLA both expressed all ligands for donor inhibitory KIRs, patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) showed the lowest recurrence rate after haploidentical hematopoietic stem cell transplantation (haplo-HSCT). In conclusion, this study demonstrates that when both donors and hosts present all the KIR ligands for donor KIRs, reconstituted NK cells achieve better functional education and contribute to least relapse among patients. This observation study was registered at www.clinicaltrials.gov as #NCT02978274.
Collapse
|
57
|
Flórez-Álvarez L, Blanquiceth Y, Ramírez K, Ossa-Giraldo AC, Velilla PA, Hernandez JC, Zapata W. NK Cell Activity and CD57 +/NKG2C high Phenotype Are Increased in Men Who Have Sex With Men at High Risk for HIV. Front Immunol 2020; 11:537044. [PMID: 33042136 PMCID: PMC7517039 DOI: 10.3389/fimmu.2020.537044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/14/2020] [Indexed: 12/17/2022] Open
Abstract
Introduction The HIV-exposed seronegative (HESN) status is for individuals who remain seronegative despite repeated exposure to HIV. One of the main cohorts within this group is men who have sex with men (MSM). Studies of this cohort have revealed different immunological and genetic mechanisms that can explain the phenomenon of natural HIV resistance. NK cells' higher effector capacity is related to natural resistance to HIV. Besides, a new population of NK cells with adaptive features was described recently. These cells are increased in some HESN cohorts and appear to be involved in better control of viral replication in primarily HIV-infected subjects. The present study evaluated the role of NK cells in the natural resistance to HIV-1 infection in MSM. Methodology Phenotypic and functional features were evaluated in NK cells from two groups of MSM, at different risks of HIV infection, according to the number of sexual partners. The production of IFN-γ and β-chemokines was included in the analysis, as well as the cytotoxic capacity and adaptive NK cell frequency. Genetic features, such as HLA and KIR allele frequencies, were also explored. Results High-risk MSM exhibit an increased frequency of fully mature and CD57+/NKG2Chigh NK cells. These individuals also show higher cytotoxic capacity and IFN-γ production in response to K562 stimuli. NK cells with a CD107a+/IFN-γ+ functional profile were found more frequently and displayed higher IFN-γ production capacity among high-risk MSM than among low-risk MSM. The protective allele HLA-B∗18 was only present in the high-risk MSM group as well as HLA-B∗ 39. The protective phenotype KIR3DL1/S1-HLA-B∗Bw4, in a homozygous state, was particularly abundant in the high-risk population. Notably, some of these functional features were related to higher frequencies of mature and CD57+/NKG2Chigh NK cells, which, in turn, were associated with a higher number of sexual partners. Conclusion The changes observed in the NK cell compartment can be driven by the magnitude of sexual exposure and immunological challenges of high-risk individuals, which could influence their resistance/susceptibility to HIV infection.
Collapse
Affiliation(s)
- Lizdany Flórez-Álvarez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Yurany Blanquiceth
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Katherin Ramírez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | | | - Paula A. Velilla
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Juan C. Hernandez
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Wildeman Zapata
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| |
Collapse
|
58
|
Hanson AL, Vukcevic D, Leslie S, Harris J, Lê Cao KA, Kenna TJ, Brown MA. Epistatic interactions between killer immunoglobulin-like receptors and human leukocyte antigen ligands are associated with ankylosing spondylitis. PLoS Genet 2020; 16:e1008906. [PMID: 32804949 PMCID: PMC7451988 DOI: 10.1371/journal.pgen.1008906] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 08/27/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
The killer immunoglobulin-like receptors (KIRs), found predominantly on the surface of natural killer (NK) cells and some T-cells, are a collection of highly polymorphic activating and inhibitory receptors with variable specificity for class I human leukocyte antigen (HLA) ligands. Fifteen KIR genes are inherited in haplotypes of diverse gene content across the human population, and the repertoire of independently inherited KIR and HLA alleles is known to alter risk for immune-mediated and infectious disease by shifting the threshold of lymphocyte activation. We have conducted the largest disease-association study of KIR-HLA epistasis to date, enabled by the imputation of KIR gene and HLA allele dosages from genotype data for 12,214 healthy controls and 8,107 individuals with the HLA-B*27-associated immune-mediated arthritis, ankylosing spondylitis (AS). We identified epistatic interactions between KIR genes and their ligands (at both HLA subtype and allele resolution) that increase risk of disease, replicating analyses in a semi-independent cohort of 3,497 cases and 14,844 controls. We further confirmed that the strong AS-association with a pathogenic variant in the endoplasmic reticulum aminopeptidase gene ERAP1, known to alter the HLA-B*27 presented peptidome, is not modified by carriage of the canonical HLA-B receptor KIR3DL1/S1. Overall, our data suggests that AS risk is modified by the complement of KIRs and HLA ligands inherited, beyond the influence of HLA-B*27 alone, which collectively alter the proinflammatory capacity of KIR-expressing lymphocytes to contribute to disease immunopathogenesis. Cells of the immune system utilise various cell-surface receptors to differentiate between healthy and infected or malignant cells, enabling targeted inflammatory responses while minimising damage to self-tissue. In instances where the immune system fails to correctly differentiate healthy from diseased tissue, or inflammatory activity is poorly regulated, autoimmune or autoinflammatory conditions can develop. Here we have investigated a possible role for a class of immune-cell activating and inhibitory receptors in the pathogenesis of ankylosing spondylitis (AS), a common but poorly understood inflammatory arthritis in which the immune system causes severe damage to the joints of the pelvis and spine. Using genetic information from 12,214 healthy controls and 8,107 individuals with AS we were able to identify combinations of independently inherited immune cell receptors and their ligands that increase or decrease an individual’s risk of disease. This research provides new insight into the nature of co-inherited genetic factors that may collectively alter the proinflammatory capacity of immune cells, contributing to the immunopathogenesis of immune-mediated diseases.
Collapse
Affiliation(s)
- Aimee L. Hanson
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland, Australia
| | | | - Damjan Vukcevic
- Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
- Data Science, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Stephen Leslie
- Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
- Data Science, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- School of Biosciences, University of Melbourne, Parkville, Victoria Australia
| | - Jessica Harris
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Kim-Anh Lê Cao
- Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
| | - Tony J. Kenna
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Matthew A. Brown
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
59
|
Alrubayyi A, Ogbe A, Moreno Cubero E, Peppa D. Harnessing Natural Killer Cell Innate and Adaptive Traits in HIV Infection. Front Cell Infect Microbiol 2020; 10:395. [PMID: 32850493 PMCID: PMC7417314 DOI: 10.3389/fcimb.2020.00395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Despite efficient virological suppression on antiretroviral therapy (ART), people living with HIV (PLWH), experience an increased burden of premature co-morbidities, such as cancer and end-organ disease. With remaining challenges in terms of access to therapy, adherence and potential long-term drug toxicity, improving their long-term healthcare outcome, including new strategies for HIV clearance, remains a global priority. There is, therefore, an ongoing need to better characterize and harness the immune response in order to develop new strategies and supplement current therapeutic approaches for a “functional” cure. Current efforts toward HIV eradication to enhance immune recognition and elimination of persistently infected cells have highlighted the need for an optimized “kill” approach. Natural killer (NK) cells play an important role in antiviral defense and by virtue of their innate and adaptive features hold great promise as a focus of “kill” efforts. Galvanized by advances in the cancer field, NK cell exploitation, represents a transformative approach to augment HIV therapeutic modalities, circumventing many of the limitations inherent to T cell approaches. In this review we will discuss recent advances in our understanding of the development of NK cell adaptive/memory responses in HIV infection and highlight new and exciting opportunities to exploit the beneficial attributes of NK cells for HIV immunotherapy.
Collapse
Affiliation(s)
- Aljawharah Alrubayyi
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Ane Ogbe
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Elia Moreno Cubero
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Dimitra Peppa
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom.,Department of HIV, Mortimer Market Centre, CNWL NHS Trust, London, OH, United Kingdom
| |
Collapse
|
60
|
Anderson KM, Augusto DG, Dandekar R, Shams H, Zhao C, Yusufali T, Montero-Martín G, Marin WM, Nemat-Gorgani N, Creary LE, Caillier S, Mofrad MRK, Parham P, Fernández-Viña M, Oksenberg JR, Norman PJ, Hollenbach JA. Killer Cell Immunoglobulin-like Receptor Variants Are Associated with Protection from Symptoms Associated with More Severe Course in Parkinson Disease. THE JOURNAL OF IMMUNOLOGY 2020; 205:1323-1330. [PMID: 32709660 DOI: 10.4049/jimmunol.2000144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022]
Abstract
Immune dysfunction plays a role in the development of Parkinson disease (PD). NK cells regulate immune functions and are modulated by killer cell immunoglobulin-like receptors (KIR). KIR are expressed on the surface of NK cells and interact with HLA class I ligands on the surface of all nucleated cells. We investigated KIR-allelic polymorphism to interrogate the role of NK cells in PD. We sequenced KIR genes from 1314 PD patients and 1978 controls using next-generation methods and identified KIR genotypes using custom bioinformatics. We examined associations of KIR with PD susceptibility and disease features, including age at disease onset and clinical symptoms. We identified two KIR3DL1 alleles encoding highly expressed inhibitory receptors associated with protection from PD clinical features in the presence of their cognate ligand: KIR3DL1*015/HLA-Bw4 from rigidity (p c = 0.02, odds ratio [OR] = 0.39, 95% confidence interval [CI] 0.23-0.69) and KIR3DL1*002/HLA-Bw4i from gait difficulties (p c = 0.05, OR = 0.62, 95% CI 0.44-0.88), as well as composite symptoms associated with more severe disease. We also developed a KIR3DL1/HLA interaction strength metric and found that weak KIR3DL1/HLA interactions were associated with rigidity (pc = 0.05, OR = 9.73, 95% CI 2.13-172.5). Highly expressed KIR3DL1 variants protect against more debilitating symptoms of PD, strongly implying a role of NK cells in PD progression and manifestation.
Collapse
Affiliation(s)
- Kirsten M Anderson
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158
| | - Danillo G Augusto
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158
| | - Ravi Dandekar
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158
| | - Hengameh Shams
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158
| | - Chao Zhao
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158
| | - Tasneem Yusufali
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158
| | | | - Wesley M Marin
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158
| | - Neda Nemat-Gorgani
- Department of Structural Biology and Immunology, Stanford University, Palo Alto, CA 94305
| | - Lisa E Creary
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA 94304
| | - Stacy Caillier
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720; and
| | - Peter Parham
- Department of Structural Biology and Immunology, Stanford University, Palo Alto, CA 94305
| | | | - Jorge R Oksenberg
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Jill A Hollenbach
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158;
| |
Collapse
|
61
|
Auer ED, Tong HV, Amorim LM, Malheiros D, Hoan NX, Issler HC, Petzl-Erler ML, Beltrame MH, Boldt ABW, Toan NL, Song LH, Velavan TP, Augusto DG. Natural killer cell receptor variants and chronic hepatitis B virus infection in the Vietnamese population. Int J Infect Dis 2020; 96:541-547. [PMID: 32422377 DOI: 10.1016/j.ijid.2020.05.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Genes of host immunity play an important role in disease pathogenesis and are determinants of clinical courses of infections, including hepatitis B virus (HBV). Killer-cell immunoglobulin-like receptor (KIR), expressed on the surface of natural killer cells (NK), regulate NK cell cytotoxicity by interacting with human leukocyte antigen (HLA) class I molecules and are candidates for influencing the course of HBV. This study evaluated whether variations in KIR gene content and HLA-C ligands are associated with HBV and with the development of liver cirrhosis and hepatocellular carcinoma. METHODS A Vietnamese study cohort (HBV n = 511; controls n = 140) was genotyped using multiplex sequence-specific polymerase chain reaction (PCR-SSP) followed by melting curve analysis. RESULTS The presence of the functional allelic group of KIR2DS4 was associated with an increased risk of chronic HBV (OR = 1.86, pcorr = 0.02), while KIR2DL2+HLA-C1 (OR = 0.62, pcorr = 0.04) and KIR2DL3+HLA-C1 (OR = 0.48, pcorr = 0.04) were associated with a decreased risk. The pair KIR2DL3+HLA-C1 was associated with liver cirrhosis (OR = 0.40, pcorr = 0.01). The presence of five or more activating KIR variants was associated with hepatocellular carcinoma (OR = 0.53, pcorr = 0.04). CONCLUSIONS KIR gene content variation and combinations KIR-HLA influence the outcome of HBV infection.
Collapse
Affiliation(s)
- Eduardo Delabio Auer
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Hoang Van Tong
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Viet Nam; Vietnamese German Center for Medical Research (VGCARE), Hanoi, Viet Nam
| | - Leonardo Maldaner Amorim
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Danielle Malheiros
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Nghiem Xuan Hoan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Vietnamese German Center for Medical Research (VGCARE), Hanoi, Viet Nam; Institute of Clinical Infectious Diseases, Hanoi, Viet Nam
| | - Hellen Caroline Issler
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Maria Luiza Petzl-Erler
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Márcia Holsbach Beltrame
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Angelica Beate Winter Boldt
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Nguyen Linh Toan
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Viet Nam; Vietnamese German Center for Medical Research (VGCARE), Hanoi, Viet Nam
| | - Le Huu Song
- Vietnamese German Center for Medical Research (VGCARE), Hanoi, Viet Nam; Institute of Clinical Infectious Diseases, Hanoi, Viet Nam
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Vietnamese German Center for Medical Research (VGCARE), Hanoi, Viet Nam; Faculty of Medicine, Duy Tan University, Da Nang, Viet Nam.
| | - Danillo G Augusto
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil.
| |
Collapse
|
62
|
The molecular basis of how buried human leukocyte antigen polymorphism modulates natural killer cell function. Proc Natl Acad Sci U S A 2020; 117:11636-11647. [PMID: 32404419 DOI: 10.1073/pnas.1920570117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Micropolymorphisms within human leukocyte antigen (HLA) class I molecules can change the architecture of the peptide-binding cleft, leading to differences in peptide presentation and T cell recognition. The impact of such HLA variation on natural killer (NK) cell recognition remains unclear. Given the differential association of HLA-B*57:01 and HLA-B*57:03 with the control of HIV, recognition of these HLA-B57 allomorphs by the killer cell immunoglobulin-like receptor (KIR) 3DL1 was compared. Despite differing by only two polymorphic residues, both buried within the peptide-binding cleft, HLA-B*57:01 more potently inhibited NK cell activation. Direct-binding studies showed KIR3DL1 to preferentially recognize HLA-B*57:01, particularly when presenting peptides with positively charged position (P)Ω-2 residues. In HLA-B*57:01, charged PΩ-2 residues were oriented toward the peptide-binding cleft and away from KIR3DL1. In HLA-B*57:03, the charged PΩ-2 residues protruded out from the cleft and directly impacted KIR3DL1 engagement. Accordingly, KIR3DL1 recognition of HLA class I ligands is modulated by both the peptide sequence and conformation, as determined by the HLA polymorphic framework, providing a rationale for understanding differences in clinical associations.
Collapse
|
63
|
Hargreaves BKV, Roberts SE, Derfalvi B, Boudreau JE. Highly efficient serum-free manipulation of miRNA in human NK cells without loss of viability or phenotypic alterations is accomplished with TransIT-TKO. PLoS One 2020; 15:e0231664. [PMID: 32302338 PMCID: PMC7164639 DOI: 10.1371/journal.pone.0231664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/27/2020] [Indexed: 02/08/2023] Open
Abstract
Natural killer (NK) cells are innate lymphocytes with functions that include target cell killing, inflammation and regulation. NK cells integrate incoming activating and inhibitory signals through an array of germline-encoded receptors to gauge the health of neighbouring cells. The reactive potential of NK cells is influenced by microRNA (miRNA), small non-coding sequences that interfere with mRNA expression. miRNAs are highly conserved between species, and a single miRNA can have hundreds to thousands of targets and influence entire cellular programs. Two miRNA species, miR-155-5p and miR-146a-5p are known to be important in controlling NK cell function, but research to best understand the impacts of miRNA species within NK cells has been bottlenecked by a lack of techniques for altering miRNA concentrations efficiently and without off-target effects. Here, we describe a non-viral and straightforward approach for increasing or decreasing expression of miRNA in primary human NK cells. We achieve >90% transfection efficiency without off-target impacts on NK cell viability, education, phenotype or function. This opens the opportunity to study and manipulate NK cell miRNA profiles and their impacts on NK cellular programs which may influence outcomes of cancer, inflammation and autoimmunity.
Collapse
Affiliation(s)
| | | | - Beata Derfalvi
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada
- Department of Pediatrics, Dalhousie University, Halifax, Canada
| | - Jeanette E. Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada
- Department of Pathology, Dalhousie University, Halifax, Canada
- * E-mail:
| |
Collapse
|
64
|
Dong L, Fu R, Wang L, He J, Zhu F. Identification of the novel allele,
HLA‐C*15:02:32
, in a Chinese individual. HLA 2020; 96:106-108. [DOI: 10.1111/tan.13825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Lina Dong
- HLA Typing LaboratoryBlood Center of Zhejiang Province Hangzhou China
- Key Laboratory of Blood Safety ResearchZhejiang Province Hangzhou China
| | - Rui Fu
- HLA Typing LaboratoryBlood Center of Zhejiang Province Hangzhou China
- Key Laboratory of Blood Safety ResearchZhejiang Province Hangzhou China
| | - Li Wang
- HLA Typing LaboratoryBlood Center of Zhejiang Province Hangzhou China
- Key Laboratory of Blood Safety ResearchZhejiang Province Hangzhou China
| | - Ji He
- HLA Typing LaboratoryBlood Center of Zhejiang Province Hangzhou China
- Key Laboratory of Blood Safety ResearchZhejiang Province Hangzhou China
| | - Faming Zhu
- HLA Typing LaboratoryBlood Center of Zhejiang Province Hangzhou China
- Key Laboratory of Blood Safety ResearchZhejiang Province Hangzhou China
| |
Collapse
|
65
|
Baumeister SHC, Rambaldi B, Shapiro RM, Romee R. Key Aspects of the Immunobiology of Haploidentical Hematopoietic Cell Transplantation. Front Immunol 2020; 11:191. [PMID: 32117310 PMCID: PMC7033970 DOI: 10.3389/fimmu.2020.00191] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/24/2020] [Indexed: 12/27/2022] Open
Abstract
Hematopoietic stem cell transplantation from a haploidentical donor is increasingly used and has become a standard donor option for patients lacking an appropriately matched sibling or unrelated donor. Historically, prohibitive immunological barriers resulting from the high degree of HLA-mismatch included graft-vs.-host disease (GVHD) and graft failure. These were overcome with increasingly sophisticated strategies to manipulate the sensitive balance between donor and recipient immune cells. Three different approaches are currently in clinical use: (a) ex vivo T-cell depletion resulting in grafts with defined immune cell content (b) extensive immunosuppression with a T-cell replete graft consisting of G-CSF primed bone marrow and PBSC (GIAC) (c) T-cell replete grafts with post-transplant cyclophosphamide (PTCy). Intriguing studies have recently elucidated the immunologic mechanisms by which PTCy prevents GVHD. Each approach uniquely affects post-transplant immune reconstitution which is critical for the control of post-transplant infections and relapse. NK-cells play a key role in haplo-HCT since they do not mediate GVHD but can successfully mediate a graft-vs.-leukemia effect. This effect is in part regulated by KIR receptors that inhibit NK cell cytotoxic function when binding to the appropriate HLA-class I ligands. In the context of an HLA-class I mismatch in haplo-HCT, lack of inhibition can contribute to NK-cell alloreactivity leading to enhanced anti-leukemic effect. Emerging work reveals immune evasion phenomena such as copy-neutral loss of heterozygosity of the incompatible HLA alleles as one of the major mechanisms of relapse. Relapse and infectious complications remain the leading causes impacting overall survival and are central to scientific advances seeking to improve haplo-HCT. Given that haploidentical donors can typically be readily approached to collect additional stem- or immune cells for the recipient, haplo-HCT represents a unique platform for cell- and immune-based therapies aimed at further reducing relapse and infections. The rapid advancements in our understanding of the immunobiology of haplo-HCT are therefore poised to lead to iterative innovations resulting in further improvement of outcomes with this compelling transplant modality.
Collapse
Affiliation(s)
- Susanne H C Baumeister
- Division of Pediatric Hematology-Oncology, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Benedetta Rambaldi
- Harvard Medical School, Boston, MA, United States.,Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, United States.,Bone Marrow Transplant Unit, Clinical and Experimental Sciences Department, ASST Spedali Civili, University of Pavia, Brescia, Italy
| | - Roman M Shapiro
- Harvard Medical School, Boston, MA, United States.,Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Rizwan Romee
- Harvard Medical School, Boston, MA, United States.,Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
66
|
Wright PA. Killer-cell immunoglobulin-like receptor assessment algorithms in haemopoietic progenitor cell transplantation: current perspectives and future opportunities. HLA 2020; 95:435-448. [PMID: 31999071 DOI: 10.1111/tan.13817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/13/2019] [Accepted: 01/22/2020] [Indexed: 12/27/2022]
Abstract
Natural killer cells preferentially target and kill malignant and virally infected cells. Both these properties present compelling clinical utility in the field of haemopoietic progenitor cell transplantation (HPCT), potentially promoting a graft vs leukaemia effect in the absence of graft vs host disease and protecting against cytomegalovirus activation. Killer Ig-like receptors (KIR) play a central role in the cytotoxic action of natural killer cells, providing opportunity for improving transplantation outcomes by prioritising potential donors with optimal characteristics. Numerous algorithms for assessing KIR gene content as part of HPCT donor selection protocols exist, but no single model has been found to be universally applicable in all transplant centres. This review summarises several of the predominant strategies in KIR assessment algorithms, discussing their basic scientific principles, clinical utility and benefits to post-transplant outcomes. Finally, the review will consider how future donor selection protocols could develop towards unifying the concepts of KIR proteomics and genetics for optimising patient care.
Collapse
Affiliation(s)
- Paul A Wright
- Transplantation Laboratory, Division of Surgery, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
67
|
Ureshino H, Shindo T, Sano H, Kubota Y, Ando T, Kidoguchi K, Kusaba K, Itamura H, Kojima H, Kusunoki Y, Miyazaki Y, Kojima K, Tanaka H, Saji H, Oshima K, Kimura S. Reconstitution of NK cells expressing KIR3DL1 is associated with reduced NK cell activity and relapse of CML after allogeneic hematopoietic stem cell transplantation. Int J Hematol 2019; 111:733-738. [PMID: 31873846 DOI: 10.1007/s12185-019-02809-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 10/25/2022]
Abstract
Although the prognosis of chronic myeloid leukemia (CML) in blastic crisis remains poor, some patients achieve long-term remission after allogeneic hematopoietic stem cell transplantation (allo-HSCT). This may be attributable to graft-versus-leukemia (GVL) effects by donor lymphocytes, but their regulating mechanisms are unclear. Antitumor natural killer (NK) cell immunity is assumed to be important in CML, and we have previously shown that allelic polymorphisms of killer immunoglobulin-like receptors (KIRs) and histocompatibility leukocyte antigens (HLAs) are associated with the response of CML to tyrosine kinase inhibitors. Here, we report a case of CML in blastic phase who received HLA-matched but KIR3DL1 allelic-mismatched allo-HSCT. After transplant, decreased BCR-ABL transcript levels and enhanced NK cell activity were transiently observed. However, reconstitution of KIR3DL1-expressing NK cells occurred, which was associated with diminished NK cell activity and increased BCR-ABL. This case indicates the potential significance of KIR3DL1 in NK cell-mediated GVL activity following allo-HSCT. To the best of our knowledge, this is the first report to analyze the association between sequential KIR3DL1 expression and activity of NK cells after allo-HSCT. Selecting donors with KIR3DL1-null alleles may maintain competent GVL effects and provide improved outcomes in allo-HSCT for CML.
Collapse
Affiliation(s)
- Hiroshi Ureshino
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan.,Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Takero Shindo
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan. .,Department of Hematology/Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogo-in, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Haruhiko Sano
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yasushi Kubota
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Toshihiko Ando
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Keisuke Kidoguchi
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Kana Kusaba
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Hidekazu Itamura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | | | | | | | - Kensuke Kojima
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | | | | | - Koichi Oshima
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan.,Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
68
|
Kennedy PR, Barthen C, Williamson DJ, Pitkeathly WTE, Hazime KS, Cumming J, Stacey KB, Hilton HG, Carrington M, Parham P, Davis DM. Genetic diversity affects the nanoscale membrane organization and signaling of natural killer cell receptors. Sci Signal 2019; 12:eaaw9252. [PMID: 31848320 PMCID: PMC6944503 DOI: 10.1126/scisignal.aaw9252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetic diversity in human natural killer (NK) cell receptors is linked to resistance and susceptibility to many diseases. Here, we tested the effect of this diversity on the nanoscale organization of killer cell immunoglobulin-like receptors (KIRs). Using superresolution microscopy, we found that inhibitory KIRs encoded by different genes and alleles were organized differently at the surface of primary human NK cells. KIRs that were found at low abundance assembled into smaller clusters than those formed by KIRs that were more highly abundant, and at low abundance, there was a greater proportion of KIRs in clusters. Upon receptor triggering, a structured interface called the immune synapse assembles, which facilitates signal integration and controls NK cell responses. Here, triggering of low-abundance receptors resulted in less phosphorylation of the downstream phosphatase SHP-1 but more phosphorylation of the adaptor protein Crk than did triggering of high-abundance receptors. In cells with greater KIR abundance, SHP-1 dephosphorylated Crk, which potentiated NK cell spreading during activation. Thus, genetic variation modulates both the abundance and nanoscale organization of inhibitory KIRs. That is, as well as the number of receptors at the cell surface varying with genotype, the way in which these receptors are organized in the membrane also varies. Essentially, a change in the average surface abundance of a protein at the cell surface is a coarse descriptor entwined with changes in local nanoscale clustering. Together, our data indicate that genetic diversity in inhibitory KIRs affects membrane-proximal signaling and, unexpectedly, the formation of activating immune synapses.
Collapse
Affiliation(s)
- Philippa R Kennedy
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Charlotte Barthen
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - David J Williamson
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - William T E Pitkeathly
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Khodor S Hazime
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Joshua Cumming
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Kevin B Stacey
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Hugo G Hilton
- Department of Structural Biology, Stanford University School of Medicine, D159, Sherman Fairchild Science Building, 299 Campus Drive West, Stanford, CA 94305, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, Building 560, Room 21-89, Frederick, MD 21702, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, D159, Sherman Fairchild Science Building, 299 Campus Drive West, Stanford, CA 94305, USA
| | - Daniel M Davis
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK.
| |
Collapse
|
69
|
The Education of NK Cells Determines Their Responsiveness to Autologous HIV-Infected CD4 T Cells. J Virol 2019; 93:JVI.01185-19. [PMID: 31511383 DOI: 10.1128/jvi.01185-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/04/2019] [Indexed: 01/18/2023] Open
Abstract
Several studies support a role for specific killer immunoglobulin-like receptor (KIR)-HLA combinations in protection from HIV infection and slower progression to AIDS. Natural killer (NK) cells acquire effector functions through education, a process that requires the interaction of inhibitory NK cell receptors with their major histocompatibility complex (MHC) class I (or HLA class I [HLA-I]) ligands. HLA-C allotypes are ligands for the inhibitory KIRs (iKIRs) KIR2DL1, KIR2DL2, and KIR2DL3, whereas the ligand for KIR3DL1 is HLA-Bw4. HIV infection reduces the expression of HLA-A, -B, and -C on the surfaces of infected CD4 (iCD4) T cells. Here we investigated whether education through iKIR-HLA interactions influenced NK cell responses to autologous iCD4 cells. Enriched NK cells were stimulated with autologous iCD4 cells or with uninfected CD4 cells as controls. The capacities of single-positive (sp) KIR2DL1, KIR2DL2, KIR2DL3, and KIR3DL1 NK cells to produce CCL4, gamma interferon (IFN-γ), and/or CD107a were assessed by flow cytometry. Overall, we observed that the potency of NK cell education was directly related to the frequency of each spiKIR+ NK cell's ability to respond to the reduction of its cognate HLA ligand on autologous iCD4 cells, as measured by the frequency of production by spiKIR+ NK cells of CCL4, IFN-γ, and/or CD107a. Both NK cell education and HIV-mediated changes in HLA expression influenced NK cell responses to iCD4 cells.IMPORTANCE Epidemiological studies show that natural killer (NK) cells have anti-HIV activity: they are able to reduce the risk of HIV infection and/or slow HIV disease progression. How NK cells contribute to these outcomes is not fully characterized. We used primary NK cells and autologous HIV-infected cells to examine the role of education through four inhibitory killer immunoglobulin-like receptors (iKIRs) from persons with HLA types that are able to educate NK cells bearing one of these iKIRs. HIV-infected cells activated NK cells through missing-self mechanisms due to the downmodulation of cell surface HLA expression mediated by HIV Nef and Vpu. A higher frequency of educated than uneducated NK cells expressing each of these iKIRs responded to autologous HIV-infected cells by producing CCL4, IFN-γ, and CD107a. Since NK cells were from non-HIV-infected individuals, they model the consequences of healthy NK cell-HIV-infected cell interactions occurring in the HIV eclipse phase, when new infections are susceptible to extinction.
Collapse
|
70
|
Pugh J, Nemat-Gorgani N, Djaoud Z, Guethlein LA, Norman PJ, Parham P. In vitro education of human natural killer cells by KIR3DL1. Life Sci Alliance 2019; 2:2/6/e201900434. [PMID: 31723004 PMCID: PMC6856763 DOI: 10.26508/lsa.201900434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 11/29/2022] Open
Abstract
Using NK cells isolated from individuals who lack the Bw4 epitope on HLA-B, Pugh et al reveal that KIR3DL1+ NK cells can be educated in vitro by co-culturing them with target cells that display the missing epitope. During development, NK cells are “educated” to respond aggressively to cells with low surface expression of HLA class I, a hallmark of malignant and infected cells. The mechanism of education involves interactions between inhibitory killer immunoglobulin–like receptors (KIRs) and specific HLA epitopes, but the details of this process are unknown. Because of the genetic diversity of HLA class I genes, most people have NK cells that are incompletely educated, representing an untapped source of human immunity. We demonstrate how mature peripheral KIR3DL1+ human NK cells can be educated in vitro. To accomplish this, we trained NK cells expressing the inhibitory KIR3DL1 receptor by co-culturing them with target cells that expressed its ligand, Bw4+HLA-B. After this training, KIR3DL1+ NK cells increased their inflammatory and lytic responses toward target cells lacking Bw4+HLA-B, as though they had been educated in vivo. By varying the conditions of this basic protocol, we provide mechanistic and translational insights into the process NK cell education.
Collapse
Affiliation(s)
- Jason Pugh
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Neda Nemat-Gorgani
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Zakia Djaoud
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisbeth A Guethlein
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, Department of Immunology, School of Medicine, University of Colorado Denver, Denver, CO, USA
| | - Peter Parham
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
71
|
The Evolutionary Arms Race between Virus and NK Cells: Diversity Enables Population-Level Virus Control. Viruses 2019; 11:v11100959. [PMID: 31627371 PMCID: PMC6832630 DOI: 10.3390/v11100959] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
Viruses and natural killer (NK) cells have a long co-evolutionary history, evidenced by patterns of specific NK gene frequencies in those susceptible or resistant to infections. The killer immunoglobulin-like receptors (KIR) and their human leukocyte antigen (HLA) ligands together form the most polymorphic receptor-ligand partnership in the human genome and govern the process of NK cell education. The KIR and HLA genes segregate independently, thus creating an array of reactive potentials within and between the NK cell repertoires of individuals. In this review, we discuss the interplay between NK cell education and adaptation with virus infection, with a special focus on three viruses for which the NK cell response is often studied: human immunodeficiency virus (HIV), hepatitis C virus (HCV) and human cytomegalovirus (HCMV). Through this lens, we highlight the complex co-evolution of viruses and NK cells, and their impact on viral control.
Collapse
|
72
|
Abstract
Cluster of differentiation 8 (CD8) is a cell surface glycoprotein, which is expressed as 2 forms, αα homodimer or αβ heterodimer. Peptide-loaded major histocompatibility complex class I (pMHC-I) molecules are major ligands for both forms of CD8. CD8αβ is a coreceptor for the T cell receptor (TCR) and binds to the same cognate pMHC-I as the TCR, thus enabling or augmenting T cell responses. The function of CD8αα homodimers is largely unknown. While CD8αβ heterodimer is expressed exclusively on CD8+ T cells, the CD8αα homodimer is present in subsets of T cells and human natural killer (NK) cells. Here, we report that the CD8αα homodimer functions as a coreceptor for KIR3DL1, an inhibitory receptor of NK cells that is specific for certain MHC-I allotypes. CD8αα enhances binding of pMHC-I to KIR3DL1, increases KIR3DL1 clustering at the immunological synapse, and augments KIR3DL1-mediated inhibition of NK cell activation. Additionally, interactions between pMHC-I and CD8αα homodimers regulate KIR3DL1+ NK cell education. Together, these findings reveal another dimension to the modulation of NK cell activity.
Collapse
|
73
|
Petrushkin H, Norman PJ, Lougee E, Parham P, Wallace GR, Stanford MR, Fortune F. KIR3DL1/S1 Allotypes Contribute Differentially to the Development of Behçet Disease. THE JOURNAL OF IMMUNOLOGY 2019; 203:1629-1635. [PMID: 31405953 DOI: 10.4049/jimmunol.1801178] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 07/08/2019] [Indexed: 11/19/2022]
Abstract
Behçet disease is a chronic, relapsing-remitting autoinflammatory syndrome with a strong HLA-B*51 association. In this paper, we describe a human cohort of 267 individuals with Behçet disease and 445 matched controls from a tertiary referral center in the U.K. HLA-B*51 was confirmed as a genetic risk factor in this group (p = 0.0006, Bonferroni-Dunn correction for multiple testing [Pc] = 0.0192, odds ratio [OR] 1.92, 95% confidence interval [CI] 1.33-2.76). KIR3DL1/S1 allele-level analysis indicated that low-expressing KIR3DL1/S1 alleles in combination with KIR3DS1 increased the risk of developing Behçet disease (KIR3DL1LOW/KIR3DS1: p = 0.0004, Pc = 0.0040, OR 2.47, 95% CI 1.43-4.25), whereas high-expressing KIR3DL1/S1 alleles in combination with a null-expressing KIR3DL1 reduced the risk of disease (KIR3DL1HIGH/KIR3DL1NULL: p = 0.0035, Pc = 0.0350, OR 0.53, 95% CI 0.33-0.87). Behçet disease can manifest as a purely mucocutaneous disease or can involve other organ systems such as the eyes. In the U.K. cohort studied in this study, KIR3DL1LOW/KIR3DS1 increased the risk of ophthalmic disease (p = 1.2 × 10-5, OR 3.92, 95% CI 2.06-7.47), whereas KIR3DL1HIGH/KIR3DL1NULL reduced the risk of having purely mucocutaneous disease (p = 0.0048, OR 0.45, 95% CI 0.25-0.81). To our knowledge, this is the first analysis of KIR3DL1/S1 allelic variation in Behçet disease and may provide insight into the pathogenic role of HLA-B*51 and its interaction with KIR3DL1/S1.
Collapse
Affiliation(s)
- Harry Petrushkin
- Moorfields Eye Hospital National Health Service Foundation Trust, Medical Retina Department, London EC1V 2PD, United Kingdom.,Clinical and Diagnostic Oral Sciences, Queen Mary University of London, Blizard Institute, E1 2AT London, United Kingdom
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, Department of Microbiology and Immunology, University of Colorado, Aurora, CO 80045
| | - Emma Lougee
- Viapath, Clinical Transplantation Laboratory, Guy's Hospital, Guy's and St Thomas' National Health Service Foundation Trust, London SE1 9RT, United Kingdom
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Graham R Wallace
- Centre for Translational Inflammation Research, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Miles R Stanford
- Medical Eye Unit, St Thomas' Hospital, Guy's and St Thomas' National Health Service Foundation Trust, London SE1 7EH, United Kingdom
| | - Farida Fortune
- Clinical and Diagnostic Oral Sciences, Queen Mary University of London, Blizard Institute, E1 2AT London, United Kingdom;
| |
Collapse
|
74
|
Augusto DG, Norman PJ, Dandekar R, Hollenbach JA. Fluctuating and Geographically Specific Selection Characterize Rapid Evolution of the Human KIR Region. Front Immunol 2019; 10:989. [PMID: 31156615 PMCID: PMC6533848 DOI: 10.3389/fimmu.2019.00989] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/16/2019] [Indexed: 01/04/2023] Open
Abstract
The killer-cell immunoglobulin-like receptor (KIR) region comprises a fast-evolving family of genes that encode receptors for natural killer (NK) cells and have crucial role in host defense. Evolution of KIR was examined in the context of the human genome. Gene-content diversity and single nucleotide polymorphisms (SNP) in the KIR genes and flanking regions were compared to >660,000 genome-wide SNPs in over 800 individuals from 52 populations of the human genome diversity panel (HGDP). KIR allelic diversity was further examined using next generation sequencing in a subset of 56 individuals. We identified the SNP rs587560 located in KIR3DL3 as a marker of KIR2DL2 and KIR2DL3 and, consequently, Cen A and Cen B haplotypes. We also show that combinations of two KIR2DL4 SNPs (rs35656676 and rs592645) distinguish KIR3DL1 from KIR3DS1 and also define the major KIR3DL1 high- and low-expressing alleles lineages. Comparing the diversity of the SNPs within the KIR region to remainder of the genome, we observed a high diversity for the centromeric KIR region consistent with balancing selection (p < 0.01); in contrast, centromeric KIR diversity is significantly reduced in East Asian populations (p < 0.01), indicating purifying selection. By analyzing SNP haplotypes in a region spanning ~500 kb that includes the KIR cluster, we observed evidence of strong positive selection in Africa for high-expressing KIR3DL1 alleles, favored over the low-expressing alleles (p < 0.01). In sharp contrast, the strong positive selection (p < 0.01) that we also observed in the telomeric KIR region in Oceanic populations tracked with a high frequency of KIR3DS1. In addition, we demonstrated that worldwide frequency of high-expression KIR3DL1 alleles was correlated with virus with virus (r = 0.64, p < 10−6) and protozoa (r = 0.69, p < 10−6) loads, which points to selection globally on KIR3DL1 high-expressing alleles attributable to pathogen exposure.
Collapse
Affiliation(s)
- Danillo G Augusto
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, Department of Immunology, University of Colorado, Denver, CO, United States
| | - Ravi Dandekar
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Jill A Hollenbach
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
75
|
Le Luduec JB, Boudreau JE, Freiberg JC, Hsu KC. Novel Approach to Cell Surface Discrimination Between KIR2DL1 Subtypes and KIR2DS1 Identifies Hierarchies in NK Repertoire, Education, and Tolerance. Front Immunol 2019; 10:734. [PMID: 31024561 PMCID: PMC6460669 DOI: 10.3389/fimmu.2019.00734] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/19/2019] [Indexed: 12/26/2022] Open
Abstract
Cumulative activating and inhibitory receptor signaling controls the functional output of individual natural killer (NK) cells. Investigation of how competing signals impact response, however, has been hampered by the lack of available antibodies capable of distinguishing inhibitory and activating receptors with highly homologous ectodomains. Utilizing a novel combination of monoclonal antibodies with specificity for discrete inhibitory KIR2DL1 and activating KIR2DS1 allotypes found among 230 healthy donors, we investigated allele-specific receptor expression and function driven by KIR2DL1 and KIR2DS1 alleles. We found that co-expression of the HLA-C2 ligand diminishes KIR2DL1, but not KIR2DS1, cell surface staining, but does not impact the respective frequencies of KIR2DL1- and KIR2DS1-expressing cells within the NK repertoire. We can distinguish by flow cytometry NK cell populations expressing the most common KIR2DL1-C245 allotypes from those expressing the most common KIR2DL1-R245 allotypes, and we show that the informative differential binding anti-KIR2DL1/S1 clone 1127B is determined by amino acid residue T154. Although both KIR2DL1-C245 and KIR2DL1-R245 subtypes can be co-expressed in the same cell, NK cells preferentially express one or the other. Cells expressing KIR2DL1-C245 exhibited a lower KIR2DL1 cell surface density and lower missing-self reactivity in comparison to cells expressing KIR2DL1-R245. We found no difference, however, in sensitivity to inhibition or cell surface stability between the two KIR2DL1 isoforms, and both demonstrated similar expansion among NKG2C+ KIR2DL1+ NK cells in HCMV-seropositive healthy individuals. In addition to cell surface density of KIR2DL1, copy number of cognate HLA-C2 hierarchically impacted the effector capacity of both KIR2DL1+ cells and the tolerization of KIR2DS1+ NK cells. HLA-C2 tolerization of KIR2DS1+ NK cells could be overridden, however, by education via co-expressed self-specific inhibitory receptors, such as the heterodimer CD94/NKG2A. Our results demonstrate that effector function of NK cells expressing KIR2DL1 or KIR2DS1 is highly influenced by genetic variability and is calibrated by co-expression of additional NK receptors and cognate HLA-C2 ligands. These findings define the molecular conditions under which NK cells are activated or inhibited, potentially informing selection of donors for adoptive NK therapies.
Collapse
Affiliation(s)
- Jean-Benoît Le Luduec
- Immunology Program, Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, New York, NY, United States
| | - Jeanette E. Boudreau
- Immunology Program, Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, New York, NY, United States
| | - Julian C. Freiberg
- Immunology Program, Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, New York, NY, United States
| | - Katharine C. Hsu
- Immunology Program, Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, New York, NY, United States
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
76
|
Raghavan M, Yarzabek B, Zaitouna AJ, Krishnakumar S, Ramon DS. Strategies for the measurements of expression levels and half-lives of HLA class I allotypes. Hum Immunol 2019; 80:221-227. [PMID: 30735755 DOI: 10.1016/j.humimm.2019.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/05/2018] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
Abstract
HLA class I molecules are highly polymorphic cell surface proteins that trigger immune responses by CD8+ T cells and natural killer (NK) cells. Most humans express six different HLA class I proteins encoded by the HLA-A, HLA-B and HLA-C genes. HLA class I molecules bind to peptide antigens and present these antigens to T cell receptors (TCR) of CD8+ T cells. HLA class I expression levels also regulate NK cell activation. The presence of individual HLA class I genes is linked to many different disease, transplantation and therapy outcomes. An understanding of HLA class I expression and stability patterns is fundamentally important towards a better understanding of the associations of HLA class I genes with disease and treatment outcomes, and towards HLA class I targeting for vaccine development. Quantitative flow cytometry allows for assessments of variations in expression levels of HLA class I molecules in cells from a single blood donor over time, as well as averaged measurements across donors for the same allotype. Since all HLA class I molecules are structurally-related, cellular measurements of the HLA class I expression levels and stabilities of individual variants in human cells require careful choices of donors and antibodies, which are discussed here.
Collapse
Affiliation(s)
- Malini Raghavan
- Department of Microbiology and Immunology, Michigan Medicine, 1150 W. Medical Center Drive, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Brogan Yarzabek
- Department of Microbiology and Immunology, Michigan Medicine, 1150 W. Medical Center Drive, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anita J Zaitouna
- Department of Microbiology and Immunology, Michigan Medicine, 1150 W. Medical Center Drive, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sujatha Krishnakumar
- Sirona Genomics, Immucor Inc, Suite A, 1916 Old Middlefield Way Mountain View, CA 94043, USA
| | - Daniel S Ramon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 5777 E. Mayo Blvd, Phoenix, AZ 85054, USA
| |
Collapse
|
77
|
Goodridge JP, Jacobs B, Saetersmoen ML, Clement D, Hammer Q, Clancy T, Skarpen E, Brech A, Landskron J, Grimm C, Pfefferle A, Meza-Zepeda L, Lorenz S, Wiiger MT, Louch WE, Ask EH, Liu LL, Oei VYS, Kjällquist U, Linnarsson S, Patel S, Taskén K, Stenmark H, Malmberg KJ. Remodeling of secretory lysosomes during education tunes functional potential in NK cells. Nat Commun 2019; 10:514. [PMID: 30705279 PMCID: PMC6355880 DOI: 10.1038/s41467-019-08384-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/04/2019] [Indexed: 01/13/2023] Open
Abstract
Inhibitory signaling during natural killer (NK) cell education translates into increased responsiveness to activation; however, the intracellular mechanism for functional tuning by inhibitory receptors remains unclear. Secretory lysosomes are part of the acidic lysosomal compartment that mediates intracellular signalling in several cell types. Here we show that educated NK cells expressing self-MHC specific inhibitory killer cell immunoglobulin-like receptors (KIR) accumulate granzyme B in dense-core secretory lysosomes that converge close to the centrosome. This discrete morphological phenotype is independent of transcriptional programs that regulate effector function, metabolism and lysosomal biogenesis. Meanwhile, interference of signaling from acidic Ca2+ stores in primary NK cells reduces target-specific Ca2+-flux, degranulation and cytokine production. Furthermore, inhibition of PI(3,5)P2 synthesis, or genetic silencing of the PI(3,5)P2-regulated lysosomal Ca2+-channel TRPML1, leads to increased granzyme B and enhanced functional potential, thereby mimicking the educated state. These results indicate an intrinsic role for lysosomal remodeling in NK cell education.
Collapse
Affiliation(s)
- Jodie P Goodridge
- The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, 0318, Oslo, Norway.,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0310, Oslo, Norway
| | - Benedikt Jacobs
- The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, 0318, Oslo, Norway.,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0310, Oslo, Norway
| | - Michelle L Saetersmoen
- The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, 0318, Oslo, Norway.,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0310, Oslo, Norway
| | - Dennis Clement
- The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, 0318, Oslo, Norway.,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0310, Oslo, Norway
| | - Quirin Hammer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 14186, Stockholm, Sweden
| | - Trevor Clancy
- The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, 0318, Oslo, Norway.,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0310, Oslo, Norway
| | - Ellen Skarpen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0310, Oslo, Norway
| | - Andreas Brech
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0310, Oslo, Norway
| | - Johannes Landskron
- The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, 0318, Oslo, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, 0318, Oslo, Norway
| | - Christian Grimm
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Munich (LMU), Munich, 80336, Germany
| | - Aline Pfefferle
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 14186, Stockholm, Sweden
| | - Leonardo Meza-Zepeda
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, 0310, Norway.,Genomics Core Facility, Department of Core Facilities, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, 0310, Norway
| | - Susanne Lorenz
- Genomics Core Facility, Department of Core Facilities, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, 0310, Norway
| | - Merete Thune Wiiger
- The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, 0318, Oslo, Norway.,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0310, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0424, Oslo, Norway
| | - Eivind Heggernes Ask
- The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, 0318, Oslo, Norway.,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0310, Oslo, Norway
| | - Lisa L Liu
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 14186, Stockholm, Sweden
| | - Vincent Yi Sheng Oei
- The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, 0318, Oslo, Norway.,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0310, Oslo, Norway
| | - Una Kjällquist
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Kjetil Taskén
- The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, 0318, Oslo, Norway.,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0310, Oslo, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, 0318, Oslo, Norway
| | - Harald Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0310, Oslo, Norway
| | - Karl-Johan Malmberg
- The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, 0318, Oslo, Norway. .,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0310, Oslo, Norway. .,Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 14186, Stockholm, Sweden.
| |
Collapse
|
78
|
Petersdorf EW, O'hUigin C. The MHC in the era of next-generation sequencing: Implications for bridging structure with function. Hum Immunol 2019; 80:67-78. [PMID: 30321633 PMCID: PMC6542361 DOI: 10.1016/j.humimm.2018.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/24/2018] [Accepted: 10/01/2018] [Indexed: 12/19/2022]
Abstract
The MHC continues to have the most disease-associations compared to other regions of the human genome, even in the genome-wide association study (GWAS) and single nucleotide polymorphism (SNP) era. Analysis of non-coding variation and their impact on the level of expression of HLA allotypes has shed new light on the potential mechanisms underlying HLA disease associations and alloreactivity in transplantation. Next-generation sequencing (NGS) technology has the capability of delineating the phase of variants in the HLA antigen-recognition site (ARS) with non-coding regulatory polymorphisms. These relationships are critical for understanding the qualitative and quantitative implications of HLA gene diversity. This article summarizes current understanding of non-coding region variation of HLA loci, the consequences of regulatory variation on HLA expression, the role for evolution in shaping lineage-specific expression, and the impact of HLA expression on disease susceptibility and transplantation outcomes. A role for phased sequencing methods for the MHC, and perspectives for future directions in basic and applied immunogenetic studies of the MHC are presented.
Collapse
Affiliation(s)
- Effie W Petersdorf
- University of Washington, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, D4-115, Seattle, WA 98109, United States.
| | - Colm O'hUigin
- Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Microbiome and Genetics Core, Building 37, Room 4140B, Bethesda, MD 20852, United States.
| |
Collapse
|
79
|
Wagner I, Schefzyk D, Pruschke J, Schöfl G, Schöne B, Gruber N, Lang K, Hofmann J, Gnahm C, Heyn B, Marin WM, Dandekar R, Hollenbach JA, Schetelig J, Pingel J, Norman PJ, Sauter J, Schmidt AH, Lange V. Allele-Level KIR Genotyping of More Than a Million Samples: Workflow, Algorithm, and Observations. Front Immunol 2018; 9:2843. [PMID: 30564239 PMCID: PMC6288436 DOI: 10.3389/fimmu.2018.02843] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/19/2018] [Indexed: 11/13/2022] Open
Abstract
The killer-cell immunoglobulin-like receptor (KIR) genes regulate natural killer cell activity, influencing predisposition to immune mediated disease, and affecting hematopoietic stem cell transplantation (HSCT) outcome. Owing to the complexity of the KIR locus, with extensive gene copy number variation (CNV) and allelic diversity, high-resolution characterization of KIR has so far been applied only to relatively small cohorts. Here, we present a comprehensive high-throughput KIR genotyping approach based on next generation sequencing. Through PCR amplification of specific exons, our approach delivers both copy numbers of the individual genes and allelic information for every KIR gene. Ten-fold replicate analysis of a set of 190 samples revealed a precision of 99.9%. Genotyping of an independent set of 360 samples resulted in an accuracy of more than 99% taking into account consistent copy number prediction. We applied the workflow to genotype 1.8 million stem cell donor registry samples. We report on the observed KIR allele diversity and relative abundance of alleles based on a subset of more than 300,000 samples. Furthermore, we identified more than 2,000 previously unreported KIR variants repeatedly in independent samples, underscoring the large diversity of the KIR region that awaits discovery. This cost-efficient high-resolution KIR genotyping approach is now applied to samples of volunteers registering as potential donors for HSCT. This will facilitate the utilization of KIR as additional selection criterion to improve unrelated donor stem cell transplantation outcome. In addition, the approach may serve studies requiring high-resolution KIR genotyping, like population genetics and disease association studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Wesley M. Marin
- San Francisco School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Ravi Dandekar
- San Francisco School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jill A. Hollenbach
- San Francisco School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Johannes Schetelig
- DKMS, Tübingen, Germany
- Department of Internal Medicine I, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | | | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology, University of Colorado Anschutz Medical, Aurora, CO, United States
| | | | | | | |
Collapse
|
80
|
Fleischhauer K, Hsu KC, Shaw BE. Prevention of relapse after allogeneic hematopoietic cell transplantation by donor and cell source selection. Bone Marrow Transplant 2018; 53:1498-1507. [PMID: 29795435 PMCID: PMC7286200 DOI: 10.1038/s41409-018-0218-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/16/2018] [Accepted: 03/24/2018] [Indexed: 01/27/2023]
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is the most established form of cancer immunotherapy and has been successfully applied for the treatment and cure of otherwise lethal neoplastic blood disorders. Cancer immune surveillance is mediated to a large extent by alloreactive T and natural killer (NK) cells recognizing genetic differences between patient and donor. Profound insights into the biology of these effector cells has been obtained over recent years and used for the development of innovative strategies for intelligent donor selection, aiming for improved graft-versus-leukemia effect without unmanageable graft-versus-host disease. The cellular composition of the stem cell source plays a major role in modulating these effects. This review summarizes the current state-of the-art of donor selection according to HLA, NK alloreactivity and stem cell source.
Collapse
Affiliation(s)
- Katharina Fleischhauer
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany.
- German Cancer Consortium, Heidelberg, Germany.
| | - Katharine C Hsu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology Program, Sloan Kettering Institute, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Bronwen E Shaw
- Center for International Blood and Marrow Transplant Research (CIBMTR), Froedtert & the Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
81
|
Le Luduec JB, Kudva A, Boudreau JE, Hsu KC. Novel multiplex PCR-SSP method for centromeric KIR allele discrimination. Sci Rep 2018; 8:14853. [PMID: 30291273 PMCID: PMC6173694 DOI: 10.1038/s41598-018-33135-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/12/2018] [Indexed: 12/03/2022] Open
Abstract
Allelic diversity of the KIR2DL receptors drive differential expression and ligand-binding affinities that impact natural killer cell function and patient outcomes for diverse cancers. We have developed a global intermediate resolution amplification-refractory mutation system (ARMS) PCR-SSP method for distinguishing functionally relevant subgroups of the KIR2DL receptors, as defined by phylogenetic study of the protein sequences. Use of the ARMS design makes the method reliable and usable as a kit, with all reactions utilizing the same conditions. Six reactions define six subgroups of KIR2DL1; four reactions define three subgroups of KIR2DL2; and five reactions define four subgroups of KIR2DL3. Using KIR allele data from a cohort of 426 European-Americans, we identified the most common KIR2DL subtypes and developed the high-throughput PCR-based methodology, which was validated on a separate cohort of 260 healthy donors. Linkage disequilibrium analysis between the different KIR2DL alleles revealed that seven allelic combinations represent more than 95% of the observed population genotypes for KIR2DL1/L2/L3. In summary, our findings enable rapid typing of the most common KIR2DL receptor subtypes, allowing more accurate prediction of co-inheritance and providing a useful tool for the discrimination of observed differences in surface expression and effector function among NK cells exhibiting disparate KIR2DL allotypes.
Collapse
Affiliation(s)
- Jean-Benoît Le Luduec
- Immunology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Anupa Kudva
- Immunology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeanette E Boudreau
- Immunology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
- Departments of Pathology and Microbiology & Immunology, Dalhousie University, Halifax, Canada
| | - Katharine C Hsu
- Immunology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
82
|
Yarzabek B, Zaitouna AJ, Olson E, Silva GN, Geng J, Geretz A, Thomas R, Krishnakumar S, Ramon DS, Raghavan M. Variations in HLA-B cell surface expression, half-life and extracellular antigen receptivity. eLife 2018; 7:e34961. [PMID: 29989547 PMCID: PMC6039183 DOI: 10.7554/elife.34961] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/29/2018] [Indexed: 12/11/2022] Open
Abstract
The highly polymorphic human leukocyte antigen (HLA) class I molecules present peptide antigens to CD8+ T cells, inducing immunity against infections and cancers. Quality control mediated by peptide loading complex (PLC) components is expected to ensure the cell surface expression of stable peptide-HLA class I complexes. This is exemplified by HLA-B*08:01 in primary human lymphocytes, with both expression level and half-life at the high end of the measured HLA-B expression and stability hierarchies. Conversely, low expression on lymphocytes is measured for three HLA-B allotypes that bind peptides with proline at position 2, which are disfavored by the transporter associated with antigen processing. Surprisingly, these lymphocyte-specific expression and stability differences become reversed or altered in monocytes, which display larger intracellular pools of HLA class I than lymphocytes. Together, the findings indicate that allele and cell-dependent variations in antigen acquisition pathways influence HLA-B surface expression levels, half-lives and receptivity to exogenous antigens.
Collapse
Affiliation(s)
- Brogan Yarzabek
- Department of Microbiology and Immunology, Michigan MedicineUniversity of MichiganMichiganUnited States
| | - Anita J Zaitouna
- Department of Microbiology and Immunology, Michigan MedicineUniversity of MichiganMichiganUnited States
| | - Eli Olson
- Department of Microbiology and Immunology, Michigan MedicineUniversity of MichiganMichiganUnited States
- Graduate Program in Immunology, Michigan MedicineUniversity of MichiganMichiganUnited States
| | - Gayathri N Silva
- Department of Microbiology and Immunology, Michigan MedicineUniversity of MichiganMichiganUnited States
| | - Jie Geng
- Department of Microbiology and Immunology, Michigan MedicineUniversity of MichiganMichiganUnited States
| | - Aviva Geretz
- US Military HIV Research ProgramWalter Reed Army Institute of ResearchSilver SpringUnited States
- Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaUnited States
| | - Rasmi Thomas
- US Military HIV Research ProgramWalter Reed Army Institute of ResearchSilver SpringUnited States
- Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaUnited States
| | | | - Daniel S Ramon
- Department of Laboratory Medicine and PathologyMayo ClinicArizonaUnited States
| | - Malini Raghavan
- Department of Microbiology and Immunology, Michigan MedicineUniversity of MichiganMichiganUnited States
| |
Collapse
|
83
|
Kiani Z, Dupuy FP, Bruneau J, Lebouché B, Zhang CX, Jackson E, Lisovsky I, da Fonseca S, Geraghty DE, Bernard NF. HLA-F on HLA-Null 721.221 Cells Activates Primary NK Cells Expressing the Activating Killer Ig-like Receptor KIR3DS1. THE JOURNAL OF IMMUNOLOGY 2018; 201:113-123. [PMID: 29743316 DOI: 10.4049/jimmunol.1701370] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/24/2018] [Indexed: 12/21/2022]
Abstract
NK cells elicit important responses against transformed and virally infected cells. Carriage of the gene encoding the activating killer Ig-like receptor KIR3DS1 is associated with slower time to AIDS and protection from HIV infection. Recently, open conformers of the nonclassical MHC class Ib Ag HLA-F were identified as KIR3DS1 ligands. In this study, we investigated whether the interaction of KIR3DS1 on primary NK cells with HLA-F on the HLA-null cell line 721.221 (221) stimulated KIR3DS1+ NK cells. We used a panel of Abs to detect KIR3DS1+CD56dim NK cells that coexpressed the inhibitory NK cell receptors KIR2DL1/L2/L3, 3DL2, NKG2A, and ILT2; the activating NK cell receptors KIR2DS1/S2/S3/S5; and CCL4, IFN-γ, and CD107a functions. We showed that both untreated and acid-pulsed 221 cells induced a similar frequency of KIR3DS1+ cells to secrete CCL4/IFN-γ and express CD107a with a similar intensity. A higher percentage of KIR3DS1+ than KIR3DS1- NK cells responded to 221 cells when either inclusive or exclusive (i.e., coexpressing none of the other inhibitory NK cell receptors and activating NK cell receptors detected by the Ab panel) gating strategies were employed to identify these NK cell populations. Blocking the interaction of HLA-F on 221 cells with KIR3DS1-Fc chimeric protein or anti-HLA-F Abs on exclusively gated KIR3DS1+ cells reduced the frequency of functional cells compared with that of unblocked conditions for stimulated KIR3DS1+ NK cells. Thus, ligation of KIR3DS1 activates primary NK cells for several antiviral functions.
Collapse
Affiliation(s)
- Zahra Kiani
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Franck P Dupuy
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Julie Bruneau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H2X 0A9, Canada.,Department of Family Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Bertrand Lebouché
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Department of Family Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Cindy X Zhang
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Elise Jackson
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Irene Lisovsky
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Sandrina da Fonseca
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Daniel E Geraghty
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and
| | - Nicole F Bernard
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; .,Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Division of Clinical Immunology, McGill University Health Centre, Montreal, Quebec H3G 1A4, Canada
| |
Collapse
|
84
|
Martin MP, Naranbhai V, Shea PR, Qi Y, Ramsuran V, Vince N, Gao X, Thomas R, Brumme ZL, Carlson JM, Wolinsky SM, Goedert JJ, Walker BD, Segal FP, Deeks SG, Haas DW, Migueles SA, Connors M, Michael N, Fellay J, Gostick E, Llewellyn-Lacey S, Price DA, Lafont BA, Pymm P, Saunders PM, Widjaja J, Wong SC, Vivian JP, Rossjohn J, Brooks AG, Carrington M. Killer cell immunoglobulin-like receptor 3DL1 variation modifies HLA-B*57 protection against HIV-1. J Clin Invest 2018; 128:1903-1912. [PMID: 29461980 PMCID: PMC5919796 DOI: 10.1172/jci98463] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/13/2018] [Indexed: 01/11/2023] Open
Abstract
HLA-B*57 control of HIV involves enhanced CD8+ T cell responses against infected cells, but extensive heterogeneity exists in the level of HIV control among B*57+ individuals. Using whole-genome sequencing of untreated B*57+ HIV-1-infected controllers and noncontrollers, we identified a single variant (rs643347A/G) encoding an isoleucine-to-valine substitution at position 47 (I47V) of the inhibitory killer cell immunoglobulin-like receptor KIR3DL1 as the only significant modifier of B*57 protection. The association was replicated in an independent cohort and across multiple outcomes. The modifying effect of I47V was confined to B*57:01 and was not observed for the closely related B*57:03. Positions 2, 47, and 54 tracked one another nearly perfectly, and 2 KIR3DL1 allotypes differing only at these 3 positions showed significant differences in binding B*57:01 tetramers, whereas the protective allotype showed lower binding. Thus, variation in an immune NK cell receptor that binds B*57:01 modifies its protection. These data highlight the exquisite specificity of KIR-HLA interactions in human health and disease.
Collapse
Affiliation(s)
- Maureen P. Martin
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Vivek Naranbhai
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Patrick R. Shea
- Institute for Genomic Medicine, Columbia University, New York, New York, USA
| | - Ying Qi
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Veron Ramsuran
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Nicolas Vince
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
- ATIP-Avenir, Centre de Recherche en Transplantation et Immunologie, UMR 1064, INSERM, Université de Nantes, Nantes, France
- Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire (CHU) de Nantes, Nantes, France
| | - Xiaojiang Gao
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Rasmi Thomas
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | | | - Steven M. Wolinsky
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - James J. Goedert
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | | | - Steven G. Deeks
- San Francisco General Hospital Medical Center, San Francisco, California, USA
| | - David W. Haas
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Stephen A. Migueles
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Mark Connors
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Nelson Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Jacques Fellay
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Emma Gostick
- Cardiff University School of Medicine, Heath Park, University Hospital of Wales, Cardiff, United Kingdom
- Non-Human Primate Immunogenetics and Cellular Immunology Unit, NIAID, NIH, Bethesda, Maryland, USA
| | - Sian Llewellyn-Lacey
- Cardiff University School of Medicine, Heath Park, University Hospital of Wales, Cardiff, United Kingdom
- Non-Human Primate Immunogenetics and Cellular Immunology Unit, NIAID, NIH, Bethesda, Maryland, USA
| | - David A. Price
- Cardiff University School of Medicine, Heath Park, University Hospital of Wales, Cardiff, United Kingdom
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Bernard A. Lafont
- Viral Immunology Section, Office of the Scientific Director, NIAID, NIH, Bethesda, Maryland, USA
| | - Phillip Pymm
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Philippa M. Saunders
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Jacqueline Widjaja
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Shu Cheng Wong
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Julian P. Vivian
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Cardiff University School of Medicine, Heath Park, University Hospital of Wales, Cardiff, United Kingdom
- Non-Human Primate Immunogenetics and Cellular Immunology Unit, NIAID, NIH, Bethesda, Maryland, USA
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Andrew G. Brooks
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Mary Carrington
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| |
Collapse
|
85
|
KIR3DL1 alleles and their epistatic interactions with human leukocyte antigen class I influence resistance and susceptibility to HIV-1 acquisition in the Pumwani sex worker cohort. AIDS 2018; 32:841-850. [PMID: 29280757 DOI: 10.1097/qad.0000000000001735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine the associations of KIR3DL1/S1(3DL1/S1) and its epistatic interactions with human leukocyte antigen class I (HLA-I) alleles with resistance and susceptibility to HIV-1. DESIGN Despite repeated exposure to HIV-1, a subset of women enrolled in the Pumwani sex worker cohort remain HIV uninfected. Previous studies have shown that specific HLA class I and II alleles were associated with this natural immunity. In this study, we investigated the association of 3DL1/S1 and its epistatic interactions with HLA-I, with resistance or susceptibility to HIV-1 acquisition. METHODS We used a sequence-based typing method to genotype 3DL1/S1 of 641 women in this cohort. The association of 3DL1/S1 and its epistatic interactions with HLA-I were analyzed using SPSS statistics software. RESULTS 3DL1041 is enriched in the HIV-1-resistant women [P = 0.009, Pc = 0.0468, odds ratio (OR): 3.359, 95% confidence interval (CI): 1.39-8.32], whereas, 3DL1020 was associated with susceptibility to HIV-1 infection before correction for multiple comparisons (P = 0.029, Pc = 0.0858, OR: 0.316, 95%CI: 0.10-1.04). Epistatic interactions between several 3DL1 alleles and specific HLA-I alleles were observed. Among them the cocarriage of 3DL1041 with Bw4 (P = 1E - 05, Pc = 0.0015, OR: 13.33, 95%CI: 3.43-51.9), or Bw6 (P = 0.008, Pc = 0.272, OR: 3.92, 95%CI: 1.51-10.17), increased the odds of remaining HIV-1 uninfected. Further, 3DL1041+/Bw4+ women who entered the cohort HIV negative remained uninfected (P = 0.032, Pc = 0.0858). Cocarriage of 3DL101501 with C02 : 10 (P = 2.73E - 07, Pc = 7.0954E - 06), B15 : 03 (P = 3.21E - 04, Pc = 0.0042), A24 supertype (P = 8.89E - 04, Pc = 0.0077), or A23 : 01 (P = 0.0036, Pc = 0.0236) was associated with increased susceptibility to seroconversion. CONCLUSION The effects of interactions between 3DL1 and HLA-I alleles on resistance/susceptibility to HIV-1 infection suggest that innate immunity plays an important role in HIV-1 acquisition and should be studied and explored for HIV prevention.
Collapse
|
86
|
Wilk AJ, Blish CA. Diversification of human NK cells: Lessons from deep profiling. J Leukoc Biol 2018; 103:629-641. [PMID: 29350874 PMCID: PMC6133712 DOI: 10.1002/jlb.6ri0917-390r] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/06/2017] [Accepted: 12/29/2017] [Indexed: 12/14/2022] Open
Abstract
NK cells are innate lymphocytes with important roles in immunoregulation, immunosurveillance, and cytokine production. Originally defined on the functional basis of their "natural" ability to lyse tumor targets and thought to be a relatively homogeneous group of lymphocytes, NK cells possess a remarkable degree of phenotypic and functional diversity due to the combinatorial expression of an array of activating and inhibitory receptors. Diversification of NK cells is multifaceted: mechanisms of NK cell education that promote self-tolerance result in a heterogeneous repertoire that further diversifies upon encounters with viral pathogens. Here, we review the genetic, developmental, and environmental sources of NK cell diversity with a particular focus on deep profiling and single-cell technologies that will enable a more thorough and accurate dissection of this intricate and poorly understood lymphocyte lineage.
Collapse
Affiliation(s)
- Aaron J. Wilk
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Catherine A. Blish
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, and Stanford Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
87
|
Boudreau JE, Hsu KC. Natural killer cell education in human health and disease. Curr Opin Immunol 2018; 50:102-111. [PMID: 29413815 DOI: 10.1016/j.coi.2017.11.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/18/2017] [Indexed: 02/06/2023]
Abstract
Natural killer (NK) cells maintain immune homeostasis by detecting and eliminating damaged cells. Simultaneous activating and inhibitory input are integrated by NK cells, with the net signal prompting cytotoxicity and cytokine production, or inhibition. Chief among the inhibitory ligands for NK cells are 'self' human leukocyte antigen (HLA) molecules, which are sensed by killer immunoglobulin-like receptors (KIR). Through a process called 'education', the functional capabilities of each NK cell are counterbalanced by their sensitivity for inhibition by co-inherited 'self' HLA. HLA and their ligands, the killer immunoglobulin-like receptors (KIR), are encoded by polymorphic, polygenic gene loci that segregate independently, therefore, NK education and function differ even between related individuals. In this review, we describe how variation in NK education, reactivity and sensitivity for inhibition impacts reproductive success, infection, cancer, inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Jeanette E Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada; Department of Pathology, Dalhousie University, Halifax, Canada
| | - Katharine C Hsu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
88
|
Boudreau JE, Hsu KC. Natural Killer Cell Education and the Response to Infection and Cancer Therapy: Stay Tuned. Trends Immunol 2018; 39:222-239. [PMID: 29397297 DOI: 10.1016/j.it.2017.12.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/23/2017] [Accepted: 12/01/2017] [Indexed: 12/29/2022]
Abstract
The functional capacities of natural killer (NK) cells differ within and between individuals, reflecting considerable genetic variation. 'Licensing/arming', 'disarming', and 'tuning' are models that have been proposed to explain how interactions between MHC class I molecules and their cognate inhibitory receptors - Ly49 in mice and KIR in humans - 'educate' NK cells for variable reactivity and sensitivity to inhibition. In this review we discuss recent progress toward understanding the genetic, epigenetic, and molecular features that titrate NK effector function and inhibition, and the impact of variable NK cell education on human health and disease.
Collapse
Affiliation(s)
- Jeanette E Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada; Department of Pathology, Dalhousie University, Halifax, Canada.
| | - Katharine C Hsu
- Immunology Program and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
89
|
Pugh JL, Nemat-Gorgani N, Norman PJ, Guethlein LA, Parham P. Human NK Cells Downregulate Zap70 and Syk in Response to Prolonged Activation or DNA Damage. THE JOURNAL OF IMMUNOLOGY 2017; 200:1146-1158. [PMID: 29263215 DOI: 10.4049/jimmunol.1700542] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 11/15/2017] [Indexed: 01/28/2023]
Abstract
The extent of NK cell activity during the innate immune response affects downstream immune functions and, ultimately, the outcome of infectious or malignant disease. However, the mechanisms that terminate human NK cell responses have yet to be defined. When activation receptors expressed on NK cell surfaces bind to ligands on diseased cells, they initiate a signal that is propagated by a number of intracellular kinases, including Zap70 and Syk, eventually leading to NK cell activation. We assayed Zap70 and Syk content in NK cells from healthy human donors and identified a subset of NK cells with unusually low levels of these two kinases. We found that this Zap70lowSyklow subset consisted of NK cells expressing a range of surface markers, including CD56hi and CD56low NK cells. Upon in vitro stimulation with target cells, Zap70lowSyklow NK cells failed to produce IFN-γ and lysed target cells at one third the capacity of Zap70hiSykhi NK cells. We determined two independent in vitro conditions that induce the Zap70lowSyklow phenotype in NK cells: continuous stimulation with activation beads and DNA damage. The expression of inhibitory receptors, including NKG2A and inhibitory killer Ig-like receptors (KIRs), was negatively correlated with the Zap70lowSyklow phenotype. Moreover, expression of multiple KIRs reduced the likelihood of Zap70 downregulation during continuous activation, regardless of whether NK cells had been educated through KIR-HLA interactions in vivo. Our findings show that human NK cells are able to terminate their functional activity without the aid of other immune cells through the downregulation of activation kinases.
Collapse
Affiliation(s)
- Jason L Pugh
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; and.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; and.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Paul J Norman
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; and.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Lisbeth A Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; and.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; and .,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
90
|
Hölzemer A, Garcia-Beltran WF, Altfeld M. Natural Killer Cell Interactions with Classical and Non-Classical Human Leukocyte Antigen Class I in HIV-1 Infection. Front Immunol 2017; 8:1496. [PMID: 29184550 PMCID: PMC5694438 DOI: 10.3389/fimmu.2017.01496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022] Open
Abstract
Natural killer (NK) cells are effector lymphocytes of the innate immune system that are able to mount a multifaceted antiviral response within hours following infection. This is achieved through an array of cell surface receptors surveilling host cells for alterations in human leukocyte antigen class I (HLA-I) expression and other ligands as signs of viral infection, malignant transformation, and cellular stress. This interaction between HLA-I ligands and NK-cell receptor is not only important for recognition of diseased cells but also mediates tuning of NK-cell-effector functions. HIV-1 alters the expression of HLA-I ligands on infected cells, rendering them susceptible to NK cell-mediated killing. However, over the past years, various HIV-1 evasion strategies have been discovered to target NK-cell-receptor ligands and allow the virus to escape from NK cell-mediated immunity. While studies have been mainly focusing on the role of polymorphic HLA-A, -B, and -C molecules, less is known about how HIV-1 affects the more conserved, non-classical HLA-I molecules HLA-E, -G, and -F. In this review, we will focus on the recent progress in understanding the role of non-classical HLA-I ligands in NK cell-mediated recognition of HIV-1-infected cells.
Collapse
Affiliation(s)
- Angelique Hölzemer
- First Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | | | - Marcus Altfeld
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
91
|
Thöns C, Senff T, Hydes TJ, Manser AR, Heinemann FM, Heinold A, Heilmann M, Kim AY, Uhrberg M, Scherbaum N, Lauer GM, Khakoo SI, Timm J. HLA-Bw4 80(T) and multiple HLA-Bw4 copies combined with KIR3DL1 associate with spontaneous clearance of HCV infection in people who inject drugs. J Hepatol 2017; 67:462-470. [PMID: 28412292 DOI: 10.1016/j.jhep.2017.03.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/16/2017] [Accepted: 03/31/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Natural killer (NK) cell function is regulated by inhibitory and activating receptors including killer cell immunoglobulin-like receptors (KIRs). Here, we analyzed the impact of different KIR/KIR-ligand genotypes on the outcome of hepatitis C virus (HCV) infection in people who inject drugs (PWID). METHODS KIR/KIR-ligand genotypes associated with spontaneous clearance of HCV infection were identified in a cohort of PWID from Germany (n=266) and further validated in a second anti-HCV positive cohort of PWID recruited in North America (n=342). NK cells of PWID and healthy donors were functionally characterized according to their KIR/KIR-ligand genotype by flow cytometry. RESULTS Multivariate logistic regression analysis revealed that KIR3DL1/HLA-Bw4 80(T) was associated with spontaneous clearance of HCV infection in PWID, which was confirmed in the PWID cohort from North America. Compared with PWID with detectable HCV RNA, the frequency of individuals with multiple HLA-Bw4 alleles was significantly higher in anti-HCV positive PWID with resolved HCV infection (29.7% vs. 15.2%; p=0.0229) and in anti-HCV seronegative PWID (39.2%; p=0.0006). KIR3DL1+ NK cells from HLA-Bw4 80(T)-positive PWID showed superior functionality compared to HLA-Bw4 80(I)-positive PWID. This differential impact was not observed in healthy donors; however, the HLA-Bw4 copy number strongly correlated with the functionality of KIR3DL1+ NK cells. CONCLUSIONS HLA-Bw4-80(T) and multiple HLA-Bw4 copies in combination with KIR3DL1 are associated with protection against chronic hepatitis C in PWID by distinct mechanisms. Better licensing of KIR3DL1+ NK cells in the presence of multiple HLA-Bw4 copies is beneficial prior to seroconversion whereas HLA-Bw4 80(T) may be beneficial during acute hepatitis C. Lay summary: Natural killer (NK) cells are part of the innate immune system and are regulated by a complex network of activating and inhibiting receptors. The regulating receptor-ligand pairs of an individual are genetically determined. Here, we identified a particular set of ligand and receptor genes that are associated with better functionality of NK cells and better outcome upon exposure to HCV in a high-risk group.
Collapse
Affiliation(s)
- Christine Thöns
- Institute for Virology, Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
| | - Tina Senff
- Institute for Virology, Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
| | - Theresa J Hydes
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | - Angela R Manser
- Institute for Transplantation Diagnostics and Cell Therapeutics, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Falko M Heinemann
- Institute for Transfusion Medicine, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Andreas Heinold
- Institute for Transfusion Medicine, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Martin Heilmann
- Department for Addiction Medicine and Addictive Behavior, LVR-Hospital Essen, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Arthur Y Kim
- Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Norbert Scherbaum
- Department for Addiction Medicine and Addictive Behavior, LVR-Hospital Essen, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Georg M Lauer
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Salim I Khakoo
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | - Jörg Timm
- Institute for Virology, Heinrich Heine University, Medical Faculty, Düsseldorf, Germany.
| |
Collapse
|
92
|
Memory responses of natural killer cells. Semin Immunol 2017; 31:11-19. [PMID: 28863960 DOI: 10.1016/j.smim.2017.08.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 12/20/2022]
Abstract
Natural killer (NK) cells have traditionally been classified as a cellular component of the innate immune system, given their ability to rapidly produce effector cytokines and kill infected or transformed cells without prior exposure. More recently, NK cells have been shown to possess features of adaptive immunity such as clonal expansion, longevity, and robust recall responses. NK cell memory can be broadly divided into two categories: antigen-specific and antigen-independent. In the first case, exposure to certain viral or hapten stimuli endows NK cells with antigen-specific immunological memory, similar to T and B cells. In the second case, exposure of NK cells to specific cytokine milieus can imprint long-lasting changes on effector functions, resulting in antigen-independent memory-like NK cells. In this review, we discuss the various conditions that promote generation of these two categories of memory NK cells, and the mechanistic requirements underlying these processes.
Collapse
|
93
|
Bernard NF, Kiani Z, Tremblay-McLean A, Kant SA, Leeks CE, Dupuy FP. Natural Killer (NK) Cell Education Differentially Influences HIV Antibody-Dependent NK Cell Activation and Antibody-Dependent Cellular Cytotoxicity. Front Immunol 2017; 8:1033. [PMID: 28883824 PMCID: PMC5574056 DOI: 10.3389/fimmu.2017.01033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/10/2017] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy using broadly neutralizing antibodies (bNAbs) endowed with Fc-mediated effector functions has been shown to be critical for protecting or controlling viral replication in animal models. In human, the RV144 Thai trial was the first trial to demonstrate a significant protection against HIV infection following vaccination. Analysis of the correlates of immune protection in this trial identified an association between the presence of antibody-dependent cellular cytotoxicity (ADCC) mediated by immunoglobulin G (IgG) antibodies (Abs) to HIV envelope (Env) V1/V2 loop structures and protection from infection, provided IgA Abs with competing specificity were not present. Systems serology analyses implicated a broader range of Ab-dependent functions in protection from HIV infection, including but not limited to ADCC and Ab-dependent NK cell activation (ADNKA) for secretion of IFN-γ and CCL4 and expression of the degranulation marker CD107a. The existence of such correlations in the absence of bNAbs in the RV144 trial suggest that NK cells could be instrumental in protecting against HIV infection by limiting viral spread through Fc-mediated functions such as ADCC and the production of antiviral cytokines/chemokines. Beside the engagement of FcγRIIIa or CD16 by the Fc portion of anti-Env IgG1 and IgG3 Abs, natural killer (NK) cells are also able to directly kill infected cells and produce cytokines/chemokines in an Ab-independent manner. Responsiveness of NK cells depends on the integration of activating and inhibitory signals through NK receptors, which is determined by a process during their development known as education. NK cell education requires the engagement of inhibitory NK receptors by their human leukocyte antigen ligands to establish tolerance to self while allowing NK cells to respond to self cells altered by virus infection, transformation, stress, and to allogeneic cells. Here, we review recent findings regarding the impact of inter-individual differences in NK cell education on Ab-dependent functions such as ADCC and ADNKA, including what is known about the HIV Env epitope specificity of ADCC competent Abs and the conformation of HIV Env on target cells used for ADCC assays.
Collapse
Affiliation(s)
- Nicole F Bernard
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,Division of Clinical Immunology, McGill University Health Centre, Montreal, QC, Canada
| | - Zahra Kiani
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Alexandra Tremblay-McLean
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Sanket A Kant
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Christopher E Leeks
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Franck P Dupuy
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
94
|
Crux NB, Elahi S. Human Leukocyte Antigen (HLA) and Immune Regulation: How Do Classical and Non-Classical HLA Alleles Modulate Immune Response to Human Immunodeficiency Virus and Hepatitis C Virus Infections? Front Immunol 2017; 8:832. [PMID: 28769934 PMCID: PMC5513977 DOI: 10.3389/fimmu.2017.00832] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/30/2017] [Indexed: 12/13/2022] Open
Abstract
The genetic factors associated with susceptibility or resistance to viral infections are likely to involve a sophisticated array of immune response. These genetic elements may modulate other biological factors that account for significant influence on the gene expression and/or protein function in the host. Among them, the role of the major histocompatibility complex in viral pathogenesis in particular human immunodeficiency virus (HIV) and hepatitis C virus (HCV), is very well documented. We, recently, added a novel insight into the field by identifying the molecular mechanism associated with the protective role of human leukocyte antigen (HLA)-B27/B57 CD8+ T cells in the context of HIV-1 infection and why these alleles act as a double-edged sword protecting against viral infections but predisposing the host to autoimmune diseases. The focus of this review will be reexamining the role of classical and non-classical HLA alleles, including class Ia (HLA-A, -B, -C), class Ib (HLA-E, -F, -G, -H), and class II (HLA-DR, -DQ, -DM, and -DP) in immune regulation and viral pathogenesis (e.g., HIV and HCV). To our knowledge, this is the very first review of its kind to comprehensively analyze the role of these molecules in immune regulation associated with chronic viral infections.
Collapse
Affiliation(s)
- Nicole B. Crux
- Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta, Edmonton, AB, Canada
- Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta, Edmonton, AB, Canada
- Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
95
|
Körner C, Simoneau CR, Schommers P, Granoff M, Ziegler M, Hölzemer A, Lunemann S, Chukwukelu J, Corleis B, Naranbhai V, Kwon DS, Scully EP, Jost S, Kirchhoff F, Carrington M, Altfeld M. HIV-1-Mediated Downmodulation of HLA-C Impacts Target Cell Recognition and Antiviral Activity of NK Cells. Cell Host Microbe 2017; 22:111-119.e4. [PMID: 28704647 PMCID: PMC5565794 DOI: 10.1016/j.chom.2017.06.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/03/2017] [Accepted: 06/16/2017] [Indexed: 11/24/2022]
Abstract
It was widely accepted that HIV-1 downregulates HLA-A/B to avoid CTL recognition while leaving HLA-C unaltered in order to prevent NK cell activation by engaging inhibitory NK cell receptors, but it was recently observed that most primary isolates of HIV-1 can mediate HLA-C downmodulation. Now we report that HIV-1-mediated downmodulation of HLA-C was associated with reduced binding to its respective inhibitory receptors. Despite this, HLA-C-licensed NK cells displayed reduced antiviral activity compared to their unlicensed counterparts, potentially due to residual binding to the respective inhibitory receptors. Nevertheless, NK cells were able to sense alterations of HLA-C expression demonstrated by increased antiviral activity when exposed to viral strains with differential abilities to downmodulate HLA-C. These results suggest that the capability of HLA-C-licensed NK cells to control HIV-1 replication is determined by the strength of KIR/HLA-C interactions and is thus dependent on both host genetics and the extent of virus-mediated HLA-C downregulation.
Collapse
Affiliation(s)
- Christian Körner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Department of Virus Immunology, 20251 Hamburg, Germany.
| | | | - Philipp Schommers
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Department of Virus Immunology, 20251 Hamburg, Germany; Department I of Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany; German Center for Infection Research (DZIF), Cologne, Germany
| | - Mitchell Granoff
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Maja Ziegler
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Department of Virus Immunology, 20251 Hamburg, Germany
| | - Angelique Hölzemer
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Department of Virus Immunology, 20251 Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg, Germany; I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sebastian Lunemann
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Department of Virus Immunology, 20251 Hamburg, Germany
| | - Janet Chukwukelu
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Department of Virus Immunology, 20251 Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg, Germany
| | - Björn Corleis
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Vivek Naranbhai
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Douglas S Kwon
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Eileen P Scully
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stephanie Jost
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Mary Carrington
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Marcus Altfeld
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Department of Virus Immunology, 20251 Hamburg, Germany
| |
Collapse
|
96
|
Boudreau JE, Giglio F, Gooley TA, Stevenson PA, Le Luduec JB, Shaffer BC, Rajalingam R, Hou L, Hurley CK, Noreen H, Reed EF, Yu N, Vierra-Green C, Haagenson M, Malkki M, Petersdorf EW, Spellman S, Hsu KC. KIR3DL1/HLA-B Subtypes Govern Acute Myelogenous Leukemia Relapse After Hematopoietic Cell Transplantation. J Clin Oncol 2017; 35:2268-2278. [PMID: 28520526 PMCID: PMC5501362 DOI: 10.1200/jco.2016.70.7059] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose Disease relapse remains a major challenge to successful outcomes in patients who undergo allogeneic hematopoietic cell transplantation (HCT). Donor natural killer (NK) cell alloreactivity in HCT can control leukemic relapse, but capturing alloreactivity in HLA-matched HCT has been elusive. HLA expression on leukemia cells-upregulated in the post-HCT environment-signals for NK cell inhibition via inhibitory killer immunoglobulin-like (KIR) receptors and interrupts their antitumor activity. We hypothesized that varied strengths of inhibition among subtypes of the ubiquitous KIR3DL1 and its cognate ligand, HLA-B, would titrate NK reactivity against acute myelogenous leukemia (AML). Patients and Methods By using an algorithm that was based on polymorphism-driven expression levels and specificities, we predicted and tested inhibitory and cytotoxic NK potential on the basis of KIR3DL1/HLA-B subtype combinations in vitro and evaluated their impact in 1,328 patients with AML who underwent HCT from 9/10 or 10/10 HLA-matched unrelated donors. Results Segregated by KIR3DL1 subtype, NK cells demonstrated reproducible patterns of strong, weak, or noninhibition by target cells with defined HLA-B subtypes, which translated into discrete cytotoxic hierarchies against AML. In patients, KIR3DL1 and HLA-B subtype combinations that were predictive of weak inhibition or noninhibition were associated with significantly lower relapse (hazard ratio [HR], 0.72; P = .004) and overall mortality (HR, 0.84; P = .030) compared with strong inhibition combinations. The greatest effects were evident in the high-risk group of patients with all KIR ligands (relapse: HR, 0.54; P < .001; and mortality: HR, 0.74; P < .008). Beneficial effects of weak and noninhibiting KIR3DL1 and HLA-B subtype combinations were separate from and additive to the benefit of donor activating KIR2DS1. Conclusion Consideration of KIR3DL1-mediated inhibition in donor selection for HLA-matched HCT may achieve superior graft versus leukemia effects, lower risk for relapse, and an increase in survival among patients with AML.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Alleles
- Cell Line
- Child
- Child, Preschool
- Cytotoxicity Tests, Immunologic
- Female
- Genetic Variation
- Genotype
- HLA-B Antigens/genetics
- HLA-B Antigens/immunology
- Hematopoietic Stem Cell Transplantation
- Humans
- Infant
- Infant, Newborn
- Killer Cells, Natural/immunology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Male
- Middle Aged
- Receptors, KIR/genetics
- Receptors, KIR/immunology
- Receptors, KIR3DL1/genetics
- Receptors, KIR3DL1/immunology
- Recurrence
- Survival Rate
- Transplantation, Homologous
- Young Adult
Collapse
Affiliation(s)
- Jeanette E. Boudreau
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Fabio Giglio
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Ted A. Gooley
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Philip A. Stevenson
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Jean-Benoît Le Luduec
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Brian C. Shaffer
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Raja Rajalingam
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Lihua Hou
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Carolyn Katovich Hurley
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Harriet Noreen
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Elaine F. Reed
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Neng Yu
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Cynthia Vierra-Green
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Michael Haagenson
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Mari Malkki
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Effie W. Petersdorf
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Stephen Spellman
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Katharine C. Hsu
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| |
Collapse
|
97
|
Ries M, Reynolds MR, Bashkueva K, Crosno K, Capuano S, Prall TM, Wiseman R, O’Connor DH, Rakasz EG, Uno H, Lifson JD, Evans DT. KIR3DL01 upregulation on gut natural killer cells in response to SIV infection of KIR- and MHC class I-defined rhesus macaques. PLoS Pathog 2017; 13:e1006506. [PMID: 28708886 PMCID: PMC5529027 DOI: 10.1371/journal.ppat.1006506] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/26/2017] [Accepted: 07/02/2017] [Indexed: 01/29/2023] Open
Abstract
Natural killer cells provide an important early defense against viral pathogens and are regulated in part by interactions between highly polymorphic killer-cell immunoglobulin-like receptors (KIRs) on NK cells and their MHC class I ligands on target cells. We previously identified MHC class I ligands for two rhesus macaque KIRs: KIR3DL01 recognizes Mamu-Bw4 molecules and KIR3DL05 recognizes Mamu-A1*002. To determine how these interactions influence NK cell responses, we infected KIR3DL01+ and KIR3DL05+ macaques with and without defined ligands for these receptors with SIVmac239, and monitored NK cell responses in peripheral blood and lymphoid tissues. NK cell responses in blood were broadly stimulated, as indicated by rapid increases in the CD16+ population during acute infection and sustained increases in the CD16+ and CD16-CD56- populations during chronic infection. Markers of proliferation (Ki-67), activation (CD69 & HLA-DR) and antiviral activity (CD107a & TNFα) were also widely expressed, but began to diverge during chronic infection, as reflected by sustained CD107a and TNFα upregulation by KIR3DL01+, but not by KIR3DL05+ NK cells. Significant increases in the frequency of KIR3DL01+ (but not KIR3DL05+) NK cells were also observed in tissues, particularly in the gut-associated lymphoid tissues, where this receptor was preferentially upregulated on CD56+ and CD16-CD56- subsets. These results reveal broad NK cell activation and dynamic changes in the phenotypic properties of NK cells in response to SIV infection, including the enrichment of KIR3DL01+ NK cells in tissues that support high levels of virus replication.
Collapse
Affiliation(s)
- Moritz Ries
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Matthew R. Reynolds
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ksenia Bashkueva
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kristin Crosno
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Trent M. Prall
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Roger Wiseman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hajime Uno
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
98
|
Maniangou B, Legrand N, Alizadeh M, Guyet U, Willem C, David G, Charpentier E, Walencik A, Retière C, Gagne K. Killer Immunoglobulin-Like Receptor Allele Determination Using Next-Generation Sequencing Technology. Front Immunol 2017; 8:547. [PMID: 28579987 PMCID: PMC5437120 DOI: 10.3389/fimmu.2017.00547] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/24/2017] [Indexed: 02/05/2023] Open
Abstract
The impact of natural killer (NK) cell alloreactivity on hematopoietic stem cell transplantation (HSCT) outcome is still debated due to the complexity of graft parameters, HLA class I environment, the nature of killer cell immunoglobulin-like receptor (KIR)/KIR ligand genetic combinations studied, and KIR+ NK cell repertoire size. KIR genes are known to be polymorphic in terms of gene content, copy number variation, and number of alleles. These allelic polymorphisms may impact both the phenotype and function of KIR+ NK cells. We, therefore, speculate that polymorphisms may alter donor KIR+ NK cell phenotype/function thus modulating post-HSCT KIR+ NK cell alloreactivity. To investigate KIR allele polymorphisms of all KIR genes, we developed a next-generation sequencing (NGS) technology on a MiSeq platform. To ensure the reliability and specificity of our method, genomic DNA from well-characterized cell lines were used; high-resolution KIR typing results obtained were then compared to those previously reported. Two different bioinformatic pipelines were used allowing the attribution of sequencing reads to specific KIR genes and the assignment of KIR alleles for each KIR gene. Our results demonstrated successful long-range KIR gene amplifications of all reference samples using intergenic KIR primers. The alignment of reads to the human genome reference (hg19) using BiRD pipeline or visualization of data using Profiler software demonstrated that all KIR genes were completely sequenced with a sufficient read depth (mean 317× for all loci) and a high percentage of mapping (mean 93% for all loci). Comparison of high-resolution KIR typing obtained to those published data using exome capture resulted in a reported concordance rate of 95% for centromeric and telomeric KIR genes. Overall, our results suggest that NGS can be used to investigate the broad KIR allelic polymorphism. Hence, these data improve our knowledge, not only on KIR+ NK cell alloreactivity in HSCT but also on the role of KIR+ NK cell populations in control of viral infections and diseases.
Collapse
Affiliation(s)
- Bercelin Maniangou
- Etablissement Français du Sang Pays de la Loire, Nantes, France.,CRCINA, INSERM U1232 CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Nolwenn Legrand
- Etablissement Français du Sang Pays de la Loire, Nantes, France.,CRCINA, INSERM U1232 CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Mehdi Alizadeh
- Laboratoire de Recherche et Développement, EFS Rennes, Rennes, France
| | - Ulysse Guyet
- L'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Catherine Willem
- Etablissement Français du Sang Pays de la Loire, Nantes, France.,CRCINA, INSERM U1232 CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Gaëlle David
- Etablissement Français du Sang Pays de la Loire, Nantes, France.,CRCINA, INSERM U1232 CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | | | | | - Christelle Retière
- Etablissement Français du Sang Pays de la Loire, Nantes, France.,CRCINA, INSERM U1232 CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Katia Gagne
- Etablissement Français du Sang Pays de la Loire, Nantes, France.,CRCINA, INSERM U1232 CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Laboratoire d'Histocompatibilité, EFS Nantes, Nantes, France.,LabeX Transplantex, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
99
|
Ramsuran V, Hernández-Sanchez PG, O'hUigin C, Sharma G, Spence N, Augusto DG, Gao X, García-Sepúlveda CA, Kaur G, Mehra NK, Carrington M. Sequence and Phylogenetic Analysis of the Untranslated Promoter Regions for HLA Class I Genes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:2320-2329. [PMID: 28148735 PMCID: PMC5340644 DOI: 10.4049/jimmunol.1601679] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/02/2017] [Indexed: 01/09/2023]
Abstract
Polymorphisms located within the MHC have been linked to many disease outcomes by mechanisms not yet fully understood in most cases. Variants located within untranslated regions of HLA genes are involved in allele-specific expression and may therefore underlie some of these disease associations. We determined sequences extending nearly 2 kb upstream of the transcription start site for 68 alleles from 57 major lineages of classical HLA class I genes. The nucleotide diversity within this promoter segment roughly follows that seen within the coding regions, with HLA-B showing the highest (∼1.9%), followed by HLA-A (∼1.8%), and HLA-C showing the lowest diversity (∼0.9%). Despite its greater diversity, HLA-B mRNA expression levels determined in 178 European Americans do not vary in an allele- or lineage-specific manner, unlike the differential expression levels of HLA-A or HLA-C reported previously. Close proximity of promoter sequences in phylogenetic trees is roughly reflected by similarity of expression pattern for most HLA-A and -C loci. Although promoter sequence divergence might impact promoter activity, we observed no clear link between the phylogenetic structures as represented by pairwise nucleotide differences in the promoter regions with estimated differences in mRNA expression levels for the classical class I loci. Further, no pair of class I loci showed coordinated expression levels, suggesting that distinct mechanisms across loci determine their expression level under nonstimulated conditions. These data serve as a foundation for more in-depth analysis of the functional consequences of promoter region variation within the classical HLA class I loci.
Collapse
Affiliation(s)
- Veron Ramsuran
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| | - Pedro G Hernández-Sanchez
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
- Laboratorio de Genómica Viral y Humana, Facultad de Medicina de la Universidad Autónoma de San Luis Potosi, 78210 San Luis Potosi, Mexico
| | - Colm O'hUigin
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Gaurav Sharma
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 110029, India
- Laboratory Oncology, Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India; and
| | - Niamh Spence
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
- Laboratory Oncology, Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India; and
| | - Danillo G Augusto
- Laboratório de Genética Molecular Humana, Departamento de Genética, Universidade Federal do Paraná, Curitiba, CEP 81531-980, Brazil
| | - Xiaojiang Gao
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Christian A García-Sepúlveda
- Laboratorio de Genómica Viral y Humana, Facultad de Medicina de la Universidad Autónoma de San Luis Potosi, 78210 San Luis Potosi, Mexico
| | - Gurvinder Kaur
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Narinder K Mehra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mary Carrington
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702;
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| |
Collapse
|
100
|
Béziat V, Hilton HG, Norman PJ, Traherne JA. Deciphering the killer-cell immunoglobulin-like receptor system at super-resolution for natural killer and T-cell biology. Immunology 2016; 150:248-264. [PMID: 27779741 PMCID: PMC5290243 DOI: 10.1111/imm.12684] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 12/13/2022] Open
Abstract
Killer-cell immunoglobulin-like receptors (KIRs) are components of two fundamental biological systems essential for human health and survival. First, they contribute to host immune responses, both innate and adaptive, through their expression by natural killer cells and T cells. Second, KIR play a key role in regulating placentation, and hence reproductive success. Analogous to the diversity of their human leucocyte antigen class I ligands, KIR are extremely polymorphic. In this review, we describe recent developments, fuelled by methodological advances, that are helping to decipher the KIR system in terms of haplotypes, polymorphisms, expression patterns and their ligand interactions. These developments are delivering deeper insight into the relevance of KIR in immune system function, evolution and disease.
Collapse
Affiliation(s)
- Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Hugo G Hilton
- Departments of Structural Biology and Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | - Paul J Norman
- Departments of Structural Biology and Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | | |
Collapse
|