51
|
Wang Y, Kong L, Tan J, Liu B, An Y, Xia L, Lu Y, Li Q, Wang L. Photochemistry of Imidazole-2-carbaldehyde in Droplets as a Potential Source of H 2O 2 and Its Oxidation of SO 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11096-11104. [PMID: 38865480 DOI: 10.1021/acs.est.3c11113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Hydrogen peroxide (H2O2) plays a crucial role as an oxidizing agent within the tropospheric environment, making a substantial contribution to sulfate formation in hydrated aerosols and cloud and fog droplets. Field observations show that high levels of H2O2 are often observed in heavy haze events and polluted air. However, the source of H2O2 remains unclear. Here, using the droplets formed in situ by the deliquescence of hygroscopic compounds under a high relative humidity (RH), the formation of H2O2 by the photochemistry of imidazole-2-carbaldehyde (2-IC) under ultraviolet irradiation was explored. The results indicate that 2-IC produces IM-C•-OH and IM-C•═O radicals via H transfer itself to its excited triplet state and generates H2O2 and organic peroxides in the presence of O2, which has an evident oxidizing effect on SO2, suggesting the potential involvement of this pathway in the formation of atmospheric sulfate. H2O2 formation is limited in acidic droplets or droplets containing ammonium ions, and no H2O2 is detected in droplets containing nitrate, whereas droplets containing citric acid have an obvious promotion effect on H2O2 formation. These findings provide valuable insights into the behaviors of atmospheric photosensitizers, the source of H2O2, and the formation of sulfate in atmospheric droplets.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Lingdong Kong
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
- Shanghai Institute of Eco-Chongming (SIEC), 3663 Northern Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Jie Tan
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Beibei Liu
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Yixuan An
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Lianghai Xia
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Yu Lu
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Qing Li
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Lin Wang
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| |
Collapse
|
52
|
Pan D, Mauzerall DL, Wang R, Guo X, Puchalski M, Guo Y, Song S, Tong D, Sullivan AP, Schichtel BA, Collett JL, Zondlo MA. Regime shift in secondary inorganic aerosol formation and nitrogen deposition in the rural United States. NATURE GEOSCIENCE 2024; 17:617-623. [PMID: 39006244 PMCID: PMC11245397 DOI: 10.1038/s41561-024-01455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/15/2024] [Indexed: 07/16/2024]
Abstract
Secondary inorganic aerosols play an important role in air pollution and climate change, and their formation modulates the atmospheric deposition of reactive nitrogen (including oxidized and reduced nitrogen), thus impacting the nitrogen cycle. Large-scale and long-term analyses of secondary inorganic aerosol formation based on model simulations have substantial uncertainties. Here we improve constraints on secondary inorganic aerosol formation using decade-long in situ observations of aerosol composition and gaseous precursors from multiple monitoring networks across the United States. We reveal a shift in the secondary inorganic aerosol formation regime in the rural United States between 2011 and 2020, making rural areas less sensitive to changes in ammonia concentrations and shortening the effective atmospheric lifetime of reduced forms of reactive nitrogen. This leads to potential increases in reactive nitrogen deposition near ammonia emission hotspots, with ecosystem impacts warranting further investigation. Ammonia (NH3), a critical but not directly regulated precursor of fine particulate matter in the United States, has been increasingly scrutinized to improve air quality. Our findings, however, show that controlling NH3 became significantly less effective for mitigating fine particulate matter in the rural United States. We highlight the need for more collocated aerosol and precursor observations for better characterization of secondary inorganic aerosols formation in urban areas.
Collapse
Affiliation(s)
- Da Pan
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ USA
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO USA
| | - Denise L Mauzerall
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ USA
- Princeton School of Public and International Affairs, Princeton University, Princeton, NJ USA
| | - Rui Wang
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ USA
| | - Xuehui Guo
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ USA
- Present Address: Department of Environmental Sciences, University of Virginia, Charlottesville, VA USA
| | - Melissa Puchalski
- US Environmental Protection Agency, Office of Air and Radiation, Washington, DC USA
| | - Yixin Guo
- Princeton School of Public and International Affairs, Princeton University, Princeton, NJ USA
- Present Address: Department of Atmospheric and Oceanic Sciences, Peking University, Beijing, China
| | - Shaojie Song
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Daniel Tong
- Atmospheric, Oceanic & Earth Sciences Department and Center for Spatial Information Science and Systems, George Mason University, Fairfax, VA USA
| | - Amy P Sullivan
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO USA
| | - Bret A Schichtel
- National Park Service, Air Resources Division, Lakewood, CO USA
- Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO USA
| | - Jeffrey L Collett
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO USA
| | - Mark A Zondlo
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ USA
| |
Collapse
|
53
|
Cooke ME, Armstrong NC, Fankhauser AM, Chen Y, Lei Z, Zhang Y, Ledsky IR, Turpin BJ, Zhang Z, Gold A, McNeill VF, Surratt JD, Ault AP. Decreases in Epoxide-Driven Secondary Organic Aerosol Production under Highly Acidic Conditions: The Importance of Acid-Base Equilibria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10675-10684. [PMID: 38843196 DOI: 10.1021/acs.est.3c10851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Isoprene has the highest atmospheric emissions of any nonmethane hydrocarbon, and isoprene epoxydiols (IEPOX) are well-established oxidation products and the primary contributors forming isoprene-derived secondary organic aerosol (SOA). Highly acidic particles (pH 0-3) widespread across the lower troposphere enable acid-driven multiphase chemistry of IEPOX, such as epoxide ring-opening reactions forming methyltetrol sulfates through nucleophilic attack of sulfate (SO42-). Herein, we systematically demonstrate an unexpected decrease in SOA formation from IEPOX on highly acidic particles (pH < 1). While IEPOX-SOA formation is commonly assumed to increase at low pH when more [H+] is available to protonate epoxides, we observe maximum SOA formation at pH 1 and less SOA formation at pH 0.0 and 0.4. This is attributed to limited availability of SO42- at pH values below the acid dissociation constant (pKa) of SO42- and bisulfate (HSO4-). The nucleophilicity of HSO4- is 100× lower than SO42-, decreasing SOA formation and shifting particulate products from low-volatility organosulfates to higher-volatility polyols. Current model parameterizations predicting SOA yields for IEPOX-SOA do not properly account for the SO42-/HSO4- equilibrium, leading to overpredictions of SOA formation at low pH. Accounting for this underexplored acidity-dependent behavior is critical for accurately predicting SOA concentrations and resolving SOA impacts on air quality.
Collapse
Affiliation(s)
- Madeline E Cooke
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - N Cazimir Armstrong
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Alison M Fankhauser
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yuzhi Chen
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Ziying Lei
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yue Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Isabel R Ledsky
- Department of Chemistry, Carleton College, Northfield, Minnesota 55057, United States
| | - Barbara J Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Zhenfa Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Avram Gold
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - V Faye McNeill
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
- Department of Chemistry, College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andrew P Ault
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
54
|
Driscoll C, Milford JB, Henze DK, Bell MD. Atmospheric reduced nitrogen: Sources, transformations, effects, and management. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024; 74:362-415. [PMID: 38819428 DOI: 10.1080/10962247.2024.2342765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/02/2024] [Indexed: 06/01/2024]
Abstract
Human activities have increased atmospheric emissions and deposition of oxidized and reduced forms of nitrogen, but emission control programs have largely focused on oxidized nitrogen. As a result, in many regions of the world emissions of oxidized nitrogen are decreasing while emissions of reduced nitrogen are increasing. Emissions of reduced nitrogen largely originate from livestock waste and fertilizer application, with contributions from transportation sources in urban areas. Observations suggest a discrepancy between trends in emissions and deposition of reduced nitrogen in the U.S., likely due to an underestimate in emissions. In the atmosphere, ammonia reacts with oxides of sulfur and nitrogen to form fine particulate matter that impairs health and visibility and affects climate forcings. Recent reductions in emissions of sulfur and nitrogen oxides have limited partitioning with ammonia, decreasing long-range transport. Continuing research is needed to improve understanding of how shifting emissions alter formation of secondary particulates and patterns of transport and deposition of reactive nitrogen. Satellite remote sensing has potential for monitoring atmospheric concentrations and emissions of ammonia, but there remains a need to maintain and strengthen ground-based measurements and continue development of chemical transport models. Elevated nitrogen deposition has decreased plant and soil microbial biodiversity and altered the biogeochemical function of terrestrial, freshwater, and coastal ecosystems. Further study is needed on differential effects of oxidized versus reduced nitrogen and pathways and timescales of ecosystem recovery from elevated nitrogen deposition. Decreases in deposition of reduced nitrogen could alleviate exceedances of critical loads for terrestrial and freshwater indicators in many U.S. areas. The U.S. Environmental Protection Agency should consider using critical loads as a basis for setting standards to protect public welfare and ecosystems. The U.S. and other countries might look to European experience for approaches to control emissions of reduced nitrogen from agricultural and transportation sectors.Implications: In this Critical Review we synthesize research on effects, air emissions, environmental transformations, and management of reduced forms of nitrogen. Emissions of reduced nitrogen affect human health, the structure and function of ecosystems, and climatic forcings. While emissions of oxidized forms of nitrogen are regulated in the U.S., controls on reduced forms are largely absent. Decreases in emissions of sulfur and nitrogen oxides coupled with increases in ammonia are shifting the gas-particle partitioning of ammonia and decreasing long-range atmospheric transport of reduced nitrogen. Effort is needed to understand, monitor, and manage emissions of reduced nitrogen in a changing environment.
Collapse
Affiliation(s)
- Charles Driscoll
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY, USA
| | - Jana B Milford
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - Daven K Henze
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - Michael D Bell
- Ecologist, National Park Service - Air Resources Division, Boulder, CO, USA
| |
Collapse
|
55
|
Gao J, Wang H, Liu W, Xu H, Wei Y, Tian X, Feng Y, Song S, Shi G. Hydrogen peroxide serves as pivotal fountainhead for aerosol aqueous sulfate formation from a global perspective. Nat Commun 2024; 15:4625. [PMID: 38816351 PMCID: PMC11139875 DOI: 10.1038/s41467-024-48793-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
Traditional atmospheric chemistry posits that sulfur dioxide (SO2) can be oxidized to sulfate (SO42-) through aqueous-phase reactions in clouds and gas-phase oxidation. Despite adequate knowledge of traditional mechanisms, several studies have highlighted the potential for SO2 oxidation within aerosol water. Given the widespread presence of tropospheric aerosols, SO42- production through aqueous-phase oxidation in aerosol water could have a pervasive global impact. Here, we quantify the potential contributions of aerosol aqueous pathways to global sulfate formation based on the GEOS-Chem simulations and subsequent theoretical calculations. Hydrogen peroxide (H2O2) oxidation significantly influences continental regions both horizontally and vertically. Over the past two decades, shifts in the formation pathways within typical cities reveal an intriguing trend: despite reductions in SO2 emissions, the increased atmospheric oxidation capacities, like rising H2O2 levels, prevent a steady decline in SO42- concentrations. Abating oxidants would facilitate the benefit of SO2 reduction and the positive feedback in sulfate mitigation.
Collapse
Affiliation(s)
- Jie Gao
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Haoqi Wang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Wenqi Liu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Han Xu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yuting Wei
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiao Tian
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shaojie Song
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Guoliang Shi
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
56
|
Fedorets AA, Kolmakov EE, Dombrovsky LA, Nosonovsky M. Inversion of Stabilized Large Droplet Clusters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9993-9998. [PMID: 38688005 DOI: 10.1021/acs.langmuir.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
We investigate the spontaneous rearrangement of microdroplets in a self-assembled droplet cluster levitating over a thin locally heated water layer. The center-to-periphery droplet diameter ratio (the "inversion coefficient") controls the onset of the inversion. Larger droplets can squeeze between smaller ones due to increased drag force on them from the air-vapor flow. In smaller clusters, the rotation of the droplets plays an important role since larger droplets rotating with the same angular velocity (dependent on the rotor of the airflow field) have higher viscous friction force with the liquid layer. It is desirable to avoid cluster inversion in experiments where individual droplet positions should be traced.
Collapse
Affiliation(s)
- Alexander A Fedorets
- X-BIO Institute, University of Tyumen, 6 Volodarskogo St., Tyumen 625003, Russia
| | - Eduard E Kolmakov
- X-BIO Institute, University of Tyumen, 6 Volodarskogo St., Tyumen 625003, Russia
| | - Leonid A Dombrovsky
- X-BIO Institute, University of Tyumen, 6 Volodarskogo St., Tyumen 625003, Russia
- Joint Institute for High Temperatures, 17A Krasnokazarmennaya St., Moscow 111116, Russia
| | - Michael Nosonovsky
- X-BIO Institute, University of Tyumen, 6 Volodarskogo St., Tyumen 625003, Russia
- Mechanical Engineering, University of Wisconsin─Milwaukee, 3200 North Cramer St., Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
57
|
Mabato BG, Li YJ, Huang DD, Chan CK. Aqueous-Phase Photoreactions of Mixed Aromatic Carbonyl Photosensitizers Yield More Oxygenated, Oxidized, and less Light-Absorbing Secondary Organic Aerosol (SOA) than Single Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7924-7936. [PMID: 38652049 PMCID: PMC11080053 DOI: 10.1021/acs.est.3c10199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Aromatic carbonyls have been mainly probed as photosensitizers for aqueous secondary organic aerosol (aqSOA) and light-absorbing organic aerosol (i.e., brown carbon or BrC) formation, but due to their organic nature, they can also undergo oxidation to form aqSOA and BrC. However, photochemical transformations of aromatic carbonyl photosensitizers, particularly in multicomponent systems, are understudied. This study explored aqSOA formation from the irradiation of aromatic carbonyl photosensitizers in mixed and single systems under cloud/fog conditions. Mixed systems consisting of phenolic carbonyls only (VL + ActSyr + SyrAld: vanillin [VL] + acetosyringone [ActSyr] + syringaldehyde [SyrAld]) and another composed of both nonphenolic and phenolic carbonyls (DMB + ActSyr + SyrAld: 3,4-dimethoxybenzaldehyde [DMB], a nonphenolic carbonyl, + ActSyr + SyrAld) were compared to single systems of VL (VL*) and DMB (DMB*), respectively. In mixed systems, the shorter lifetimes of VL and DMB indicate their diminished capacity to trigger the oxidation of other organic compounds (e.g., guaiacol [GUA], a noncarbonyl phenol). In contrast to the slow decay and minimal photoenhancement for DMB*, the rapid photodegradation and significant photoenhancement for VL* indicate efficient direct photosensitized oxidation (i.e., self-photosensitization). Relative to single systems, the increased oxidant availability promoted functionalization in VL + ActSyr + SyrAld and accelerated the conversion of early generation aqSOA in DMB + ActSyr + SyrAld. Moreover, the increased availability of oxidizable substrates countered by stronger oxidative capacity limited the contribution of mixed systems to aqSOA light absorption. This suggests a weaker radiative effect of BrC from mixed photosensitizer systems than BrC from single photosensitizer systems. Furthermore, more oxygenated and oxidized aqSOA was observed with increasing complexity of the reaction systems (e.g., VL* < VL + ActSyr + SyrAld < VL + ActSyr + SyrAld + GUA). This work offers new insights into aqSOA formation by emphasizing the dual role of organic photosensitizers as oxidant sources and oxidizable substrates.
Collapse
Affiliation(s)
- Beatrix
Rosette Go Mabato
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| | - Yong Jie Li
- Department
of Civil and Environmental Engineering, and Centre for Regional Ocean,
Faculty of Science and Technology, University
of Macau, Macau 999078, China
| | - Dan Dan Huang
- Shanghai
Academy of Environmental Sciences, Shanghai 200233, China
| | - Chak K. Chan
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
- Division
of Physical Sciences and Engineering, King
Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955-6900, Kingdom
of Saudi Arabia
| |
Collapse
|
58
|
Yoo H, Seo D, Shin D, Ro CU. Direct Observation of Particle-To-Particle Variability in Ambient Aerosol pH Using a Novel Analytical Approach Based on Surface-Enhanced Raman Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7977-7985. [PMID: 38664901 DOI: 10.1021/acs.est.4c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The pH of atmospheric aerosols is a key characteristic that profoundly influences their impacts on climate change, human health, and ecosystems. Despite widely performed aerosol pH research, determining the pH levels of individual atmospheric aerosol particles has been a challenge. This study presents a novel analytical technique that utilizes surface-enhanced Raman spectroscopy to assess the pH of individual ambient PM2.5-10 aerosol particles in conjunction with examining their hygroscopic behavior, morphology, and elemental compositions. The results revealed a substantial pH variation among simultaneously collected aerosol particles, ranging from 3.3 to 5.7. This variability is likely related to each particle's unique reaction and aging states. The extensive particle-to-particle pH variability suggests that atmospheric aerosols present at the same time and location can exhibit diverse reactivities, reaction pathways, phase equilibria, and phase separation properties. This pioneering study paves the way for in-depth investigations into particle-to-particle variability, size dependency, and detailed spatial and temporal variations of aerosol pH, thus deepening our understanding of atmospheric chemistry and its environmental implications.
Collapse
Affiliation(s)
- Hanjin Yoo
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
- Particle Pollution Management Center, Inha University, Incheon 21999, Republic of Korea
| | - Dongkwon Seo
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Dongha Shin
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Chul-Un Ro
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
- Particle Pollution Management Center, Inha University, Incheon 21999, Republic of Korea
| |
Collapse
|
59
|
Wong C, Pazienza JE, Rychnovsky SD, Nizkorodov SA. Formation of Chromophores from cis-Pinonaldehyde Aged in Highly Acidic Conditions. J Am Chem Soc 2024; 146:11702-11710. [PMID: 38640258 PMCID: PMC11066867 DOI: 10.1021/jacs.3c14177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/21/2024]
Abstract
Sulfuric acid in the atmosphere can participate in acid-catalyzed and acid-driven reactions, including those within secondary organic aerosols (SOA). Previous studies have observed enhanced absorption at visible wavelengths and significant changes in the chemical composition when SOA was exposed to sulfuric acid. However, the specific chromophores responsible for these changes could not be identified. The goals of this study are to identify the chromophores and determine the mechanism of browning in highly acidified α-pinene SOA by following the behavior of specific common α-pinene oxidation products, namely, cis-pinonic acid and cis-pinonaldehyde, when they are exposed to highly acidic conditions. The products of these reactions were analyzed with ultra-performance liquid chromatography coupled with photodiode array spectrophotometry and high-resolution mass spectrometry, UV-vis spectrophotometry, and nuclear magnetic resonance spectroscopy. cis-Pinonic acid (2) was found to form homoterpenyl methyl ketone (4), which does not absorb visible radiation, while cis-pinonaldehyde (3) formed weakly absorbing 1-(4-(propan-2-ylidene)cyclopent-1-en-1-yl)ethan-1-one (5) and 1-(4-isopropylcyclopenta-1,3-dien-1-yl)ethan-1-one (6) via an acid-catalyzed aldol condensation. This chemistry could be relevant for environments characterized by high sulfuric acid concentrations, for example, during the transport of organic compounds from the lower to the upper atmosphere by fast updrafts.
Collapse
Affiliation(s)
| | | | - Scott D. Rychnovsky
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United
States
| | - Sergey A. Nizkorodov
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United
States
| |
Collapse
|
60
|
Chang Y, Feng YN, Cheng L, Hu J, Zhu L, Tan W, Zhong H, Zhang Y, Huang RJ, Sun Y. Trimethylamine from Subtropical Forests Rival Total Farmland Emissions in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5453-5460. [PMID: 38477969 DOI: 10.1021/acs.est.4c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Many types of living plants release gaseous trimethylamine (TMA), making it a potentially important contributor to new particle formation (NPF) in remote areas. However, a panoramic view of the importance of forest biogenic TMA at the regional scale is lacking. Here, we pioneered nationwide mobile measurements of TMA across a transect of contiguous farmland in eastern China and a transect of subtropical forests in southern China. In contrast to the farmland route, TMA concentrations measured during the subtropical forest route correlated significantly with isoprene, suggesting potential TMA emissions from leaves. Our high time-resolved concentrations obtained from a weak photo-oxidizing atmosphere reflected freshly emitted TMA, indicating the highest emission intensity from irrigated dryland (set as the baseline of 10), followed by paddy field (7.1), subtropical evergreen forests (5.9), and subtropical broadleaf and mixed forests (4.3). Extrapolating their proportions roughly to China, subtropical forests alone, which constitute half of the total forest area, account for nearly 70% of the TMA emissions from the nation's total farmland. Our estimates, despite the uncertainties, take the first step toward large-scale assessment of forest biogenic amines, highlighting the need for observational and modeling studies to consider this hitherto overlooked source of TMA.
Collapse
Affiliation(s)
- Yunhua Chang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yu-Ning Feng
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Lin Cheng
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jianlin Hu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Liang Zhu
- TOFWERK China, Nanjing 211800, China
| | - Wen Tan
- TOFWERK China, Nanjing 211800, China
| | - Haobin Zhong
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, China
| | - Yi Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Ru-Jin Huang
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth and Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
61
|
Fu X, Wang X, Liu T, He Q, Zhang Z, Zhang Y, Song W, Dai Q, Chen S, Dong F. Secondary inorganic aerosols and aerosol acidity at different PM 2.5 pollution levels during winter haze episodes in the Sichuan Basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170512. [PMID: 38286278 DOI: 10.1016/j.scitotenv.2024.170512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
Wintertime fine particle (PM2.5) pollution remains to be perplexing air quality problems in many parts of China. In this study, PM2.5 compositions and aerosol acidity at different pollution levels at an urban cite in the southwest China's Sichuan Basin were investigated during a sustained winter haze episode. Organic matter was the most abundant component of PM2.5, followed by nitrate, sulfate and ammonium. Shares of organic aerosol in PM2.5 mass decreased with the elevated PM2.5 levels, while the enhancements of sulfate and secondary organic aerosol were much less than that of nitrate and ammonium during heavy pollution with increased ratios of nitrate to sulfate, implying a significant role of nitrate in the haze formation. Results also suggest the nighttime chemistry might contribute substantially to the formation of nitrate under severe pollutions. The daily average aerosol pH showed a decreasing trend with the elevated levels of PM2.5, and this increased aerosl acidity was mainly due to the fast rising secondary inorganic aerosol (SIA) concentration, with the increase in hydronium ion concentration in air (Hair+) surpassing the dilution effect of elevated aerosol liquid water content (LWC). Thermodynamic model calculations revealed that the air environment was NH3-rich with total NHx (NH3 + NH4+) greater than required NHx, and the aerosol pH exponentially declined with the decreasing excess NHx (p < 0.01). This study demonstrated that under air stagnation and NH3-rich environment during winter, the raised relative humidity (RH) would lead to an increase in LWC and thereby facilitate the aqueous chemistry processes with the neutralization capacity of NH3 to form sulfate and nitrate, which would further increase the LWC and lower the pH. This self-amplifying SIA formation might be crucial to the severe PM2.5 pollution and haze events during winter, and therefore cutting both NOx and NH3 emissions would benefit stopping the self-amplification.
Collapse
Affiliation(s)
- Xiaoxin Fu
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Tengyu Liu
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Quanfu He
- Institute for Energy and Climate Research, IEK-8, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Zhou Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yanli Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Wei Song
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Qunwei Dai
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Shu Chen
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
62
|
Shen M, Li J, Liu Y, Dai W, Wang G, Qi W, Chen Y, Guo X, Zhang Y, Li L, Cao Y, Feng Q, Su H, Cao J. Comparison of acidity and chemical composition of summertime cloud water and aerosol at an alpine site in Northwest China: Implications for the neutral property of clouds in the free troposphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171775. [PMID: 38499095 DOI: 10.1016/j.scitotenv.2024.171775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Aerosol and cloud acidity are essential to human health, ecosystem health and productivity, as well as climate effects. The main chemical composition of cloud water greatly varies in different regions, resulting in substantial differences in the pH of cloud water. However, the influences of the anthropogenic emissions of acidic gases and substances, alkaline dust components, and dicarboxylic acids (diacids) on the ground concerning the acidity of cloud water in the free troposphere of the Guanzhong Plain, China, remain clear. In this study, cloud water and PM2.5 samples were simultaneously collected in the troposphere (Mt. Hua, 2060 m a.s.l). The results indicated that the cloud water was alkaline (pH = 7.6) and PM2.5 was acidic (pH = 3.2). These results showed the neutral property of clouds collected in the heavily polluted Guanzhong Plain, although most previous studies always considered acidity as a marker of pollution. The sulfate (SO42-), nitrate (NO3-), and ammonium (NH4+) (SNA) of particulate matter and cloud water in the same period were compared. SO42- was dominant in particulate matters (accounting for 63.4 % of the total SNA) but substantially decreased in cloud water (only 30.1 % of the total SNA), whereas NO3- and NH4+ increased from 28.5 % and 8.2 % to 39.8 % and 30.2 %, respectively. This could be attributed to the complex formation mechanism and sources of SO42- and NO3- in the cloud. The results of ion balance indicated that a significant deficit of inorganic anion equivalents was observed in the cloud water samples. The high concentration of diacids in the cloud phase (1237.4 μg L-1) may facilitate the formation of salt complexes with NH4+, thus influencing the acidity of the cloud water. The pH of cloud water has increased in recent decades due to the sustained reduction of sulfur dioxide, which may also affect the acidity of future precipitation.
Collapse
Affiliation(s)
- Minxia Shen
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Jianjun Li
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; National Observation and Research Station of Regional Ecological Environment Change and Comprehensive Management in the Guanzhong Plain, Shaanxi 710061, China.
| | - Yali Liu
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Wenting Dai
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Gehui Wang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Weining Qi
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yukun Chen
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiao Guo
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yifan Zhang
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Lu Li
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yue Cao
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Qiao Feng
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Hui Su
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| |
Collapse
|
63
|
Yu F, Nair AA, Lauper U, Luo G, Herb J, Morse M, Savage B, Zartarian M, Wang M, Lin S. Mysteriously rapid rise in Legionnaires' disease incidence correlates with declining atmospheric sulfur dioxide. PNAS NEXUS 2024; 3:pgae085. [PMID: 38476666 PMCID: PMC10929586 DOI: 10.1093/pnasnexus/pgae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Legionnaires' disease (LD) is a severe form of pneumonia (∼10-25% fatality rate) caused by inhalation of aerosols containing Legionella, a pathogenic gram-negative bacteria. These bacteria can grow, spread, and aerosolize through building water systems. A recent dramatic increase in LD incidence has been observed globally, with a 9-fold increase in the United States from 2000 to 2018, and with disproportionately higher burden for socioeconomically vulnerable subgroups. Despite the focus of decades of research since the infamous 1976 outbreak, substantial knowledge gaps remain with regard to source of exposure and the reason(s) for the dramatic increase in LD incidence. Here, we rule out factors indicated in literature to contribute to its long-term increases and identify a hitherto unexplored explanatory factor. We also provide an epidemiological demonstration that the occurrence of LD is linked with exposure to cooling towers (CTs). Our results suggest that declining sulfur dioxide air pollution, which has many well-established health benefits, results in reduced acidity of aerosols emitted from CTs, which may prolong the survival duration of Legionella in contaminated CT droplets and contribute to the increase in LD incidence. Mechanistically associating decreasing aerosol acidity with this respiratory disease has implications for better understanding its transmission, predicting future risks, and informed design of preventive and interventional strategies that consider the complex impacts of continued sulfur dioxide changes.
Collapse
Affiliation(s)
- Fangqun Yu
- Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY 12226, USA
| | - Arshad A Nair
- Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY 12226, USA
| | - Ursula Lauper
- New York State Department of Health, Bureau of Water Supply Protection, Albany, NY 12223, USA
| | - Gan Luo
- Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY 12226, USA
| | - Jason Herb
- Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY 12226, USA
| | - Matthew Morse
- New York State Department of Health, Bureau of Water Supply Protection, Albany, NY 12223, USA
| | - Braden Savage
- New York State Department of Health, Bureau of Water Supply Protection, Albany, NY 12223, USA
| | - Martin Zartarian
- New York State Department of Health, Bureau of Water Supply Protection, Albany, NY 12223, USA
| | - Meng Wang
- School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Shao Lin
- School of Public Health, University at Albany, State University of New York, Albany, NY 12144, USA
| |
Collapse
|
64
|
Kołodziejczyk A, Wróblewska A, Pietrzak M, Pyrcz P, Błaziak K, Szmigielski R. Dissociation constants of relevant secondary organic aerosol components in the atmosphere. CHEMOSPHERE 2024; 351:141166. [PMID: 38224752 DOI: 10.1016/j.chemosphere.2024.141166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
The presented studies focus on measuring the determination of the acidity constant (pKa) of relevant secondary organic aerosol components. For our research, we selected important oxidation products (mainly carboxylic acids) of the most abundant terpene compounds, such as α-pinene, β-pinene, β-caryophyllene, and δ-3-carene. The research covered the synthesis and determination of the acidity constant of selected compounds. We used three methods to measure the acidity constant, i.e., 1H NMR titration, pH-metric titration, Bates-Schwarzenbach spectrophotometric method. Moreover, the pKa values were calculated with Marvin 21.17.0 software to compare the experimentally derived values with those calculated from the chemical structure. pKa values measured with 1H NMR titration ranged from 3.51 ± 0.01 for terebic acid to 5.18 ± 0.06 for β-norcaryophyllonic acid. Moreover, the data determined by the 1H NMR method revealed a good correlation with the data obtained with the commonly used potentiometric and UV-spectroscopic methods (R2 = 0.92). In contrast, the comparison with in silico results exhibits a relatively low correlation (R2Marvin = 0.66). We found that most of the values calculated with the Marvin Program are lower than experimental values obtained with pH-metric titration with an average difference of 0.44 pKa units. For di- and tricarboxylic acids, we obtained two and three pKa values, respectively. A good correlation with the literature values was observed, for example, Howell and Fisher (1958) used pH-metric titration and measured pKa1 and pKa2 to be 4.48 and 5.48, while our results are 4.24 ± 0.10 and 5.40 ± 0.02, respectively.
Collapse
Affiliation(s)
- Agata Kołodziejczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Aleksandra Wróblewska
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Mariusz Pietrzak
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Patryk Pyrcz
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Kacper Błaziak
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 01-224, Warsaw, Poland; Biological and Chemical Research Center, University of Warsaw, ul. Żwirki i Wigury 101, 01-224, Warsaw, Poland
| | - Rafał Szmigielski
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
65
|
Al-Abadleh HA. Iron content in aerosol particles and its impact on atmospheric chemistry. Chem Commun (Camb) 2024. [PMID: 38268472 DOI: 10.1039/d3cc04614a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Atmospheric aerosol effects on ecological and human health remain uncertain due to their highly complex and evolving nature when suspended in air. Atmospheric chemistry, global climate/oceanic and health exposure models need to incorporate more realistic representations of aerosol particles, especially their bulk and surface chemistry, to account for the evolution in aerosol physicochemical properties with time. (Photo)chemistry driven by iron (Fe) in atmospheric aerosol particles from natural and anthropogenic sources remains limited in these models, particularly under aerosol liquid water conditions. In this feature article, recent advances from our work on Fe (photo)reactivity in multicomponent aerosol systems are highlighted. More specifically, reactions of soluble Fe with aqueous extracts of biomass burning organic aerosols and proxies of humic like substances leading to brown carbon formation are presented. Some of these reactions produced nitrogen-containing gaseous and condensed phase products. For comparison, results from these bulk aqueous phase chemical studies were compared to those from heterogeneous reactions simulating atmospheric aging of Fe-containing reference materials. These materials include Arizona test dust (AZTD) and combustion fly ash particles. Also, dissolution of Fe and other trace elements is presented from simulated human exposure experiments to highlight the impact of aerosol aging on levels of trace metals. The impacts of these chemical reactions on aerosol optical, hygroscopic and morphological properties are also emphasized in light of their importance to aerosol-radiation and aerosol-cloud interactions, in addition to biogeochemical processes at the sea/ocean surface microlayer upon deposition. Future directions for laboratory studies on Fe-driven multiphase chemistry are proposed to advance knowledge and encourage collaborations for efficient utilization of expertise and resources among climate, ocean and health scientific communities.
Collapse
Affiliation(s)
- Hind A Al-Abadleh
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada.
| |
Collapse
|
66
|
Prisle NL. Surfaces of Atmospheric Droplet Models Probed with Synchrotron XPS on a Liquid Microjet. Acc Chem Res 2024; 57:177-187. [PMID: 38156821 PMCID: PMC10795169 DOI: 10.1021/acs.accounts.3c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Indexed: 01/03/2024]
Abstract
ConspectusThe atmosphere is a key part of the earth system comprising myriad chemical species in all basic forms of matter. Ubiquitous nano- and microscopic aerosol particles and cloud droplets suspended in the air play crucial roles in earth's climate and the formation of air pollution. Surfaces are a prominent part of aerosols and droplets, due to the high surface area to bulk volume ratios, but very little is known about their specific properties. Many atmospheric compounds are surface-active, leading to enhanced surface concentrations in aqueous solutions. Their distribution between the surface and bulk may determine heterogeneous chemistry and many other properties of aerosol and cloud droplets, but has not been directly observed.We used X-ray photoelectron spectroscopy (XPS) to obtain direct molecular-level information on the surface composition and structure of aqueous solutions of surface-active organics as model systems for atmospheric aerosol and cloud droplets. XPS is a vacuum-based technique enabled for volatile aqueous organic samples by the application of a high-speed liquid microjet. In combination with brilliant synchrotron X-rays, the chemical specificity of XPS allows distinction between elements in different chemical states and positions within molecular structures. We used core-level C 1s and N 1s signals to identify the alkyl and hydrophilic groups of atmospheric carboxylic acids, alkyl-amines, and their conjugate acids and bases. From this, we infer changes in the orientation of surface-adsorbed species and quantify their relative abundances in the surface. XPS-derived surface enrichments of the organics follow trends expected from their surface activities and we observed a preferential orientation at the surface with the hydrophobic alkyl chains pointing increasingly outward from the solution at higher concentrations. This provides a first direct experimental observation of well-established concepts of surface adsorption and confirms the soundness of the method.We mapped relative abundances of conjugate acid-base pairs in the aqueous solution surfaces from the respective intensities of distinctive XPS signals. For each pair, the protonation equilibrium was significantly shifted toward the neutral form in the surface, compared to the bulk solution, across the full pH range. This represents an apparent shift of the pKa in the surface, which may be toward either higher or lower pH, depending on whether the acid or base form of the pair is the neutral species. The surface shifts are broadly consistent with the relative differences in surface enrichment of the individual acid and base conjugates in binary aqueous solutions, with additional contributions from nonideal interactions in the surface. In aqueous mixtures of surface-active carboxylate anions with ammonium salts at near-neutral pH, we found that the conjugate carboxylic acids were further strongly enhanced. This occurs as the coadsorption of weakly basic carboxylate anions and weakly acidic ammonium cations forms ion-pair surface layers with strongly enhanced local abundances, increasing the probability of net proton transfer according to Le Chatelier's principle. The effect is stronger when the evaporation of ammonia from the surface further contributes to irreversibly perturb the protonation equilibrium, leaving a surplus of carboxylic acid. These surface-specific effects may profoundly influence atmospheric chemistry mediated by aqueous aerosols and cloud droplets but are currently not taken into account in atmospheric models.
Collapse
Affiliation(s)
- Nønne L. Prisle
- Center for Atmospheric Research, University of Oulu, P.O. Box 4500, Oulu 90014, Finland
| |
Collapse
|
67
|
White Buenger E, Mayer PM. Unraveling the Unimolecular Ion Chemistry of Protonated Isoprene and Prenol. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:31-39. [PMID: 38014876 DOI: 10.1021/jasms.3c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The atmospheric chemistries of isoprene and prenol have been studied extensively; however, much of that research has focused on neutral or radical chemistry. Recent studies have demonstrated that under acidic conditions, isoprene and prenol can become protonated in the atmosphere, and we have explored the unimolecular chemistry of protonated isoprene and prenol with tandem mass spectrometry (using a triple-quadrupole mass spectrometer) and density functional theory. The collision-induced dissociation of protonated isoprene revealed two product ion channels: the neutral losses of C2H4 and H2, the former dominating over the latter. Protonated prenol dissociates by four product ion channels: the neutral losses of water, formaldehyde, methanol, and propene, with the former two being minor channels and the latter two being major channels. Density functional theory supplemented with CBS-QB3 single-point calculations revealed the underlying mechanisms to explain the breakdown behavior. The two competing channels from protonated isoprene could easily be rationalized due to the relative energy difference between key transition states along the reaction coordinates. However, in the case of protonated prenol, it was revealed that the minor products observed in the breakdown of protonated prenol had significantly lower reaction barriers when compared to the major products, an apparent contradiction. This could be rationalized if the initial ion population entering the collision cell is comproed of several isomeric species on the minimum energy reaction pathway, species populated by collisional excitation in the ion source region.
Collapse
Affiliation(s)
- Edgar White Buenger
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Paul M Mayer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| |
Collapse
|
68
|
Shahpoury P, Lelieveld S, Johannessen C, Berkemeier T, Celo V, Dabek-Zlotorzynska E, Harner T, Lammel G, Nenes A. Influence of aerosol acidity and organic ligands on transition metal solubility and oxidative potential of fine particulate matter in urban environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167405. [PMID: 37777133 DOI: 10.1016/j.scitotenv.2023.167405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
The adverse health effects of air pollution around the world have been associated with the inhalation of fine particulate matter (PM2.5). Such outcomes are thought to be related to the induction of oxidative stress due to the excess formation of reactive oxygen species (ROS) in the respiratory and cardiovascular systems. The ability of airborne chemicals to deplete antioxidants and to form ROS is known as oxidative potential (OP). Here we studied the influence of aerosol acidity and organic ligands on the solubility of transition metals, in particular iron (Fe) and copper (Cu), and on the OP of PM2.5 from Canadian National Air Pollution Surveillance urban sites in Toronto, Vancouver, and Hamilton. Using chemical assays and model simulations of the lung redox chemistry, we quantified ROS formation in the lung lining fluid, targeting superoxide anion (O2•-), hydrogen peroxide (H2O2), and hydroxyl radical (•OH), as well as the PM2.5 redox potential (RP). Experimental •OH formation (OPOH) showed high correlations with RP and model-predicted ROS metrics. Both aerosol acidity and oxalate content enhanced the solubility of transition metals, with oxalate showing a stronger association. While experimental OP metrics were primarily associated with species of primary origin such as elemental carbon, Fe, and Cu, model-predicted ROS were associated with secondary processes including proton- and ligand-mediated dissolution of Fe. Model simulations showed that water-soluble Cu was the main contributor to O2•- formation, while water-soluble Fe dominated the formation of highly reactive •OH radical, particularly at study sites with highly acidic aerosol and elevated levels of oxalate. This study underscores the importance of reducing transition metal emissions in urban environments to improve population health.
Collapse
Affiliation(s)
- Pourya Shahpoury
- Environmental and Life Sciences, Trent University, Peterborough, Canada; Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany.
| | - Steven Lelieveld
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | | | - Thomas Berkemeier
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Valbona Celo
- Analysis and Air Quality Section, Environment and Climate Change Canada, Ottawa, Canada
| | | | - Tom Harner
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Canada
| | - Gerhard Lammel
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Athanasios Nenes
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Switzerland; Center for the Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, Greece
| |
Collapse
|
69
|
Feng Q, Liu H, Dai W, Cao Y, Shen M, Liu Y, Qi W, Chen Y, Guo X, Zhang Y, Li L, Zhou B, Li J. Comparison of chemical composition and acidity of size-resolved inorganic aerosols at the top and foot of Mt. Hua, Northwest China: The role of the gas-particle distribution of ammonia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166985. [PMID: 37704142 DOI: 10.1016/j.scitotenv.2023.166985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/04/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
Aerosol pH is not only a diagnostic indicator of secondary aerosol formation, but also a key factor in the specific chemical reaction routes that produce sulfate and nitrate. To understand the characteristics of aerosol acidity in the Mt. Hua, the chemical fractions of water-soluble inorganic ions in the atmospheric PM2.5 and size-resolved particle at the top and foot of Mt. Hua in summer 2020 were studied. The results showed the mass concentrations of PM2.5 and water-soluble ions at the foot were 2.0-2.6 times higher than those at the top. The secondary inorganic ions, i.e., SO42-, NO3-, and NH4+ (SNA) were 56 %-61 % higher by day than by night. SO42- was mainly distributed in the fine particles (Dp < 2.1 μm). NO3- showed a unimodal size distribution (peaking at 0.7-1.1 μm) at the foot and a bimodal (0.7-1.1 μm and 4.7-5.8 μm) size distribution at the top. At the top site, the distribution of NO3- in coarse particles (> 2.1 μm) was mainly attributed to the gaseous HNO3 volatilized from fine particles reacting with cations in coarse particles to form non-volatile salts (such as Ca(NO3)2). The pH values of PM2.5 were 2.7 ± 1.3 and 3.3 ± 0.42 at the top and foot, respectively. NH4+/NH3(g) plays a decisive role in stabilizing aerosol acidity. In addition, the increase of the liquid water content (LWC) at the foot facilitates the gas-particle conversion of NH3, while the H+ concentration was diluted, resulting in a decrease in acidity at the foot. NH4+/NH3 had good linear correlations with SO42-, NO3-, and LWC during the daytime at both sites, indicating that SO42-, NO3-, and LWC together affect the gas-particle distribution of ammonia by day: however, the effect of LWC at night was not evident.
Collapse
Affiliation(s)
- Qiao Feng
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; College of Geography and Environment, Baoji University of Arts and Sciences, Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulation, Baoji 721013, China
| | - Haijiao Liu
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Wenting Dai
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yue Cao
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Minxia Shen
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; College of Geography and Environment, Baoji University of Arts and Sciences, Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulation, Baoji 721013, China
| | - Yali Liu
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Weining Qi
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yukun Chen
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiao Guo
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yifan Zhang
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Lu Li
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Bianhong Zhou
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; College of Geography and Environment, Baoji University of Arts and Sciences, Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulation, Baoji 721013, China.
| | - Jianjun Li
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; National Observation and Research Station of Regional Ecological Environment Change and Comprehensive Management in the Guanzhong Plain, Shaanxi, China.
| |
Collapse
|
70
|
Kim H, Walters WW, Kysela L, Hastings MG. Long-term trends in inorganic aerosol chemical composition and chemistry at an urban and rural site in the northeastern US. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166848. [PMID: 37678538 DOI: 10.1016/j.scitotenv.2023.166848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/09/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
Atmospheric nitrate and sulfate are major inorganic particulate matter components that impact human and ecosystem health and air quality. Over the last several decades, emissions of the precursor gases, nitrogen oxides (NOx = NO + NO2) and sulfur dioxide (SO2), have dramatically decreased in the US in response to federal regulations. However, the response in concentrations of particulate nitrate (pNO3) and sulfate (pSO4) have not followed predictions due to complex non-linear chemistry feedbacks that may differ amongst environments (i.e., urban vs. rural). In this study, we explored the long-term response of particle chemistry for urban and rural environments in southern New England, a region historically impacted by NOx and SO2 emissions. Particulate matter (PM10) samples collected via the same method from 2005 to 2015 at urban and rural locations in Rhode Island were analyzed for their major inorganic components, and air mass trajectories and statistical analysis were used to identify source regions over time. Our results indicated a significant urban-rural aerosol chemical composition gradient for sampling locations within 40 km. Over time, as anthropogenic influences have decreased, the relative contribution of marine and crustal sources has increased greatly, impacting fine and coarse particle chemistry in recent years. Total mass concentrations of chemical species, particularly anthropogenic pSO4 and particulate ammonium (pNH4), have shown dramatic decreases over the ten years at both the urban and rural sites; however, pNO3 concentration increased by 95 % and 57 % in the urban and rural sites, respectively, despite significant NOx emission reductions. Our results demonstrate that changes in chemical mechanisms due to the decrease in SO2 emissions contributed to decreases in pNH4, along with enhanced pNO3 concentration. Furthermore, the change in SO2 emissions has significantly impacted the atmospheric lifetime and transport distance of pNH4, favoring more localized contributions in recent years.
Collapse
Affiliation(s)
- Heejeong Kim
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI 02912, USA; Institute at Brown for Environment and Society, Brown University, Providence, RI 02912, USA
| | - Wendell W Walters
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI 02912, USA; Institute at Brown for Environment and Society, Brown University, Providence, RI 02912, USA.
| | - Lizzy Kysela
- Center for Sustainability and the Global Environment, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Meredith G Hastings
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI 02912, USA; Institute at Brown for Environment and Society, Brown University, Providence, RI 02912, USA
| |
Collapse
|
71
|
Wu G, Wang H, Zhang C, Gong D, Liu X, Ristovski Z, Wang B. Anthropogenic pollutants induce enhancement of aerosol acidity at a mountainous background atmosphere in southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166192. [PMID: 37567283 DOI: 10.1016/j.scitotenv.2023.166192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Aerosol acidity plays a crucial role in atmospheric physicochemical processes, climate change and human health, particularly in the formation of secondary organic aerosols (SOA). However, understanding the characteristics and driving factors of aerosol acidity in background mountains has been limited. In this study, we conducted intensive field measurements in the Nanling mountains during the dry and wet seasons to analyze aerosol pH characteristics and their driving factors using sensitivity tests. The mean aerosol pH in the background mountains was found to be 2.68 ± 0.55, with values ranging from 0.38 to 4.44, significantly lower than predicted values in northern China. Sensitivity tests revealed that aerosol acidity in the background atmosphere was more responsive to dominant chemical species (T-NH3 (= NH4+ + NH3) and SO42-) rather than relative humidity and temperature. Additionally, we observed that sulfate and ammonium, transported occasionally by dryer northern air masses, had a substantial impact on decreasing aerosol pH at the site. Similar to the southeastern United States, NH4+/NH3 also dominated the total buffer capacity of aerosol acidity in the Nanling mountains. The strong aerosol acidity in this area is expected to have adverse effects on regional air quality and climate by enhancing SOA formation and regulating the dry deposition of inorganic reactive nitrogen.
Collapse
Affiliation(s)
- Gengchen Wu
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China
| | - Hao Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China; JNU-QUT Joint Laboratory for Air Quality Science and Management, Jinan University, Guangzhou 511443, China.
| | - Chengliang Zhang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China
| | - Daocheng Gong
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China
| | - Xiaoting Liu
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China; JNU-QUT Joint Laboratory for Air Quality Science and Management, Jinan University, Guangzhou 511443, China
| | - Zoran Ristovski
- JNU-QUT Joint Laboratory for Air Quality Science and Management, Jinan University, Guangzhou 511443, China; International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane 4001, Australia
| | - Boguang Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China; JNU-QUT Joint Laboratory for Air Quality Science and Management, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
72
|
Park GH, Park S, Seok MW, Lee SE, Kim YI, Mo A, Ko YH, Kim H, Kim TW. Acidity in rainwater and airborne suspended particles in the southwestern coast of the East Sea (Sea of Japan): Their potential impact on seawater total alkalinity. MARINE POLLUTION BULLETIN 2023; 197:115742. [PMID: 37976590 DOI: 10.1016/j.marpolbul.2023.115742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Our understanding of the impact of atmospheric acid deposition on marine carbonate system remains limited, largely due to a lack of data regarding acidity present in atmospheric particles and precipitation. Previous research has relied on the electroneutrality-based ion balance method for indirect estimation of atmospheric acidity. In this study, atmospheric samples collected at a coastal site of South Korea were mixed with seawater to measure the change in seawater total alkalinity (ΔTAAPL) associated with atmospheric proton loading. For the precipitation samples, the measured ΔTAAPL and electroneutrality-based estimates showed a significant correlation. However, we did not observe similar results for the atmospheric particle samples. Furthermore, the decrease in oceanic TA due to ΔTAAPL was substantially smaller than that in dissolved inorganic carbon from concurrent nitrogen fertilization. Consequently, the adverse impact of acid deposition on ocean acidification or air-sea exchange of CO2 appears to be insignificant on a short-term scale.
Collapse
Affiliation(s)
- Geun-Ha Park
- Marine Environmental Research Department, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea
| | - Seunghee Park
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Min-Woo Seok
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seon-Eun Lee
- Marine Environmental Research Department, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea
| | - Young-Il Kim
- East Sea Research Institute, Korea Institute of Ocean Science & Technology, Uljin 36315, Republic of Korea
| | - Ahra Mo
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Young Ho Ko
- OJEong Resilience Institute, Korea University, Seoul 02841, Republic of Korea
| | - Haryun Kim
- East Sea Research Institute, Korea Institute of Ocean Science & Technology, Uljin 36315, Republic of Korea
| | - Tae-Wook Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea; OJEong Resilience Institute, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
73
|
Rana MS, Bradley ST, Guzman MI. Conversion of Catechol to 4-Nitrocatechol in
Aqueous Microdroplets Exposed to O 3 and NO 2. ACS ES&T AIR 2023; 1:80-91. [PMCID: PMC10863616 DOI: 10.1021/acsestair.3c00001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/28/2023] [Indexed: 12/22/2024]
Abstract
Catechol is a widespread atmospheric dihydroxybenzene present in vehicle emissions, biomass burning, and combustion pollution plumes. Although the daytime reactivity of catechol is controlled by ozone (O3) and hydroxyl radicals (HO), the action of nitrate radicals (NO3) on the surface of aqueous atmospheric particles should become significant at night. This work simulates nighttime interfacial chemistry between hydrated catechol and adsorbed NO3 to form 4-nitrocatechol during experiments lasting ≤1 μs. Surface-sensitive online electrospray ionization mass spectrometry (OESI-MS) examines the reaction on the water surface under variable ratios of [NO2] and [O3]. The produced 4-nitrocatechol is quantified by a standard addition in real-time experiments under [NO2]:[O3] ratios of 1:1, 2:1, 3:1, and 4:1. Three mechanisms contribute to produce 4-nitrocatechol: (1) electron and proton transfers from catechol to NO3, forming a semiquinone radical, (2) electrophilic NO3 attack to the ring to yield a cyclohexadienyl radical intermediate, and (3) electrophilic attack to the ring by nitronium ion (NO2+) formed at the interface of water by colliding N2O5(g) at low pH. Ozonolysis competes strongly with nitration when using [NO2]:[O3] ratios 1:1 or smaller. Instead, nighttime chemistry under higher molar ratios proceeds mainly by nitration with a maximum yield of 0.90 for [NO2]:[O3] = 4:1. The role of NO2:O3 molar ratios on the interfacial nitration of catechol emitted from combustion processes remains unexplored. The work reports that nitration becomes prevalent for molar ratios of NO2:O3 ≥ 2:1.
Collapse
Affiliation(s)
- Md Sohel Rana
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Seth T. Bradley
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Marcelo I. Guzman
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
74
|
de la Puente M, Laage D. How the Acidity of Water Droplets and Films Is Controlled by the Air-Water Interface. J Am Chem Soc 2023; 145:25186-25194. [PMID: 37938132 DOI: 10.1021/jacs.3c07506] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Acidity is a key determinant of chemical reactivity in atmospheric aqueous aerosols and water microdroplets used for catalysis. However, many fundamental questions about these systems have remained elusive, including how their acidity differs from that of bulk solutions, the degree of heterogeneity between their core and surface, and how the acid-base properties are affected by their size. Here, we perform hybrid density functional theory (DFT)-quality neural network-based molecular simulations with explicit nuclear quantum effects and combine them with an analytic model to describe the pH and self-ion concentrations of droplets and films for sizes ranging from nm to μm. We determine how the acidity of water droplets and thin films is controlled by the properties of the air-water interface and by their surface-to-volume ratio. We show that while the pH is uniform in each system, hydronium and hydroxide ions exhibit concentration gradients that span the two outermost molecular layers, enriching the interface with hydronium cations and depleting it with hydroxide anions. Acidity depends strongly on the surface-to-volume ratio for system sizes below a few tens of nanometers, where the core becomes enriched in hydroxide ions and the pH increases as a result of hydronium stabilization at the interface. These results obtained for pure water systems have important implications for our understanding of chemical reactivity in atmospheric aerosols and for catalysis in aqueous microdroplets.
Collapse
Affiliation(s)
- Miguel de la Puente
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Damien Laage
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
75
|
Liu Z, Zhu B, Zhu C, Ruan T, Li J, Chen H, Li Q, Wang X, Wang L, Mu Y, Collett J, George C, Wang Y, Wang X, Su J, Yu S, Mellouki A, Chen J, Jiang G. Abundant nitrogenous secondary organic aerosol formation accelerated by cloud processing. iScience 2023; 26:108317. [PMID: 38026147 PMCID: PMC10665807 DOI: 10.1016/j.isci.2023.108317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/04/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Nitrogenous organic (CHON), crucial for secondary organic aerosol (SOA), forms through poorly studied mechanisms in clouds. Our study explores CHON transformation during cloud processes (CPs). These processes play a vital role in enhancing the variety of CHONs, leading to the formation of CHONs with oxygen atom counts ranging from 1 to 10 and double bond equivalent (DBE) values spanning from 2 to 10. We proposed that the CHONs formed during CPs are formed through aqueous phase reactions with CHO compound precursors via nucleophilic attacks by NH3. This scheme can be account for roughly three-quarters of the CHONs by number in cloud water, and near two-thirds of all CHONs are formed through reactions between NH3 and carbonyl-containing biogenic volatile organic compound (BVOC) ozonolysis intermediates. This study provides the first insights into the evolution of CHONs during CPs and reveals the significant roles of CPs in the formation of CHONs.
Collapse
Affiliation(s)
- Zhe Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Bao Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chao Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiarong Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Hui Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Qing Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Xiaofei Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Lin Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Yujing Mu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jeffrey Collett
- Department of Chemistry, College of Natural Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Christian George
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYO, 69626 Villeurbanne, France
| | - Yan Wang
- School of Environmental Science and Engineering, Research Institute of Environment, Shandong University, Qingdao 266237, China
| | - Xinfeng Wang
- School of Environmental Science and Engineering, Research Institute of Environment, Shandong University, Qingdao 266237, China
| | - Jixin Su
- School of Environmental Science and Engineering, Research Institute of Environment, Shandong University, Qingdao 266237, China
| | - Shaocai Yu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Abdewahid Mellouki
- Institut de Combustion, Aérothermique, Réactivité et Environnement, CNRS, 45071 Orléans Cedex 02, France
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
- Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
76
|
Wallace BJ, Mongeau ML, Zuend A, Preston TC. Impact of pH on Gas-Particle Partitioning of Semi-Volatile Organics in Multicomponent Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16974-16988. [PMID: 37885068 DOI: 10.1021/acs.est.3c02894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The partitioning of semivolatile organic compounds (SVOCs) between the condensed and gas phases can have significant implications for the properties of aerosol particles. In addition to affecting size and composition, this partitioning can alter radiative properties and impact cloud activation processes. We present measurements and model predictions on how activity and pH influence the evaporation of SVOCs from particles to the gas phase, specifically investigating aqueous inorganic particles containing dicarboxylic acids (DCAs). The aerosols are studied at the single-particle level by using optical trapping and cavity-enhanced Raman spectroscopy. Optical resonances in the spectra enable precise size tracking, while vibrational bands allow real-time monitoring of pH. Results are compared to a Maxwell-type model that accounts for volatile and nonvolatile solutes in aqueous droplets that are held at a constant relative humidity. The aerosol inorganic-organic mixture functional group activity coefficients thermodynamic model and Debye-Hückel theory are both used to calculate the activities of the species present in the droplet. For DCAs, we find that the evaporation rate is highly sensitive to the particle pH. For acidity changes of approximately 1.5 pH units, we observe a shift from a volatile system to one that is completely nonvolatile. We also observe that the pH itself is not constant during evaporation; it increases as DCAs evaporate, slowing the rate of evaporation until it eventually ceases. Whether a DCA evaporates or remains a stable component of the droplet is determined by the difference between the lowest pKa of the DCA and the pH of the droplet.
Collapse
Affiliation(s)
- Brandon J Wallace
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Michel Laforest Mongeau
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Andreas Zuend
- Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B9
| | - Thomas C Preston
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B9
| |
Collapse
|
77
|
Li Y, Lei L, Sun J, Gao Y, Wang P, Wang S, Zhang Z, Du A, Li Z, Wang Z, Kim JY, Kim H, Zhang H, Sun Y. Significant Reductions in Secondary Aerosols after the Three-Year Action Plan in Beijing Summer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15945-15955. [PMID: 37823561 DOI: 10.1021/acs.est.3c02417] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Air quality in China has continuously improved during the Three-Year Action Plan (2018-2020); however, the changes in aerosol composition, properties, and sources in Beijing summer remain poorly understood. Here, we conducted real-time measurements of aerosol composition in five summers from 2018 to 2022 along with WRF-Community Multiscale Air Quality simulations to characterize the changes in aerosol chemistry and the roles of meteorology and emission reductions. Largely different from winter, secondary inorganic aerosol and photochemical-related secondary organic aerosol (SOA) showed significant decreases by 55-67% in summer, and the most decreases occurred in 2021. Comparatively, the decreases in the primary aerosol species and gaseous precursors were comparably small. While decreased atmospheric oxidation capacity as indicated by ozone changes played an important role in changing SOA composition, the large decrease in aerosol liquid water and small increase in particle acidity were critical for nitrate changes by decreasing gas-particle partitioning substantially (∼28%). Analysis of meteorological influences demonstrated clear and similar transitions in aerosol composition and formation mechanisms at a relative humidity of 50-60% in five summers. Model simulations revealed that emission controls played the decisive role in reducing sulfate, primary OA, and anthropogenic SOA during the Three-Year Action Plan, while meteorology affected more nitrate and biogenic SOA.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Lei
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxing Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueqi Gao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Peng Wang
- Department of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Siyu Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Zhaolei Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Aodong Du
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijie Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zifa Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Young Kim
- Environment, Health, and Welfare Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Hwajin Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, South Korea
| | - Hongliang Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Institute of Eco-Chongming (IEC), Shanghai 200062, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
78
|
Yao M, Zhao Y, Chang C, Wang S, Li Z, Li C, Chan AWH, Xiao H. Multiphase Reactions between Organic Peroxides and Sulfur Dioxide in Internally Mixed Inorganic and Organic Particles: Key Roles of Particle Phase Separation and Acidity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15558-15570. [PMID: 37797208 DOI: 10.1021/acs.est.3c04975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Organic peroxides (POs) are ubiquitous in the atmosphere and particularly reactive toward dissolved sulfur dioxide (SO2), yet the reaction kinetics between POs and SO2, especially in complex inorganic-organic mixed particles, remain poorly constrained. Here, we report the first investigation of the multiphase reactions between SO2 and POs in monoterpene-derived secondary organic aerosol internally mixed with different inorganic salts (ammonium sulfate, ammonium bisulfate, or sodium nitrate). We find that when the particles are phase-separated, the PO-S(IV) reactivity is consistent with that measured in pure SOA and depends markedly on the water content in the organic shell. However, when the organic and inorganic phases are miscible, the PO-S(IV) reactivity varies substantially among different aerosol systems, mainly driven by their distinct acidities (not by ionic strength). The second-order PO-S(IV) rate constant decreases monotonically from 5 × 105 to 75 M-1 s-1 in the pH range of 0.1-5.6. Both proton catalysis and general acid catalysis contribute to S(IV) oxidation, with their corresponding third-order rate constants determined to be (6.4 ± 0.7) × 106 and (6.9 ± 4.6) × 104 M-2 s-1 at pH 2-6, respectively. The measured kinetics imply that the PO-S(IV) reaction in aerosol is an important sulfate formation pathway, with the reaction kinetics dominated by general acid catalysis at pH > 3 under typical continental atmospheric conditions.
Collapse
Affiliation(s)
- Min Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yue Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chongxuan Chang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shunyao Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ziyue Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenxi Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Arthur W H Chan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Huayun Xiao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
79
|
Masoud C, Modi M, Bhattacharyya N, Jahn LG, McPherson KN, Abue P, Patel K, Allen DT, Hildebrandt Ruiz L. High Chlorine Concentrations in an Unconventional Oil and Gas Development Region and Impacts on Atmospheric Chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15454-15464. [PMID: 37783466 PMCID: PMC10586373 DOI: 10.1021/acs.est.3c04005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/20/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023]
Abstract
Growth in unconventional oil and gas development (UOGD) in the United States has increased airborne emissions, raising environmental and human health concerns. To assess the potential impacts on air quality, we deployed instrumentation in Karnes City, Texas, a rural area in the middle of the Eagle Ford Shale. We measured several episodes of elevated Cl2 levels, reaching maximum hourly averages of 800 ppt, the highest inland Cl2 concentration reported to date. Concentrations peak during the day, suggesting a strong local source (given the short photolysis lifetime of Cl2) and/or a photoinitiated production mechanism. Well preproduction activity near the measurement site is a plausible source of these high Cl2 levels via direct emission and photoactive chemistry. ClNO2 is also observed, but it peaks overnight, consistent with well-known nocturnal formation processes. Observations of organochlorines in the gas and particle phases reflect the contribution of chlorine chemistry to the formation of secondary pollutants in the area. Box modeling results suggest that the formation of ozone at this location is influenced by chlorine chemistry. These results suggest that UOGD can be an important source of reactive chlorine in the atmosphere, impacting radical budgets and the formation of secondary pollutants in these regions.
Collapse
Affiliation(s)
- Catherine
G. Masoud
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Mrinali Modi
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Nirvan Bhattacharyya
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Leif G. Jahn
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Kristi N. McPherson
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Pearl Abue
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Kanan Patel
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - David T. Allen
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lea Hildebrandt Ruiz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
80
|
Zhen J, Li T, Xu X, Du P, Song Y, Nie X, Liu X, Liu H, Bi Y, Wang X, Xue L, Wang Y. Changed mercury speciation in clouds driven by changing cloud water chemistry and impacts on photoreduction: Field evidence at Mt. Tai in eastern China. WATER RESEARCH 2023; 244:120402. [PMID: 37572460 DOI: 10.1016/j.watres.2023.120402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 08/14/2023]
Abstract
Chemical speciation of mercury (Hg) in clouds largely determines the photochemistry of Hg in the atmosphere and consequently influences Hg deposition on the surface through precipitation. Cloud water chemistry has notably changed over the last decade in response to global changes, however, the effects on Hg speciation remain poorly understood. During summer 2021, we collected sixty cloud water samples at Mt. Tai in eastern China and compared the cloud chemistry and Hg speciation with our previous findings during summer 2015. The results showed that although there were no statistically significant differences in the concentrations of total Hg (THg), dissolved Hg (DHg), and particulate Hg (PHg), there was a distinct shift in DHg species from the predominated Hg-DOM (78.6% in 2015 campaign) to the more homogeneously distributed Hg(OH)2 (28.4% in 2021 campaign), HgBr2 (26.5%), Hg-DOM (17.3%) and HgBrOH (17.0%). Changes in cloud water chemistry, particularly the significant increase in pH values to 6.49 ± 0.27 and unexpectedly high levels of bromide ions (Br-, 0.19 ± 0.22 mg L-1), were found to drive the changing of Hg speciation by enhancing Hg(II) hydrolysis and binding by Br-. Elevated Br- originating primarily from the continent likely caused noticeable differences in the dominating DHg species between cloud water sourced from marine and continental regions. The changes in chemical speciation of DHg were estimated to result in a 2.6-fold decrease in Hg(II) photoreduction rate between 2015 and 2021 campaigns (0.178 ± 0.054 h-1 vs. 0.067 ± 0.027 h-1), implying a shortened lifetime of atmospheric Hg and increased ecological risks associated with Hg wet deposition.
Collapse
Affiliation(s)
- Jiebo Zhen
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Tao Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.
| | - Xinmiao Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Ping Du
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yue Song
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xiaoling Nie
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xinghui Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Hengde Liu
- Taishan National Reference Climatological Station, Tai'an, 271000, China
| | - Yujian Bi
- Taishan National Reference Climatological Station, Tai'an, 271000, China
| | - Xinfeng Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Likun Xue
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Yan Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
81
|
Florou K, Kodros JK, Paglione M, Jorga S, Squizzato S, Masiol M, Uruci P, Nenes A, Pandis SN. Characterization and dark oxidation of the emissions of a pellet stove. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2023; 3:1319-1334. [PMID: 38013728 PMCID: PMC10500314 DOI: 10.1039/d3ea00070b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/28/2023] [Indexed: 11/29/2023]
Abstract
Pellet combustion in residential heating stoves has increased globally during the last decade. Despite their high combustion efficiency, the widespread use of pellet stoves is expected to adversely impact air quality. The atmospheric aging of pellet emissions has received even less attention, focusing mainly on daytime conditions, while the degree to which pellet emissions undergo night-time aging as well as the role of relative humidity remain poorly understood. In this study, environmental simulation chamber experiments were performed to characterize the fresh and aged organic aerosol (OA) emitted by a pellet stove. The fresh pellet stove PM1 (particulate matter with an aerodynamic diameter less than 1 μm) emissions consisted mainly of OA (93 ± 4%, mean ± standard deviation) and black carbon (5 ± 3%). The primary OA (POA) oxygen-to-carbon ratio (O : C) was 0.58 ± 0.04, higher than that of fresh logwood emissions. The fresh OA at a concentration of 70 μg m-3 (after dilution and equilibration in the chamber) consisted of semi-volatile (68%), low and extremely low volatility (16%) and intermediate-volatility (16%) compounds. The oxidation of pellet emissions under dark conditions was investigated by injecting nitrogen dioxide (NO2) and ozone (O3) into the chamber, at different (10-80%) relative humidity (RH) levels. In all dark aging experiments secondary organic aerosol (SOA) formation was observed, increasing the OA levels after a few hours of exposure to NO3 radicals. The change in the aerosol composition and the extent of oxidation depended on RH. For low RH, the SOA mass formed was up to 30% of the initial OA, accompanied by a moderate change in both O : C levels (7-8% increase) and the OA spectrum. Aging under higher RH conditions (60-80%) led to a more oxygenated aerosol (increase in O : C of 11-18%), but only a minor (1-10%) increase in OA mass. The increase in O : C at high RH indicates the importance of heterogeneous aqueous reactions in this system, that oxidize the original OA with a relatively small net change in the OA mass. These results show that the OA in pellet emissions can chemically evolve under low photochemical activity (e.g. the wintertime period) with important enhancement in SOA mass under certain conditions.
Collapse
Affiliation(s)
- Kalliopi Florou
- Institute of Chemical Engineering Sciences, ICE-HT Patras 26504 Greece
| | - John K Kodros
- Institute of Chemical Engineering Sciences, ICE-HT Patras 26504 Greece
| | - Marco Paglione
- Institute of Chemical Engineering Sciences, ICE-HT Patras 26504 Greece
- Institute of Atmospheric Sciences and Climate, Italian National Research Council Bologna 40129 Italy
| | - Spiro Jorga
- Department of Chemical Engineering, Carnegie Mellon University Pittsburgh 15213 USA
| | | | - Mauro Masiol
- Institute of Chemical Engineering Sciences, ICE-HT Patras 26504 Greece
- Department of Environmental Sciences, Informatics and Statistics, Università Ca' Foscari Venezia Venice Italy
| | - Petro Uruci
- Institute of Chemical Engineering Sciences, ICE-HT Patras 26504 Greece
- Department of Chemical Engineering, University of Patras Patras 26504 Greece
| | - Athanasios Nenes
- Institute of Chemical Engineering Sciences, ICE-HT Patras 26504 Greece
- School of Architecture, Civil and Environmental Engineering, Swiss Federal Institute of Technology Lausanne Lausanne 1015 Switzerland
| | - Spyros N Pandis
- Institute of Chemical Engineering Sciences, ICE-HT Patras 26504 Greece
- Department of Chemical Engineering, University of Patras Patras 26504 Greece
| |
Collapse
|
82
|
Ozon M, Tumashevich K, Lin JJ, Prisle NL. Inversion model for extracting chemically resolved depth profiles across liquid interfaces of various configurations from XPS data: PROPHESY. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:941-961. [PMID: 37610342 PMCID: PMC10481271 DOI: 10.1107/s1600577523006124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/12/2023] [Indexed: 08/24/2023]
Abstract
PROPHESY, a technique for the reconstruction of surface-depth profiles from X-ray photoelectron spectroscopy data, is introduced. The inversion methodology is based on a Bayesian framework and primal-dual convex optimization. The acquisition model is developed for several geometries representing different sample types: plane (bulk sample), cylinder (liquid microjet) and sphere (droplet). The methodology is tested and characterized with respect to simulated data as a proof of concept. Possible limitations of the method due to uncertainty in the attenuation length of the photo-emitted electron are illustrated.
Collapse
Affiliation(s)
- Matthew Ozon
- Center for Atmospheric Research, University of Oulu, PO Box 4500, Finland
| | | | - Jack J. Lin
- Center for Atmospheric Research, University of Oulu, PO Box 4500, Finland
| | - Nønne L. Prisle
- Center for Atmospheric Research, University of Oulu, PO Box 4500, Finland
| |
Collapse
|
83
|
Zheng G, Su H, Cheng Y. Role of Carbon Dioxide, Ammonia, and Organic Acids in Buffering Atmospheric Acidity: The Distinct Contribution in Clouds and Aerosols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12571-12582. [PMID: 37599651 PMCID: PMC10469486 DOI: 10.1021/acs.est.2c09851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Indexed: 08/22/2023]
Abstract
Acidity is one central parameter in atmospheric multiphase reactions, influencing aerosol formation and its effects on climate, health, and ecosystems. Weak acids and bases, mainly CO2, NH3, and organic acids, are long considered to play a role in regulating atmospheric acidity. However, unlike strong acids and bases, their importance and influencing mechanisms in a given aerosol or cloud droplet system remain to be clarified. Here, we investigate this issue with new insights provided by recent advances in the field, in particular, the multiphase buffer theory. We show that, in general, aerosol acidity is primarily buffered by NH3, with a negligible contribution from CO2 and a potential contribution from organic acids under certain conditions. For fogs, clouds, and rains, CO2, organic acids, and NH3 may all provide certain buffering under higher pH levels (pH > ∼4). Despite the 104to 107 lower abundance of NH3 and organic weak acids, their buffering effect can still be comparable to that of CO2. This is because the cloud pH is at the very far end of the CO2 multiphase buffering range. This Perspective highlights the need for more comprehensive field observations under different conditions and further studies in the interactions among organic acids, acidity, and cloud chemistry.
Collapse
Affiliation(s)
- Guangjie Zheng
- Minerva
Research Group, Max Planck Institute for
Chemistry, Mainz 55128, Germany
- State
Key Joint Laboratory of Environmental Simulation and Pollution Control,
School of Environment, Tsinghua University, Beijing 100084, China
| | - Hang Su
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
- Chinese
Academy of Sciences, Institute of Atmospheric
Physics, Beijing 100029, China
| | - Yafang Cheng
- Minerva
Research Group, Max Planck Institute for
Chemistry, Mainz 55128, Germany
| |
Collapse
|
84
|
Acharja P, Ghude SD, Sinha B, Barth M, Govardhan G, Kulkarni R, Sinha V, Kumar R, Ali K, Gultepe I, Petit JE, Rajeevan MN. Thermodynamical framework for effective mitigation of high aerosol loading in the Indo-Gangetic Plain during winter. Sci Rep 2023; 13:13667. [PMID: 37608151 PMCID: PMC10444748 DOI: 10.1038/s41598-023-40657-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 08/16/2023] [Indexed: 08/24/2023] Open
Abstract
The Indo-Gangetic Plain (IGP) experiences severe air pollution every winter, with ammonium chloride and ammonium nitrate as the major inorganic fractions of fine aerosols. Many past attempts to tackle air pollution in the IGP were inadequate, as they targeted a subset of the primary pollutants in an environment where the majority of the particulate matter burden is secondary in nature. Here, we provide new mechanistic insight into aerosol mitigation by integrating the ISORROPIA-II thermodynamical model with high-resolution simultaneous measurements of precursor gases and aerosols. A mathematical framework is explored to investigate the complex interaction between hydrochloric acid (HCl), nitrogen oxides (NOx), ammonia (NH3), and aerosol liquid water content (ALWC). Aerosol acidity (pH) and ALWC emerge as governing factors that modulate the gas-to-particle phase partitioning and mass loading of fine aerosols. Six "sensitivity regimes" were defined, where PM1 and PM2.5 fall in the "HCl and HNO3 sensitive regime", emphasizing that HCl and HNO3 reductions would be the most effective pathway for aerosol mitigation in the IGP, which is ammonia-rich during winter. This study provides evidence that precursor abatement for aerosol mitigation should not be based on their descending mass concentrations but instead on their sensitivity to high aerosol loading.
Collapse
Affiliation(s)
- Prodip Acharja
- Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE, CNRS, Gif-sur-Yvette, France
| | - Sachin D Ghude
- Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India.
| | - Baerbel Sinha
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, Sahibzada Ajit Singh Nagar, Punjab, India.
| | - Mary Barth
- National Center for Atmospheric Research, Boulder, CO, 80307, USA
| | - Gaurav Govardhan
- Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India
| | | | - Vinayak Sinha
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Rajesh Kumar
- National Center for Atmospheric Research, Boulder, CO, 80307, USA
| | - Kaushar Ali
- Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India
| | - Ismail Gultepe
- Engineering and Applied Science, Ontario Technical University, Oshawa, ON, Canada
- Civil and Environment Eng and Earth Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Jean-Eudes Petit
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE, CNRS, Gif-sur-Yvette, France
| | | |
Collapse
|
85
|
Li Q, Meidan D, Hess P, Añel JA, Cuevas CA, Doney S, Fernandez RP, van Herpen M, Höglund-Isaksson L, Johnson MS, Kinnison DE, Lamarque JF, Röckmann T, Mahowald NM, Saiz-Lopez A. Global environmental implications of atmospheric methane removal through chlorine-mediated chemistry-climate interactions. Nat Commun 2023; 14:4045. [PMID: 37422475 DOI: 10.1038/s41467-023-39794-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/22/2023] [Indexed: 07/10/2023] Open
Abstract
Atmospheric methane is both a potent greenhouse gas and photochemically active, with approximately equal anthropogenic and natural sources. The addition of chlorine to the atmosphere has been proposed to mitigate global warming through methane reduction by increasing its chemical loss. However, the potential environmental impacts of such climate mitigation remain unexplored. Here, sensitivity studies are conducted to evaluate the possible effects of increasing reactive chlorine emissions on the methane budget, atmospheric composition and radiative forcing. Because of non-linear chemistry, in order to achieve a reduction in methane burden (instead of an increase), the chlorine atom burden needs to be a minimum of three times the estimated present-day burden. If the methane removal target is set to 20%, 45%, or 70% less global methane by 2050 compared to the levels in the Representative Concentration Pathway 8.5 scenario (RCP8.5), our modeling results suggest that additional chlorine fluxes of 630, 1250, and 1880 Tg Cl/year, respectively, are needed. The results show that increasing chlorine emissions also induces significant changes in other important climate forcers. Remarkably, the tropospheric ozone decrease is large enough that the magnitude of radiative forcing decrease is similar to that of methane. Adding 630, 1250, and 1880 Tg Cl/year to the RCP8.5 scenario, chosen to have the most consistent current-day trends of methane, will decrease the surface temperature by 0.2, 0.4, and 0.6 °C by 2050, respectively. The quantity and method in which the chlorine is added, its interactions with climate pathways, and the potential environmental impacts on air quality and ocean acidity, must be carefully considered before any action is taken.
Collapse
Affiliation(s)
- Qinyi Li
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, CSIC, Madrid, 28006, Spain
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Environment Research Institute, Shandong University, Qingdao, China
| | - Daphne Meidan
- Department of Earth and Atmospheric Sciences, Atkinson Center for a Sustainable Future, Cornell University, Ithaca, NY, USA
| | - Peter Hess
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Juan A Añel
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, CSIC, Madrid, 28006, Spain
- EPhysLab, CIM-Uvigo, Universidade de Vigo, Ourense, Spain
| | - Carlos A Cuevas
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, CSIC, Madrid, 28006, Spain
| | - Scott Doney
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Rafael P Fernandez
- Institute for Interdisciplinary Science (ICB), National Research Council (CONICET), FCEN-UNCuyo, Mendoza, Argentina
| | - Maarten van Herpen
- Acacia Impact Innovation BV, Acacialaan 9, 5384 BB, Heesch, The Netherlands
| | - Lena Höglund-Isaksson
- Pollution Management group (PM), International Institute for Applied Systems Analysis (IIASA), 2361, Laxenburg, Austria
| | - Matthew S Johnson
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| | - Douglas E Kinnison
- Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | - Jean-François Lamarque
- Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | - Thomas Röckmann
- Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Princetonplein 5, 3584CC, Utrecht, the Netherlands
| | - Natalie M Mahowald
- Department of Earth and Atmospheric Sciences, Atkinson Center for a Sustainable Future, Cornell University, Ithaca, NY, USA.
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, CSIC, Madrid, 28006, Spain.
| |
Collapse
|
86
|
Sarang K, Otto T, Gagan S, Rudzinski K, Schaefer T, Brüggemann M, Grgić I, Kubas A, Herrmann H, Szmigielski R. Aqueous-phase photo-oxidation of selected green leaf volatiles initiated by OH radicals: Products and atmospheric implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162622. [PMID: 36878296 DOI: 10.1016/j.scitotenv.2023.162622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 05/17/2023]
Abstract
C5- and C6- unsaturated oxygenated organic compounds emitted by plants under stress like cutting, freezing or drying, known as Green Leaf Volatiles (GLVs), may clear some of the existing uncertainties in secondary organic aerosol (SOA) budget. The transformations of GLVs are a potential source of SOA components through photo-oxidation processes occurring in the atmospheric aqueous phase. Here, we investigated the aqueous photo-oxidation products from three abundant GLVs (1-penten-3-ol, (Z)-2-hexen-1-ol, and (E)-2-hexen-1-al) induced by OH radicals, carried out in a photo-reactor under simulated solar conditions. The aqueous reaction samples were analyzed using advanced hyphenated mass spectrometry techniques: capillary gas chromatography mass spectrometry (c-GC-MS); and reversed-phase liquid chromatography high resolution mass spectrometry (LC-HRMS). Using carbonyl-targeted c-GC-MS analysis, we confirmed the presence of propionaldehyde, butyraldehyde, 1-penten-3-one, and 2-hexen-1-al in the reaction samples. The LC-HRMS analysis confirmed the presence of a new carbonyl product with the molecular formula C6H10O2, which probably bears the hydroxyhexenal or hydroxyhexenone structure. Density functional theory (DFT)-based quantum calculations were used to evaluate the experimental data and obtain insight into the formation mechanism and structures of the identified oxidation products via the addition and hydrogen-abstraction pathways. DFT calculations highlighted the importance of the hydrogen abstraction pathway leading to the new product C6H10O2. Atmospheric relevance of the identified products was evaluated using a set of physical property data like Henry's law constant (HLC) and vapor pressure (VP). The unknown product of molecular formula C6H10O2 has higher HLC and lower VP than the parent GLV and thus has potential to remain in the aqueous phase leading to possible aqueous SOA formation. Other observed carbonyl products are likely first stage oxidation products and precursors of aged SOA.
Collapse
Affiliation(s)
- Kumar Sarang
- Institute of Physical Chemistry Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Tobias Otto
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318 Leipzig, Germany
| | - Sahir Gagan
- Institute of Physical Chemistry Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Krzysztof Rudzinski
- Institute of Physical Chemistry Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Thomas Schaefer
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318 Leipzig, Germany
| | - Martin Brüggemann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318 Leipzig, Germany
| | - Irena Grgić
- Department of Analytical Chemistry, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia
| | - Adam Kubas
- Institute of Physical Chemistry Polish Academy of Sciences, 01-224 Warsaw, Poland.
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318 Leipzig, Germany.
| | - Rafal Szmigielski
- Institute of Physical Chemistry Polish Academy of Sciences, 01-224 Warsaw, Poland.
| |
Collapse
|
87
|
De Haan DO, Hawkins LN, Wickremasinghe PD, Andretta AD, Dignum JR, De Haan AC, Welsh HG, Pennington EA, Cui T, Surratt JD, Cazaunau M, Pangui E, Doussin JF. Brown Carbon from Photo-Oxidation of Glyoxal and SO 2 in Aqueous Aerosol. ACS EARTH & SPACE CHEMISTRY 2023; 7:1131-1140. [PMID: 37223425 PMCID: PMC10201569 DOI: 10.1021/acsearthspacechem.3c00035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023]
Abstract
Aqueous-phase dark reactions during the co-oxidation of glyoxal and S(IV) were recently identified as a potential source of brown carbon (BrC). Here, we explore the effects of sunlight and oxidants on aqueous solutions of glyoxal and S(IV), and on aqueous aerosol exposed to glyoxal and SO2. We find that BrC is able to form in sunlit, bulk-phase, sulfite-containing solutions, albeit more slowly than in the dark. In more atmospherically relevant chamber experiments where suspended aqueous aerosol particles are exposed to gas-phase glyoxal and SO2, the formation of detectable amounts of BrC requires an OH radical source and occurs most rapidly after a cloud event. From these observations we infer that this photobrowning is caused by radical-initiated reactions as evaporation concentrates aqueous-phase reactants and aerosol viscosity increases. Positive-mode electrospray ionization mass spectrometric analysis of aerosol-phase products reveals a large number of CxHyOz oligomers that are reduced rather than oxidized (relative to glyoxal), with the degree of reduction increasing in the presence of OH radicals. This again suggests a radical-initiated redox mechanism where photolytically produced aqueous radical species trigger S(IV)-O2 auto-oxidation chain reactions, and glyoxal-S(IV) redox reactions especially if aerosol-phase O2 is depleted. This process may contribute to daytime BrC production and aqueous-phase sulfur oxidation in the atmosphere. The BrC produced, however, is about an order of magnitude less light-absorbing than wood smoke BrC at 365 nm.
Collapse
Affiliation(s)
- David O. De Haan
- Department
of Chemistry and Biochemistry, University
of San Diego, 5998 Alcala Park, San Diego, California 92117, United States
| | - Lelia N. Hawkins
- Department
of Chemistry, Harvey Mudd College, 301 Platt Blvd, Claremont, California 91711, United States
| | - Praveen D. Wickremasinghe
- Department
of Chemistry and Biochemistry, University
of San Diego, 5998 Alcala Park, San Diego, California 92117, United States
| | - Alyssa D. Andretta
- Department
of Chemistry and Biochemistry, University
of San Diego, 5998 Alcala Park, San Diego, California 92117, United States
| | - Juliette R. Dignum
- Department
of Chemistry and Biochemistry, University
of San Diego, 5998 Alcala Park, San Diego, California 92117, United States
| | - Audrey C. De Haan
- Department
of Chemistry and Biochemistry, University
of San Diego, 5998 Alcala Park, San Diego, California 92117, United States
| | - Hannah G. Welsh
- Department
of Chemistry, Harvey Mudd College, 301 Platt Blvd, Claremont, California 91711, United States
| | - Elyse A. Pennington
- Department
of Chemistry, Harvey Mudd College, 301 Platt Blvd, Claremont, California 91711, United States
| | - Tianqu Cui
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Jason D. Surratt
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
- Department
of Chemistry, College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mathieu Cazaunau
- Laboratoire
Interuniversitaire des Systèmes Atmosphériques (LISA),
UMR7583, CNRS, Institut Pierre Simon Laplace (IPSL), Université Paris-Est-Créteil (UPEC) et Université
Paris Diderot (UPD), Créteil 94010, France
| | - Edouard Pangui
- Laboratoire
Interuniversitaire des Systèmes Atmosphériques (LISA),
UMR7583, CNRS, Institut Pierre Simon Laplace (IPSL), Université Paris-Est-Créteil (UPEC) et Université
Paris Diderot (UPD), Créteil 94010, France
| | - Jean-François Doussin
- Laboratoire
Interuniversitaire des Systèmes Atmosphériques (LISA),
UMR7583, CNRS, Institut Pierre Simon Laplace (IPSL), Université Paris-Est-Créteil (UPEC) et Université
Paris Diderot (UPD), Créteil 94010, France
| |
Collapse
|
88
|
Wei Y, Nenes A, Gao J, Liang W, Liang D, Shi G, Feng Y, Russell AG. Abundant nitrogen oxide and weakly acidic environment synergistically promote daytime particulate nitrate pollution. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131655. [PMID: 37216807 DOI: 10.1016/j.jhazmat.2023.131655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
Nitrate is formed through the chemical production of gas-phase nitric acid and subsequent partitioning to the aerosol phase during the daytime. Many studies in the past separated these two aspects, even though they occur simultaneously in the atmosphere. To better understand the nitrate formation mechanism and effectively mitigate its production, it is necessary to consider the synergy between these two mechanisms. For this, we analyze hourly-speciated ambient observations data, with EK&TMA (Empirical Kinetic & Thermodynamic Modeling Approach) map to comprehensively explore the factors controlling nitrate production. Results show that precursor NO2 concentration and aerosol pH, which are related to anthropogenic activities, are the two major factors for chemical kinetics production and gas/particle thermodynamic partitioning processes respectively. Abundant NO2 and weakly acidic environments are favorable conditions for daytime particulate nitrate pollution, thus collaborative control of coal source, vehicle source, and dust source is needed to alleviate nitrate pollution.
Collapse
Affiliation(s)
- Yuting Wei
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research (CLAER), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Athanasios Nenes
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland; Center for the Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras GR-26504, Greece
| | - Jie Gao
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research (CLAER), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weiqing Liang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research (CLAER), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Danni Liang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research (CLAER), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Guoliang Shi
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research (CLAER), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research (CLAER), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
89
|
Gong K, Ao J, Li K, Liu L, Liu Y, Xu G, Wang T, Cheng H, Wang Z, Zhang X, Wei H, George C, Mellouki A, Herrmann H, Wang L, Chen J, Ji M, Zhang L, Francisco JS. Imaging of pH distribution inside individual microdroplet by stimulated Raman microscopy. Proc Natl Acad Sci U S A 2023; 120:e2219588120. [PMID: 37155894 PMCID: PMC10193990 DOI: 10.1073/pnas.2219588120] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/27/2023] [Indexed: 05/10/2023] Open
Abstract
Aerosol microdroplets as microreactors for many important atmospheric reactions are ubiquitous in the atmosphere. pH largely regulates the chemical processes within them; however, how pH and chemical species spatially distribute within an atmospheric microdroplet is still under intense debate. The challenge is to measure pH distribution within a tiny volume without affecting the chemical species distribution. We demonstrate a method based on stimulated Raman scattering microscopy to visualize the three-dimensional pH distribution inside single microdroplets of varying sizes. We find that the surface of all microdroplets is more acidic, and a monotonic trend of pH decreasing is observed in the 2.9-μm aerosol microdroplet from center to edge, which is well supported by molecular dynamics simulation. However, bigger cloud microdroplet differs from small aerosol for pH distribution. This size-dependent pH distribution in microdroplets can be related to the surface-to-volume ratio. This work presents noncontact measurement and chemical imaging of pH distribution in microdroplets, filling the gap in our understanding of spatial pH in atmospheric aerosol.
Collapse
Affiliation(s)
- Kedong Gong
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples’ Republic of China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai200433, People’s Republic of China
- Integrated Research on Disaster Risk, and RDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Fudan University, Shanghai200433, People’s Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, People’s Republic of China
| | - Jianpeng Ao
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai200433, Peoples’ Republic of China
- Academy for Engineering and Technology, Fudan University, Shanghai200433, Peoples’ Republic of China
| | - Kejian Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples’ Republic of China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai200433, People’s Republic of China
- Integrated Research on Disaster Risk, and RDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Fudan University, Shanghai200433, People’s Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, People’s Republic of China
| | - Le Liu
- Department of Atmospheric and Oceanic Sciences, Fudan University, Shanghai200433, Peoples’ Republic of China
| | - Yangyang Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples’ Republic of China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai200433, People’s Republic of China
- Integrated Research on Disaster Risk, and RDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Fudan University, Shanghai200433, People’s Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, People’s Republic of China
| | - Guanjun Xu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples’ Republic of China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai200433, People’s Republic of China
- Integrated Research on Disaster Risk, and RDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Fudan University, Shanghai200433, People’s Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, People’s Republic of China
| | - Tao Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples’ Republic of China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai200433, People’s Republic of China
- Integrated Research on Disaster Risk, and RDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Fudan University, Shanghai200433, People’s Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, People’s Republic of China
| | - Hanyun Cheng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples’ Republic of China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai200433, People’s Republic of China
- Integrated Research on Disaster Risk, and RDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Fudan University, Shanghai200433, People’s Republic of China
| | - Zimeng Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples’ Republic of China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai200433, People’s Republic of China
- Integrated Research on Disaster Risk, and RDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Fudan University, Shanghai200433, People’s Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, People’s Republic of China
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, Peoples’ Republic of China
| | - Haoran Wei
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI53706
| | - Christian George
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne69626, France
| | - Abdelwahid Mellouki
- Institut de Combustion, Réactivité et Environnement (ICARE), Centre National de la Recherche Scientifique/The Observatory of Sciences of the Universe in the Center (CNRS/OSUC), Orléans Cedex 2, 45071, France
- Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, 43150Benguerir, Morocco
| | - Hartmut Herrmann
- Leibniz Institute for Tropospheric Research, Atmospheric Chemistry Department, Leipzig04318, Germany
| | - Lin Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples’ Republic of China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai200433, People’s Republic of China
- Integrated Research on Disaster Risk, and RDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Fudan University, Shanghai200433, People’s Republic of China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples’ Republic of China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai200433, People’s Republic of China
- Integrated Research on Disaster Risk, and RDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Fudan University, Shanghai200433, People’s Republic of China
| | - Minbiao Ji
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai200433, Peoples’ Republic of China
- Academy for Engineering and Technology, Fudan University, Shanghai200433, Peoples’ Republic of China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples’ Republic of China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai200433, People’s Republic of China
- Integrated Research on Disaster Risk, and RDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Fudan University, Shanghai200433, People’s Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, People’s Republic of China
| | - Joseph S. Francisco
- Department of Earth and Environmental, Sciences, University of Pennsylvania, Philadelphia, PA19104
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
90
|
Dhandapani A, Iqbal J, Kumar RN, Bhardwaj A, Shukla D, Raman RS, Prasad SVL, Murthy BMS. Characterization of fine particulate matter water-soluble inorganic ions and estimation of aerosol acidity at three COALESCE network sites - Mysuru, Bhopal, and Mesra - in India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:69241-69257. [PMID: 37133667 DOI: 10.1007/s11356-023-27032-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/11/2023] [Indexed: 05/04/2023]
Abstract
The study was carried out to understand the chemical, spatiotemporal characteristics of water-soluble inorganic ions (WSIIs), their association with PM2.5 mass, and aerosol acidity in three COALESCE (carbonaceous aerosol emissions, source apportionment, and climate impacts) network sites of India (Mesra - Eastern India, Bhopal - Central India and Mysuru - Southern India). Alternate-day 24-h integrated bulk PM2.5 samples were collected during 2019 along with on-site meteorological parameters. Annual average PM2.5 concentrations were 67 ± 46 µg m-3, 54 ± 47 µg m-3, and 30 ± 24 µg m-3 at Mesra, Bhopal, and Mysuru, respectively. PM2.5 concentrations exceeded the annual mean (40 µg m-3) recommended by the National Ambient Air Quality Standards (NAAQS) at Mesra and Bhopal. WSIIs existed in PM2.5 mass at Mesra (50.5%), Bhopal (39.6%), and Mysuru (29.2%). SO42-, NO3-, and NH4+ (SNA) were major secondary inorganic ions in total WSIIs, with an annual average of 88.4% in Mesra and 82.0% in Bhopal 78.4% in Mysuru. Low NO3-/SO42- ratios annually at Mesra (0.41), Bhopal (0.44), and Mysuru (0.24) indicated that stationary sources dominated vehicular emissions (1.0). Aerosol acidity varied from region to region and season to season depending on the presence of NH4+, the dominant counter-ion to neutralize anions. Aerosols were near-neutral or alkaline at all three sites, except during the pre-monsoon season in Mysuru. An assessment of neutralization pathways for major anions [SO42- + NO3-] suggests that they mainly existed as sulfate and nitrate salts such as ammonium sulfate ((NH4)2SO4) and ammonium bisulfate (NH4HSO4) in conjunction with ammonium nitrate (NH4NO3).
Collapse
Affiliation(s)
- Abisheg Dhandapani
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Jawed Iqbal
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Radhakrishnan Naresh Kumar
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
| | - Ankur Bhardwaj
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Deeksha Shukla
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Ramya Sunder Raman
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | | | | |
Collapse
|
91
|
Ma L, Worland R, Tran T, Anastasio C. Evaluation of Probes to Measure Oxidizing Organic Triplet Excited States in Aerosol Liquid Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6052-6062. [PMID: 37011016 DOI: 10.1021/acs.est.2c09672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Oxidizing triplet excited states of organic matter (3C*) drive numerous reactions in fog/cloud drops and aerosol liquid water (ALW). Quantifying oxidizing triplet concentrations in ALW is difficult because 3C* probe loss can be inhibited by the high levels of dissolved organic matter (DOM) and copper in particle water, leading to an underestimate of triplet concentrations. In addition, illuminated ALW contains high concentrations of singlet molecular oxygen (1O2*), which can interfere with 3C* probes. Our overarching goal is to find a triplet probe that has low inhibition by DOM and Cu(II) and low sensitivity to 1O2*. To this end, we tested 12 potential probes from a variety of compound classes. Some probes are strongly inhibited by DOM, while others react rapidly with 1O2*. One of the probe candidates, (phenylthiol)acetic acid (PTA), seems well suited for ALW conditions, with mild inhibition and fast rate constants with triplets, but it also has weaknesses, including a pH-dependent reactivity. We evaluated the performance of both PTA and syringol (SYR) as triplet probes in aqueous extracts of particulate matter. While PTA is less sensitive to inhibition than SYR, it results in lower triplet concentrations, possibly because it is less reactive with weakly oxidizing triplets.
Collapse
Affiliation(s)
- Lan Ma
- Department of Land, Air, and Water Resources, University of California, Davis, California 95616, United States
| | - Reed Worland
- Department of Land, Air, and Water Resources, University of California, Davis, California 95616, United States
| | - Theo Tran
- Department of Land, Air, and Water Resources, University of California, Davis, California 95616, United States
| | - Cort Anastasio
- Department of Land, Air, and Water Resources, University of California, Davis, California 95616, United States
| |
Collapse
|
92
|
Li K, Guo Y, Nizkorodov S, Rudich Y, Angelaki M, Wang X, An T, Perrier S, George C. Spontaneous dark formation of OH radicals at the interface of aqueous atmospheric droplets. Proc Natl Acad Sci U S A 2023; 120:e2220228120. [PMID: 37011187 PMCID: PMC10104570 DOI: 10.1073/pnas.2220228120] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/10/2023] [Indexed: 04/05/2023] Open
Abstract
Hydroxyl radical (OH) is a key oxidant that triggers atmospheric oxidation chemistry in both gas and aqueous phases. The current understanding of its aqueous sources is mainly based on known bulk (photo)chemical processes, uptake from gaseous OH, or related to interfacial O3 and NO3 radical-driven chemistry. Here, we present experimental evidence that OH radicals are spontaneously produced at the air-water interface of aqueous droplets in the dark and the absence of known precursors, possibly due to the strong electric field that forms at such interfaces. The measured OH production rates in atmospherically relevant droplets are comparable to or significantly higher than those from known aqueous bulk sources, especially in the dark. As aqueous droplets are ubiquitous in the troposphere, this interfacial source of OH radicals should significantly impact atmospheric multiphase oxidation chemistry, with substantial implications on air quality, climate, and health.
Collapse
Affiliation(s)
- Kangwei Li
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, VilleurbanneF-69626, France
| | - Yunlong Guo
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, VilleurbanneF-69626, France
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
| | | | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute, Rehovot76100, Israel
| | - Maria Angelaki
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, VilleurbanneF-69626, France
| | - Xinke Wang
- Department of Chemistry, University of California, Irvine, CA92697
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
| | - Sebastien Perrier
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, VilleurbanneF-69626, France
| | - Christian George
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, VilleurbanneF-69626, France
| |
Collapse
|
93
|
Lyu Y, Chow JTC, Nah T. Kinetics of the nitrate-mediated photooxidation of monocarboxylic acids in the aqueous phase. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:461-471. [PMID: 36752312 DOI: 10.1039/d2em00458e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The photooxidation of organic compounds by hydroxyl radicals (·OH) in atmospheric aqueous phases contributes to both the formation and aging of secondary organic aerosols (SOAs), which usually include carboxylic acids. Hydrogen peroxide (H2O2) and inorganic nitrate are two important ·OH photochemical sources in atmospheric aqueous phases. The aqueous phase pH is an important factor that not only controls the dissociation of carboxylic acids and consequently their ·OH reactivities, but also the production of ·OH and other reactive species from the photolysis of some ·OH photochemical precursors, particularly inorganic nitrate. While many studies have reported on the aqueous pH-dependent photodegradation rates of carboxylic acids with ·OH produced by H2O2 photolysis, the aqueous pH-dependent photodegradation rates of carboxylic acids with ·OH produced by inorganic nitrate photolysis have not been studied. In this work, we investigated the pH-dependent (pH 2 to 7) aqueous photooxidation of formic acid (FA), glycolic acid (GA), and pyruvic acid (PA) initiated by the photolysis of ammonium nitrate (NH4NO3). The observed reaction rates of the three carboxylic acids were controlled by the [NH4NO3]/[carboxylic acid] concentration ratio. Higher [NH4NO3]/[carboxylic acid] concentration ratios resulted in faster photodegradation rates, which could be attributed to the higher concentrations of ·OH produced from the photolysis of higher concentrations of NH4NO3. In addition, the observed photodegradation rates of the three carboxylic acids strongly depended on the pH. The highest photodegradation rate was observed at pH 4 for FA, whereas the highest photodegradation rates were observed at pH 2 for GA and PA. The observed pH-dependent FA and GA photodegradation rates were due to the combined effects of the pH-dependent ·OH formation from NH4NO3 photolysis and the differences in ·OH reactivities of dissociated vs. undissociated FA and GA. In contrast, the observed pH-dependent PA photodegradation rate was due primarily to the pH-dependent decarboxylation of PA initiated by light. These results highlight how the aqueous phase pH and inorganic nitrate photolysis can combine to influence the degradation rates of carboxylic acids, which can have significant implications for how the atmospheric fates of carboxylic acids are modeled for regions with substantial concentrations of inorganic nitrate in cloud water and aqueous aerosols.
Collapse
Affiliation(s)
- Yuting Lyu
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | - Jany Ting Chun Chow
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
| | - Theodora Nah
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
94
|
Xia D, Chen J, Xie HB, Zhong J, Francisco JS. Counterintuitive Oxidation of Alcohols at Air-Water Interfaces. J Am Chem Soc 2023; 145:4791-4799. [PMID: 36795890 DOI: 10.1021/jacs.2c13661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
This study shows that the oxidation of alcohols can rapidly occur at air-water interfaces. It was found that methanediols (HOCH2OH) orient at air-water interfaces with a H atom of the -CH2- group pointing toward the gaseous phase. Counterintuitively, gaseous hydroxyl radicals do not prefer to attack the exposed -CH2- group but the -OH group that forms hydrogen bonds with water molecules at the surface via a water-promoted mechanism, leading to the formation of formic acids. Compared with gaseous oxidation, the water-promoted mechanism at the air-water interface significantly lowers free-energy barriers from ∼10.7 to ∼4.3 kcal·mol-1 and therefore accelerates the formation of formic acids. The study unveils a previously overlooked source of environmental organic acids that are bound up with aerosol formation and water acidity.
Collapse
Affiliation(s)
- Deming Xia
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jie Zhong
- School of Petroleum Engineering and School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Joseph S Francisco
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| |
Collapse
|
95
|
Li M, Kan Y, Su H, Pöschl U, Parekh SH, Bonn M, Cheng Y. Spatial homogeneity of pH in aerosol microdroplets. Chem 2023. [DOI: 10.1016/j.chempr.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
96
|
Chen J, Wu Z, Meng X, Zhang C, Chen J, Qiu Y, Chen L, Fang X, Wang Y, Zhang Y, Chen S, Gao J, Li W, Hu M. Observational evidence for the non-suppression effect of atmospheric chemical modification on the ice nucleation activity of East Asian dust. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160708. [PMID: 36481160 DOI: 10.1016/j.scitotenv.2022.160708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/17/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Airborne mineral dust triggers ice formation in clouds and alters cloud microphysical properties by acting as ice-nucleating particles (INPs), potentially influencing weather and climate at regional and global scales. Anthropogenic pollution would modify natural mineral dust during the atmospheric transport process. However, the effects of anthropogenic pollution aging on the ice nucleation activity (INA) of mineral dust remain not well-understood. In this study, we investigated the immersion mode ice nucleation properties and particle chemical characterizations of collected size-resolved Asian dust samples (eight particle size classes ranging from 0.18 to 10.0 μm), and testified the chemical modification of aged dust particles via particle chemistry and morphology analyses including the mass concentrations of particulate matter, the water-soluble ion concentrations, the mental element concentrations, and single-particle morphology. The mass fraction of Ca2+ in element Ca and the mean relative mass proportions of supermicron Ca2+ increased by 67.0 % and 3.5-11.2 % in aged Asian dust particles, respectively, suggesting the occurrence of heterogeneous reactions. On the other hand, the total INP concentrations (total NINP) and total ice nucleation active site densities (total ns(T)) were consistent between aged and normal dust particles (0.62-1.18 times) without a statistically significant difference. And the NINP and ns(T) of chemically aged supermicron dust (1.0-10.0 μm) in each particle size class were nearly equal to or slightly higher than those of normal Asian dust, which were 0.70-2.45 times and 0.64-4.34 times at -18 °C, respectively. These results reveal that anthropogenic air pollution does not notably change the INP concentrations and does not impair the INA of Asian dust. Our work provides direct observational evidence and clarifies the non-suppression effect of anthropogenic air pollution on the INA of East Asian dust, advancing the understanding of the ice nucleation of airborne aged mineral dust.
Collapse
Affiliation(s)
- Jingchuan Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhijun Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Xiangxinyue Meng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Cuiqi Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Atmospheric Chemistry, China Meteorological Administration, Beijing 100081, China
| | - Jie Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yanting Qiu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Li Chen
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Xin Fang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuanyuan Wang
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Yinxiao Zhang
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Shiyi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jian Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weijun Li
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
97
|
Maben HK, Ziemann PJ. Kinetics of oligomer-forming reactions involving the major functional groups present in atmospheric secondary organic aerosol particles. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:214-228. [PMID: 35665793 DOI: 10.1039/d2em00124a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atmospheric organic aerosol particles impact climate as well as human and environmental health. Secondary organic aerosol (SOA), which is formed by the gas-to-particle partitioning of products of the oxidation of volatile organic compounds (VOCs) emitted from biogenic or anthropogenic sources, contributes a large fraction of this material. In the particle phase, these products can undergo accretion reactions to form oligomers that impact the formation, composition, and chemical-physical properties of aerosols. While these reactions are known to occur in the atmosphere, data and models describing their kinetics and equilibria are sparse. Here, reactions of compounds containing potentially reactive hydroperoxide, hydroxyl, carboxyl, aldehyde, and ketone groups were investigated in single and phase-separated organic/aqueous mixtures in the absence and presence of a sulfuric acid catalyst. Compounds containing these groups and a nonreactive UV-absorbing nitrate group were synthesized and their reactions and products were monitored and characterized using high-performance liquid chromatography with UV detection (HPLC-UV), electrospray ionization-mass spectrometry (ESI-MS), and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Reactions were observed between hydroperoxides and aldehydes to form peroxyhemiacetals, and between carboxylic acids and alcohols to form esters, and their rate and equilibrium constants were determined. No reactions were observed in other mixtures, indicating that under the conditions of these experiments only a few reaction pathways form oligomers. Reactions were also conducted with probe compounds and SOA formed in an environmental chamber reaction of α-pinene with O3. Whereas in a previous study we observed a rapid hydroperoxide reaction in this SOA, among the other compounds studied here only alcohols reacted. These results provide insight into the types of accretion reactions that are likely to occur in atmospheric aerosols, and the rate and equilibrium constants can be used to better model SOA chemistry.
Collapse
Affiliation(s)
- Hannah K Maben
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, USA
- Cooperative Institute for Research in Environmental Sciences (CIRES), Boulder, Colorado 80309, USA.
| | - Paul J Ziemann
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, USA
- Cooperative Institute for Research in Environmental Sciences (CIRES), Boulder, Colorado 80309, USA.
| |
Collapse
|
98
|
Al-Abadleh HA, Kubicki JD, Meskhidze N. A perspective on iron (Fe) in the atmosphere: air quality, climate, and the ocean. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:151-164. [PMID: 36004543 DOI: 10.1039/d2em00176d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As scientists engage in research motivated by climate change and the impacts of pollution on air, water, and human health, we increasingly recognize the need for the scientific community to improve communication and knowledge exchange across disciplines to address pressing and outstanding research questions holistically. Our professional paths have crossed because our research activities focus on the chemical reactivity of Fe-containing minerals in air and water, and at the air-sea interface. (Photo)chemical reactions driven by Fe can take place at the surface of the particles/droplets or within the condensed phase. The extent and rates of these reactions are influenced by water content and biogeochemical activity ubiquitous in these systems. One of these reactions is the production of reactive oxygen species (ROS) that cause damage to respiratory organs. Another is that the reactivity of Fe and organics in aerosol particles alter surficial physicochemical properties that impact aerosol-radiation and aerosol-cloud interactions. Also, upon deposition, aerosol particles influence ocean biogeochemical processes because micronutrients such as Fe or toxic elements such as copper become bioavailable. We provide a perspective on these topics and future research directions on the reactivity of Fe in atmospheric aerosol systems, from sources to short- and long-term impacts at the sinks with emphasis on needs to enhance the predictive power of atmospheric and ocean models.
Collapse
Affiliation(s)
- Hind A Al-Abadleh
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo N2L 3C5, Ontario, Canada.
| | - James D Kubicki
- Department of Earth, Environmental & Resource Sciences, The University of Texas at El Paso, El Paso 79968, Texas, USA.
| | - Nicholas Meskhidze
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh 27695, North Carolina, USA.
| |
Collapse
|
99
|
Yang J, Au WC, Law H, Leung CH, Lam CH, Nah T. pH affects the aqueous-phase nitrate-mediated photooxidation of phenolic compounds: implications for brown carbon formation and evolution. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:176-189. [PMID: 35293417 DOI: 10.1039/d2em00004k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Brown carbon (BrC) is known to have important impacts on atmospheric chemistry and climate. Phenolic compounds are a prominent class of BrC precursors that are emitted in large quantities from biomass burning and fossil fuel combustion. Inorganic nitrate is a ubiquitous component of atmospheric aqueous phases such as cloudwater, fog, and aqueous aerosols. The photolysis of inorganic nitrate can lead to BrC formation via the photonitration of phenolic compounds in the aqueous phase. However, the acidity of the atmospheric aqueous phase adds complexity to these photonitration processes and needs to be considered when investigating BrC formation from the nitrate-mediated photooxidation of phenolic compounds. In this study, we investigated the influence of pH on the formation and evolution of BrC from the aqueous-phase photooxidation of guaiacol, catechol, 5-nitroguaiacol, and 4-nitrocatechol initiated by inorganic nitrate photolysis. The reaction rates, BrC composition and quantities were found to depend on the aqueous phase pH. Guaiacol, catechol, and 5-nitroguaiacol reacted substantially faster at lower pH. In contrast, 4-nitrocatechol reacted at slower rates at lower pH. For all four phenolic compounds, the initial stages of photooxidation resulted in an increase in light absorption (i.e., photo-enhancement) in the near-UV and visible range due to the formation of light absorbing products formed via the addition of nitro and/or hydroxyl groups to the phenolic compound. Greater photo-enhancement was observed at lower pH during the nitrate-mediated photooxidation of guaiacol and catechol. In contrast, greater photo-enhancement was observed at higher pH during the nitrate-mediated photooxidation of 5-nitroguaiacol and 4-nitrocatechol. This indicated that the effect that the aqueous phase pH has on the composition and yields of BrC formed is not universal, and will depend on the initial phenolic compound. These results provide new insights into how the atmospheric aqueous phase acidity influences the reactivities of different phenolic compounds and BrC formation/evolution during photooxidation initiated by inorganic nitrate photolysis, which will have significant implications for how the atmospheric fates of phenolic compounds and BrC formation/evolution are modeled for areas with high levels of inorganic nitrate.
Collapse
Affiliation(s)
- Junwei Yang
- School of Energy and Environment, Yeung Kin Man Academic Building, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Wing Chi Au
- School of Energy and Environment, Yeung Kin Man Academic Building, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Haymann Law
- School of Energy and Environment, Yeung Kin Man Academic Building, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Chun Hei Leung
- School of Energy and Environment, Yeung Kin Man Academic Building, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Chun Ho Lam
- School of Energy and Environment, Yeung Kin Man Academic Building, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Theodora Nah
- School of Energy and Environment, Yeung Kin Man Academic Building, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
100
|
Tao Y, VandenBoer TC, Ye R, Young CJ. Exploring controls on perfluorocarboxylic acid (PFCA) gas-particle partitioning using a model with observational constraints. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:264-276. [PMID: 36106763 DOI: 10.1039/d2em00261b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The atmospheric fate of perfluorocarboxylic acids (PFCAs) has attracted much attention in recent decades due to the role of the atmosphere in global transport of these persistent chemicals. There is a gap in our understanding of gas-particle partitioning, limited by availability of reliable atmospheric measurements, partitioning properties, and models of gas-particle interactions. The gas-particle equilibrium phase partitioning of C2-C16 PFCAs in the atmosphere were modeled here by taking account of both deprotonation and phase partitioning equilibria among air, aerosol liquid water, and particulate water-insoluble organic matter using a range of available PFCA partitioning properties. We systematically varied water and organic matter content to simulate the full range of atmospheric conditions. Except in severe organic matter pollution episodes, shorter-chain PFCAs are predicted to mainly partition between air and aqueous phase, while for PFCAs with carbon chains longer than 12, organic matter is more likely to be the dominant particle phase reservoir. The model framework underestimated the particle fraction of C2-C8 PFCAs compared with several ambient observations, with larger discrepancies observed for longer-chain PFCAs. The discrepancy could result from externally mixed dust components, non-ideality of aerosol liquid water, surfactant descriptions at phase boundaries, and missed interactions between organic matter and charged PFCA molecules. Reliable measurements of ambient PFCAs with high time resolution and the measurement of uptake parameters by particle-relevant components will be beneficial to more reliable environmental fate modeling of ambient PFCAs.
Collapse
Affiliation(s)
- Ye Tao
- Department of Chemistry, York University, Toronto, Ontario, Canada.
| | | | - RenXi Ye
- Department of Chemistry, York University, Toronto, Ontario, Canada.
| | - Cora J Young
- Department of Chemistry, York University, Toronto, Ontario, Canada.
| |
Collapse
|