51
|
Baldwin TA, Sandau MM, Jameson SC, Hogquist KA. The timing of TCR alpha expression critically influences T cell development and selection. ACTA ACUST UNITED AC 2005; 202:111-21. [PMID: 15998791 PMCID: PMC2212895 DOI: 10.1084/jem.20050359] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sequential rearrangement of the T cell receptor for antigen (TCR) beta and alpha chains is a hallmark of thymocyte development. This temporal control is lost in TCR transgenics because the alpha chain is expressed prematurely at the CD4- CD8- double negative (DN) stage. To test the importance of this, we expressed the HY alpha chain at the physiological CD4+ CD8+ double positive (DP) stage. The reduced DP and increased DN cellularity typically seen in TCR transgenics was not observed when the alpha chain was expressed at the appropriate stage. Surprisingly, antigen-driven selection events were also altered. In male mice, thymocyte deletion now occurred at the single positive or medullary stage. In addition, no expansion of CD8 alpha alpha intestinal intraepithelial lymphocytes (IELs) was observed, despite the fact that HY transgenics have been used to model IEL development. Collectively, these data establish the importance of proper timing of TCR expression in thymic development and selection and emphasize the need to use models that most accurately reflect the physiologic process.
Collapse
Affiliation(s)
- Troy A Baldwin
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
52
|
Abstract
Host defense is dependent on the appropriate induction of immune responses. A central concept in immunology is the ability of the immune system to differentiate foreign from self-antigens. The failure of the immune response to recognize foreign pathogens can result in infection and disease in the host. The inappropriate response of the immune system to self-antigens is equally problematic, leading to autoimmune disease. Central and peripheral tolerance mechanisms control self-reactive T-cell responses and protect peripheral tissues from autoimmune attack. This review examines the roles of B7/CD28 family members, which can augment or antagonize T-cell receptor signaling, in the regulation of central and peripheral T-cell tolerance. We also discuss how B7/CD28 pathways influence both T-cell-intrinsic and -extrinsic mechanisms of regulation.
Collapse
Affiliation(s)
- Mary E Keir
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115-5727, USA
| | | |
Collapse
|
53
|
Takahashi S, Kataoka H, Hara S, Yokosuka T, Takase K, Yamasaki S, Kobayashi W, Saito Y, Saito T. In vivo overexpression of CTLA-4 suppresses lymphoproliferative diseases and thymic negative selection. Eur J Immunol 2005; 35:399-407. [PMID: 15668914 DOI: 10.1002/eji.200324746] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cytotoxic T lymphocyte antigen-4 (CTLA-4) induces major inhibitory signals for T cell activation. From analyses of TCR-transgenic (Tg) CTLA-4-deficient mice, it has been believed that CTLA-4 does not affect thymocyte development. To focus upon the in vivo function of CTLA-4 in thymocyte development from a different aspect, we have established Tg mice expressing either full-length CTLA-4 (FL-Tg) or a mutant CTLA-4 lacking the cytoplasmic region (truncated, TR-Tg), and analyzed thymocyte development. TR-T cells express much higher CTLA-4 on the cell surface than FL-T cells, in which most CTLA-4 was localized in intracellular vesicles. While CTLA-4-/- mice exhibit lymphoproliferative disease, neither of the Tg mice with CTLA-4-/- background developed the disorder. Although the development of thymocytes appeared normal in both Tg mice, in vivo depletion of double-positive thymocytes by injection of anti-CD3 Ab as well as the elimination of minor lymphocyte-stimulating antigen-reactive thymocytes were impaired in FL-Tg mice but not in TR-Tg mice. Functionally, cross-linking of CTLA-4 on thymocytes from FL-Tg mice, but not from TR-Tg mice, inhibited proliferation. These results reveal a potential role of CTLA-4, through its cytoplasmic domain, in the negative selection of thymocytes and in the prevention of lymphoproliferative disease.
Collapse
Affiliation(s)
- Shigekazu Takahashi
- Department of Molecular Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Bour-Jordan H, Salomon BL, Thompson HL, Szot GL, Bernhard MR, Bluestone JA. Costimulation controls diabetes by altering the balance of pathogenic and regulatory T cells. J Clin Invest 2004; 114:979-87. [PMID: 15467837 PMCID: PMC518661 DOI: 10.1172/jci20483] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Accepted: 08/03/2004] [Indexed: 12/23/2022] Open
Abstract
The development of autoimmune diabetes in the nonobese diabetic (NOD) mouse results from a breakdown in tolerance to pancreatic islet antigens. CD28-B7 and CD40 ligand-CD40 (CD40L-CD40) costimulatory pathways affect the development of disease and are promising therapeutic targets. Indeed, it was shown previously that diabetes fails to develop in NOD-B7-2-/- and NOD-CD40L-/- mice. In this study, we examined the relative role of these 2 costimulatory pathways in the balance of autoimmunity versus regulation in NOD mice. We demonstrate that initiation but not effector function of autoreactive T cells was defective in NOD-B7-2-/- mice. Moreover, the residual proliferation of the autoreactive cells was effectively controlled by CD28-dependent CD4+CD25+ regulatory T cells (Treg's), as depletion of Treg's partially restored proliferation of autoreactive T cells and resulted in diabetes in an adoptive-transfer model. Similarly, disruption of the CD28-B7 pathway and subsequent Treg deletion restored autoimmunity in NOD-CD40L-/- mice. These results demonstrate that development of diabetes is dependent on a balance of pathogenic and regulatory T cells that is controlled by costimulatory signals. Thus, elimination of Treg's results in diabetes even in the absence of costimulation, which suggests a need for alternative strategies for immunotherapeutic approaches.
Collapse
Affiliation(s)
- Hélène Bour-Jordan
- UCSF Diabetes Center, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | |
Collapse
|
55
|
Urban JA, Winandy S. Ikaros null mice display defects in T cell selection and CD4 versus CD8 lineage decisions. THE JOURNAL OF IMMUNOLOGY 2004; 173:4470-8. [PMID: 15383578 DOI: 10.4049/jimmunol.173.7.4470] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Previous evidence suggested that the hemopoietic-specific nuclear factor Ikaros regulates TCR signaling thresholds in mature T cells. In this study, we test the hypothesis that Ikaros also sets TCR signaling thresholds to regulate selection events and CD4 vs CD8 lineage determination in developing thymocytes. Ikaros null mice were crossed to three lines of TCR-transgenic mice, and positive selection, negative selection, and CD4 vs CD8 lineage decisions were analyzed. Mice expressing a polyclonal repertoire or a MHC class II-restricted TCR transgene exhibited enhanced positive selection toward the CD4 lineage. Moreover, in the absence of Ikaros, CD4 development can occur with decreased thresholds of TCR signaling. In addition, CD4 single-positive thymocytes were detected in MHC class I-restricted TCR-transgenic Ikaros null mice. To assess the role of Ikaros in negative selection, we analyzed deletion of T cells induced by conventional Ag or by endogenous superantigen. Surprisingly, negative selection was impaired in Ikaros null thymocytes despite evidence of high levels of TCR signal and no intrinsic defect in apoptosis ex vivo. To our knowledge, these data identify Ikaros as the first nuclear factor that plays a critical role in regulating negative selection as well as CD4 vs CD8 lineage decisions during positive selection.
Collapse
Affiliation(s)
- Julie A Urban
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
56
|
Lohr J, Knoechel B, Kahn EC, Abbas AK. Role of B7 in T cell tolerance. THE JOURNAL OF IMMUNOLOGY 2004; 173:5028-35. [PMID: 15470046 DOI: 10.4049/jimmunol.173.8.5028] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The induction of effective immune responses requires costimulation by B7 molecules, and Ag recognition without B7 is thought to result in no response or tolerance. We compared T cell responses in vivo to the same Ag presented either by mature dendritic cells (DCs) or as self, in the presence or absence of B7. We show that Ag presentation by mature B7-1/2-deficient DCs fails to elicit an effector T cell response but does not induce tolerance. In contrast, using a newly developed adoptive transfer system, we show that naive OVA-specific DO11 CD4+ T cells become anergic upon encounter with a soluble form of OVA, in the presence or absence of B7. However, tolerance in DO11 cells transferred into soluble OVA transgenic recipients can be broken by immunization with Ag-pulsed DCs only in B7-deficient mice and not in wild-type mice, suggesting a role of B7 in maintaining tolerance in the presence of strong immunogenic signals. Comparing two double-transgenic models--expressing either a soluble or a tissue Ag--we further show that B7 is not only essential for the active induction of regulatory T cells in the thymus, but also for their maintenance in the periphery. Thus, the obligatory role of B7 molecules paradoxically is to promote effective T cell priming and contain effector responses when self-Ags are presented as foreign.
Collapse
Affiliation(s)
- Jens Lohr
- Department of Pathology, University of California San Francisco, School of Medicine, 94143, USA
| | | | | | | |
Collapse
|
57
|
Bour-Jordan H, Salomon BL, Thompson HL, Szot GL, Bernhard MR, Bluestone JA. Costimulation controls diabetes by altering the balance of pathogenic and regulatory T cells. J Clin Invest 2004. [DOI: 10.1172/jci200420483] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
58
|
Yadav D, Judkowski V, Flodstrom-Tullberg M, Sterling L, Redmond WL, Sherman L, Sarvetnick N. B7-2 (CD86) Controls the Priming of Autoreactive CD4 T Cell Response against Pancreatic Islets. THE JOURNAL OF IMMUNOLOGY 2004; 173:3631-9. [PMID: 15356107 DOI: 10.4049/jimmunol.173.6.3631] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The B7-1/2-CD28 system provides the critical signal for the generation of an efficient T cell response. We investigated the role played by B7-2 in influencing pathogenic autoimmunity from islet-reactive CD4 T cells in B7-2 knockout (KO) NOD mice which are protected from type 1 diabetes. B7-2 deficiency caused a profound diminishment in the generation of spontaneously activated CD4 T cells and islet-specific CD4 T cell expansion. B7-2 does not impact the effector phase of the autoimmune response as adoptive transfer of islet Ag-specific BDC2.5 splenocytes stimulated in vitro could easily induce disease in B7-2KO mice. CD4 T cells showed some hallmarks of hyporesponsiveness because TCR/CD28-mediated stimulation led to defective activation and failure to induce disease in NODscid recipients. Furthermore, CD4 T cells exhibited enhanced death in the absence of B7-2. Interestingly, we found that B7-2 is required to achieve normal levels of CD4+CD25+CD62L+ T regulatory cells because a significant reduction of these T regulatory cells was observed in the thymus but not in the peripheral compartments of B7-2KO mice. In addition, our adoptive transfer experiments did not reveal either pathogenic or regulatory potential associated with the B7-2KO splenocytes. Finally, we found that the lack of B7-2 did not induce a compensatory increase in the B7-1 signal on APC in the PLN compartment. Taken together these results clearly indicate that B7-2 plays a critical role in priming islet-reactive CD4 T cells, suggesting a simplified, two-cell model for the impact of this costimulatory molecule in autoimmunity against islets.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens, CD/genetics
- Antigens, CD/physiology
- Autoantibodies/biosynthesis
- Autoantigens/immunology
- B7-1 Antigen/biosynthesis
- B7-2 Antigen
- CD28 Antigens/immunology
- CD28 Antigens/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/pathology
- Cell Division/genetics
- Cell Division/immunology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/prevention & control
- Female
- Interphase/genetics
- Interphase/immunology
- Islets of Langerhans/immunology
- Islets of Langerhans/metabolism
- Islets of Langerhans/pathology
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Lymphocyte Count
- Lymphopenia/genetics
- Lymphopenia/immunology
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Interleukin-2/biosynthesis
- Spleen/metabolism
- Spleen/pathology
- Spleen/transplantation
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
Collapse
Affiliation(s)
- Deepak Yadav
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
Riley JL, June CH. The CD28 family: a T-cell rheostat for therapeutic control of T-cell activation. Blood 2004; 105:13-21. [PMID: 15353480 DOI: 10.1182/blood-2004-04-1596] [Citation(s) in RCA: 224] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The CD28 family of receptors (CD28, cytotoxic T-lymphocyte-associated antigen 4 [CTLA-4], inducible costimulator [ICOS], program death-1 [PD-1], and B- and T-lymphocyte attenuator [BTLA]) plays a critical role in controlling the adaptive arm of the immune response. While considerable information is available regarding CD28 and CTLA-4, the function of the more recently discovered members of the CD28 family is less well understood. This review will highlight recent findings regarding the CD28 family with special emphasis on effects the CD28 family has on immunopathology, the discovery of costimulatory antibodies with superagonist function, and the status of clinical trials using various strategies to augment or block T-cell costimulation.
Collapse
Affiliation(s)
- James L Riley
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA.
| | | |
Collapse
|
60
|
Zheng X, Gao JX, Chang X, Wang Y, Liu Y, Wen J, Zhang H, Zhang J, Liu Y, Zheng P. B7-CD28 Interaction Promotes Proliferation and Survival but Suppresses Differentiation of CD4−CD8− T Cells in the Thymus. THE JOURNAL OF IMMUNOLOGY 2004; 173:2253-61. [PMID: 15294937 DOI: 10.4049/jimmunol.173.4.2253] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Costimulatory molecules play critical roles in the induction and effector function of T cells. More recent studies reveal that costimulatory molecules enhance clonal deletion of autoreactive T cells as well as generation and homeostasis of the CD25(+)CD4(+) regulatory T cells. However, it is unclear whether the costimulatory molecules play any role in the proliferation and differentiation of T cells before they acquire MHC-restricted TCR. In this study, we report that targeted mutations of B7-1 and B7-2 substantially reduce the proliferation and survival of CD4(-)CD8(-) (double-negative (DN)) T cells in the thymus. Perhaps as a result of reduced proliferation, the accumulation of RAG-2 protein in the DN thymocytes is increased in B7-deficient mice, which may explain the increased expression of TCR gene and accelerated transition of CD25(+)CD44(-) (DN3) to CD25(-)CD44(-) (DN4) stage. Qualitatively similar, but quantitatively less striking effects were observed in mice with a targeted mutation of CD28, but not CTLA4. Taken together, our results demonstrate that the development of DN in the thymus is subject to modulation by the B7-CD28 costimulatory pathway.
Collapse
Affiliation(s)
- Xincheng Zheng
- Division of Cancer Immunology, Department of Pathology, Ohio State University Medical Center and Comprehensive Cancer Center, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Mayerova D, Hogquist KA. Central tolerance to self-antigen expressed by cortical epithelial cells. THE JOURNAL OF IMMUNOLOGY 2004; 172:851-6. [PMID: 14707055 DOI: 10.4049/jimmunol.172.2.851] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The exposure of developing thymocytes to high-affinity self-Ag results in T cell tolerance. A predominant mechanism for this is clonal deletion; though receptor editing, anergy induction, and positive selection of regulatory T cells have also been described. It is unclear what signals are involved in determining different tolerance mechanisms. In particular, OT-I mice displayed receptor editing when the high-affinity self-Ag was expressed in cortical epithelial cells (cEC) using the human keratin 14 promoter. To test the hypothesis that receptor editing is a consequence of a unique instruction given by cEC presenting self-Ag, we created mice expressing the 2C and HY ligands under control of the keratin 14 promoter. Alternatively, we studied the fate of developing T cells in OT-I mice where Ag was presented by all thymic APC. Surprisingly, we found that the tolerance mechanism was not influenced by the APC subset involved in presentation. Clonal deletion was observed in 2C and HY models even when Ag was presented only by cEC; and receptor editing was observed in OT-I mice even when Ag was presented by all thymic APC. These results suggest that different TCRs show intrinsic differences in thymic tolerance mechanism.
Collapse
Affiliation(s)
- Dita Mayerova
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, USA
| | | |
Collapse
|