51
|
Son S, Shim DW, Hwang I, Park JH, Yu JW. Chemotherapeutic Agent Paclitaxel Mediates Priming of NLRP3 Inflammasome Activation. Front Immunol 2019; 10:1108. [PMID: 31156650 PMCID: PMC6532018 DOI: 10.3389/fimmu.2019.01108] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/01/2019] [Indexed: 12/19/2022] Open
Abstract
Paclitaxel is a chemotherapeutic drug commonly used to treat different types of cancer. In addition to its antitumor effect, paclitaxel is also known to promote Toll-like receptor (TLR) 4-dependent inflammatory responses, which may lower its chemotherapeutic efficacy. However, it remains unclear whether paclitaxel is able to affect inflammasome signaling in myeloid or cancer cells. Therefore, we examined the potential effect of paclitaxel on the activation of an inflammasome complex by examining caspase-1 activation and interleukin (IL)-1β secretion in bone marrow-derived macrophages (BMDMs). The results showed that treatment with paclitaxel alone or following LPS priming failed to trigger the secretion of active caspase-1 and IL-1β from BMDMs. However, paclitaxel could induce robust activation of caspase-1 in BMDMs in the presence of NLRP3 inflammasome-activating signal 2, such as ATP or nigericin. This paclitaxel/ATP-mediated inflammasome activation was completely abrogated in Nlrp3-deficient macrophages. Mechanistically, paclitaxel treatment induced robust activation of the TLR4 signaling cascade, including phosphorylation of IκB and JNK and upregulation of proinflammatory cytokine mRNA levels in a TLR4-dependent manner. In contrast, paclitaxel treatment alone did not induce mitochondrial damages such as the loss of the mitochondrial membrane potential and production of mitochondrial ROS. These findings suggest that paclitaxel can drive the priming of signal-mediated events for NLRP3 activation but not a second signal-triggered phenomenon such as mitochondrial damage. This suggestion was supported by the observations that paclitaxel treatment caused robust IL-1β production in macrophages in the presence of cell-free medium derived from growth of injured cells and also in the spleen of mice. Collectively, our data strongly indicate that paclitaxel is able to facilitate the activation of NLRP3 inflammasome signaling in a certain physiological environment.
Collapse
Affiliation(s)
- Seunghwan Son
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Do-Wan Shim
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Inhwa Hwang
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong-Hwan Park
- BK 21 PLUS Project Team, Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Je-Wook Yu
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
52
|
Lind S, Gabl M, Holdfeldt A, Mårtensson J, Sundqvist M, Nishino K, Dahlgren C, Mukai H, Forsman H. Identification of Residues Critical for FPR2 Activation by the Cryptic Peptide Mitocryptide-2 Originating from the Mitochondrial DNA-Encoded Cytochrome b. THE JOURNAL OF IMMUNOLOGY 2019; 202:2710-2719. [PMID: 30902901 DOI: 10.4049/jimmunol.1900060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/25/2019] [Indexed: 12/19/2022]
Abstract
Similar to bacteria, synthesis of mitochondrial DNA-encoded proteins requires an N-formylated methionine to initiate translation. Thus, the N-formylated methionine peptides originating from mitochondria should be recognized as danger signals. To date, only one such peptide, denoted as mitocryptide-2 (MCT-2), originating from the N-terminal of the mitochondrial cytochrome b, has been isolated from mammalian tissues. Human neutrophils express FPR1 and FPR2 that detect formyl peptides, and the precise structural determinants for receptor recognition remain to be elucidated. MCT-2 is known to activate neutrophils through FPR2 but not FPR1. The aim of this study was to elucidate the structural determinants of importance for receptor preference and human neutrophil activation in MCT-2 by generating a series of MCT-2 variants. We show that there is an absolute requirement for the N-formyl group and the side chain of Met1 at position 1 of MCT-2 but also the C terminus is of importance for MCT-2 activity. We also uncovered individual side chains that positively contribute to MCT-2 activity as well as those suppressed in the response. The MCT-2 peptide and its two polymorphic variants ([Thr7]MCT-2 and [Ser8]MCT-2) all activated neutrophils, but MCT-2 containing Ile7 and Asn8 was the most potent. We also show that some peptide variants displayed a biased FPR2-signaling property related to NADPH oxidase activation and β-arrestin recruitment, respectively. In conclusion, we disclose several critical elements in MCT-2 that are required for neutrophil activation and disclose structural insights into how FPR2 recognition of this mitochondrial DNA-derived peptide may increase our understanding of the role of FPR2 in aseptic inflammation.
Collapse
Affiliation(s)
- Simon Lind
- Department of Rheumatology and Inflammation Research, University of Gothenburg, 413 46 Gothenburg, Sweden; and
| | - Michael Gabl
- Department of Rheumatology and Inflammation Research, University of Gothenburg, 413 46 Gothenburg, Sweden; and
| | - André Holdfeldt
- Department of Rheumatology and Inflammation Research, University of Gothenburg, 413 46 Gothenburg, Sweden; and
| | - Jonas Mårtensson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, 413 46 Gothenburg, Sweden; and
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, University of Gothenburg, 413 46 Gothenburg, Sweden; and
| | - Kodai Nishino
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, University of Gothenburg, 413 46 Gothenburg, Sweden; and
| | - Hidehito Mukai
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, University of Gothenburg, 413 46 Gothenburg, Sweden; and
| |
Collapse
|
53
|
Jung HE, Shim YR, Oh JE, Oh DS, Lee HK. The autophagy Protein Atg5 Plays a Crucial Role in the Maintenance and Reconstitution Ability of Hematopoietic Stem Cells. Immune Netw 2019; 19:e12. [PMID: 31089439 PMCID: PMC6494762 DOI: 10.4110/in.2019.19.e12] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic stem cells (HSCs) in bone marrow are pluripotent cells that can constitute the hematopoiesis system through self-renewal and differentiation into immune cells and red blood cells. To ensure a competent hematopoietic system for life, the maintenance of HSCs is tightly regulated. Although autophagy, a self-degradation pathway for cell homeostasis, is essential for hematopoiesis, the role of autophagy key protein Atg5 in HSCs has not been thoroughly investigated. In this study, we found that Atg5 deficiency in hematopoietic cells causes survival defects, resulting in severe lymphopenia and anemia in mice. In addition, the absolute numbers of HSCs and multiple-lineage progenitor cells were significantly decreased, and abnormal erythroid development resulted in reduced erythrocytes in blood of Vav_Atg5−/− mice. The proliferation of Lin−Sca-1+c-Kit+ HSCs was aberrant in bone marrow of Vav_Atg5−/− mice, and mature progenitors and terminally differentiated cells were also significantly altered. Furthermore, the reconstitution ability of HSCs in bone marrow chimeric mice was significantly decreased in the presence of Atg5 deficiency in HSCs. Mechanistically, impairment of autophagy-mediated clearance of damaged mitochondria was the underlying cause of the HSC functional defects. Taken together, these results define the crucial role of Atg5 in the maintenance and the reconstitution ability of HSCs.
Collapse
Affiliation(s)
- Hi Eun Jung
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Ye Ri Shim
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Ji Eun Oh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Dong Sun Oh
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Heung Kyu Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.,KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
54
|
Xie T, Chen T, Li C, Wang W, Cao L, Rao H, Yang Q, Shu HB, Xu LG. RACK1 attenuates RLR antiviral signaling by targeting VISA-TRAF complexes. Biochem Biophys Res Commun 2019; 508:667-674. [PMID: 30527812 DOI: 10.1016/j.bbrc.2018.11.203] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022]
Abstract
Virus-induced signaling adaptor (VISA), which mediates the production of type I interferon, is crucial for the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) signaling pathway. Upon viral infection, RIG-I recognizes double-stranded viral RNA and interacts with VISA to mediate antiviral innate immunity. However, the mechanisms underlying RIG/VISA-mediated antiviral regulation remain unclear. In this study, we confirmed that receptor for activated C kinase 1 (RACK1) interacts with VISA and attenuates the RIG/VISA-mediated antiviral innate immune signaling pathway. Overexpression of RACK1 inhibited the interferon-β (IFN-β) promoter; interferon-stimulated response element (ISRE); nuclear factor kappa B (NF-κB) activation; and dimerization of interferon regulatory factor 3 (IRF3) mediated by RIG-I, VISA, and TANK-binding kinase 1 (TBK1). A reduction in RACK1 expression level upon small interfering RNA knockdown increased RIG/VISA-mediated antiviral transduction. Additionally, RACK1 disrupted formation of the VISA-tumor necrosis factor receptor-associated factor 2 (TRAF2), VISA-TRAF3, and VISA-TRAF6 complexes during RIG-I/VISA-mediated signal transduction. Additionally, RACK1 enhanced K48-linked ubiquitination of VISA, attenuated its K63-linked ubiquitination, and decreased VISA-mediated antiviral signal transduction. Together, these results indicate that RACK1 interacts with VISA to repress downstream signaling and downregulates virus-induced IFN-β production in the RIG-I/VISA signaling pathway.
Collapse
Affiliation(s)
- Tao Xie
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Tian Chen
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Changsheng Li
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Weiying Wang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Lingzhen Cao
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Hua Rao
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Qing Yang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Hong-Bing Shu
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China.
| | - Liang-Guo Xu
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China.
| |
Collapse
|
55
|
Hong S, Hwang I, Gim E, Yang J, Park S, Yoon SH, Lee WW, Yu JW. Brefeldin A-sensitive ER-Golgi vesicle trafficking contributes to NLRP3-dependent caspase-1 activation. FASEB J 2018; 33:4547-4558. [PMID: 30592629 DOI: 10.1096/fj.201801585r] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endoplasmic reticulum (ER)-Golgi vesicle trafficking plays a pivotal role in the conventional secretory pathway of many cytokines; however, the precise release mechanism of a major inflammasome mediator, IL-1β, is not thought to follow the conventional ER-Golgi route and remains elusive. Here, we found that perturbation of ER-Golgi trafficking by brefeldin A (BFA) treatment attenuated nucleotide-binding oligomerization domain-like receptor family, pyrin-domain-containing 3 (NLRP3) inflammasome activation in mouse bone marrow-derived macrophages (BMDMs). BFA treatment inhibited NLRP3-mediated inflammasome assembly and caspase-1 activation but did not block IL-1β secretion from BMDMs following BFA administration after NLRP3 inflammasome activation. Consistently, short-hairpin RNA-dependent knockdown of BFA-inhibited guanine nucleotide-exchange protein 1 (BIG1), a molecular target of BFA and an initiator of Golgi-specific vesicle trafficking, abolished NLRP3-dependent apoptosis-associated speck-like protein containing a caspase-recruitment domain oligomerization and caspase-1 activation in BMDMs. Similarly, knockdown of Golgi-specific BFA-resistance guanine nucleotide exchange factor 1, another target of BFA, clearly attenuated NLRP3-mediated caspase-1 activation in BMDMs. Mechanistically, inhibition of BIG1-mediated vesicle trafficking did not impair NLRP3-activating signal 2-promoted events, such as potassium efflux and mitochondrial rearrangement, but caused significant impairment of signal 1-triggered priming steps, including NF-κB-mediated pathways. These data suggest that BFA-targeted vesicle trafficking at the Golgi contributes to activation of the NLRP3 inflammasome signaling.-Hong, S., Hwang, I., Gim, E., Yang, J., Park, S., Yoon, S.-H., Lee, W.-W., Yu, J.-W. Brefeldin A-sensitive ER-Golgi vesicle trafficking contributes to NLRP3-dependent caspase-1 activation.
Collapse
Affiliation(s)
- Sujeong Hong
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea; and
| | - Inhwa Hwang
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea; and
| | - Eunji Gim
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea; and
| | - Jungmin Yang
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea; and
| | - Sangjun Park
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea; and
| | - Sung-Hyun Yoon
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea; and
| | - Won-Woo Lee
- Department of Biomedical Sciences and Seoul National University College of Medicine, Seoul, South Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
| | - Je-Wook Yu
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea; and
| |
Collapse
|
56
|
Ojeda DS, Grasso D, Urquiza J, Till A, Vaccaro MI, Quarleri J. Cell Death Is Counteracted by Mitophagy in HIV-Productively Infected Astrocytes but Is Promoted by Inflammasome Activation Among Non-productively Infected Cells. Front Immunol 2018; 9:2633. [PMID: 30515154 PMCID: PMC6255949 DOI: 10.3389/fimmu.2018.02633] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/25/2018] [Indexed: 01/18/2023] Open
Abstract
Despite more than 30 years of extensive research efforts, a complete understanding of the neurological consequences of HIV central nervous system (CNS) infection remains elusive. HIV is not only able to establish a viral reservoir in the CNS but also to initiate manifestation of neurodegenerative diseases. These neurological disorders may arise because of virus-induced activation of the inflammasome in CNS cells, including astrocytes. Nevertheless, in some productive viral infection scenarios, selective autophagy may reduce inflammation through mitochondrial degradation ("mitophagy") to counteract inflammasome activation. In this study, using cultured human astrocytes, we demonstrate that-depending on the HIV infection outcome-cells may resist death, or succumb by inflammasome activation when viral infection is productive or abortive, respectively. Cells productively infected with HIV were able to attenuate both mitochondrial ROS production and mitochondrial membrane potential dissipation, thus exhibiting cell death resistance. Interestingly, mitochondrial injury was counteracted by increasing the autophagic flux and by activating mitophagy. Conversely, astrocytes exposed to HIV in an abortive scenario showed prominent mitochondrial damage, inflammasome activation, and cell death. This bystander effect occurred after cell-to-cell contact with HIV-productively infected astrocytes. In summary, we demonstrate a tight functional crosstalk between viral infection mode, inflammasome activation, autophagy pathways and cell fate in the context of HIV infection. Moreover, mitophagy is crucial for cell death resistance in HIV-productively infected astrocytes, but its impairment may favor inflammasome-mediated cell death in abortively infected cells.
Collapse
Affiliation(s)
- Diego S. Ojeda
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Grasso
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular Departamento de Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Javier Urquiza
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andreas Till
- Institute of Reconstructive Neurobiology, University of Bonn, Bonn, Germany
- Life and Brain GmbH, Bonn, Germany
| | - María Inés Vaccaro
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular Departamento de Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge Quarleri
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
57
|
Albert M, Bécares M, Falqui M, Fernández-Lozano C, Guerra S. ISG15, a Small Molecule with Huge Implications: Regulation of Mitochondrial Homeostasis. Viruses 2018; 10:v10110629. [PMID: 30428561 PMCID: PMC6265978 DOI: 10.3390/v10110629] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Viruses are responsible for the majority of infectious diseases, from the common cold to HIV/AIDS or hemorrhagic fevers, the latter with devastating effects on the human population. Accordingly, the development of efficient antiviral therapies is a major goal and a challenge for the scientific community, as we are still far from understanding the molecular mechanisms that operate after virus infection. Interferon-stimulated gene 15 (ISG15) plays an important antiviral role during viral infection. ISG15 catalyzes a ubiquitin-like post-translational modification termed ISGylation, involving the conjugation of ISG15 molecules to de novo synthesized viral or cellular proteins, which regulates their stability and function. Numerous biomedically relevant viruses are targets of ISG15, as well as proteins involved in antiviral immunity. Beyond their role as cellular powerhouses, mitochondria are multifunctional organelles that act as signaling hubs in antiviral responses. In this review, we give an overview of the biological consequences of ISGylation for virus infection and host defense. We also compare several published proteomic studies to identify and classify potential mitochondrial ISGylation targets. Finally, based on our recent observations, we discuss the essential functions of mitochondria in the antiviral response and examine the role of ISG15 in the regulation of mitochondrial processes, specifically OXPHOS and mitophagy.
Collapse
Affiliation(s)
- Manuel Albert
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain.
| | - Martina Bécares
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain.
| | - Michela Falqui
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain.
| | - Carlos Fernández-Lozano
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain.
| | - Susana Guerra
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain.
| |
Collapse
|
58
|
McWherter C, Choi YJ, Serrano RL, Mahata SK, Terkeltaub R, Liu-Bryan R. Arhalofenate acid inhibits monosodium urate crystal-induced inflammatory responses through activation of AMP-activated protein kinase (AMPK) signaling. Arthritis Res Ther 2018; 20:204. [PMID: 30189890 PMCID: PMC6127987 DOI: 10.1186/s13075-018-1699-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/14/2018] [Indexed: 12/23/2022] Open
Abstract
Background Arhalofenate acid, the active acid form of arhalofenate, is a non-agonist peroxisome proliferator-activated receptor γ (PPARγ) ligand, with uricosuric activity via URAT1 inhibition. Phase II studies revealed decreased acute arthritis flares in arhalofenate-treated gout compared with allopurinol alone. Hence, we investigated the anti-inflammatory effects and mechanisms of arhalofenate and its active acid form for responses to monosodium urate (MSU) crystals. Methods We assessed in-vivo responses to MSU crystals in murine subcutaneous air pouches and in-vitro responses in murine bone marrow-derived macrophages (BMDMs) by enzyme-linked immunosorbent assay (ELISA), SDS-PAGE/Western blot, immunostaining, and transmission electron microscopy analyses. Results Oral administration of arhalofenate (250 mg/kg) blunted total leukocyte ingress, neutrophil influx, and air pouch fluid interleukin (IL)-1β, IL-6, and CXCL1 in response to MSU crystal injection (p < 0.05 for each). Arhalofenate acid (100 μM) attenuated MSU crystal-induced IL-1β production in BMDMs via inhibition of NLRP3 inflammasome activation. In addition, arhalofenate acid dose-dependently increased activation (as assessed by phosphorylation) of AMP-activated protein kinase (AMPK). Studying AMPKα1 knockout mice, we elucidated that AMPK mediated the anti-inflammatory effects of arhalofenate acid. Moreover, arhalofenate acid attenuated the capacity of MSU crystals to suppress AMPK activity, regulated expression of multiple downstream AMPK targets that modulate mitochondrial function and oxidative stress, preserved intact mitochondrial cristae and volume density, and promoted anti-inflammatory autophagy flux in BMDMs. Conclusions Arhalofenate acid is anti-inflammatory and acts via AMPK activation and its downstream signaling in macrophages. These effects likely contribute to a reduction of gout flares. Electronic supplementary material The online version of this article (10.1186/s13075-018-1699-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Ramon L Serrano
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.,University of California San Diego, La Jolla, California, USA
| | - Sushil K Mahata
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.,University of California San Diego, La Jolla, California, USA
| | - Robert Terkeltaub
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.,University of California San Diego, La Jolla, California, USA
| | - Ru Liu-Bryan
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA. .,University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
59
|
Melatonin Ameliorates the Progression of Atherosclerosis via Mitophagy Activation and NLRP3 Inflammasome Inhibition. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9286458. [PMID: 30254716 PMCID: PMC6142770 DOI: 10.1155/2018/9286458] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/24/2018] [Accepted: 07/11/2018] [Indexed: 01/24/2023]
Abstract
The NLRP3 (nucleotide-binding domain and leucine-rich repeat pyrin domain containing 3) inflammasome-mediated inflammatory responses are critically involved in the progression of atherosclerosis (AS), which is the essential cause for cardiovascular diseases. Melatonin has anti-inflammatory properties. However, little is known about the potential effects of melatonin in the pathological process of AS. Herein, we demonstrate that melatonin suppressed prolonged NLRP3 inflammasome activation in atherosclerotic lesions by reactive oxygen species (ROS) scavenging via mitophagy in macrophages. The atherosclerotic mouse model was induced with a high-fat diet using ApoE−/− mice. Melatonin treatment markedly attenuated AS plaque size and vulnerability. Furthermore, melatonin decreased NLRP3 inflammasome activation and the consequent IL-1β secretion within atherosclerotic lesions. Despite the unchanged protein expression, the silent information regulator 3 (Sirt3) activity was elevated in the atherosclerotic lesions in melatonin-treated mice. In ox-LDL-treated macrophages, melatonin attenuated the NLRP3 inflammasome activation and the inflammatory factors secretion, while this protective effect was abolished by either Sirt3 silence or autophagy inhibitor 3-MA. Mitochondrial ROS (mitoROS), which was a recognized inducer for NLRP3 inflammasome, was attenuated by melatonin through the induction of mitophagy. Both Sirt3-siRNA and autophagy inhibitor 3-MA partially abolished the beneficial effects of melatonin on mitoROS clearance and NLRP3 inflammasome activation, indicating the crucial role of Sirt3-mediated mitophagy. Furthermore, we demonstrated that melatonin protected against AS via the Sirt3/FOXO3a/Parkin signaling pathway. In conclusion, the current study demonstrated that melatonin prevented atherosclerotic progression, at least in part, via inducing mitophagy and attenuating NLRP3 inflammasome activation, which was mediated by the Sirt3/FOXO3a/Parkin signaling pathway. Collectively, our study provides insight into melatonin as a new target for therapeutic intervention for AS.
Collapse
|
60
|
Kanzaki LIB. HTLV-1: A real pathogen or a runaway guest of a diseased cell? J Biosci 2018; 43:785-795. [PMID: 30207322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The human T-cell lymphotropic virus type 1 (HTLV-1) is a deltaretrovirus claimed to be aetiologically linked to the adult T-cell leukaemia/lymphoma (ATLL) and associated myelopathy/tropical spastic paraparesis (HAM/TSP) besides other minor pathologies. HTLV-1 infection is worldwide distributed, despite its heterogeneous prevalence. Environmental factors and host-genetic background are very likely to determine the epidemiological profile of HTLV-1 prevalence and related disease confinement in distinct human ethnic populations and geographical coordinates, which raises the question if the virus is a real pathogen or a runaway well-organized packed genome of a burden host cell near death process. New methodological approaches need to be proposed and applied in order to prove or discard the hypotheses emerged in the present review.
Collapse
Affiliation(s)
- L I B Kanzaki
- Laboratory of Bioprospection, Department of Pharmacy, University of Brasilia, Brası´lia, DF CEP 70.910-900, Brazil,
| |
Collapse
|
61
|
Roh JS, Sohn DH. Damage-Associated Molecular Patterns in Inflammatory Diseases. Immune Netw 2018; 18:e27. [PMID: 30181915 PMCID: PMC6117512 DOI: 10.4110/in.2018.18.e27] [Citation(s) in RCA: 800] [Impact Index Per Article: 114.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/05/2018] [Accepted: 08/05/2018] [Indexed: 12/23/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous danger molecules that are released from damaged or dying cells and activate the innate immune system by interacting with pattern recognition receptors (PRRs). Although DAMPs contribute to the host's defense, they promote pathological inflammatory responses. Recent studies have suggested that various DAMPs, such as high-mobility group box 1 (HMGB1), S100 proteins, and heat shock proteins (HSPs), are increased and considered to have a pathogenic role in inflammatory diseases. Here, we review current research on the role of DAMPs in inflammatory diseases, including rheumatoid arthritis, systemic lupus erythematosus, osteoarthritis, atherosclerosis, Alzheimer's disease, Parkinson's disease, and cancer. We also discuss the possibility of DAMPs as biomarkers and therapeutic targets for these diseases.
Collapse
Affiliation(s)
- Jong Seong Roh
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan 50612, Korea
| |
Collapse
|
62
|
|
63
|
Zhao C, Wang M, Cheng A, Yang Q, Wu Y, Zhu D, Chen S, Liu M, Zhao X, Jia R, Sun K, Chen X. Programmed cell death: the battlefield between the host and alpha-herpesviruses and a potential avenue for cancer treatment. Oncotarget 2018; 9:30704-30719. [PMID: 30093980 PMCID: PMC6078129 DOI: 10.18632/oncotarget.25694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/24/2018] [Indexed: 12/24/2022] Open
Abstract
Programed cell death is an antiviral mechanism by which the host limits viral replication and protects uninfected cells. Many viruses encode proteins resistant to programed cell death to escape the host immune defenses, which indicates that programed cell death is more favorable for the host immune defense. Alpha-herpesviruses are pathogens that widely affect the health of humans and animals in different communities worldwide. Alpha-herpesviruses can induce apoptosis, autophagy and necroptosis through different molecular mechanisms. This review concisely illustrates the different pathways of apoptosis, autophagy, and necroptosis induced by alpha-herpesviruses. These pathways influence viral infection and replication and are a potential avenue for cancer treatment. This review will increase our understanding of the role of programed cell death in the host immune defense and provides new possibilities for cancer treatment.
Collapse
Affiliation(s)
- Chuankuo Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - XinXin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| |
Collapse
|
64
|
Lee E, Hwang I, Park S, Hong S, Hwang B, Cho Y, Son J, Yu JW. MPTP-driven NLRP3 inflammasome activation in microglia plays a central role in dopaminergic neurodegeneration. Cell Death Differ 2018; 26:213-228. [PMID: 29786072 PMCID: PMC6329843 DOI: 10.1038/s41418-018-0124-5] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 11/21/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN) and the reduction of dopamine levels in the striatum. Although details of the molecular mechanisms underlying dopaminergic neuronal death in PD remain unclear, neuroinflammation is also considered a potent mediator in the pathogenesis and progression of PD. In the present study, we present evidences that microglial NLRP3 inflammasome activation is critical for dopaminergic neuronal loss and the subsequent motor deficits in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Specifically, NLRP3 deficiency significantly reduces motor dysfunctions and dopaminergic neurodegeneration of MPTP-treated mice. Furthermore, NLRP3 deficiency abolishes MPTP-induced microglial recruitment, interleukin-1β production and caspase-1 activation in the SN of mouse brain. In primary microglia and mixed glial cell cultures, MPTP/ATP treatment promotes the robust assembly and activation of the NLRP3 inflammasome via producing mitochondrial reactive oxygen species. Consistently, 1-methyl-4-phenyl-pyridinium (MPP+) induces NLRP3 inflammasome activation in the presence of ATP or nigericin treatment in mouse bone-marrow-derived macrophages. These findings reveal a novel priming role of neurotoxin MPTP or MPP+ for NLRP3 activation. Subsequently, NLRP3 inflammasome-active microglia induces profound neuronal death in a microglia-neuron co-culture model. Furthermore, Cx3Cr1CreER-based microglia-specific expression of an active NLRP3 mutant greatly exacerbates motor deficits and dopaminergic neuronal loss of MPTP-treated mice. Taken together, our results indicate that microglial NLRP3 inflammasome activation plays a pivotal role in the MPTP-induced neurodegeneration in PD.
Collapse
Affiliation(s)
- Eunju Lee
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Inhwa Hwang
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sangjun Park
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sujeong Hong
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Boreum Hwang
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoeseph Cho
- Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Junghyun Son
- Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Je-Wook Yu
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
65
|
Gabl M, Sundqvist M, Holdfeldt A, Lind S, Mårtensson J, Christenson K, Marutani T, Dahlgren C, Mukai H, Forsman H. Mitocryptides from Human Mitochondrial DNA-Encoded Proteins Activate Neutrophil Formyl Peptide Receptors: Receptor Preference and Signaling Properties. THE JOURNAL OF IMMUNOLOGY 2018; 200:3269-3282. [PMID: 29602776 DOI: 10.4049/jimmunol.1701719] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/07/2018] [Indexed: 12/21/2022]
Abstract
Phagocytic neutrophils express formyl peptide receptors (FPRs; FPR1 and FPR2) that distinctly recognize peptides starting with an N-formylated methionine (fMet). This is a hallmark of bacterial metabolism; similar to prokaryotes, the starting amino acid in synthesis of mitochondrial DNA-encoded proteins is an fMet. Mitochondrial cryptic peptides (mitocryptides; MCTs) with an N-terminal fMet could be identified by our innate immune system; however, in contrast to our knowledge about bacterial metabolites, very little is known about the recognition profiles of MCTs. In this study, we determined the neutrophil-recognition profiles and functional output of putative MCTs originating from the N termini of the 13 human mitochondrial DNA-encoded proteins. Six of the thirteen MCTs potently activated neutrophils with distinct FPR-recognition profiles: MCTs from ND3 and ND6 have a receptor preference for FPR1; MCTs from the proteins ND4, ND5, and cytochrome b prefer FPR2; and MCT-COX1 is a dual FPR1/FPR2 agonist. MCTs derived from ND2 and ND4L are very weak neutrophil activators, whereas MCTs from ND1, ATP6, ATP8, COX2, and COX3, do not exert agonistic or antagonistic FPR effects. In addition, the activating MCTs heterologously desensitized IL-8R but primed the response to the platelet-activating factor receptor agonist. More importantly, our data suggest that MCTs have biased signaling properties in favor of activation of the superoxide-generating NADPH oxidase or recruitment of β-arrestin. In summary, we identify several novel FPR-activating peptides with sequences present in the N termini of mitochondrial DNA-encoded proteins, and our data elucidate the molecular basis of neutrophil activation by MCTs.
Collapse
Affiliation(s)
- Michael Gabl
- Department of Rheumatology and Inflammation Research, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Andre Holdfeldt
- Department of Rheumatology and Inflammation Research, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Simon Lind
- Department of Rheumatology and Inflammation Research, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Jonas Mårtensson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Karin Christenson
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden; and
| | - Takayuki Marutani
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, 526-0829 Nagahama, Japan
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Hidehito Mukai
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, 526-0829 Nagahama, Japan
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, University of Gothenburg, 41390 Gothenburg, Sweden;
| |
Collapse
|
66
|
Weigert A, von Knethen A, Fuhrmann D, Dehne N, Brüne B. Redox-signals and macrophage biology. Mol Aspects Med 2018; 63:70-87. [PMID: 29329794 DOI: 10.1016/j.mam.2018.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 12/15/2022]
Abstract
Macrophages are known for their versatile role in biology. They sense and clear structures that contain exogenous or endogenous pathogen-associated molecular patterns. This process is tightly linked to the production of a mixture of potentially harmful oxidants and cytokines. Their inherent destructive behavior is directed against foreign material or structures of 'altered self', which explains the role of macrophages during innate immune reactions and inflammation. However, there is also another side of macrophages when they turn into a tissue regenerative, pro-resolving, and healing phenotype. Phenotype changes of macrophages are termed macrophage polarization, representing a continuum between classical and alternative activation. Macrophages as the dominating producers of superoxide/hydrogen peroxide and nitric oxide are not only prone to oxidative modifications but also to more subtle signaling properties of redox-active molecules conveying redox regulation. We review basic concepts of the enzymatic nitric oxide and superoxide production within macrophages, refer to their unique chemical reactions and outline biological consequences not only for macrophage biology but also for their communication with cells in the microenvironment. These considerations link hypoxia to the NO system, addressing feedforward as well as feedback circuits. Moreover, we summarize the role of redox-signaling affecting epigenetics and reflect the central role of mitochondrial-derived oxygen species in inflammation. To better understand the diverse functions of macrophages during initiation as well as resolution of inflammation and to decode their versatile roles during innate and adaptive immunity with the entire spectrum of cell protective towards cell destructive activities we need to appreciate the signaling properties of redox-active species. Herein we discuss macrophage responses in terms of nitric oxide and superoxide formation with the modulating impact of hypoxia.
Collapse
Affiliation(s)
- Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Andreas von Knethen
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Dominik Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Nathalie Dehne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, IME, 60590 Frankfurt, Germany.
| |
Collapse
|
67
|
Lymphocytes eject interferogenic mitochondrial DNA webs in response to CpG and non-CpG oligodeoxynucleotides of class C. Proc Natl Acad Sci U S A 2018; 115:E478-E487. [PMID: 29295921 DOI: 10.1073/pnas.1711950115] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Circulating mitochondrial DNA (mtDNA) is receiving increasing attention as a danger-associated molecular pattern in conditions such as autoimmunity, cancer, and trauma. We report here that human lymphocytes [B cells, T cells, natural killer (NK) cells], monocytes, and neutrophils derived from healthy blood donors, as well as B cells from chronic lymphocytic leukemia patients, rapidly eject mtDNA as web filament structures upon recognition of CpG and non-CpG oligodeoxynucleotides of class C. The release was quenched by ZnCl2, independent of cell death (apoptosis, necrosis, necroptosis, autophagy), and continued in the presence of TLR9 signaling inhibitors. B-cell mtDNA webs were distinct from neutrophil extracellular traps concerning structure, reactive oxygen species (ROS) dependence, and were devoid of antibacterial proteins. mtDNA webs acted as rapid (within minutes) messengers, priming antiviral type I IFN production. In summary, our findings point at a previously unrecognized role for lymphocytes in antimicrobial defense, utilizing mtDNA webs as signals in synergy with cytokines and natural antibodies, and cast light on the interplay between mitochondria and the immune system.
Collapse
|
68
|
Yi YS. Roles of ginsenosides in inflammasome activation. J Ginseng Res 2017; 43:172-178. [PMID: 30962733 PMCID: PMC6437422 DOI: 10.1016/j.jgr.2017.11.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 11/16/2017] [Indexed: 12/25/2022] Open
Abstract
Inflammation is an innate immune response that protects the body from pathogens, toxins, and other dangers and is initiated by recognizing pathogen-associated molecular patterns or danger-associated molecular patterns by pattern-recognition receptors expressing on or in immune cells. Intracellular pattern-recognition receptors, including nucleotide-binding oligomerization domain-like receptors (NLRs), absent in melanoma 2, and cysteine aspartate–specific protease (caspase)-4/5/11 recognize various pathogen-associated molecular patterns and danger-associated molecular patterns and assemble protein complexes called “inflammasomes.” These complexes induce inflammatory responses by activating a downstream effector, caspase-1, leading to gasdermin D –mediated pyroptosis and the secretion of proinflammatory cytokines, such as interleukin (IL)-1β and IL-18. Ginsenosides are natural steroid glycosides and triterpene saponins found exclusively in the plant genus Panax. Various ginsenosides have been identified, and their abilities to regulate inflammatory responses have been evaluated. These studies have suggested a link between ginsenosides and inflammasome activation in inflammatory responses. Some types of ginsenosides, including Rh1, Rg3, Rb1, compound K, chikusetsu saponin IVa, Rg5, and Rg1, have been clearly demonstrated to inhibit inflammatory responses by suppressing the activation of various inflammasomes, including the NLRP3, NLRP1, and absent in melanoma 2 inflammasomes. Ginsenosides have also been shown to inhibit caspase-1 and to decrease the expression of IL-1β and IL-18. Given this body of evidence, the functional relationship between ginsenosides and inflammasome activation provides new insight into the understanding of the molecular mechanisms of ginsenoside-mediated antiinflammatory actions. This relationship also has applications regarding the development of antiinflammatory remedies by ginsenoside-mediated targeting of inflammasomes, which could be used to prevent and treat inflammatory diseases.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju, Republic of Korea
| |
Collapse
|
69
|
Xu X, Zhang L, Ye X, Hao Q, Zhang T, Cui G, Yu M. Nrf2/ARE pathway inhibits ROS-induced NLRP3 inflammasome activation in BV2 cells after cerebral ischemia reperfusion. Inflamm Res 2017; 67:57-65. [PMID: 28956063 DOI: 10.1007/s00011-017-1095-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/20/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE Current therapies for ischemia/reperfusion are insufficient because of our poor understanding of the mechanisms of brain injury after ischemic stroke. As a vital component of the innate immune system, NLRP3 inflammasome contributes to ischemic brain injury; however, a detailed understanding of their molecular mechanisms is unknown. This study was designed to investigate the effect of nuclear factor E2-related factor-2 (Nrf2) on NLRP3 inflammasome. MATERIALS AND METHODS BV2 microglial cells were pretreated with tert-butylhydroquinone or Nrf2 CRISPR plasmid before oxygen-glucose deprivation/reoxygenation (OGDR) exposure. Then we observed the effect of Nrf2 on NLRP3 inflammasome. RESULTS We identified that Nrf2 activation inhibited NLRP3 inflammasome expression and subsequent IL-1β generation. Furthermore, the activation of NLRP3 inflammasome was sensitive to the reactive oxygen species (ROS) level and Nrf2 could decrease the production of ROS. Additionally, as a Nrf2-targeted ARE gene, NADPH quinone oxidoreductase 1 was involved in the inhibition of the NLRP3 inflammasome. CONCLUSION We elucidated an inhibitory regulation of Nrf2/ARE pathway on ROS-induced NLRP3 inflammasome activation in BV2 microglial cells after OGDR exposure.
Collapse
Affiliation(s)
- Xiujian Xu
- Department of Neurology, The Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Zhenjiang, 212001, Jiangsu, China
| | - Liang Zhang
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xinchun Ye
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China
| | - Qi Hao
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tao Zhang
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China.
| | - Ming Yu
- Department of Neurology, The Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Zhenjiang, 212001, Jiangsu, China.
| |
Collapse
|