51
|
Azmi F, Ahmad Fuaad AAH, Giddam AK, Batzloff MR, Good MF, Skwarczynski M, Toth I. Self-adjuvanting vaccine against group A streptococcus: application of fibrillized peptide and immunostimulatory lipid as adjuvant. Bioorg Med Chem 2014; 22:6401-8. [PMID: 25438764 DOI: 10.1016/j.bmc.2014.09.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/16/2014] [Accepted: 09/20/2014] [Indexed: 01/08/2023]
Abstract
Peptides are of great interest to be used as vaccine antigens due to their safety, ease of manufacturing and specificity in generating immune response. There have been massive discoveries of peptide antigens over the past decade. However, peptides alone are poorly immunogenic, which demand co-administration with strong adjuvant to enhance their immunogenicity. Recently, fibril-forming peptides such as Q11 and lipoamino acid-based carrier have been identified to induce substantial immune responses when covalently linked to peptide epitope. In this study, we have incorporated either Q11 or lipoamino acids to a peptide epitope (J14) derived from M protein of group A streptococcus to develop self-adjuvanting vaccines. J14, Q11 and lipoamino acids were also conjugated together in a single vaccine construct in an attempt to evaluate the synergy effect of combining multiple adjuvants. Physicochemical characterization demonstrated that the vaccine constructs folded differently and self-assembled into nanoparticles. Significantly, only vaccine constructs containing double copies of lipoamino acids (regardless in conjugation with Q11 or not) were capable to induce significant dendritic cells uptake and subsequent J14-specific antibody responses in non-sizes dependent manners. Q11 had minimal impact in enhancing the immunogenicity of J14 even when it was used in combination with lipoamino acids. These findings highlight the impact of lipoamino acids moiety as a promising immunostimulant carrier and its number of attachment to peptide epitope was found to have a profound effect on the vaccine immunogenicity.
Collapse
Affiliation(s)
- Fazren Azmi
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, St Lucia, Queensland 4072, Australia; Faculty of Pharmacy, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Abdullah Al Hadi Ahmad Fuaad
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, St Lucia, Queensland 4072, Australia
| | - Ashwini Kumar Giddam
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, St Lucia, Queensland 4072, Australia
| | - Michael R Batzloff
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Michael F Good
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, St Lucia, Queensland 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
52
|
Goodwin D, Simerska P, Chang CH, Mansfeld FM, Varamini P, D’Occhio MJ, Toth I. Active immunisation of mice with GnRH lipopeptide vaccine candidates: Importance of T helper or multi-dimer GnRH epitope. Bioorg Med Chem 2014; 22:4848-54. [DOI: 10.1016/j.bmc.2014.06.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/13/2014] [Accepted: 06/23/2014] [Indexed: 10/25/2022]
|
53
|
Targeting TLR2 for vaccine development. J Immunol Res 2014; 2014:619410. [PMID: 25057505 PMCID: PMC4098989 DOI: 10.1155/2014/619410] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/16/2014] [Accepted: 06/04/2014] [Indexed: 02/07/2023] Open
Abstract
Novel and more effective immunization strategies against many animal diseases may profit from the current knowledge on the modulation of specific immunity through stimulation of innate immune receptors. Toll-like receptor (TLR)2-targeting formulations, such as synthetic lipopeptides and antigens expressed in fusion with lipoproteins, have been shown to have built-in adjuvant properties and to be effective at inducing cellular and humoral immune mechanisms in different animal species. However, contradictory data has arisen concerning the profile of the immune response elicited. The benefits of targeting TLR2 for vaccine development are thus still debatable and more studies are needed to rationally explore its characteristics. Here, we resume the main features of TLR2 and TLR2-induced immune responses, focusing on what has been reported for veterinary animals.
Collapse
|
54
|
Moyle PM, Dai W, Zhang Y, Batzloff MR, Good MF, Toth I. Site-Specific Incorporation of Three Toll-Like Receptor 2 Targeting Adjuvants into Semisynthetic, Molecularly Defined Nanoparticles: Application to Group A Streptococcal Vaccines. Bioconjug Chem 2014; 25:965-78. [DOI: 10.1021/bc500108b] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Peter M. Moyle
- School
of Pharmacy, The University of Queensland, Woolloongabba 4102, Queensland, Australia
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Queensland, Australia
| | - Wei Dai
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Queensland, Australia
| | - Yingkai Zhang
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Queensland, Australia
| | - Michael R. Batzloff
- Institute
for Glycomics, Griffith University, Southport 4222, Queensland, Australia
| | - Michael F. Good
- Institute
for Glycomics, Griffith University, Southport 4222, Queensland, Australia
| | - Istvan Toth
- School
of Pharmacy, The University of Queensland, Woolloongabba 4102, Queensland, Australia
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Queensland, Australia
| |
Collapse
|
55
|
Mifsud EJ, Tan ACL, Jackson DC. TLR Agonists as Modulators of the Innate Immune Response and Their Potential as Agents Against Infectious Disease. Front Immunol 2014; 5:79. [PMID: 24624130 PMCID: PMC3939722 DOI: 10.3389/fimmu.2014.00079] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/13/2014] [Indexed: 12/28/2022] Open
Abstract
Immunotherapies that can either activate or suppress innate immune responses are being investigated as treatments against infectious diseases and the pathology they can cause. The objective of these therapies is to elicit protective immune responses thereby limiting the harm inflicted by the pathogen. The Toll-like receptor (TLR) signaling pathway plays critical roles in numerous host immune defenses and has been identified as an immunotherapeutic target against the consequences of infectious challenge. This review focuses on some of the recent advances being made in the development of TLR-ligands as potential prophylactic and/or therapeutic agents.
Collapse
Affiliation(s)
- Edin J. Mifsud
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Amabel C. L. Tan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - David C. Jackson
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
56
|
Liu H, Moynihan KD, Zheng Y, Szeto GL, Li AV, Huang B, Van Egeren DS, Park C, Irvine DJ. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 2014; 507:519-22. [PMID: 24531764 DOI: 10.1038/nature12978] [Citation(s) in RCA: 733] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 12/30/2013] [Indexed: 01/09/2023]
Abstract
In cancer patients, visual identification of sentinel lymph nodes (LNs) is achieved by the injection of dyes that bind avidly to endogenous albumin, targeting these compounds to LNs, where they are efficiently filtered by resident phagocytes. Here we translate this 'albumin hitchhiking' approach to molecular vaccines, through the synthesis of amphiphiles (amph-vaccines) comprising an antigen or adjuvant cargo linked to a lipophilic albumin-binding tail by a solubility-promoting polar polymer chain. Administration of structurally optimized CpG-DNA/peptide amph-vaccines in mice resulted in marked increases in LN accumulation and decreased systemic dissemination relative to their parent compounds, leading to 30-fold increases in T-cell priming and enhanced anti-tumour efficacy while greatly reducing systemic toxicity. Amph-vaccines provide a simple, broadly applicable strategy to simultaneously increase the potency and safety of subunit vaccines.
Collapse
Affiliation(s)
- Haipeng Liu
- 1] Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3] Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Kelly D Moynihan
- 1] Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yiran Zheng
- 1] Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Gregory L Szeto
- 1] Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Adrienne V Li
- 1] Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bonnie Huang
- 1] Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Debra S Van Egeren
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Clara Park
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Darrell J Irvine
- 1] Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3] Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [4] Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts 02139, USA [5] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
57
|
Sharmila S, Christiana I, Kiran P, Reddy MVR, Sankaran K, Kaliraj P. Bacterial lipid modification enhances immunoprophylaxis of filarial abundant larval transcript-2 protein in Mastomys model. Parasite Immunol 2014; 35:201-13. [PMID: 23495791 DOI: 10.1111/pim.12034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 02/11/2013] [Indexed: 11/29/2022]
Abstract
As in many other parasitic diseases, efficacious vaccine for lymphatic filariasis has been elusive for want of new approaches leaving billions of people either debilitated or at risk. With multiple B- and T-cell epitopes, the abundant larval transcript-2 (ALT-2) of the filarial worm, Brugia malayi, has been shown to be a promising immunoprophylactic target. To enhance its efficacy, it was lipid modified using our recently developed protein engineering tool, which then offered 30% more immunoprotection (49 vs. 79%) in Mastomys coucha model. Sustained high levels of IFN-γ (about 100 times) and high antibody titres (10-fold) elicited by lipid-modified ALT-2, as compared to the native form, indicated the maintenance of Th1/Th2 balance that is impaired in filariasis. Thus, this study provides the basis for developing efficacious vaccines for filariasis and other parasitic diseases by exploiting bacterial lipid modification.
Collapse
Affiliation(s)
- S Sharmila
- Centre for Biotechnology, Anna University, Chennai, Tamilnadu, India
| | | | | | | | | | | |
Collapse
|
58
|
Kelesidis T. The Interplay between Daptomycin and the Immune System. Front Immunol 2014; 5:52. [PMID: 24575098 PMCID: PMC3921582 DOI: 10.3389/fimmu.2014.00052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/29/2014] [Indexed: 12/11/2022] Open
Abstract
Antibiotics may have bacteriostatic or bactericidal effects but may also cause immunomodulation. Lipopeptides are known immunomodulators that interact with pattern recognition receptors such as Toll-like receptors in antigen presenting cells. Daptomycin is a novel lipopeptide antibiotic with a lipid moiety and unique structure that in the presence of divalent ions may directly interact with lipid membrane phospholipids, the major component of lipid membranes in immune cells. Daptomycin may also penetrate immune cells including neutrophils and macrophages. However, the possible immunomodulatory effects of daptomycin remain unknown. Understanding these effects is important to determine whether this agent can provide protection against infectious challenge through multiple mechanisms. Preliminary studies suggest that daptomycin may have minimal effects on cytokine production and may have synergistic immunomodulatory effects in combination with other immunomodulators. This review focuses on the hypothesis that daptomycin may also have immunomodulatory effects but further studies are needed to investigate this hypothesis.
Collapse
Affiliation(s)
- Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California , Los Angeles, CA , USA
| |
Collapse
|
59
|
Baz A, Jackson DC, Kienzle N, Kelso A. Memory cytolytic T-lymphocytes: induction, regulation and implications for vaccine design. Expert Rev Vaccines 2014; 4:711-23. [PMID: 16221072 DOI: 10.1586/14760584.4.5.711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The design of vaccines that protect against intracellular infections or cancer remains a challenge. In many cases, immunity depends on the development of antigen-specific memory CD8+ T-cells that can express cytokines and kill antigen-bearing cells when they encounter the pathogen or tumor. Here, the authors review current understanding of the signals and cells that lead to memory CD8+ T-cell differentiation, the relationship between the primary CD8+ T-cell response and the memory response and the regulation of memory CD8+ T-cell survival and function. The implications of this new knowledge for vaccine design are discussed, and recent progress in the development of lipidated peptide vaccines as a promising approach for vaccination against intracellular infections and cancer is reviewed.
Collapse
Affiliation(s)
- Adriana Baz
- Cooperative Research Centre for Vaccine Technology, Queensland Institute of Medical Research, Brisbane, Australia.
| | | | | | | |
Collapse
|
60
|
Chua BY, Olson MR, Bedoui S, Sekiya T, Wong CY, Turner SJ, Jackson DC. The use of a TLR2 agonist-based adjuvant for enhancing effector and memory CD8 T-cell responses. Immunol Cell Biol 2014; 92:377-83. [PMID: 24394993 DOI: 10.1038/icb.2013.102] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 12/01/2013] [Accepted: 12/02/2013] [Indexed: 12/24/2022]
Abstract
We have previously shown that the immunogenicity of protein antigens can be significantly enhanced if electrostatically associated with the Toll-like receptor-2 agonist-based lipopeptide R4Pam2Cys. The precise mechanisms and effectiveness of the cytotoxic T-lymphocyte (CTL)-mediated response facilitated by this agonist, however, have not been studied. Here we show that priming by dendritic cells (DCs) in the draining lymph nodes of animals vaccinated with antigen delivered using R4Pam2Cys results in significantly improved T-cell proliferation and induces their differentiation into polyfunctional effector CTLs characterised by granzyme B expression and the ability to secrete interferon-γ, interleukin-2 and tumor necrosis factor-α 7 days after vaccination. After 30 days, frequencies of antigen-specific CD62(low)CD127(high) (effector memory), CD62(high)CD127(high) (central memory) and CD43(low)CD27(high) CD8(+) T cells, a phenotype associated with strong recall responses against respiratory infections, are also increased compared with responses obtained with antigens formulated in the adjuvants Alum (alhydrogel) and CFA (complete Freund's adjuvant). The phenotypic changes observed in these mice vaccinated using R4Pam2Cys further correlated with their ability to recall specific T cells into the lung to mediate the reduction of pulmonary viral titres following challenge with a chimeric influenza virus containing the K(b)OVA257-264 epitope compared with animals vaccinated using Alum or CFA. The findings from this study not only demonstrate that better T-cell responses can be elicited using R4Pam2Cys compared with classically utilised adjuvants but also highlight the potential effectiveness of this lipopeptide-based adjuvant particularly against viral infections that require resolution through cell-mediated immunity.
Collapse
Affiliation(s)
- Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Matthew R Olson
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Toshiki Sekiya
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Chinn Y Wong
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Stephen J Turner
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - David C Jackson
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
61
|
|
62
|
Azmi F, Ahmad Fuaad AAH, Skwarczynski M, Toth I. Recent progress in adjuvant discovery for peptide-based subunit vaccines. Hum Vaccin Immunother 2013; 10:778-96. [PMID: 24300669 DOI: 10.4161/hv.27332] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Peptide-based subunit vaccines are of great interest in modern immunotherapy as they are safe, easy to produce and well defined. However, peptide antigens produce a relatively weak immune response, and thus require the use of immunostimulants (adjuvants) for optimal efficacy. Developing a safe and effective adjuvant remains a challenge for peptide-based vaccine design. Recent advances in immunology have allowed researchers to have a better understanding of the immunological implication of related diseases, which facilitates more rational design of adjuvant systems. Understanding the molecular structure of the adjuvants allows the establishment of their structure-activity relationships which is useful for the development of next-generation adjuvants. This review summarizes the current state of adjuvants development in the field of synthetic peptide-based vaccines. The structural, chemical and biological properties of adjuvants associated with their immunomodulatory effects are discussed.
Collapse
Affiliation(s)
- Fazren Azmi
- School of Chemistry and Molecular Biosciences; The University of Queensland; Brisbane, QLD Australia; Faculty of Pharmacy; National University Malaysia; Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|
63
|
Zaman M, Toth I. Immunostimulation by synthetic lipopeptide-based vaccine candidates: structure-activity relationships. Front Immunol 2013; 4:318. [PMID: 24130558 PMCID: PMC3793171 DOI: 10.3389/fimmu.2013.00318] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/19/2013] [Indexed: 12/23/2022] Open
Abstract
Peptide-based vaccines offer several advantages over conventional whole organism or protein approaches by offering improved purity and specificity in inducing immune response. However, peptides alone are generally non-immunogenic. Concerns remain about the toxicity of adjuvants which are critical for immunogenicity of synthetic peptides. The use of lipopeptides in peptide vaccines is currently under intensive investigation because potent immune responses can be generated without the use of adjuvant (thus are self-adjuvanting). Several lipopeptides derived from microbial origin, and their synthetic versions or simpler fatty acid moieties impart this self-adjuvanting activity by signaling via Toll-like receptor 2 (TLR2). Engagement of this innate immune receptor on antigen-presenting cell leads to the initiation and development of potent immune responses. Therefore optimization of lipopeptides to enhance TLR2-mediated activation is a promising strategy for vaccine development. Considerable structure-activity relationships that determine TLR2 binding and consequent stimulation of innate immune responses have been investigated for a range of lipopeptides. In this mini review we address the development of lipopeptide vaccines, mechanism of TLR2 recognition, and immune activation. An overview is provided of the best studied lipopeptide vaccine systems.
Collapse
Affiliation(s)
- Mehfuz Zaman
- School of Chemistry and Molecular Biosciences, The University of Queensland , St Lucia, QLD , Australia
| | | |
Collapse
|
64
|
Gori A, Longhi R, Peri C, Colombo G. Peptides for immunological purposes: design, strategies and applications. Amino Acids 2013; 45:257-68. [DOI: 10.1007/s00726-013-1526-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 12/30/2022]
|
65
|
Sarkar S, Salyer ACD, Wall KA, Sucheck SJ. Synthesis and immunological evaluation of a MUC1 glycopeptide incorporated into l-rhamnose displaying liposomes. Bioconjug Chem 2013; 24:363-75. [PMID: 23444835 PMCID: PMC3623543 DOI: 10.1021/bc300422a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
MUC1 variable number tandem repeats (VNTRs) conjugated to tumor-associated carbohydrate antigens (TACAs) have been shown to break self-tolerance in humanized MUC1 transgenic mice. Therefore, we hypothesize that a MUC1 VNTR TACA-conjugate can be successfully formulated into a liposome-based anticancer vaccine. The immunogenicity of the vaccine should be further augmented by incorporating surface-displayed l-rhamnose (Rha) epitopes onto the liposomes to take advantage of a natural antibody-dependent antigen uptake mechanism. To validate our hypothesis, we synthesized a 20-amino-acid MUC1 glycopeptide containing a GalNAc-O-Thr (Tn) TACA by SPPS and conjugated it to a functionalized Toll-like receptor ligand (TLRL). An l-Rha-cholesterol conjugate was prepared using tetra(ethylene glycol) (TEG) as a linker. The liposome-based anticancer vaccine was formulated by the extrusion method using TLRL-MUC1-Tn conjugate, Rha-TEG-cholesterol, and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in a total lipid concentration of 30 mM. The stability, homogeneity, and size characterization of the liposomes was evaluated by SEM and DLS measurements. The formulated liposomes demonstrated positive binding with both anti-Rha and mouse anti-human MUC1 antibodies. Groups of female BALB/c mice were immunized and boosted with a rhamnose-Ficoll (Rha-Ficoll) conjugate formulated with alum as adjuvant to generate the appropriate concentration of anti-Rha antibodies in the mice. Anti-Rha antibody titers were >25-fold higher in the groups of mice immunized with the Rha-Ficoll conjugate than the nonimmunized control groups. The mice were then immunized with the TLRL-MUC1-Tn liposomal vaccine formulated either with or without the surface displaying Rha epitopes. Sera collected from the groups of mice initially immunized with Rha-Ficoll and later vaccinated with the Rha-displaying TLRL-MUC1-Tn liposomes showed a >8-fold increase in both anti-MUC1-Tn and anti-Tn antibody titers in comparison to the groups of mice that did not receive Rha-Ficoll. T-cells from BALB/c mice primed with a MUC1-Tn peptide demonstrated increased proliferation to the Rha-liposomal vaccine in the presence of antibodies isolated from Rha-Ficoll immunized mice compared to nonimmune mice, supporting the proposed effect on antigen presentation. The anti-MUC1-Tn antibodies in the vaccinated mice serum recognized MUC1 on human leukemia U266 cells. Because this vaccine uses separate rhamnose and antigenic epitope components, the vaccine can easily be targeted to different antigens or epitopes by changing the peptide without having to change the other components.
Collapse
Affiliation(s)
- Sourav Sarkar
- Department of Chemistry, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Alex C. D. Salyer
- Department of Medicinal and Biological Chemistry, The University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, Ohio 43614, United States
| | - Katherine A. Wall
- Department of Medicinal and Biological Chemistry, The University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, Ohio 43614, United States
| | - Steven J. Sucheck
- Department of Chemistry, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
66
|
Seshadri C, Turner MT, Lewinsohn DM, Moody DB, Van Rhijn I. Lipoproteins are major targets of the polyclonal human T cell response to Mycobacterium tuberculosis. THE JOURNAL OF IMMUNOLOGY 2012. [PMID: 23197260 DOI: 10.4049/jimmunol.1201667] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Most vaccines and basic studies of T cell epitopes in Mycobacterium tuberculosis emphasize water-soluble proteins that are secreted into the extracellular space and presented in the context of MHC class II. Much less is known about the role of Ags retained within the cell wall. We used polyclonal T cells from infected humans to probe for responses to immunodominant Ags in the M. tuberculosis cell wall. We found that the magnitude of response to secreted or cell wall intrinsic compounds was similar among healthy controls, patients with latent tuberculosis, and patients with active tuberculosis. Individual responses to secreted Ags and cell wall extract were strongly correlated (r(2) = 0.495, p = 0.001), suggesting that T cells responding to cell wall and secreted Ags are present at similar frequency. Surprisingly, T cell stimulatory factors intrinsic to the cell wall partition into organic solvents; however, these responses are not explained by CD1-mediated presentation of lipids. Instead, we find that molecules soluble in organic solvents are dependent upon MHC class II and recognized by IFN-γ-secreting CD4(+) T cells. We reasoned that MHC class II-dependent Ags extracting into lipid mixtures might be found among triacylated lipoproteins present in mycobacteria. We used M. tuberculosis lacking prolipoprotein signal peptidase A (lspA), an enzyme required for lipoprotein synthesis, to demonstrate loss of polyclonal T cell responses. Our results demonstrate the use of bacterial genetics to identify lipoproteins as an unexpected and immunodominant class of cell wall-associated Ags targeted by the polyclonal human T cell response to M. tuberculosis.
Collapse
Affiliation(s)
- Chetan Seshadri
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
67
|
The design and proof of concept for a CD8(+) T cell-based vaccine inducing cross-subtype protection against influenza A virus. Immunol Cell Biol 2012; 91:96-104. [PMID: 23146941 DOI: 10.1038/icb.2012.54] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this study, we examined the reactivity of human peripheral blood mononuclear cells to a panel of influenza A virus (IAV) CD8(+) T-cell epitopes that are recognised by the major human leukocyte antigen (HLA) groups represented in the human population. We examined the level of recognition in a sample of the human population and the potential coverage that could be achieved if these were incorporated into a T-cell epitope-based vaccine. We then designed a candidate influenza vaccine that incorporated three of the examined HLA-A2-restricted influenza epitopes into Pam2Cys-based lipopeptides. These lipopeptides do not require the addition of an adjuvant and can be delivered directly to the respiratory mucosa enabling the generation of local memory cell populations that are crucial for clearance of influenza. Intranasal administration of a mixture of three lipopeptides to HLA-A2 transgenic HHD mice elicited multiple CD8(+) T-cell specificities in the spleen and lung that closely mimicked the response generated following natural infection with influenza. These CD8(+) T cells were associated with viral reduction following H3N1 influenza virus challenge for as long as 3 months after lipopeptide administration. In addition, lipopeptides containing IAV-targeting epitopes conferred substantial benefit against death following infection with a virulent H1N1 strain. Because CD8(+) T cell epitopes are often derived from highly conserved regions of influenza viruses, such vaccines need not be reformulated annually and unlike current antibody-inducing vaccines could provide cross-protective immunity against newly emerging pandemic viruses.
Collapse
|
68
|
Wilkinson BL, Day S, Chapman R, Perrier S, Apostolopoulos V, Payne RJ. Synthesis and Immunological Evaluation of Self-Assembling and Self-Adjuvanting Tricomponent Glycopeptide Cancer-Vaccine Candidates. Chemistry 2012; 18:16540-8. [DOI: 10.1002/chem.201202629] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/04/2012] [Indexed: 12/31/2022]
|
69
|
Kirk K, Poh CL, Fecondo J, Pourianfar H, Shaw J, Grollo L. Cross-reactive neutralizing antibody epitopes against Enterovirus 71 identified by an in silico approach. Vaccine 2012; 30:7105-10. [PMID: 23022400 DOI: 10.1016/j.vaccine.2012.09.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 12/26/2022]
Abstract
Currently, infections of hand, foot and mouth disease (HFMD) due to Human Enterovirus 71 (EV71) cannot be prevented or treated, as there are no suitable vaccines or antiviral drugs. This study aimed to identify potential vaccine candidates for EV71 using in silico analysis of its viral capsid proteins. A combined in silico approach utilizing computational hidden Markov model (HMM), propensity scale algorithm, and artificial learning, identified three 15-mer structurally conserved B-cell epitope candidates lying within the EV71 capsid proteins. Peptide vaccine candidates incorporating a target B-cell epitope and a promiscuous T-cell epitope from the related polio virus were synthesized using solid-phase Fmoc chemistry. Inbred BALB/C mice which were inoculated with two 10μg doses of the synthetic peptide, generated anti-peptide antibodies. Purified IgG isolated from pooled sera of the inoculated mice neutralized EV71 infections in vitro. Furthermore, these neutralizing antibodies were cross-reactive against other members of the Picornaviridae family, demonstrating greater than 50% virus neutralization. This indicates that the current approach is promising for the development of synthetic peptide-based vaccine candidates against Picornaviridae. Development of effective vaccines is of paramount importance in managing the disease in the Asia Pacific regions where this virus is endemic and has significant social, economic and public health ramifications.
Collapse
Affiliation(s)
- K Kirk
- Environment and Biotechnology Centre, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | | | | | | | | | | |
Collapse
|
70
|
Tan ACL, Mifsud EJ, Zeng W, Edenborough K, McVernon J, Brown LE, Jackson DC. Intranasal administration of the TLR2 agonist Pam2Cys provides rapid protection against influenza in mice. Mol Pharm 2012; 9:2710-8. [PMID: 22823162 DOI: 10.1021/mp300257x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The protective role played by the innate immune system during early stages of infection suggests that compounds which stimulate innate responses could be used as antimicrobial or antiviral agents. In this study, we demonstrate that the Toll-like receptor-2 agonist Pam2Cys, when administered intranasally, triggers a cascade of inflammatory and innate immune signals, acting as an immunostimulant by attracting neutrophils and macrophages and inducing secretion of IL-2, IL-6, IL-10, IFN-γ, MCP-1 and TNF-α. These changes provide increased resistance against influenza A virus challenge and also reduce the potential for transmission of infection. Pam2Cys treatment also reduced weight loss and lethality associated with virulent influenza virus infection in a Toll-like receptor-2-dependent manner. Treatment did not affect the animals' ability to generate an adaptive immune response, measured by the induction of functional influenza A virus-specific CD8(+) T cells following exposure to virus. Because this compound demonstrates efficacy against distinct strains of influenza, it could be a candidate for development as an agent against influenza and possibly other respiratory pathogens.
Collapse
Affiliation(s)
- Amabel C L Tan
- Department of Microbiology & Immunology, The University of Melbourne, Parkville 3010, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
The vast majority of human pathogens colonize and invade at the mucosal surfaces. Preventing infection at these sites via mucosally active vaccines is a promising and rational approach for vaccine development. However, it is only recently that the stimulation of local immunity at the mucosal surfaces has become a primary objective in addition to inducing systemic immunity. This review describes vaccine formulations designed for mucosal delivery to the nasal-associated lymphoid tissue, via intranasal administration. The association of antigens with mucosal adjuvants and delivery systems is emphasised.
Collapse
Affiliation(s)
- Mehfuz Zaman
- School of Chemistry and Molecular Biosciences (SCMB), The University of Queensland, St. Lucia, 4072 QLD Australia
| | - Saranya Chandrudu
- School of Chemistry and Molecular Biosciences (SCMB), The University of Queensland, St. Lucia, 4072 QLD Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences (SCMB), The University of Queensland, St. Lucia, 4072 QLD Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD Australia
| |
Collapse
|
72
|
A totally synthetic lipopeptide-based self-adjuvanting vaccine induces neutralizing antibodies against heat-stable enterotoxin from enterotoxigenic Escherichia coli. Vaccine 2012; 30:4800-6. [DOI: 10.1016/j.vaccine.2012.05.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/27/2012] [Accepted: 05/11/2012] [Indexed: 11/20/2022]
|
73
|
Overview and outlook of Toll-like receptor ligand–antigen conjugate vaccines. Ther Deliv 2012; 3:749-60. [DOI: 10.4155/tde.12.52] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
74
|
Tan ACL, Eriksson EMY, Kedzierska K, Deliyannis G, Valkenburg SA, Zeng W, Jackson DC. Polyfunctional CD8(+) T cells are associated with the vaccination-induced control of a novel recombinant influenza virus expressing an HCV epitope. Antiviral Res 2012; 94:168-78. [PMID: 22504097 DOI: 10.1016/j.antiviral.2012.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 03/20/2012] [Accepted: 03/27/2012] [Indexed: 01/26/2023]
Abstract
In hepatitis C virus (HCV) infection, CD8(+) T cell responses have been shown to be important in viral clearance. Examining the efficacy of CD8(+) T cell vaccines against HCV has been limited by the lack of an HCV infectious model in mice and the differences between MHC restriction in humans and mice. Using HLA-A2 transgenic HHD mice, we demonstrate that intranasally delivered Pam2Cys-based lipopeptides containing HLA-A2-restricted HCV epitopes can induce polyfunctional CD8(+) T cell responses in several organs including the liver. To examine the activity of these responses in an infectious context, we developed a recombinant influenza virus that expresses the NS5B(2594-2602) epitope from non-structural protein 5B of hepatitis C virus (PR8-HCV(NS5B)). We showed that mice inoculated with a lipopeptide containing the NS5B epitope had reduced viral loads following challenge with the PR8-HCV(NS5B) virus. This reduction was associated with the induction of NS5B(2594-2602)-specific IFN-γ and TNF-α co-producing CD8(+) T cells. The T cell receptor usage in the NS5B(2594-2602) response was found to exhibit a Vβ8.1/8.2 bias that was characterized by a narrow repertoire and a common CDR3β motif. This work has identified CD8(+) T cell functions induced by lipopeptides that are associated with viral control and demonstrate the potential of lipopeptide-based vaccines as candidates for treatment of HCV infection.
Collapse
Affiliation(s)
- Amabel C L Tan
- Department of Microbiology & Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
75
|
Kim M, Osborne NR, Zeng W, Donaghy H, McKinnon K, Jackson DC, Cunningham AL. Herpes Simplex Virus Antigens Directly Activate NK Cells via TLR2, Thus Facilitating Their Presentation to CD4 T Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2012; 188:4158-70. [DOI: 10.4049/jimmunol.1103450] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
76
|
Goldstein G, Chicca JJ. Exploratory clinical studies of a synthetic HIV-1 Tat epitope vaccine in asymptomatic treatment-naïve and antiretroviral-controlled HIV-1 infected subjects plus healthy uninfected subjects. Hum Vaccin Immunother 2012; 8:479-85. [PMID: 22336878 DOI: 10.4161/hv.19184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
TUTI-16 is a synthetic universal HIV-1 Tat epitope vaccine, designed to induce anti-Tat antibodies that block the function of circulating Tat, an HIV encoded protein secreted by HIV-1 infected cells. Circulating Tat activates CD4 T cells, permitting HIV replication and sustained viremia. Safety, immunogenicity and antiretroviral potential of TUTI-16 were explored in a randomized double-blind dose-escalating study in asymptomatic treatment-naïve HIV-1 infected subjects. TUTI-16 was safe, with mild local and systemic injection-related adverse reactions, but the antibody response was barely detectable. Surprisingly, a highly statistically significant reduction of HIV-1 viral load was found in the lowest 30 μg vaccine dose group (p < 0.01) but not at the higher doses. We posited that an anti-Tat antibody response below the limit of detection inhibited HIV viral load at this dose, an effect nullified at higher vaccine doses by activating cytokines induced by adjuvant components in TUTI-16. To clarify this immunogenicity/activation conundrum open label immunogenicity studies were performed in healthy HIV uninfected and aviremic ART-controlled HIV-infected subjects. These established that (1) healthy HIV negative subjects had robust antibody responses, maximal with 1 mg TUTI-16, (2) ART-controlled aviremic HIV infected subjects had similarly robust antibody responses, and (3) adjuvant-induced increases of HIV viral load did not occur in the presence of ART. These studies provided us a basis for the design of a protocol to explore the therapeutic potential of TUTI-16 vaccination to provide drug free control of HIV-1 viremia.
Collapse
|
77
|
Zaman M, Abdel-Aal ABM, Fujita Y, Phillipps KSM, Batzloff MR, Good MF, Toth I. Immunological evaluation of lipopeptide group A streptococcus (GAS) vaccine: structure-activity relationship. PLoS One 2012; 7:e30146. [PMID: 22253911 PMCID: PMC3257266 DOI: 10.1371/journal.pone.0030146] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/12/2011] [Indexed: 11/18/2022] Open
Abstract
Streptococcus pyogenes (group A streptococcus, GAS) is a Gram-positive bacterial pathogen responsible for a wide variety of diseases. To date, GAS vaccine development has focused primarily on the M-protein. The M-protein is highly variable at the amino (N)-terminus (determining serotype) but is conserved at the carboxyl (C)-terminus. Previously a 29 amino acid peptide (named J14) from the conserved region of the M-protein was identified as a potential vaccine candidate. J14 was capable of eliciting protective antibodies that recognized many GAS serotypes when co-administered with immuno-stimulants. This minimal epitope however showed no immunogenicity when administered alone. In an attempt overcome this immunological non-responsiveness, we developed a self-adjuvanting vaccine candidate composed of three components: the B-cell epitope (J14), a universal helper T-cell epitope (P25) and a lipid moiety consisting of lipoamino acids (Laas) which target Toll-like receptor 2 (TLR2). Immunological evaluation in B10.BR (H-2k) mice demonstrated that the epitope attachment to the point of lipid moiety, and the length of the Laa alkyl chain have a profound effect on vaccine immunogenicity after intranasal administration. It was demonstrated that a vaccine featuring C-terminal lipid moiety containing alkyl chains of 16 carbons, with P25 located at the N-terminus, and J14 attached to the side chain of a central lysine residue was capable of inducing optimal antibody response. These findings have considerable relevance to the development of a broad spectrum J14-based GAS vaccine and in particular provided a rational basis for peptide vaccine design based on this self-adjuvanting lipopeptide technology.
Collapse
Affiliation(s)
- Mehfuz Zaman
- The University of Queensland, School of Chemistry and Molecular Biosciences (SCMB), St. Lucia, Queensland, Australia
| | - Abu-Baker M. Abdel-Aal
- The University of Queensland, School of Chemistry and Molecular Biosciences (SCMB), St. Lucia, Queensland, Australia
| | - Yoshio Fujita
- The University of Queensland, School of Chemistry and Molecular Biosciences (SCMB), St. Lucia, Queensland, Australia
| | - Karen S. M. Phillipps
- The University of Queensland, School of Chemistry and Molecular Biosciences (SCMB), St. Lucia, Queensland, Australia
| | - Michael R. Batzloff
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Michael F. Good
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Istvan Toth
- The University of Queensland, School of Chemistry and Molecular Biosciences (SCMB), St. Lucia, Queensland, Australia
- * E-mail:
| |
Collapse
|
78
|
Chitosan-based particles as biocompatible delivery vehicles for peptide and protein-based vaccines. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.provac.2012.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
79
|
Chua BY, Al Kobaisi M, Zeng W, Mainwaring D, Jackson DC. Chitosan Microparticles and Nanoparticles as Biocompatible Delivery Vehicles for Peptide and Protein-Based Immunocontraceptive Vaccines. Mol Pharm 2011; 9:81-90. [DOI: 10.1021/mp200264m] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Brendon Y. Chua
- Department of Microbiology and
Immunology, The University of Melbourne, Royal Parade, Parkville, Australia 3010
| | - Mohammad Al Kobaisi
- School of Applied Sciences, Royal Melbourne Institute of Technology, Melbourne,
Australia 3010
| | - Weiguang Zeng
- Department of Microbiology and
Immunology, The University of Melbourne, Royal Parade, Parkville, Australia 3010
| | - David Mainwaring
- School of Applied Sciences, Royal Melbourne Institute of Technology, Melbourne,
Australia 3010
| | - David C. Jackson
- Department of Microbiology and
Immunology, The University of Melbourne, Royal Parade, Parkville, Australia 3010
| |
Collapse
|
80
|
Riedel T, Ghasparian A, Moehle K, Rusert P, Trkola A, Robinson JA. Synthetic virus-like particles and conformationally constrained peptidomimetics in vaccine design. Chembiochem 2011; 12:2829-36. [PMID: 22076829 DOI: 10.1002/cbic.201100586] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Indexed: 11/09/2022]
Abstract
Conformationally constrained peptidomimetics could be of great value in the design of vaccines targeting protective epitopes on viral and bacterial pathogens. But the poor immunogenicity of small synthetic molecules represents a serious obstacle for their use in vaccine development. Here, we show how a constrained epitope mimetic can be rendered highly immunogenic through multivalent display on the surface of synthetic virus-like nanoparticles. The target epitope is the V3 loop from the gp120 glycoprotein of HIV-1 bound to the neutralizing antibody F425-B4e8. The antibody-bound V3 loop adopts a β-hairpin conformation, which is effectively stabilized by transplantation onto a D-Pro-L-Pro template. The resulting mimetic after coupling to synthetic virus-like particles elicited antibodies in rabbits that recognized recombinant gp120. The elicited antibodies also blocked infection by the neutralization sensitive tier-1 strain MN of HIV-1, as well as engineered viruses with the V1V2 loop deleted; this result is consistent with screening of V3 by the V1V2 loop in intact trimeric viral gp120 spikes. The results provide new insights into HIV-1 vaccine design based on the V3 loop, and illustrate how knowledge from structural biology can be exploited for the design of constrained epitope mimetics, which can be delivered to the immune system by using a highly immunogenic synthetic nanoparticle delivery system.
Collapse
Affiliation(s)
- Tina Riedel
- Chemistry Department, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
81
|
Denton AE, Wesselingh R, Gras S, Guillonneau C, Olson MR, Mintern JD, Zeng W, Jackson DC, Rossjohn J, Hodgkin PD, Doherty PC, Turner SJ. Affinity thresholds for naive CD8+ CTL activation by peptides and engineered influenza A viruses. THE JOURNAL OF IMMUNOLOGY 2011; 187:5733-44. [PMID: 22039305 DOI: 10.4049/jimmunol.1003937] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
High-avidity interactions between TCRs and peptide + class I MHC (pMHCI) epitopes drive CTL activation and expansion. Intriguing questions remain concerning the constraints determining optimal TCR/pMHCI binding. The present analysis uses the TCR transgenic OT-I model to assess how varying profiles of TCR/pMHCI avidity influence naive CTL proliferation and the acquisition of effector function following exposure to the cognate H-2K(b)/OVA(257-264) (SIINFEKL) epitope and to mutants provided as peptide or in engineered influenza A viruses. Stimulating naive OT-I CD8(+) T cells in vitro with SIINFEKL induced full CTL proliferation and differentiation that was largely independent of any need for costimulation. By contrast, in vitro activation with the low-affinity EIINFEKL or SIIGFEKL ligands depended on the provision of IL-2 and other costimulatory signals. Importantly, although they did generate potent endogenous responses, infection of mice with influenza A viruses expressing these same OVA(257) variants failed to induce the activation of adoptively transferred naive OT-I CTLps, an effect that was only partially overcome by priming with a lipopeptide vaccine. Subsequent structural and biophysical analysis of H2-K(b)OVA(257), H2-K(b)E1, and H2-K(b)G4 established that these variations introduce small changes at the pMHCI interface and decrease epitope stability in ways that would likely impact cell surface presentation and recognition. Overall, it seems that there is an activation threshold for naive CTLps, that minimal alterations in peptide sequence can have profound effects, and that the antigenic requirements for the in vitro and in vivo induction of CTL proliferation and effector function differ substantially.
Collapse
Affiliation(s)
- Alice E Denton
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Toxoplasma gondii HLA-B*0702-restricted GRA7(20-28) peptide with adjuvants and a universal helper T cell epitope elicits CD8(+) T cells producing interferon-γ and reduces parasite burden in HLA-B*0702 mice. Hum Immunol 2011; 73:1-10. [PMID: 22027386 DOI: 10.1016/j.humimm.2011.10.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 09/10/2011] [Accepted: 10/03/2011] [Indexed: 11/21/2022]
Abstract
The ability of CD8(+) T cells to act as cytolytic effectors and produce interferon-γ (IFN-γ) was demonstrated to mediate resistance to Toxoplasma gondii in murine models because of the recognition of peptides restricted by murine major histocompatibility complex (MHC) class I molecules. However, no T gondii-specific HLA-B07-restricted peptides were proven protective against T gondii. Recently, 2 T gondii-specific HLA-B*0702-restricted T cell epitopes, GRA7(20-28) (LPQFATAAT) and GRA3(27-35) (VPFVVFLVA), displayed high-affinity binding to HLA-B*0702 and elicited IFN-γ from peripheral blood mononuclear cells of seropositive HLA-B*07 persons. Herein, these peptides were evaluated to determine whether they could elicit IFN-γ in splenocytes of HLA-B*0702 transgenic mice when administered with adjuvants and protect against subsequent challenge. Peptide-specific IFN-γ-producing T cells were identified by enzyme-linked immunosorbent spot and proliferation assays utilizing splenic T lymphocytes from human lymphocyte antigen (HLA) transgenic mice. When HLA-B*0702 mice were immunized with one of the identified epitopes, GRA7(20-28) in conjunction with a universal CD4(+) T cell epitope (PADRE) and adjuvants (CD4(+) T cell adjuvant, GLA-SE, and TLR2 stimulatory Pam(2)Cys for CD8(+) T cells), this immunization induced CD8(+) T cells to produce IFN-γ and protected mice against high parasite burden when challenged with T gondii. This work demonstrates the feasibility of bioinformatics followed by an empiric approach based on HLA binding to test this biologic activity for identifying protective HLA-B*0702-restricted T gondii peptides and adjuvants that elicit protective immune responses in HLA-B*0702 mice.
Collapse
|
83
|
Shakya N, Sane SA, Shankar S, Gupta S. Effect of Pam3Cys induced protection on the therapeutic efficacy of miltefosine against experimental visceral leishmaniasis. Peptides 2011; 32:2131-3. [PMID: 21959258 DOI: 10.1016/j.peptides.2011.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 01/29/2023]
Abstract
Prophylactic potential of synthetic bacterial lipopeptide and a TLR2 agonist, Pam3Cys was first evaluated against experimental visceral leishmaniasis in rodent model. After establishing the potential its effect on therapeutic efficacy of miltefosine was also studied. Pam3Cys showed 74.64% inhibition in parasitic establishment when administered by ip route at a dose of 100 μg/animal spaced at two weeks, i.e. on day -7 and +7 of challenge with Leishmania donovani amastigotes. However, when aforesaid dose of Pam3Cys was given with sub-curative dose of miltefosine (2.5 mg/kg for 5 days) its efficacy enhanced from 49.80% to 92.25%. These findings revealed that this lipopeptide has potential protective efficacy which significantly enhanced the therapeutic efficacy of miltefosine used at low dose against Leishmania infection and warrants detailed investigations on its possible immunopotentiatory actions.
Collapse
Affiliation(s)
- Nishi Shakya
- Division of Parasitology, Central Drug Research Institute (CSIR), Lucknow, UP, India.
| | | | | | | |
Collapse
|
84
|
Gowthaman U, Singh V, Zeng W, Jain S, Siddiqui KF, Chodisetti SB, Gurram RK, Parihar P, Gupta P, Gupta UD, Jackson DC, Agrewala JN. Promiscuous peptide of 16 kDa antigen linked to Pam2Cys protects against Mycobacterium tuberculosis by evoking enduring memory T-cell response. J Infect Dis 2011; 204:1328-38. [PMID: 21933875 DOI: 10.1093/infdis/jir548] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
One of the main reasons considered for BCG failure in tuberculosis-endemic areas is impediment by environmental mycobacteria in its processing and generation of memory T-cell response. To overcome this problem, we developed a unique lipopeptide (L91) by linking the promiscuous peptide (sequence 91-110) of 16 kDa antigen of Mycobacterium tuberculosis to Pam2Cys. L91 does not require extensive antigen processing and generates enduring Th1 memory response. This is evidenced by the fact that L91 significantly improved the activation, proliferation, and generation of protective T cells. Furthermore, L91 surmounts the barrier of major histocompatibility complex polymorphism and induces better protection than BCG. This peptide has self-adjuvanting properties and activates dendritic cells. Importantly, L91 activates T cells isolated from purified protein derivative-positive healthy volunteers that responded weakly to free peptide (F91). In essence, L91 can be a potent future vaccine candidate against tuberculosis.
Collapse
Affiliation(s)
- Uthaman Gowthaman
- Immunology and Cell Biology Division, Institute of Microbial Technology, Chandigarh, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Fujita Y, Taguchi H. Current status of multiple antigen-presenting peptide vaccine systems: Application of organic and inorganic nanoparticles. Chem Cent J 2011; 5:48. [PMID: 21861904 PMCID: PMC3178480 DOI: 10.1186/1752-153x-5-48] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 08/23/2011] [Indexed: 12/22/2022] Open
Abstract
Many studies are currently investigating the development of safe and effective vaccines to prevent various infectious diseases. Multiple antigen-presenting peptide vaccine systems have been developed to avoid the adverse effects associated with conventional vaccines (i.e., live-attenuated, killed or inactivated pathogens), carrier proteins and cytotoxic adjuvants. Recently, two main approaches have been used to develop multiple antigen-presenting peptide vaccine systems: (1) the addition of functional components, e.g., T-cell epitopes, cell-penetrating peptides, and lipophilic moieties; and (2) synthetic approaches using size-defined nanomaterials, e.g., self-assembling peptides, non-peptidic dendrimers, and gold nanoparticles, as antigen-displaying platforms. This review summarizes the recent experimental studies directed to the development of multiple antigen-presenting peptide vaccine systems.
Collapse
Affiliation(s)
- Yoshio Fujita
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3, Minami-Tamagaki, Suzuka 513-8670, MIE, Japan.
| | | |
Collapse
|
86
|
Tan ACL, La Gruta NL, Zeng W, Jackson DC. Precursor frequency and competition dictate the HLA-A2-restricted CD8+ T cell responses to influenza A infection and vaccination in HLA-A2.1 transgenic mice. THE JOURNAL OF IMMUNOLOGY 2011; 187:1895-902. [PMID: 21765016 DOI: 10.4049/jimmunol.1100664] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The human HLA-A2-restricted CD8(+) T cell response to influenza A virus (IAV) is largely directed against the matrix protein-derived M1(58-66) epitope and represents an archetypal example of CD8(+) T cell immunodominance. In this study, we examined the CD8(+) T cell hierarchy to M1(58-66) and two subdominant IAV-specific epitopes: NS1(122-130) and PA(46-55) in HLA-A2(+) human subjects and HLA-A2.1 transgenic (HHD) mice. Using epitope-based lipopeptides, we show that the CD8(+) T cell hierarchy induced by IAV infection could also be induced by lipopeptide vaccination in a context outside of viral infection when the Ag load is equalized. In the HHD HLA-A2.1 mouse model, we show that the naive T cell precursor frequencies, and competition at the Ag presentation level, can predict the IAV-specific CD8(+) T cell hierarchy. Immunization of mice with subdominant epitopes alone was unable to overcome the dominance of the M1(58-66)-specific response in the face of IAV challenge; however, a multiepitope vaccination strategy was most effective at generating a broad and multispecific response to infection.
Collapse
Affiliation(s)
- Amabel C L Tan
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Victoria, Australia
| | | | | | | |
Collapse
|
87
|
Chua BY, Pejoski D, Turner SJ, Zeng W, Jackson DC. Soluble proteins induce strong CD8+ T cell and antibody responses through electrostatic association with simple cationic or anionic lipopeptides that target TLR2. THE JOURNAL OF IMMUNOLOGY 2011; 187:1692-701. [PMID: 21742967 DOI: 10.4049/jimmunol.1100486] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The low immunogenicity exhibited by most soluble proteins is generally due to the absence of molecular signatures that are recognized by the immune system as dangerous. In this study, we show that electrostatic binding of synthetic branched cationic or anionic lipopeptides that contain the TLR-2 agonist Pam(2)Cys markedly enhance a protein's immunogenicity. Binding of a charged lipopeptide to oppositely charged protein Ags resulted in the formation of stable complexes and occurs at physiologic pH and salt concentrations. The induction of cell-mediated responses is dependent on the electrostatic binding of lipopeptide to the protein, with no CD8(+) T cells being elicited when protein and lipopeptide possessed the same electrical charge. The CD8(+) T cells elicited after vaccination with lipopeptide-protein Ag complexes produced proinflammatory cytokines, exhibited in vivo lytic activity, and protected mice from challenge with an infectious chimeric influenza virus containing a single OVA epitope as part of the influenza neuraminidase protein. Induction of a CD8(+) T cell response correlated with the ability of lipopeptide to facilitate Ag uptake by DCs followed by trafficking of Ag-bearing cells into draining lymph nodes. Oppositely charged but not similarly charged lipopeptides were more effective in DC uptake and trafficking. Very high protein-specific Ab titers were also achieved by vaccination with complexes composed of oppositely charged lipopeptide and protein, whereas vaccination with similarly charged constituents resulted in significant but lower Ab titers. Regardless of whether similarly or oppositely charged lipopeptides were used in the induction of Ab, vaccination generated dominant IgG1 isotype Abs rather than IgG2a.
Collapse
Affiliation(s)
- Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
88
|
Samayoa L, Diaz-Mitoma F, Azizi A. Characterization of a branched lipopeptide candidate vaccine against influenza A/Puerto Rico 8/34 which is recognized by human B and T-cell immune responses. Virol J 2011; 8:309. [PMID: 21679444 PMCID: PMC3145593 DOI: 10.1186/1743-422x-8-309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/16/2011] [Indexed: 12/20/2022] Open
Abstract
The use of synthetic peptides as immunogens represents an exciting alternative to traditional vaccines. However, to date most of these synthetic peptides are not highly immunogenic. The lack of immunogenicity might be addressed by conjugation between T or B cell epitopes with universal or immunodominant T-helper epitopes. The construction of lipidated peptides, branched peptides, or designs combining both of these elements might enhance the immunogenicity, as they might target Toll-Like Receptors and/or mimic the 3-dimensional structure of epitopes within the native protein. Herein, a recognized peptide immunogen based on the hemagglutinin protein of A/Puerto Rico/8/34 was chosen as a backbone and modified to evaluate if the construction of branched peptides, lipidation, the addition of cysteine residues, or mutations could indeed alter epitope reactivity. Screening the different designs with various antibody binding and cellular assays revealed that combining a branched design with the addition of lipid moieties greatly enhanced the immunoreactivity.
Collapse
Affiliation(s)
- Liz Samayoa
- Infectious Disease and Vaccine Research Center, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada.
| | | | | |
Collapse
|
89
|
Shukla NM, Lewis TC, Day TP, Mutz CA, Ukani R, Hamilton CD, Balakrishna R, David SA. Toward self-adjuvanting subunit vaccines: model peptide and protein antigens incorporating covalently bound toll-like receptor-7 agonistic imidazoquinolines. Bioorg Med Chem Lett 2011; 21:3232-6. [PMID: 21549593 PMCID: PMC3098923 DOI: 10.1016/j.bmcl.2011.04.050] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/08/2011] [Accepted: 04/12/2011] [Indexed: 01/17/2023]
Abstract
Toll-like receptor (TLR)-7 agonists show prominent Th1-biased immunostimulatory activities. A TLR7-active N(1)-(4-aminomethyl)benzyl substituted imidazoquinoline 1 served as a convenient precursor for the syntheses of isothiocyanate and maleimide derivatives for covalent attachment to free amine and thiol groups of peptides and proteins. 1 was also amenable to direct reductive amination with maltoheptaose without significant loss of activity. Covalent conjugation of the isothiocyanate derivative 2 to α-lactalbumin could be achieved under mild, non-denaturing conditions, in a controlled manner and with full preservation of antigenicity. The self-adjuvanting α-lactalbumin construct induced robust, high-affinity immunoglobulin titers in murine models. The premise of covalently decorating protein antigens with adjuvants offers the possibility of drastically reducing systemic exposure of the adjuvant, and yet eliciting strong, Th1-biased immune responses.
Collapse
Affiliation(s)
- Nikunj M Shukla
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, United States
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Torresi J, Johnson D, Wedemeyer H. Progress in the development of preventive and therapeutic vaccines for hepatitis C virus. J Hepatol 2011; 54:1273-85. [PMID: 21236312 DOI: 10.1016/j.jhep.2010.09.040] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/27/2010] [Accepted: 09/07/2010] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV) is a blood borne disease estimated to chronically infect 3% of the worlds' population causing significant morbidity and mortality. Current medical therapy is curative in approximately 50% of patients. While recent treatment advances of genotype 1 infection using directly acting antiviral agents (DAAs) are encouraging, there is still a need to develop vaccine strategies capable of preventing infection. Moreover, vaccines may also be used in future in combination with DAAs enabling interferon-free treatment regimens. Viral and host specific factors contribute to viral evasion and present important impediments to vaccine development. Both, innate and adaptive immune responses are of major importance for the control of HCV infection. However, HCV has evolved ways of evading the host's immune response in order to establish persistent infection. For example, HCV inhibits intracellular interferon signalling pathways, impairs the activation of dendritic cells, CD8(+) and CD4(+) T cell responses, induces a state of T-cell exhaustion and selects escape variants with mutations CD8(+) T cell epitopes. An effective vaccine will need to produce strong and broadly cross-reactive CD4(+), CD8(+) T cell and neutralising antibody (NAb) responses to be successful in preventing or clearing HCV. Vaccines in clinical trials now include recombinant proteins, synthetic peptides, virosome based vaccines, tarmogens, modified vaccinia Ankara based vaccines, and DNA based vaccines. Several preclinical vaccine strategies are also under development and include recombinant adenoviral vaccines, virus like particles, and synthetic peptide vaccines. This paper will review the vaccines strategies employed, their success to date and future directions of vaccine design.
Collapse
Affiliation(s)
- Joseph Torresi
- Austin Centre for Infection Research, Department of Infectious Diseases Austin Hospital, Heidelberg, Victoria 3084, Australia.
| | | | | |
Collapse
|
91
|
Zeng W, Horrocks KJ, Robevska G, Wong CY, Azzopardi K, Tauschek M, Robins-Browne RM, Jackson DC. A modular approach to assembly of totally synthetic self-adjuvanting lipopeptide-based vaccines allows conformational epitope building. J Biol Chem 2011; 286:12944-51. [PMID: 21321114 DOI: 10.1074/jbc.m111.227744] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The technology described here allows the chemical synthesis of vaccines requiring correctly folded epitopes and that contain difficult or long peptide sequences. The final self-adjuvanting product promotes strong humoral and/or cell-mediated immunity. A module containing common components of the vaccine (T helper cell epitope and the adjuvanting lipid moiety S-[2,3-bis(palmitoyloxy)propyl]cysteine) was assembled to enable a plug and play approach to vaccine assembly. The inclusion within the module of a chemical group with chemical properties complementary and orthogonal to a chemical group present in the target epitope allowed chemoselective ligation of the two vaccine components. The heat-stable enterotoxin of enterotoxigenic Escherichia coli that requires strict conformational integrity for biological activity and the reproductive hormone luteinizing hormone-releasing hormone were used as the target epitopes for the antibody vaccines. An epitope from the acid polymerase of influenza virus was used to assemble a CD8(+) T cell vaccine. Evaluation of each vaccine candidate in animals demonstrated the feasibility of the approach and that the type of immune response required, viz. antibody or cytotoxic T lymphocyte, dictates the nature of the chemical linkage between the module and target epitope. The use of a thioether bond between the module and target epitope had little or no adverse effect on antibody responses, whereas the use of a disulfide bond between the module and target epitope almost completely abrogated the antibody response. In contrast, better cytotoxic T lymphocyte responses were obtained when a disulfide bond was used.
Collapse
Affiliation(s)
- Weiguang Zeng
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Zeng W, Eriksson EM, Lew A, Jackson DC. Lipidation of intact proteins produces highly immunogenic vaccine candidates. Mol Immunol 2011; 48:490-6. [DOI: 10.1016/j.molimm.2010.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/07/2010] [Accepted: 10/10/2010] [Indexed: 11/29/2022]
|
93
|
Abstract
This review considers the stages of the development of synthetic peptide vaccines against infectious agents, novel approaches and technologies employed in this process, including bioinformatics, genomics, proteomics, large-scale peptide synthesis, high-throughput screening methods, the use of transgenic animals for modelling human infections. An important role for the development and selection of efficient adjuvants for peptide immunogens is noted. Examples of synthetic peptide vaccine developments against three infectious diseases (malaria, hepatitis C, and foot-and-mouth disease) are given.
Collapse
Affiliation(s)
- A.A. Moysa
- Institute of Biomedical Chemistry, Russian Academy of Medical sciences
| | - E.F. Kolesanova
- Institute of Biomedical Chemistry, Russian Academy of Medical sciences
| |
Collapse
|
94
|
Cruz LJ, Rueda F, Cordobilla B, Simón L, Hosta L, Albericio F, Domingo JC. Targeting Nanosystems to Human DCs via Fc Receptor as an Effective Strategy to Deliver Antigen for Immunotherapy. Mol Pharm 2010; 8:104-16. [DOI: 10.1021/mp100178k] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Luis J. Cruz
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Josep Samitier 1, 08028 Barcelona, Spain, Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain, Institute for Research in Biomedicine, Barcelona Science Park, Josep Samitier 10, 08028 Barcelona, Spain, and Department of Chemistry, University of Barcelona, Marti i Franques 1-11, 08028 Barcelona, Spain
| | - Felix Rueda
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Josep Samitier 1, 08028 Barcelona, Spain, Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain, Institute for Research in Biomedicine, Barcelona Science Park, Josep Samitier 10, 08028 Barcelona, Spain, and Department of Chemistry, University of Barcelona, Marti i Franques 1-11, 08028 Barcelona, Spain
| | - Begoña Cordobilla
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Josep Samitier 1, 08028 Barcelona, Spain, Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain, Institute for Research in Biomedicine, Barcelona Science Park, Josep Samitier 10, 08028 Barcelona, Spain, and Department of Chemistry, University of Barcelona, Marti i Franques 1-11, 08028 Barcelona, Spain
| | - Lorena Simón
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Josep Samitier 1, 08028 Barcelona, Spain, Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain, Institute for Research in Biomedicine, Barcelona Science Park, Josep Samitier 10, 08028 Barcelona, Spain, and Department of Chemistry, University of Barcelona, Marti i Franques 1-11, 08028 Barcelona, Spain
| | - Leticia Hosta
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Josep Samitier 1, 08028 Barcelona, Spain, Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain, Institute for Research in Biomedicine, Barcelona Science Park, Josep Samitier 10, 08028 Barcelona, Spain, and Department of Chemistry, University of Barcelona, Marti i Franques 1-11, 08028 Barcelona, Spain
| | - Fernando Albericio
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Josep Samitier 1, 08028 Barcelona, Spain, Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain, Institute for Research in Biomedicine, Barcelona Science Park, Josep Samitier 10, 08028 Barcelona, Spain, and Department of Chemistry, University of Barcelona, Marti i Franques 1-11, 08028 Barcelona, Spain
| | - Joan Carles Domingo
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Josep Samitier 1, 08028 Barcelona, Spain, Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain, Institute for Research in Biomedicine, Barcelona Science Park, Josep Samitier 10, 08028 Barcelona, Spain, and Department of Chemistry, University of Barcelona, Marti i Franques 1-11, 08028 Barcelona, Spain
| |
Collapse
|
95
|
Cong H, Mui EJ, Witola WH, Sidney J, Alexander J, Sette A, Maewal A, McLeod R. Human immunome, bioinformatic analyses using HLA supermotifs and the parasite genome, binding assays, studies of human T cell responses, and immunization of HLA-A*1101 transgenic mice including novel adjuvants provide a foundation for HLA-A03 restricted CD8+T cell epitope based, adjuvanted vaccine protective against Toxoplasma gondii. Immunome Res 2010; 6:12. [PMID: 21129215 PMCID: PMC3009956 DOI: 10.1186/1745-7580-6-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 12/03/2010] [Indexed: 11/17/2022] Open
Abstract
Background Toxoplasmosis causes loss of life, cognitive and motor function, and sight. A vaccine is greatly needed to prevent this disease. The purpose of this study was to use an immmunosense approach to develop a foundation for development of vaccines to protect humans with the HLA-A03 supertype. Three peptides had been identified with high binding scores for HLA-A03 supertypes using bioinformatic algorhythms, high measured binding affinity for HLA-A03 supertype molecules, and ability to elicit IFN-γ production by human HLA-A03 supertype peripheral blood CD8+ T cells from seropositive but not seronegative persons. Results Herein, when these peptides were administered with the universal CD4+T cell epitope PADRE (AKFVAAWTLKAAA) and formulated as lipopeptides, or administered with GLA-SE either alone, or with Pam2Cys added, we found we successfully created preparations that induced IFN-γ and reduced parasite burden in HLA-A*1101(an HLA-A03 supertype allele) transgenic mice. GLA-SE is a novel emulsified synthetic TLR4 ligand that is known to facilitate development of T Helper 1 cell (TH1) responses. Then, so our peptides would include those expressed in tachyzoites, bradyzoites and sporozoites from both Type I and II parasites, we used our approaches which had identified the initial peptides. We identified additional peptides using bioinformatics, binding affinity assays, and study of responses of HLA-A03 human cells. Lastly, we found that immunization of HLA-A*1101 transgenic mice with all the pooled peptides administered with PADRE, GLA-SE, and Pam2Cys is an effective way to elicit IFN-γ producing CD8+ splenic T cells and protection. Immunizations included the following peptides together: KSFKDILPK (SAG1224-232); AMLTAFFLR (GRA6164-172); RSFKDLLKK (GRA7134-142); STFWPCLLR (SAG2C13-21); SSAYVFSVK(SPA250-258); and AVVSLLRLLK(SPA89-98). This immunization elicited robust protection, measured as reduced parasite burden using a luciferase transfected parasite, luciferin, this novel, HLA transgenic mouse model, and imaging with a Xenogen camera. Conclusions Toxoplasma gondii peptides elicit HLA-A03 restricted, IFN-γ producing, CD8+ T cells in humans and mice. These peptides administered with adjuvants reduce parasite burden in HLA-A*1101 transgenic mice. This work provides a foundation for immunosense based vaccines. It also defines novel adjuvants for newly identified peptides for vaccines to prevent toxoplasmosis in those with HLA-A03 supertype alleles.
Collapse
Affiliation(s)
- Hua Cong
- Departments of Surgery (Ophthalmology and Visual Sciences) and Pediatrics (Infectious Disease), Committees on Immunology, Molecular Medicine, and Genetics, Institute of Genomics and Systems Biology, and The College, The University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Bal SM, Hortensius S, Ding Z, Jiskoot W, Bouwstra JA. Co-encapsulation of antigen and Toll-like receptor ligand in cationic liposomes affects the quality of the immune response in mice after intradermal vaccination. Vaccine 2010; 29:1045-52. [PMID: 21129393 DOI: 10.1016/j.vaccine.2010.11.061] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 11/07/2010] [Accepted: 11/17/2010] [Indexed: 11/19/2022]
Abstract
Enhanced immunogenicity of subunit antigens can be achieved by antigen encapsulation in liposomes and the addition of immune potentiators. In this study we co-encapsulated ovalbumin (OVA) and a Toll-like receptor (TLR) ligand (PAM(3)CSK(4) (PAM) or CpG) in cationic liposomes and investigated the effect of the formulations on dendritic cell (DC) maturation in vitro and on the immune response in mice after intradermal immunisation. Co-encapsulation of PAM did not affect the OVA content of the liposomes, but co-encapsulation of CpG led to a decrease in OVA content by 25%. After liposomal encapsulation, both ligands retained the ability to activate TLR-transfected HEK cells, though PAM only induced activation at elevated concentrations. DC maturation induced by liposome-based adjuvant formulations was superior compared to the free adjuvants. Encapsulation of PAM and CpG in liposomes did not influence the total IgG titres compared to the antigen/adjuvant solution, but OVA/CpG liposomes shifted the IgG1/IgG2a balance more to the direction of IgG2a compared to non-encapsulated CpG. Moreover, only this formulation resulted in IFN-γ production by restimulated splenocytes from immunised mice. These data show that co-encapsulation of antigen and immune potentiator in cationic liposomes, can affect the type of immune response generated after intradermal immunisation.
Collapse
Affiliation(s)
- Suzanne M Bal
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
97
|
Moisa AA, Kolesanova EF. Synthetic peptide vaccines. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2010. [DOI: 10.1134/s1990750810040025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
98
|
A phase I clinical trial of dendritic cell immunotherapy in HCV-infected individuals. J Hepatol 2010; 53:599-607. [PMID: 20667615 PMCID: PMC2930140 DOI: 10.1016/j.jhep.2010.05.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 05/11/2010] [Accepted: 05/30/2010] [Indexed: 01/12/2023]
Abstract
BACKGROUND & AIMS HCV patients who fail conventional interferon-based therapy have limited treatment options. Dendritic cells are central to the priming and development of antigen-specific CD4(+) and CD8(+) T cell immunity, necessary to elicit effective viral clearance. The aim of the study was to investigate the safety and efficacy of vaccination with autologous dendritic cells loaded with HCV-specific cytotoxic T cell epitopes. METHODS We examined the potential of autologous monocyte-derived dendritic cells (MoDC), presenting HCV-specific HLA A2.1-restricted cytotoxic T cell epitopes, to influence the course of infection in six patients who failed conventional therapy. Dendritic cells were loaded and activated ex vivo with lipopeptides. In this phase 1 dose escalation study, all patients received a standard dose of cells by the intradermal route while sequential patients received an increased dose by the intravenous route. RESULTS No patient showed a severe adverse reaction although all experienced transient minor side effects. HCV-specific CD8(+) T cell responses were enumerated in PBMC by ELIspot for interferon-gamma. Patients generated de novo responses, not only to peptides presented by the cellular vaccine but also to additional viral epitopes not represented in the lipopeptides, suggestive of epitope spreading. Despite this, no increases in ALT levels were observed. However, the responses were not sustained and failed to influence the viral load, the anti-HCV core antibody response and the level of circulating cytokines. CONCLUSIONS Immunotherapy using autologous MoDC pulsed with lipopeptides was safe, but was unable to generate sustained responses or alter the outcome of the infection. Alternative dosing regimens or vaccination routes may need to be considered to achieve therapeutic benefit.
Collapse
|
99
|
Fang F, Liu Y, Pu Y, Wang L, Wang S, Zhang X. Immunogenicity of Recombinant Maltose-binding Protein (MBP)–Gonadotropin Releasing Hormone I (GnRH-I). Syst Biol Reprod Med 2010; 56:478-86. [DOI: 10.3109/19396368.2010.481005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
100
|
|