51
|
Nanoparticle-aided glycovariant assays to bridge biomarker performance and ctDNA results. Mol Aspects Med 2020; 72:100831. [DOI: 10.1016/j.mam.2019.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/21/2019] [Accepted: 11/06/2019] [Indexed: 01/12/2023]
|
52
|
Fernandes E, Sores J, Cotton S, Peixoto A, Ferreira D, Freitas R, Reis CA, Santos LL, Ferreira JA. Esophageal, gastric and colorectal cancers: Looking beyond classical serological biomarkers towards glycoproteomics-assisted precision oncology. Am J Cancer Res 2020; 10:4903-4928. [PMID: 32308758 PMCID: PMC7163443 DOI: 10.7150/thno.42480] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/16/2020] [Indexed: 12/24/2022] Open
Abstract
Esophageal (OC), gastric (GC) and colorectal (CRC) cancers are amongst the digestive track tumors with higher incidence and mortality due to significant molecular heterogeneity. This constitutes a major challenge for patients' management at different levels, including non-invasive detection of the disease, prognostication, therapy selection, patient's follow-up and the introduction of improved and safer therapeutics. Nevertheless, important milestones have been accomplished pursuing the goal of molecular-based precision oncology. Over the past five years, high-throughput technologies have been used to interrogate tumors of distinct clinicopathological natures, generating large-scale biological datasets (e.g. genomics, transcriptomics, and proteomics). As a result, GC and CRC molecular subtypes have been established to assist patient stratification in the clinical settings. However, such molecular panels still require refinement and are yet to provide targetable biomarkers. In parallel, outstanding advances have been made regarding targeted therapeutics and immunotherapy, paving the way for improved patient care; nevertheless, important milestones towards treatment personalization and reduced off-target effects are also to be accomplished. Exploiting the cancer glycoproteome for unique molecular fingerprints generated by dramatic alterations in protein glycosylation may provide the necessary molecular rationale towards this end. Therefore, this review presents functional and clinical evidences supporting a reinvestigation of classical serological glycan biomarkers such as sialyl-Tn (STn) and sialyl-Lewis A (SLeA) antigens from a tumor glycoproteomics perspective. We anticipate that these glycobiomarkers that have so far been employed in non-invasive cancer prognostication may hold unexplored value for patients' management in precision oncology settings.
Collapse
|
53
|
van der Burgt YEM, Siliakus KM, Cobbaert CM, Ruhaak LR. HILIC-MRM-MS for Linkage-Specific Separation of Sialylated Glycopeptides to Quantify Prostate-Specific Antigen Proteoforms. J Proteome Res 2020; 19:2708-2716. [PMID: 32142289 PMCID: PMC8280738 DOI: 10.1021/acs.jproteome.0c00050] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
Elevated serum prostate-specific
antigen (PSA) levels in body fluids
may indicate prostate cancer (PCa), but it is noted that the clinical
performance is rather poor. Specificity and sensitivity values of
20 and 94% at a cutoff value of 4.1 ng/mL, respectively, result in
overdiagnosis and unnecessary interventions. Previous exploratory
studies have indicated that the glycosylation of PSA potentially leads
to improved PCa diagnosis based on qualitative analyses. However,
the applied methods are not suited for a quantitative evaluation or
implementation in a medical laboratory. Therefore, in this proof-of-principle
study, we have evaluated the use of hydrophilic interaction liquid
chromatography (HILIC) in combination with targeted quantitative mass
spectrometry for the sialic acid linkage-specific analysis of PSA
glyco-proteoforms based on either trypsin or ArgC peptides. The efficiency
of PSA proteolysis was optimized as well as the glycopeptide separation
conditions (buffer type, strength, and pH). The HILIC-based analysis
of PSA glyco-proteoforms presented here has the potential for the
clinical validation of patient cohorts. The method shows the feasibility
of the use of a HILIC stationary phase for the separation of isomeric
glycopeptides to detect specific glyco-proteoforms. This is the first
step toward the development and evaluation of PSA glyco-proteoforms
for use in a clinical chemistry setting aiming for improved PCa diagnosis
or screening.
Collapse
Affiliation(s)
- Yuri E M van der Burgt
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Kasper M Siliakus
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Christa M Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - L Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
54
|
Galectins in prostate and bladder cancer: tumorigenic roles and clinical opportunities. Nat Rev Urol 2020; 16:433-445. [PMID: 31015643 DOI: 10.1038/s41585-019-0183-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advanced prostate and bladder cancer are two outstanding unmet medical needs for urological oncologists. The high prevalence of these tumours, lack of effective biomarkers and limited effective treatment options highlight the importance of basic research in these diseases. Galectins are a family of β-galactoside-binding proteins that are frequently altered (upregulated or downregulated) in a wide range of tumours and have roles in different stages of tumour development and progression, including immune evasion. In particular, altered expression levels of different members of the galectin family have been reported in prostate and bladder cancers, which, together with the aberrant glycosylation patterns found in tumour cells and the constituent cell types of the tumour microenvironment, can result in malignant transformation and tumour progression. Understanding the roles of galectin family proteins in the development and progression of prostate and bladder cancer could yield key insights to inform the clinical management of these diseases.
Collapse
|
55
|
Negahdary M. Aptamers in nanostructure-based electrochemical biosensors for cardiac biomarkers and cancer biomarkers: A review. Biosens Bioelectron 2020; 152:112018. [PMID: 32056737 DOI: 10.1016/j.bios.2020.112018] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/16/2019] [Accepted: 01/09/2020] [Indexed: 01/01/2023]
Abstract
Heart disease (especially myocardial infarction (MI)) and cancer are major causes of death. Recently, aptasensors with the applying of different nanostructures have been able to provide new windows for the early and inexpensive detection of these deadly diseases. Early, inexpensive, and accurate diagnosis by portable devices, especially aptasensors can increase the likelihood of survival as well as significantly reduce the cost of treatment. In this review, recent studies based on the designed aptasensors for the diagnosis of these diseases were collected, ordered, and reviewed. The biomarkers for the diagnosis of each disease were discussed separately. The primary constituent elements of these aptasensors including, analyte, aptamer sequence, type of nanostructure, diagnostic technique, analyte detection range, and limit of detection (LOD), were evaluated and compared.
Collapse
Affiliation(s)
- Masoud Negahdary
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
56
|
Affiliation(s)
| | | | - Ronghu Wu
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
57
|
Dos Santos Silva PM, Albuquerque PBS, de Oliveira WF, Coelho LCBB, Dos Santos Correia MT. Glycosylation products in prostate diseases. Clin Chim Acta 2019; 498:52-61. [PMID: 31400314 DOI: 10.1016/j.cca.2019.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022]
Abstract
Although prostate cancer is notable for its high incidence and mortality in men worldwide, its identification remains a challenge. Biomarkers have been useful tools for the specific detection of prostate cancer. Unfortunately, benign prostate diseases cause similar alterations in screening assays thus reducing the potential for early and specific diagnosis. Changes in glycan and glycoprotein expression have often been associated with the onset and progression of cancer. Abnormal glycans and glycoproteins have been reported as new biomarkers of prostate metabolism that can distinguish benign prostate disease and cancer in non-aggressive and aggressive stages. Carbohydrate-binding proteins known as lectins have been valuable tools to detect these changes, investigate potential biomarkers and improve our understanding aberrant glycosylation in cancer. Here we review progress in elucidating prostate disease and discuss the roles of glycans in the differential detection of benign and cancerous prostate disease. We also summarize the lectin-based tools for detecting glycosylation changes.
Collapse
Affiliation(s)
- Priscila Marcelino Dos Santos Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50.670-901 Recife, PE, Brazil
| | | | - Weslley Felix de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50.670-901 Recife, PE, Brazil
| | - Luana Cassandra Breitenbach Barroso Coelho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50.670-901 Recife, PE, Brazil
| | - Maria Tereza Dos Santos Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50.670-901 Recife, PE, Brazil.
| |
Collapse
|
58
|
Yamasaki K, Kubota T, Yamasaki T, Nagashima I, Shimizu H, Terada RI, Nishigami H, Kang J, Tateno M, Tateno H. Structural basis for specific recognition of core fucosylation in N-glycans by Pholiota squarrosa lectin (PhoSL). Glycobiology 2019; 29:576-587. [DOI: 10.1093/glycob/cwz025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/01/2019] [Accepted: 03/22/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Kazuhiko Yamasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Japan
| | - Tomomi Kubota
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Japan
| | - Tomoko Yamasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Japan
| | - Izuru Nagashima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Japan
| | - Hiroki Shimizu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Japan
| | - Ryu-ichiro Terada
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Hyogo, Japan
| | - Hiroshi Nishigami
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Hyogo, Japan
| | - Jiyoung Kang
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Hyogo, Japan
| | - Masaru Tateno
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Hyogo, Japan
| | - Hiroaki Tateno
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Japan
| |
Collapse
|
59
|
Tkac J, Gajdosova V, Hroncekova S, Bertok T, Hires M, Jane E, Lorencova L, Kasak P. Prostate-specific antigen glycoprofiling as diagnostic and prognostic biomarker of prostate cancer. Interface Focus 2019; 9:20180077. [PMID: 30842876 PMCID: PMC6388024 DOI: 10.1098/rsfs.2018.0077] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2018] [Indexed: 01/03/2023] Open
Abstract
The initial part of this review details the controversy behind the use of a serological level of prostate-specific antigen (PSA) for the diagnostics of prostate cancer (PCa). Novel biomarkers are in demand for PCa diagnostics, outperforming traditional PSA tests. The review provides a detailed and comprehensive summary that PSA glycoprofiling can effectively solve this problem, thereby considerably reducing the number of unnecessary biopsies. In addition, PSA glycoprofiling can serve as a prognostic PCa biomarker to identify PCa patients with an aggressive form of PCa, avoiding unnecessary further treatments which are significantly life altering (incontinence or impotence).
Collapse
Affiliation(s)
- Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 84538 Bratislava, Slovakia
- Glycanostics Ltd, Dubravska cesta 9, 84538 Bratislava, Slovakia
| | - Veronika Gajdosova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 84538 Bratislava, Slovakia
| | - Stefania Hroncekova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 84538 Bratislava, Slovakia
| | - Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 84538 Bratislava, Slovakia
- Glycanostics Ltd, Dubravska cesta 9, 84538 Bratislava, Slovakia
| | - Michal Hires
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 84538 Bratislava, Slovakia
| | - Eduard Jane
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 84538 Bratislava, Slovakia
| | - Lenka Lorencova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 84538 Bratislava, Slovakia
- Glycanostics Ltd, Dubravska cesta 9, 84538 Bratislava, Slovakia
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar
| |
Collapse
|
60
|
Lang R, Rolny V, Leinenbach A, Karl J, Swiatek-de Lange M, Kobold U, Schrader M, Krause H, Mueller M, Vogeser M. Investigation on core-fucosylated prostate-specific antigen as a refined biomarker for differentiation of benign prostate hyperplasia and prostate cancer of different aggressiveness. Tumour Biol 2019; 41:1010428319827223. [PMID: 30907281 DOI: 10.1177/1010428319827223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer represents a major cause of cancer death in men worldwide. Novel non-invasive methods are still required for differentiation of non-aggressive from aggressive tumors. Recently, changes in prostate-specific antigen glycosylation pattern, such as core-fucosylation, have been described in prostate cancer. The objective of this study was to evaluate whether the core-fucosylation determinant of serum prostate-specific antigen may serve as refined marker for differentiation between benign prostate hyperplasia and prostate cancer or identification of aggressive prostate cancer. A previously developed liquid chromatography-mass spectrometry/mass spectrometry-based strategy was used for multiplex analysis of core-fucosylated prostate-specific antigen (fuc-PSA) and total prostate-specific antigen levels in sera from 50 benign prostate hyperplasia and 100 prostate cancer patients of different aggressiveness (Gleason scores, 5-10) covering the critical gray area (2-10 ng/mL). For identification of aggressive prostate cancer, the ratio of fuc-PSA to total prostate-specific antigen (%-fuc-PSA) yielded a 5%-8% increase in the area under the curve (0.60) compared to the currently used total prostate-specific antigen (area under the curve = 0.52) and %-free prostate-specific antigen (area under the curve = 0.55) tests. However, our data showed that aggressive prostate cancer (Gleason score > 6) and non-aggressive prostate cancer (Gleason score ≤ 6) could not significantly (p-value = 0.08) be differentiated by usage of %-fuc-PSA. In addition, both non-standardized fuc-PSA and standardized %-fuc-PSA had no diagnostic value for differentiation of benign prostate hyperplasia from prostate cancer. The %-fuc-PSA serum levels could not improve the differentiation of non-aggressive and aggressive prostate cancer compared to conventional diagnostic prostate cancer markers. Still, it is unclear whether these limitations come from the biomarker, the used patient cohort, or the imprecision of the applied method itself. Therefore, %-fuc-PSA should be further investigated, especially by more precise methods whether it could be clinically used in prostate cancer diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Uwe Kobold
- 1 Roche Diagnostics GmbH, Penzberg, Germany
| | | | - Hans Krause
- 3 Urologische Klinik, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Mueller
- 4 Klinikum der Stadt Ludwigshafen am Rhein gGmbH, Ludwigshafen, Germany
| | - Michael Vogeser
- 5 Institute of Laboratory Medicine, Hospital of the Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|
61
|
Zhang XF, Wang J, Jia HL, Zhu WW, Lu L, Ye QH, Nelson PJ, Qin Y, Gao DM, Zhou HJ, Qin LX. Core fucosylated glycan-dependent inhibitory effect of QSOX1-S on invasion and metastasis of hepatocellular carcinoma. Cell Death Discov 2019; 5:84. [PMID: 30962950 PMCID: PMC6447561 DOI: 10.1038/s41420-019-0164-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 12/21/2022] Open
Abstract
The goal of the present study was to identify glycoproteins associated with the postoperative relapse of hepatocellular carcinoma (HCC) and to investigate their potential role in HCC metastasis. A method for quantitating N-glycoproteome was used to screen for, and identify, recurrence-related N-linked glycoproteins from 100 serum samples taken from patients with early-stage HCC. The prognostic significance of candidate glycoproteins was then validated in 193 HCC tissues using immunohistochemical staining. Serum core fucosylated quiescin sulfhydryl oxidase 1 (cf-QSOX1) was identified as a leading prognostic glycoprotein that significantly correlated with HCC recurrence. Patients with high serum cf-QSOX1 levels had a significantly longer time to recurrence (TTR) as compared with those with low serum cf-QSOX1. As was seen with serum cf-QSOX1, QSOX1 in HCC tissues was further shown to be significantly associated with good patient outcome. Gain-functional and loss-functional analyses of QSOX1-S were performed in vitro and in vivo. QSOX1-S overexpression significantly increased in vitro apoptosis, but decreased the invasive capacity of HCC cells, and reduced lung metastasis in nude mice models bearing human HCC. Furthermore, overexpression of a mutant version of QSOX1-S, which had eliminated the core-fucosylated glycan at Asn-130, showed no demonstrable effect on invasion or metastasis of HCC cells. Our study suggests that serum cf-QSOX1-S and tumor QSOX1 levels are helpful for predicting recurrence in HCC patients, and its core-fucosylated glycan at Asn-130 is critical for the inhibitory effects of QSOX1-S on invasion and metastasis of HCC
Collapse
Affiliation(s)
- Xiao-Fei Zhang
- 1Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Ji Wang
- 2Department of General Surgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province China
| | - Hu-Liang Jia
- 1Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Wen-Wei Zhu
- 1Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Lu Lu
- 1Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Qing-Hai Ye
- 3Liver Cancer Institute & Zhongshan Hospital, Fudan University, Shanghai, China.,4Key Laboratory of Carcinogenesis & Cancer Invasion, Ministry of Education, Shanghai, China
| | - Peter J Nelson
- 5Medizinische Klinik und Poliklinik IV, University of Munich, Munich, Germany
| | - Yi Qin
- 6Pancreatic Cancer Institute, Fudan University, 200032 Shanghai, China
| | - Dong-Mei Gao
- 3Liver Cancer Institute & Zhongshan Hospital, Fudan University, Shanghai, China.,4Key Laboratory of Carcinogenesis & Cancer Invasion, Ministry of Education, Shanghai, China
| | - Hai-Jun Zhou
- 3Liver Cancer Institute & Zhongshan Hospital, Fudan University, Shanghai, China.,4Key Laboratory of Carcinogenesis & Cancer Invasion, Ministry of Education, Shanghai, China
| | - Lun-Xiu Qin
- 1Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China.,7Institute of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
62
|
Scott E, Munkley J. Glycans as Biomarkers in Prostate Cancer. Int J Mol Sci 2019; 20:E1389. [PMID: 30893936 PMCID: PMC6470778 DOI: 10.3390/ijms20061389] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/07/2019] [Accepted: 03/17/2019] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer is the most commonly diagnosed malignancy in men, claiming over350,000 lives worldwide annually. Current diagnosis relies on prostate-specific antigen (PSA)testing, but this misses some aggressive tumours, and leads to the overtreatment of non-harmfuldisease. Hence, there is an urgent unmet clinical need to identify new diagnostic and prognosticbiomarkers. As prostate cancer is a heterogeneous and multifocal disease, it is likely that multiplebiomarkers will be needed to guide clinical decisions. Fluid-based biomarkers would be ideal, andattention is now turning to minimally invasive liquid biopsies, which enable the analysis oftumour components in patient blood or urine. Effective diagnostics using liquid biopsies willrequire a multifaceted approach, and a recent high-profile review discussed combining multipleanalytes, including changes to the tumour transcriptome, epigenome, proteome, and metabolome.However, the concentration on genomics-based paramaters for analysing liquid biopsies ispotentially missing a goldmine. Glycans have shown huge promise as disease biomarkers, anddata suggests that integrating biomarkers across multi-omic platforms (including changes to theglycome) can improve the stratification of patients with prostate cancer. A wide range ofalterations to glycans have been observed in prostate cancer, including changes to PSAglycosylation, increased sialylation and core fucosylation, increased O-GlcNacylation, theemergence of cryptic and branched N-glyans, and changes to galectins and proteoglycans. In thisreview, we discuss the huge potential to exploit glycans as diagnostic and prognostic biomarkersfor prostate cancer, and argue that the inclusion of glycans in a multi-analyte liquid biopsy test forprostate cancer will help maximise clinical utility.
Collapse
Affiliation(s)
- Emma Scott
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK.
| | - Jennifer Munkley
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK.
| |
Collapse
|
63
|
Haga Y, Uemura M, Baba S, Inamura K, Takeuchi K, Nonomura N, Ueda K. Identification of Multisialylated LacdiNAc Structures as Highly Prostate Cancer Specific Glycan Signatures on PSA. Anal Chem 2019; 91:2247-2254. [PMID: 30669833 DOI: 10.1021/acs.analchem.8b04829] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Serum prostate-specific antigen (PSA) test is the current gold standard for screening and diagnosis of prostate cancer (PCa), while overdiagnosis and overtreatment are social problems. In order to improve the specificity and exclude a false positive diagnosis in PSA test, PCa-specific glycosylation subtypes of PSA were explored using in-depth quantitative profiling of PSA glycoforms based on mass spectrometric oxonium ion monitoring technology. As a result of analysis using sera from 15 PCa or 15 benign prostate hyperplasia (BPH) patients whose PSA levels were in the "gray zone" (4.0-10.0 ng/mL), 52 glycan structures on PSA were quantitatively observed. We found that abundance of multisialylated LacdiNAc (GalNAcβ1-4GlcNAc) structures were significantly upregulated in the PCa group compared to the BPH group. A couple of those glycoforms were then extracted and subjected to establish a novel PCa-specific diagnosis model (PSA G-index). When the diagnostic power was assessed using an independent validation sample set (15 PCa and 15 BPH patients in the PSA gray zone), an AUC of PSA G-index was 1.00, while that of total PSA or PSA f/T ratio was 0.50 or 0.60, respectively. Moreover, both PSA glycoforms showed significant correlation with Gleason scores. Lectin histochemical staining analysis also showed that PCa cells overexpressed glycoproteins containing LacdiNAc and sialic acids moieties. Thus, PSA G-index could serve as not only an effective secondary screening method to exclude false positive diagnosis in PSA screening, but also a potential grading biomarker for PCa.
Collapse
Affiliation(s)
- Yoshimi Haga
- Cancer Proteomics Group, Cancer Precision Medicine Center , Japanese Foundation for Cancer Research , Tokyo 135-8550 , Japan
| | - Motohide Uemura
- Department of Urology , Osaka University Graduate School of Medicine , Osaka 565-0871 , Japan
| | - Satoko Baba
- Pathology Project for Molecular Targets, The Cancer Institute , Japanese Foundation for Cancer Research , Tokyo 135-8550 , Japan
| | - Kentaro Inamura
- Division of Pathology, the Cancer Institute , Japanese Foundation for Cancer Research , Tokyo 135-8550 , Japan
| | - Kengo Takeuchi
- Pathology Project for Molecular Targets, The Cancer Institute , Japanese Foundation for Cancer Research , Tokyo 135-8550 , Japan.,Division of Pathology, the Cancer Institute , Japanese Foundation for Cancer Research , Tokyo 135-8550 , Japan
| | - Norio Nonomura
- Department of Urology , Osaka University Graduate School of Medicine , Osaka 565-0871 , Japan
| | - Koji Ueda
- Cancer Proteomics Group, Cancer Precision Medicine Center , Japanese Foundation for Cancer Research , Tokyo 135-8550 , Japan
| |
Collapse
|
64
|
Klamer Z, Hsueh P, Ayala-Talavera D, Haab B. Deciphering Protein Glycosylation by Computational Integration of On-chip Profiling, Glycan-array Data, and Mass Spectrometry. Mol Cell Proteomics 2019; 18:28-40. [PMID: 30257876 PMCID: PMC6317472 DOI: 10.1074/mcp.ra118.000906] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/25/2018] [Indexed: 01/07/2023] Open
Abstract
The difficulty in uncovering detailed information about protein glycosylation stems from the complexity of glycans and the large amount of material needed for the experiments. Here we report a method that gives information on the isomeric variants of glycans in a format compatible with analyzing low-abundance proteins. On-chip glycan modification and probing (on-chip gmap) uses sequential and parallel rounds of exoglycosidase cleavage and lectin profiling of microspots of proteins, together with algorithms that incorporate glycan-array analyses and information from mass spectrometry, when available, to computationally interpret the data. In tests on control proteins with simple or complex glycosylation, on-chip gmap accurately characterized the relative proportions of core types and terminal features of glycans. Subterminal features (monosaccharides and linkages under a terminal monosaccharide) were accurately probed using a rationally designed sequence of lectin and exoglycosidase incubations. The integration of mass information further improved accuracy in each case. An alternative use of on-chip gmap was to complement the mass spectrometry analysis of detached glycans by specifying the isomers that comprise the glycans identified by mass spectrometry. On-chip gmap provides the potential for detailed studies of glycosylation in a format compatible with clinical specimens or other low-abundance sources.
Collapse
Affiliation(s)
- Zachary Klamer
- From the Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503
| | - Peter Hsueh
- From the Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503
| | | | - Brian Haab
- From the Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503.
| |
Collapse
|
65
|
Szeliski K, Adamowicz J, Gastecka A, Drewa T, Pokrywczyńska M. Modern urology perspectives on prostate cancer biomarkers. Cent European J Urol 2018; 71:420-426. [PMID: 30680236 PMCID: PMC6338806 DOI: 10.5173/ceju.2018.1762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/22/2018] [Accepted: 12/04/2018] [Indexed: 01/15/2023] Open
Abstract
Introduction Prostate cancer (PCa) is the most common type of cancer among men in Europe. Current recommendations for screening and diagnosis are based on prostate-specific antigen (PSA) measurements and the digital rectal examination (DRE). Both of them are triggers for prostate biopsy. Limited specificity of the PSA test brings, however, a need to develop new, better diagnostic tools. Several commercially available variations of the PSA test including: prostate health index (PHI), 4Kscore as well as molecular PCA3 score, have already revealed its value, lowering the number of unnecessary biopsies. Material and methods This review summarizes published results of the current most promising, clinically proven and experimentally evaluated PCa biomarkers which have potential for creation of new diagnostic tests. Results In the last few years new approaches for providing significantly better biomarkers, an alternative to PSA, have been introduced. Modern biomarkers show improvement in being used as not only a diagnosis procedure, but also for staging, evaluating aggressiveness and managing the therapeutic process. The most promising group are molecular markers, among them microRNAs(miRNAs) and long noncoding RNAs (lncRNAs) are most frequent. Their superiority, over standard PSA, in predicting tumor formation in early stages, and clinically non-symptomatic metastases has been noticed. Extracellular vesicles presence in biofluids have brought focus of many research groups, indicating their potential significance. This group of nanoparticles has potential not only in diagnostic and therapy management process, but also as a potential therapeutic target. Conclusions Finding better PCa biomarkers, replacing the current PSA measurement, is firmly needed in modern urology practice.
Collapse
Affiliation(s)
- Kamil Szeliski
- Ludwik Rydygier Medical College in Bydgoszcz Nicolaus Copernicus University in Toruń, Department of Regenerative Medicine Cell and Tissue Bank, Bydgoszcz, Poland
| | - Jan Adamowicz
- Ludwik Rydygier Medical College in Bydgoszcz Nicolaus Copernicus University in Toruń, Department of Regenerative Medicine Cell and Tissue Bank, Bydgoszcz, Poland
| | - Agata Gastecka
- Ludwik Rydygier Medical College in Bydgoszcz Nicolaus Copernicus University in Toruń, Department of Regenerative Medicine Cell and Tissue Bank, Bydgoszcz, Poland
| | - Tomasz Drewa
- Ludwik Rydygier Medical College in Bydgoszcz Nicolaus Copernicus University in Toruń, Department of Regenerative Medicine Cell and Tissue Bank, Bydgoszcz, Poland
| | - Marta Pokrywczyńska
- Ludwik Rydygier Medical College in Bydgoszcz Nicolaus Copernicus University in Toruń, Department of Regenerative Medicine Cell and Tissue Bank, Bydgoszcz, Poland
| |
Collapse
|
66
|
Tkac J, Bertok T, Hires M, Jane E, Lorencova L, Kasak P. Glycomics of prostate cancer: updates. Expert Rev Proteomics 2018; 16:65-76. [PMID: 30451032 DOI: 10.1080/14789450.2019.1549993] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Prostate cancer (PCa) is a life-threatening disease affecting millions of men. The current best PCa biomarker (level of prostate-specific antigen in serum) lacks specificity for PCa diagnostics and this is why novel PCa biomarkers in addition to the conventional ones based on biomolecules such as DNA, RNA and proteins need to be identified. Areas covered: This review details the potential of glycans-based biomarkers to become diagnostic, prognostic, predictive and therapeutic PCa biomarkers with a brief description of the innovative approaches applied to glycan analysis to date. Finally, the review covers the possibility to use exosomes as a rich source of glycans for future innovative and advanced diagnostics of PCa. The review covers updates in the field since 2016. Expert commentary: The summary provided in this review paper suggests that glycan-based biomarkers can offer high-assay accuracy not only for diagnostic purposes but also for monitoring/surveillance of the PCa disease.
Collapse
Affiliation(s)
- Jan Tkac
- a Slovak Academy of Sciences , Institute of Chemistry , Bratislava , Slovakia.,b Glycanostics Ltd ., Bratislava , Slovakia
| | - Tomas Bertok
- a Slovak Academy of Sciences , Institute of Chemistry , Bratislava , Slovakia.,b Glycanostics Ltd ., Bratislava , Slovakia
| | - Michal Hires
- a Slovak Academy of Sciences , Institute of Chemistry , Bratislava , Slovakia
| | - Eduard Jane
- a Slovak Academy of Sciences , Institute of Chemistry , Bratislava , Slovakia
| | - Lenka Lorencova
- a Slovak Academy of Sciences , Institute of Chemistry , Bratislava , Slovakia.,b Glycanostics Ltd ., Bratislava , Slovakia
| | - Peter Kasak
- c Center for Advanced Materials , Qatar University , Doha , Qatar
| |
Collapse
|
67
|
Liu M, Yu H, Zhang D, Han Q, Yang X, Liu X, Wang J, Zhang K, Yang F, Cai G, Chen X, Zhu H. Alteration of glycosylation in serum proteins: a new potential indicator to distinguish non-diabetic renal diseases from diabetic nephropathy. RSC Adv 2018; 8:38872-38882. [PMID: 35558281 PMCID: PMC9090655 DOI: 10.1039/c8ra06832a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/13/2018] [Indexed: 11/21/2022] Open
Abstract
Diabetic nephropathy (DN) and nondiabetic renal disease (NDRD) are two major categories of renal diseases in diabetes mellitus patients. The clinical differentiation among them is usually not so clear and effective. In this study, sera from DN and NDRD patients were collected, and glycan profiles of serum proteins from DN and NDRD patients were investigated and compared by using lectin microarray and lectin blot. Then, altered glycoproteins were enriched by lectin coupled magnetic particle conjugate and characterized by LC-MS/MS. We found significant change in glycan patterns between DN and NDRD patients. In particular, the relative abundance of the glycopattern of Galβ1-3GalNAc which was identified by BPL (Bauhinia purpurea lectin) was significantly decreased in DN patients compared to four types of NDRD patients (p < 0.05). Moreover, BPL blotting indicated that the proteins with a molecular weight of about 53 kDa exhibited low staining signal in DN compared to all NDRD groups, which was consistent with results of lectin microarrays. After enriching by BPL and identification by LC-MS/MS, a total of 235 and 258 proteins were characterized from NDRD and DN respectively. Among these, the relative abundance of 12 isolated serum proteins exhibited significantly alteration between DN and NDRD (p < 0.05). Our findings indicated not only the relative abundance of Galβ1-3GalNAc on serum proteins but also certain glycoproteins modified with this glycopattern showed a difference between DN and NDRD patients. This suggested that the analysis of this alteration by using urine specimens may constitute an additional valuable diagnostic tool for differentiating DN and NDRD with a non-invasive method.
Collapse
Affiliation(s)
- Moyan Liu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases 28 Fuxing Road, Haidian District Beijing 100853 China .,Second Department of Cadre Ward, General Hospital of Jinan Military Region Jinan 250000 China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University Xi'an Shaanxi 710069 China
| | - Dong Zhang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases 28 Fuxing Road, Haidian District Beijing 100853 China
| | - Qiuxia Han
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University 1 East Jianshe Road Zhengzhou 450052 China
| | - Xiaoli Yang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases 28 Fuxing Road, Haidian District Beijing 100853 China
| | - Xiawei Liu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University Xi'an Shaanxi 710069 China
| | - Jifeng Wang
- The Key Laboratory of Protein and Peptide Pharmaceuticals, Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences Beijing 100101 China
| | - Kun Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University Xi'an Shaanxi 710069 China
| | - Fuquan Yang
- The Key Laboratory of Protein and Peptide Pharmaceuticals, Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences Beijing 100101 China
| | - Guangyan Cai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases 28 Fuxing Road, Haidian District Beijing 100853 China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases 28 Fuxing Road, Haidian District Beijing 100853 China
| | - Hanyu Zhu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases 28 Fuxing Road, Haidian District Beijing 100853 China
| |
Collapse
|
68
|
Ma Q, Adua E, Boyce MC, Li X, Ji G, Wang W. IMass Time: The Future, in Future! OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:679-695. [PMID: 30457467 DOI: 10.1089/omi.2018.0162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Joseph John Thomson discovered and proved the existence of electrons through a series of experiments. His work earned him a Nobel Prize in 1906 and initiated the era of mass spectrometry (MS). In the intervening time, other researchers have also been awarded the Nobel Prize for significant advances in MS technology. The development of soft ionization techniques was central to the application of MS to large biological molecules and led to an unprecedented interest in the study of biomolecules such as proteins (proteomics), metabolites (metabolomics), carbohydrates (glycomics), and lipids (lipidomics), allowing a better understanding of the molecular underpinnings of health and disease. The interest in large molecules drove improvements in MS resolution and now the challenge is in data deconvolution, intelligent exploitation of heterogeneous data, and interpretation, all of which can be ameliorated with a proposed IMass technology. We define IMass as a combination of MS and artificial intelligence, with each performing a specific role. IMass will offer advantages such as improving speed, sensitivity, and analyses of large data that are presently not possible with MS alone. In this study, we present an overview of the MS considering historical perspectives and applications, challenges, as well as insightful highlights of IMass.
Collapse
Affiliation(s)
- Qingwei Ma
- 1 Bioyong (Beijing) Technology Co., Ltd. , Beijing, China
| | - Eric Adua
- 2 School of Medical and Health Sciences, Edith Cowan University , Joondalup, Australia
| | - Mary C Boyce
- 3 School of Science, Edith Cowan University , Joondalup, Australia
| | - Xingang Li
- 2 School of Medical and Health Sciences, Edith Cowan University , Joondalup, Australia
| | - Guang Ji
- 4 China-Canada Centre of Research for Digestive Diseases, University of Ottawa , Ottawa, Canada
- 5 Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai, China
| | - Wei Wang
- 2 School of Medical and Health Sciences, Edith Cowan University , Joondalup, Australia
- 6 School of Public Health, Taishan Medical University , Taian, China
| |
Collapse
|
69
|
Glycosylation in cancer: Selected roles in tumour progression, immune modulation and metastasis. Cell Immunol 2018; 333:46-57. [DOI: 10.1016/j.cellimm.2018.03.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/13/2018] [Accepted: 03/16/2018] [Indexed: 01/20/2023]
|
70
|
Dankner R, Boker LK, Boffetta P, Balicer RD, Murad H, Berlin A, Olmer L, Agai N, Freedman LS. A historical cohort study on glycemic-control and cancer-risk among patients with diabetes. Cancer Epidemiol 2018; 57:104-109. [PMID: 30388485 DOI: 10.1016/j.canep.2018.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/17/2018] [Accepted: 10/20/2018] [Indexed: 12/28/2022]
Abstract
AIMS This population-based historical cohort study examined whether poor glycemic-control (i.e., high glucose and HbA1c blood levels) in patients with diabetes is associated with cancer-risk. METHODS From a large healthcare database, patients aged 21-89 years, diagnosed with diabetes before January 2002 (prevalent) or during 2002-2010 (incident), were followed for cancer during 2004-2012 (excluding cancers diagnosed within the first 2 years since diabetes diagnosis). Risks of selected cancers (all-sites, colon, breast, lung, prostate, pancreas and liver) were estimated according to glycemic-control in a Cox regression model with time-dependent covariates, adjusted for age, sex, ethnic origin, socioeconomic status, smoking and parity. Missing glucose or HbA1c values were imputed. RESULTS Among 440,000 patients included in our analysis, cancer was detected more than 2 years after diabetes diagnosis in 26,887 patients (6%) during the follow-up period. Associations of poor glycemic-control with all-sites cancer and most specific cancers were either null or only weak (hazard ratios (HRs) for a 1% HbA1c or a 30 mg/dl glucose increase between 0.94 and 1.09). Exceptions were pancreatic cancer, for which there was a strong positive association (HRs: 1.26-1.51), and prostate cancer, for which there was a moderate negative association (HRs: 0.85-0.96). CONCLUSION Overall, poor glycemic-control appears to be only weakly associated with cancer-risk, if at all. A substantial part of the positive association with pancreatic cancer is attributable to reverse causation, with the cancer causing poorer glycemic-control prior to its diagnosis. The negative association with prostate cancer may be related to lower PSA levels in those with poor control.
Collapse
Affiliation(s)
- R Dankner
- Unit for Cardiovascular Epidemiology, The Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Department of Epidemiology and Preventive Medicine, School of Public Health, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel; Patient Oriented Research, The Feinstein Institute for Medical Research, Manhasset, North Shore, New York, United States.
| | - L Keinan Boker
- The Israel Center for Disease Control, Israel Ministry of Health, Israel; School of Public Health, Faculty of Social Welfare and Health Sciences, Haifa University, Haifa, Israel
| | - P Boffetta
- Tisch Cancer Institute and Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York NY, United States
| | - R D Balicer
- Clalit Health Services, Clalit Research Institute, Tel Aviv, Israel; Public Health Department, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - H Murad
- Unit for Biostatistics, The Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Tel Hashomer, Israel
| | - A Berlin
- Unit for Cardiovascular Epidemiology, The Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Tel Hashomer, Israel; Clalit Health Services, Clalit Research Institute, Tel Aviv, Israel
| | - L Olmer
- Unit for Biostatistics, The Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Tel Hashomer, Israel
| | - N Agai
- Unit for Cardiovascular Epidemiology, The Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Tel Hashomer, Israel
| | - L S Freedman
- Sackler Faculty of Medicine, Department of Epidemiology and Preventive Medicine, School of Public Health, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel; Unit for Biostatistics, The Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
71
|
Damborský P, Koczula KM, Gallotta A, Katrlík J. Lectin-based lateral flow assay: proof-of-concept. Analyst 2018; 141:6444-6448. [PMID: 27767199 DOI: 10.1039/c6an01746k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lateral flow assays (LFAs) enable the simple and rapid detection and quantification of analytes and is popular for point-of-care (PoC), point-of-use and outdoor testing applications. LFAs typically depend on antibody or nucleic acid based recognition. We present the innovative concept of a LFA using lectins in the role of the biorecognition element. Lectins are a special kind of glycan-binding protein and the lectin-based LFA herein described was developed for the determination of the glycosylation of free prostate specific antigen (PSA). PSA is routinely used as a biomarker of prostate cancer (PCa) and the glycosylation status of PSA is a more specific marker of disease progress than only the PSA level. Using the lectin-based LFA we were able to detect α-2,6 sialic acid present in fPSA using Sambucus nigra (SNA) lectin. As a negative control, we employed Maackia amurensis lectin II (MAA II) which specifically binds α-2,3 sialic acid. The novel approach presented here can be applied to a wide range of biomarkers that have a significant impact on clinical diagnosis and prognosis, providing an alternative to standard lectin-based assays. The assay uses commercial components and is easily performed by applying a sample to the sampling pad on the lectin-based LFA strip, with results obtained within 10 minutes.
Collapse
Affiliation(s)
- Pavel Damborský
- Department of Glycobiotechnology, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84105, Slovakia.
| | - Katarzyna M Koczula
- Xeptagen SpA, Italy, VEGA Science Park - Building Auriga, Via delle Industrie, 9 - 30175 Marghera (VE), Italy.
| | - Andrea Gallotta
- Xeptagen SpA, Italy, VEGA Science Park - Building Auriga, Via delle Industrie, 9 - 30175 Marghera (VE), Italy.
| | - Jaroslav Katrlík
- Department of Glycobiotechnology, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84105, Slovakia.
| |
Collapse
|
72
|
Kawahara R, Ortega F, Rosa-Fernandes L, Guimarães V, Quina D, Nahas W, Schwämmle V, Srougi M, Leite KRM, Thaysen-Andersen M, Larsen MR, Palmisano G. Distinct urinary glycoprotein signatures in prostate cancer patients. Oncotarget 2018; 9:33077-33097. [PMID: 30237853 PMCID: PMC6145689 DOI: 10.18632/oncotarget.26005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022] Open
Abstract
Novel biomarkers are needed to complement prostate specific antigen (PSA) in prostate cancer (PCa) diagnostic screening programs. Glycoproteins represent a hitherto largely untapped resource with a great potential as specific and sensitive tumor biomarkers due to their abundance in bodily fluids and their dynamic and cancer-associated glycosylation. However, quantitative glycoproteomics strategies to detect potential glycoprotein cancer markers from complex biospecimen are only just emerging. Here, we describe a glycoproteomics strategy for deep quantitative mapping of N- and O-glycoproteins in urine with a view to investigate the diagnostic value of the glycoproteome to discriminate PCa from benign prostatic hyperplasia (BPH), two conditions that remain difficult to clinically stratify. Total protein extracts were obtained, concentrated and digested from urine of six PCa patients (Gleason score 7) and six BPH patients. The resulting peptide mixtures were TMT-labeled and mixed prior to a multi-faceted sample processing including hydrophilic interaction liquid chromatography (HILIC) and titanium dioxide SPE based enrichment, endo-/exoglycosidase treatment and HILIC-HPLC pre-fractionation. The isolated N- and O-glycopeptides were detected and quantified using high resolution mass spectrometry. We accurately quantified 729 N-glycoproteins spanning 1,310 unique N-glycosylation sites and observed 954 and 965 unique intact N- and O-glycopeptides, respectively, across the two disease conditions. Importantly, a panel of 56 intact N-glycopeptides perfectly discriminated PCa and BPH (ROC: AUC = 1). This study has generated a panel of intact glycopeptides that has a potential for PCa detection.
Collapse
Affiliation(s)
- Rebeca Kawahara
- Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, USP, São Paulo, Brazil
| | - Fabio Ortega
- Laboratório de Investigação Médica da Disciplina de Urologia da Faculdade de Medicina da USP, LIM55, São Paulo, Brazil
| | - Livia Rosa-Fernandes
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Vanessa Guimarães
- Laboratório de Investigação Médica da Disciplina de Urologia da Faculdade de Medicina da USP, LIM55, São Paulo, Brazil
| | - Daniel Quina
- Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, USP, São Paulo, Brazil
| | - Willian Nahas
- Instituto do Câncer do Estado de São Paulo, ICESP, São Paulo, Brazil
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Miguel Srougi
- Laboratório de Investigação Médica da Disciplina de Urologia da Faculdade de Medicina da USP, LIM55, São Paulo, Brazil
| | - Katia R M Leite
- Laboratório de Investigação Médica da Disciplina de Urologia da Faculdade de Medicina da USP, LIM55, São Paulo, Brazil
| | | | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Giuseppe Palmisano
- Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, USP, São Paulo, Brazil
| |
Collapse
|
73
|
Cabanettes A, Perkams L, Spies C, Unverzagt C, Varrot A. Recognition of Complex Core-Fucosylated N-Glycans by a Mini Lectin. Angew Chem Int Ed Engl 2018; 57:10178-10181. [PMID: 29956878 DOI: 10.1002/anie.201805165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Indexed: 12/11/2022]
Abstract
The mini fungal lectin PhoSL was recombinantly produced and characterized. Despite a length of only 40 amino acids, PhoSL exclusively recognizes N-glycans with α1,6-linked fucose. Core fucosylation influences the intrinsic properties and bioactivities of mammalian N-glycoproteins and its level is linked to various cancers. Thus, PhoSL serves as a promising tool for glycoprofiling. Without structural precedence, the crystal structure was solved using the zinc anomalous signal, and revealed an interlaced trimer creating a novel protein fold termed β-prism III. Three biantennary core-fucosylated N-glycan azides of 8 to 12 sugars were cocrystallized with PhoSL. The resulting highly resolved structures gave a detailed view on how the exclusive recognition of α1,6-fucosylated N-glycans by such a small protein occurs. This work also provided a protein consensus motif for the observed specificity as well as a glimpse into N-glycan flexibility upon binding.
Collapse
Affiliation(s)
| | - Lukas Perkams
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Carolina Spies
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Carlo Unverzagt
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | | |
Collapse
|
74
|
Cabanettes A, Perkams L, Spies C, Unverzagt C, Varrot A. Recognition of Complex Core-Fucosylated N-Glycans by a Mini Lectin. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | - Lukas Perkams
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Germany
| | - Carolina Spies
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Germany
| | - Carlo Unverzagt
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Germany
| | | |
Collapse
|
75
|
Glycan affinity magnetic nanoplatforms for urinary glycobiomarkers discovery in bladder cancer. Talanta 2018; 184:347-355. [DOI: 10.1016/j.talanta.2018.03.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/07/2018] [Accepted: 03/11/2018] [Indexed: 01/26/2023]
|
76
|
Llop E, Guerrero PE, Duran A, Barrabés S, Massaguer A, Ferri MJ, Albiol-Quer M, de Llorens R, Peracaula R. Glycoprotein biomarkers for the detection of pancreatic ductal adenocarcinoma. World J Gastroenterol 2018; 24:2537-2554. [PMID: 29962812 PMCID: PMC6021768 DOI: 10.3748/wjg.v24.i24.2537] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/04/2018] [Accepted: 06/09/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PaC) shows a clear tendency to increase in the next years and therefore represents an important health and social challenge. Currently, there is an important need to find biomarkers for PaC early detection because the existing ones are not useful for that purpose. Recent studies have indicated that there is a large window of time for PaC early detection, which opens the possibility to find early biomarkers that could greatly improve the dismal prognosis of this tumor. The present manuscript reviews the state of the art of the existing PaC biomarkers. It focuses on the anomalous glycosylation process and its role in PaC. Glycan structures of glycoconjugates such as glycoproteins are modified in tumors and these modifications can be detected in biological fluids of the cancer patients. Several studies have found serum glycoproteins with altered glycan chains in PaC patients, but they have not shown enough specificity for PaC. To find more specific cancer glycoproteins we propose to analyze the glycan moieties of a battery of glycoproteins that have been reported to increase in PaC tissues and that can also be found in serum. The combination of these new candidate glycoproteins with their aberrant glycosylation together with the existing biomarkers could result in a panel, which would expect to give better results as a new tool for early diagnosis of PaC and to monitor the disease.
Collapse
Affiliation(s)
- Esther Llop
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| | - Pedro E Guerrero
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| | - Adrià Duran
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| | - Sílvia Barrabés
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| | - Anna Massaguer
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| | - María José Ferri
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
- Clinic Laboratory, University Hospital Dr Josep Trueta, Girona 17007, Spain
| | - Maite Albiol-Quer
- Department of Surgery, Hepato-biliary and Pancreatic Surgery Unit, University Hospital Dr Josep Trueta, Girona 17007, Spain
| | - Rafael de Llorens
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| | - Rosa Peracaula
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| |
Collapse
|
77
|
Yamasaki K, Yamasaki T, Tateno H. The trimeric solution structure and fucose-binding mechanism of the core fucosylation-specific lectin PhoSL. Sci Rep 2018; 8:7740. [PMID: 29773815 PMCID: PMC5958098 DOI: 10.1038/s41598-018-25630-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/20/2018] [Indexed: 12/28/2022] Open
Abstract
The core α1–6 fucosylation-specific lectin from a mushroom Pholiota squarrosa (PhoSL) is a potential tool for precise diagnosis of cancers. This lectin consists of only 40 amino acids and can be chemically synthesized. We showed here that a synthesized PhoSL peptide formed a trimer by gel filtration and chemical cross-linking assays, and determined a structure of the PhoSL trimer by NMR. The structure possesses a β-prism motif with a three-fold rotational symmetry, where three antiparallel β-sheets are tightly connected by swapping of β-strands. A triad of Trp residues comprises the structural core, forming NH–π electrostatic interactions among the indole rings. NMR analysis with an excess amount of fucose revealed the structural basis for the molecular recognition. Namely, fucose deeply enters a pocket formed at a junction of β-sheet edges, with the methyl group placed at the bottom. It forms a number of hydrophobic and hydrogen-bonding interactions with PhoSL residues. In spite of partial similarities to the structures of other functionally related lectins, the arrangement of the antiparallel β-sheets in the PhoSL trimer is novel as a structural scaffold, and thus defines a novel type of lectin structure.
Collapse
Affiliation(s)
- Kazuhiko Yamasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan.
| | - Tomoko Yamasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan
| | - Hiroaki Tateno
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8568, Japan
| |
Collapse
|
78
|
Filella X, Fernández-Galan E, Fernández Bonifacio R, Foj L. Emerging biomarkers in the diagnosis of prostate cancer. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2018; 11:83-94. [PMID: 29844697 PMCID: PMC5961643 DOI: 10.2147/pgpm.s136026] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Prostate cancer (PCa) is the second most common cancer in men worldwide. A large proportion of PCa are latent, never destined to progress or affect the patients’ life. It is of utmost importance to identify which PCa are destined to progress and which would benefit from an early radical treatment. Prostate-specific antigen (PSA) remains the most used test to detect PCa. Its limited specificity and an elevated rate of overdiagnosis are the main problems associated with PSA testing. New PCa biomarkers have been proposed to improve the accuracy of PSA in the management of early PCa. Commercially available biomarkers such as PCA3 score, Prostate Health Index (PHI), and the four-kallikrein panel are used with the purpose of reducing the number of unnecessary biopsies and providing information related to the aggressiveness of the tumor. The relationship with PCa aggressiveness seems to be confirmed by PHI and the four-kallikrein panel, but not by the PCA3 score. In this review, we also summarize new promising biomarkers, such as PSA glycoforms, TMPRSS2:ERG fusion gene, microRNAs, circulating tumor cells, androgen receptor variants, and PTEN gene. All these emerging biomarkers could change the management of early PCa, offering more accurate results than PSA. Nonetheless, large prospective studies comparing these new biomarkers among them are required to know their real value in PCa detection and prognosis.
Collapse
Affiliation(s)
- Xavier Filella
- Department of Biochemistry and Molecular Genetics (CDB), Hospital Clínic, IDIBAPS, Barcelona, Catalonia, Spain
| | - Esther Fernández-Galan
- Department of Biochemistry and Molecular Genetics (CDB), Hospital Clínic, IDIBAPS, Barcelona, Catalonia, Spain
| | - Rosa Fernández Bonifacio
- Department of Biochemistry and Molecular Genetics (CDB), Hospital Clínic, IDIBAPS, Barcelona, Catalonia, Spain
| | - Laura Foj
- Department of Biochemistry and Molecular Genetics (CDB), Hospital Clínic, IDIBAPS, Barcelona, Catalonia, Spain
| |
Collapse
|
79
|
Lang R, Leinenbach A, Karl J, Swiatek-de Lange M, Kobold U, Vogeser M. An endoglycosidase-assisted LC-MS/MS-based strategy for the analysis of site-specific core-fucosylation of low-concentrated glycoproteins in human serum using prostate-specific antigen (PSA) as example. Clin Chim Acta 2018; 480:1-8. [DOI: 10.1016/j.cca.2018.01.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
|
80
|
Totten SM, Adusumilli R, Kullolli M, Tanimoto C, Brooks JD, Mallick P, Pitteri SJ. Multi-lectin Affinity Chromatography and Quantitative Proteomic Analysis Reveal Differential Glycoform Levels between Prostate Cancer and Benign Prostatic Hyperplasia Sera. Sci Rep 2018; 8:6509. [PMID: 29695737 PMCID: PMC5916935 DOI: 10.1038/s41598-018-24270-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/29/2018] [Indexed: 02/06/2023] Open
Abstract
Currently prostate-specific antigen is used for prostate cancer (PCa) screening, however it lacks the necessary specificity for differentiating PCa from other diseases of the prostate such as benign prostatic hyperplasia (BPH), presenting a clinical need to distinguish these cases at the molecular level. Protein glycosylation plays an important role in a number of cellular processes involved in neoplastic progression and is aberrant in PCa. In this study, we systematically interrogate the alterations in the circulating levels of hundreds of serum proteins and their glycoforms in PCa and BPH samples using multi-lectin affinity chromatography and quantitative mass spectrometry-based proteomics. Specific lectins (AAL, PHA-L and PHA-E) were used to target and chromatographically separate core-fucosylated and highly-branched protein glycoforms for analysis, as differential expression of these glycan types have been previously associated with PCa. Global levels of CD5L, CFP, C8A, BST1, and C7 were significantly increased in the PCa samples. Notable glycoform-specific alterations between BPH and PCa were identified among proteins CD163, C4A, and ATRN in the PHA-L/E fraction and among C4BPB and AZGP1 glycoforms in the AAL fraction. Despite these modest differences, substantial similarities in glycoproteomic profiles were observed between PCa and BPH sera.
Collapse
Affiliation(s)
- Sarah M Totten
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Ravali Adusumilli
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Majlinda Kullolli
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Cheylene Tanimoto
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - James D Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Parag Mallick
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Sharon J Pitteri
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.
| |
Collapse
|
81
|
Zhang Z, Wuhrer M, Holst S. Serum sialylation changes in cancer. Glycoconj J 2018; 35:139-160. [PMID: 29680984 PMCID: PMC5916985 DOI: 10.1007/s10719-018-9820-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/14/2018] [Accepted: 03/26/2018] [Indexed: 12/17/2022]
Abstract
Cancer is a major cause of death in both developing and developed countries. Early detection and efficient therapy can greatly enhance survival. Aberrant glycosylation has been recognized to be one of the hallmarks of cancer as glycans participate in many cancer-associated events. Cancer-associated glycosylation changes often involve sialic acids which play important roles in cell-cell interaction, recognition and immunological response. This review aims at giving a comprehensive overview of the literature on changes of sialylation in serum of cancer patients. Furthermore, the methods available to measure serum and plasma sialic acids as well as possible underlying biochemical mechanisms involved in the serum sialylation changes are surveyed. In general, total serum sialylation levels appear to be increased with various malignancies and show a potential for clinical applications, especially for disease monitoring and prognosis. In addition to overall sialic acid levels and the amount of sialic acid per total protein, glycoprofiling of specific cancer-associated glycoproteins, acute phase proteins and immunoglobulins in serum as well as the measurements of sialylation-related enzymes such as sialidases and sialyltransferases have been reported for early detection of cancer, assessing cancer progression and improving prognosis of cancer patients. Moreover, sialic-acid containing glycan antigens such as CA19-9, sialyl Lewis X and sialyl Tn on serum proteins have also displayed their value in cancer diagnosis and management whereby increased levels of these factors positively correlated with metastasis or poor prognosis.
Collapse
Affiliation(s)
- Zejian Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postzone S3, Postbus 9600, 2300 RC, Leiden, NL, The Netherlands.,Department of Biochemistry and Molecular Biology, Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postzone S3, Postbus 9600, 2300 RC, Leiden, NL, The Netherlands
| | - Stephanie Holst
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postzone S3, Postbus 9600, 2300 RC, Leiden, NL, The Netherlands.
| |
Collapse
|
82
|
Kammeijer GSM, Nouta J, de la Rosette JJMCH, de Reijke TM, Wuhrer M. An In-Depth Glycosylation Assay for Urinary Prostate-Specific Antigen. Anal Chem 2018; 90:4414-4421. [PMID: 29502397 PMCID: PMC5885261 DOI: 10.1021/acs.analchem.7b04281] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The concentration of prostate-specific antigen (PSA) in serum is used as an early detection method of prostate cancer (PCa); however, it shows low sensitivity, specificity, and a poor predictive value. Initial studies suggested the glycosylation of PSA to be a promising marker for a more specific yet noninvasive PCa diagnosis. Recent studies on the molecular features of PSA glycosylation (such as antenna modification and core fucosylation) were not successful in demonstrating its potential for an improved PCa diagnosis, probably due to the lack of analytical sensitivity and specificity of the applied assays. In this study, we established for the first time a high-performance PSA Glycomics Assay (PGA), allowing differentiation of α2,6- and α2,3-sialylated isomers, the latter one being suggested to be a hallmark of aggressive types of cancer. After affinity purification from urine and tryptic digestion, PSA samples were analyzed by CE-ESI-MS (capillary electrophoresis-electrospray ionization coupled to mass spectrometry). Based on positive controls, an average interday relative standard deviation of 14% for 41 N-glycopeptides was found. The assay was further verified by analyzing PSA captured from patients' urine samples. A total of 67 N-glycopeptides were identified from the PSA pooled from the patients. In summary, the first PGA successfully established in this study allows an in-depth relative quantitation of PSA glycoforms from urine. The PGA is a promising tool for the determination of potential glycomic biomarkers for the differentiation between aggressive PCa, indolent PCa, and benign prostate hyperplasia in larger cohort studies.
Collapse
Affiliation(s)
- Guinevere S M Kammeijer
- Leiden University Medical Center , Center for Proteomics and Metabolomics , 2300 RC Leiden , The Netherlands
| | - Jan Nouta
- Leiden University Medical Center , Center for Proteomics and Metabolomics , 2300 RC Leiden , The Netherlands
| | | | - Theo M de Reijke
- Academic Medical Center , Department of Urology , 1105 AZ Amsterdam , The Netherlands
| | - Manfred Wuhrer
- Leiden University Medical Center , Center for Proteomics and Metabolomics , 2300 RC Leiden , The Netherlands
| |
Collapse
|
83
|
Llop E, Ferrer-Batallé M, Barrabés S, Guerrero PE, Ramírez M, Saldova R, Rudd PM, Aleixandre RN, Comet J, de Llorens R, Peracaula R. Erratum: Improvement of Prostate Cancer Diagnosis by Detecting PSA Glycosylation-Specific Changes: Erratum. Am J Cancer Res 2018; 8:746-748. [PMID: 29344303 PMCID: PMC5771090 DOI: 10.7150/thno.23906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
84
|
Kailemia MJ, Xu G, Wong M, Li Q, Goonatilleke E, Leon F, Lebrilla CB. Recent Advances in the Mass Spectrometry Methods for Glycomics and Cancer. Anal Chem 2018; 90:208-224. [PMID: 29049885 PMCID: PMC6200424 DOI: 10.1021/acs.analchem.7b04202] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Muchena J. Kailemia
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
- These authors contributed equally to this work
| | - Gege Xu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
- These authors contributed equally to this work
| | - Maurice Wong
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Elisha Goonatilleke
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Frank Leon
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
- Foods for Health Institute, University of California, Davis, CA 95616, USA
| |
Collapse
|
85
|
Current advances and future visions on bioelectronic immunosensing for prostate-specific antigen. Biosens Bioelectron 2017; 98:267-284. [DOI: 10.1016/j.bios.2017.06.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/13/2017] [Accepted: 06/25/2017] [Indexed: 01/28/2023]
|
86
|
The Single-parameter, Structure-based IsoPSA Assay Demonstrates Improved Diagnostic Accuracy for Detection of Any Prostate Cancer and High-grade Prostate Cancer Compared to a Concentration-based Assay of Total Prostate-specific Antigen: A Preliminary Report. Eur Urol 2017; 72:942-949. [DOI: 10.1016/j.eururo.2017.03.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/17/2017] [Indexed: 12/23/2022]
|
87
|
Stephan C, Jung K. Advances in Biomarkers for PCa Diagnostics and Prognostics-A Way towards Personalized Medicine. Int J Mol Sci 2017; 18:ijms18102193. [PMID: 29053613 PMCID: PMC5666874 DOI: 10.3390/ijms18102193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Carsten Stephan
- Department of Urology, Charité University Hospital, 10117 Berlin, Germany.
- Berlin Institute for Urologic Research, 10115 Berlin, Germany.
| | - Klaus Jung
- Department of Urology, Charité University Hospital, 10117 Berlin, Germany.
- Berlin Institute for Urologic Research, 10115 Berlin, Germany.
| |
Collapse
|
88
|
Sharma B, Crist RM, Adiseshaiah PP. Nanotechnology as a Delivery Tool for Precision Cancer Therapies. AAPS JOURNAL 2017; 19:1632-1642. [DOI: 10.1208/s12248-017-0152-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/19/2017] [Indexed: 01/20/2023]
|
89
|
Hashim OH, Jayapalan JJ, Lee CS. Lectins: an effective tool for screening of potential cancer biomarkers. PeerJ 2017; 5:e3784. [PMID: 28894650 PMCID: PMC5592079 DOI: 10.7717/peerj.3784] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/18/2017] [Indexed: 12/13/2022] Open
Abstract
In recent years, the use of lectins for screening of potential biomarkers has gained increased importance in cancer research, given the development in glycobiology that highlights altered structural changes of glycans in cancer associated processes. Lectins, having the properties of recognizing specific carbohydrate moieties of glycoconjugates, have become an effective tool for detection of new cancer biomarkers in complex bodily fluids and tissues. The specificity of lectins provides an added advantage of selecting peptides that are differently glycosylated and aberrantly expressed in cancer patients, many of which are not possibly detected using conventional methods because of their low abundance in bodily fluids. When coupled with mass spectrometry, research utilizing lectins, which are mainly from plants and fungi, has led to identification of numerous potential cancer biomarkers that may be used in the future. This article reviews lectin-based methods that are commonly adopted in cancer biomarker discovery research.
Collapse
Affiliation(s)
- Onn Haji Hashim
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,University of Malaya Centre for Proteomics Research, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jaime Jacqueline Jayapalan
- University of Malaya Centre for Proteomics Research, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Cheng-Siang Lee
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
90
|
Jia G, Dong Z, Sun C, Wen F, Wang H, Guo H, Gao X, Xu C, Xu C, Yang C, Sun Y. Alterations in expressed prostate secretion-urine PSA N-glycosylation discriminate prostate cancer from benign prostate hyperplasia. Oncotarget 2017; 8:76987-76999. [PMID: 29100363 PMCID: PMC5652757 DOI: 10.18632/oncotarget.20299] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/27/2017] [Indexed: 01/13/2023] Open
Abstract
The prostate specific antigen (PSA) test is widely used for early diagnosis of prostate cancer (PCa). However, its limited sensitivity has led to over-diagnosis and over-treatment of PCa. Glycosylation alteration is a common phenomenon in cancer development. Different PSA glycan subforms have been proposed as diagnostic markers to better differentiate PCa from benign prostate hyperplasia (BPH). In this study, we purified PSA from expressed prostate secretions (EPS)-urine samples from 32 BPH and 30 PCa patients and provided detailed PSA glycan profiles in Chinese population. We found that most of the PSA glycans from EPS-urine were complex type biantennary glycans. We observed two major patterns in PSA glycan profiles. Overall there was no distinct separation of PSA glycan profiles between BPH and PCa patients. However, we detected a significant increase of glycan FA2 and FM5A2G2S1 in PCa when compared with BPH patients. Furthermore, we observed that the composition of FA2 glycan increased significantly in advanced PCa with Gleason score ≥8, which potentially could be translated to clinic as a marker for aggressive PCa.
Collapse
Affiliation(s)
- Gaozhen Jia
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 2000433, China
| | - Zhenyang Dong
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 2000433, China
| | - Chenxia Sun
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fuping Wen
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haifeng Wang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 2000433, China
| | - Huaizu Guo
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai 201203, China
| | - Xu Gao
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 2000433, China
| | - Chuanliang Xu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 2000433, China
| | - Chuanliang Xu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 2000433, China
| | - Chenghua Yang
- Joint Center for Translational Research of Chronic Diseases, Changhai Hospital, Second Military Medical University, Shanghai 2000433, China.,Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yinghao Sun
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 2000433, China
| |
Collapse
|
91
|
Bhat G, Hothpet VR, Lin MF, Cheng PW. Shifted Golgi targeting of glycosyltransferases and α-mannosidase IA from giantin to GM130-GRASP65 results in formation of high mannose N-glycans in aggressive prostate cancer cells. Biochim Biophys Acta Gen Subj 2017; 1861:2891-2901. [PMID: 28782625 DOI: 10.1016/j.bbagen.2017.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND There is a pressing need for biomarkers that can distinguish indolent from aggressive prostate cancer to prevent over-treatment of patients with indolent tumor. METHODS Golgi targeting of glycosyltransferases was characterized by confocal microscopy after knockdown of GM130, giantin, or both. N-glycans on a trans-Golgi enzyme β4galactosyltransferase-1 isolated by immunoprecipitation from androgen-sensitive and independent prostate cancer cells were determined by matrix-assisted laser desorption-time of flight-mass spectrometry. In situ proximity ligation assay was employed to determine co-localization of (a) α-mannosidase IA, an enzyme required for processing Man8GlcNAc2 down to Man5GlcNAc2 to enable synthesis of complex-type N-glycans, with giantin, GM130, and GRASP65, and (b) trans-Golgi glycosyltransferases with high mannose N-glycans terminated with α3-mannose. RESULTS Defective giantin in androgen-independent prostate cancer cells results in a shift of Golgi targeting of glycosyltransferases and α-mannosidase IA from giantin to GM130-GRASP65. Consequently, trans-Golgi enzymes and cell surface glycoproteins acquire high mannose N-glycans, which are absent in cells with functional giantin. In situ proximity ligation assays of co-localization of α-mannosidase IA with GM130 and GRASP65, and trans-Golgi glycosyltransferases with high mannose N-glycans are negative in androgen-sensitive LNCaP C-33 cells but positive in androgen-independent LNCaP C-81 and DU145 cells, and LNCaP C-33 cells devoid of giantin. CONCLUSION In situ proximity ligation assays of Golgi localization of α-mannosidase IA at giantin versus GM130-GRASP65 site, and absence or presence of N-glycans terminated with α3-mannose on trans-Golgi glycosyltransferases may be useful for distinguishing indolent from aggressive prostate cancer cells.
Collapse
Affiliation(s)
- Ganapati Bhat
- Veterans Affairs Nebraska and Western Iowa Healthcare System, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vishwanath-Reddy Hothpet
- Veterans Affairs Nebraska and Western Iowa Healthcare System, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ming-Fong Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Eppley Institute of Research in Cancer and Allied Diseases, Fred & Pamela Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pi-Wan Cheng
- Veterans Affairs Nebraska and Western Iowa Healthcare System, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Eppley Institute of Research in Cancer and Allied Diseases, Fred & Pamela Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA..
| |
Collapse
|
92
|
Zhou J, Yang W, Hu Y, Höti N, Liu Y, Shah P, Sun S, Clark D, Thomas S, Zhang H. Site-Specific Fucosylation Analysis Identifying Glycoproteins Associated with Aggressive Prostate Cancer Cell Lines Using Tandem Affinity Enrichments of Intact Glycopeptides Followed by Mass Spectrometry. Anal Chem 2017; 89:7623-7630. [PMID: 28627880 PMCID: PMC5599242 DOI: 10.1021/acs.analchem.7b01493] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fucosylation (Fuc) of glycoproteins plays an important role in regulating protein function and has been associated with the development of several cancer types including prostate cancer (Pca). Therefore, the research of Fuc glycoproteins has attracted increasing attention recently in the analytical field. Herein, a strategy based on lectin affinity enrichments of intact glycopeptides followed by mass spectrometry has been established to evaluate the specificities of various Fuc-binding lectins for glycosite-specific Fuc analysis of nonaggressive (NAG) and aggressive (AG) Pca cell lines. The enrichment specificities of Fuc glycopeptides using lectins (LCA, PSA, AAL, LTL, UEA I, and AOL) and MAX extraction cartridges alone, or in tandem, were evaluated. Our results showed that the use of lectin enrichment significantly increased the ratio of fucosylated glycopeptides to total glycopeptides compared to MAX enrichment. Furthermore, tandem use of lectin followed by MAX increased the number of identifications of Fuc glycopeptides compared to using lectin enrichment alone. LCA, PSA, and AOL showed stronger binding capacity than AAL, LTL, and UEA I. Also, LCA and PSA bound specifically to core Fuc, whereas AOL, AAL, and UEA I showed binding to both core Fuc and branch Fuc. The optimized enrichment method with tandem enrichment of LCA followed by MAX (LCA-MAX) was then applied to examine the Fuc glycoproteomes in two NAG and two AG Pca cell lines. In total, 973 intact Fuc glycopeptides were identified and quantified from 252 Fuc proteins by using the tandem-mass-tags (TMT) labeling and nanoliquid chromatography-mass spectrometry (nanoLC-MS/MS) analysis. Further data analysis revealed that 51 Fuc glycopeptides were overexpressed more than 2-fold in AG cell lines compared to NAG cells. The analysis of protein core fucosylation has great potential for aiding our understanding of invasive activity of AG Pca and may lead to the development of diagnostic approaches for AG Pca.
Collapse
Affiliation(s)
- Jianliang Zhou
- Department of Pathology, Johns Hopkins University, Baltimore 21287, Maryland United States
- Department of Traditional Chinese Medicines, Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
| | - Weiming Yang
- Department of Pathology, Johns Hopkins University, Baltimore 21287, Maryland United States
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University, Baltimore 21287, Maryland United States
| | - Naseruddin Höti
- Department of Pathology, Johns Hopkins University, Baltimore 21287, Maryland United States
| | - Yang Liu
- Department of Pathology, Johns Hopkins University, Baltimore 21287, Maryland United States
| | - Punit Shah
- Department of Pathology, Johns Hopkins University, Baltimore 21287, Maryland United States
| | - Shisheng Sun
- Department of Pathology, Johns Hopkins University, Baltimore 21287, Maryland United States
| | - David Clark
- Department of Pathology, Johns Hopkins University, Baltimore 21287, Maryland United States
| | - Stefani Thomas
- Department of Pathology, Johns Hopkins University, Baltimore 21287, Maryland United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore 21287, Maryland United States
| |
Collapse
|
93
|
Belicky S, Černocká H, Bertok T, Holazova A, Réblová K, Paleček E, Tkac J, Ostatná V. Label-free chronopotentiometric glycoprofiling of prostate specific antigen using sialic acid recognizing lectins. Bioelectrochemistry 2017. [PMID: 28651174 DOI: 10.1016/j.bioelechem.2017.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In recent decades, it has become clear that most of human proteins are glycosylated and that protein glycosylation plays an important role in health and diseases. At present, simple, fast and inexpensive methods are sought for clinical applications and particularly for improved diagnostics of various diseases, including cancer. We propose a label- and reagent-free electrochemical method based on chronopotentiometric stripping (CPS) analysis and a hanging mercury drop electrode for the detection of interaction of sialylated protein biomarker a prostate specific antigen (PSA) with two important lectins: Sambucus nigra agglutinin (SNA) and Maackia amurensis agglutinin (MAA). Incubation of PSA-modified electrode with specific SNA lectin resulted in an increase of CPS peak H of the complex as compared to this peak of individual PSA. By adjusting polarization current and temperature, PSA-MAA interaction can be either eliminated or distinguished from the more abundant PSA-SNA complex. CPS data were in a good agreement with the data obtained by complementary methods, namely surface plasmon resonance and fluorescent lectin microarray. It can be anticipated that CPS will find application in glycomics and proteomics.
Collapse
Affiliation(s)
- Stefan Belicky
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Hana Černocká
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolská 135, 612 65 Brno, Czech Republic
| | - Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Alena Holazova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Kamila Réblová
- CEITEC Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Emil Paleček
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolská 135, 612 65 Brno, Czech Republic
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Veronika Ostatná
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolská 135, 612 65 Brno, Czech Republic.
| |
Collapse
|
94
|
Sialic acid linkage differentiation of glycopeptides using capillary electrophoresis - electrospray ionization - mass spectrometry. Sci Rep 2017. [PMID: 28623326 PMCID: PMC5473812 DOI: 10.1038/s41598-017-03838-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sialylation is a glycosylation feature that occurs in different linkages at the non-reducing end of a glycan moiety, the linkage isomers are often differentially associated with various biological processes. Due to very similar physico-chemical properties, the separation of isomeric sialylated glycopeptides remains challenging but of utmost importance in the biomedicine and biotechnology, including biomarker discovery, glyco-engineering and biopharmaceutical characterization. This study presents the implementation of a high-resolution separation platform based on capillary electrophoresis - mass spectrometry (CE-MS) allowing for the selective analysis of α2,3- and α2,6-sialylated glycopeptides. These differentially linked glycopeptides showed an identical fragmentation pattern (collision induced dissociation) but different electrophoretic mobilities, allowing for baseline separation of the different linkages without the need for an extensive sample preparation. The different migration behavior between the two moieties was found to correlate with differences in pKa values. Using a novel methodology adapted from the so-called internal standard CE approach, a relative difference of 3.4·10-2 in pKa unit was determined. This approach was applied for the analysis of tryptic glycopeptides of prostate specific antigen, which shows highly complex and heterogeneous glycosylation. The developed platform therefore appears attractive for the identification of differentially linked sialic acids that may be related to pathological conditions.
Collapse
|
95
|
Barrabés S, Llop E, Ferrer-Batallé M, Ramírez M, Aleixandre RN, Perry AS, de Llorens R, Peracaula R. Analysis of urinary PSA glycosylation is not indicative of high-risk prostate cancer. Clin Chim Acta 2017; 470:97-102. [PMID: 28495148 DOI: 10.1016/j.cca.2017.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 11/27/2022]
Abstract
The levels of core fucosylation and α2,3-linked sialic acid in serum Prostate Specific Antigen (PSA), using the lectins Pholiota squarrosa lectin (PhoSL) and Sambucus nigra agglutinin (SNA), can discriminate between Benign Prostatic Hyperplasia (BPH) and indolent prostate cancer (PCa) from aggressive PCa. In the present work we evaluated whether these glycosylation determinants could also be altered in urinary PSA obtained after digital rectal examination (DRE) and could also be useful for diagnosis determinations. For this purpose, α2,6-sialic acid and α1,6-fucose levels of urinary PSA from 53 patients, 18 biopsy-negative and 35 PCa patients of different aggressiveness degree, were analyzed by sandwich ELLA (Enzyme Linked Lectin Assay) using PhoSL and SNA. Changes in the levels of specific glycosylation determinants, that in serum PSA samples were indicative of PCa aggressiveness, were not found in PSA from DRE urine samples. Although urine is a simpler matrix for analyzing PSA glycosylation compared to serum, an immunopurification step was necessary to specifically detect the glycans on the PSA molecule. Those specific glycosylation determinants on urinary PSA were however not useful to improve PCa diagnosis. This could be probably due to the low proportion of PSA from the tumor in urine samples, which precludes the identification of aberrantly glycosylated PSA.
Collapse
Affiliation(s)
- Sílvia Barrabés
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Campus de Montilivi, 17003 Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Dr. J. Trueta University Hospital, 17007 Girona, Spain
| | - Esther Llop
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Campus de Montilivi, 17003 Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Dr. J. Trueta University Hospital, 17007 Girona, Spain
| | - Montserrat Ferrer-Batallé
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Campus de Montilivi, 17003 Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Dr. J. Trueta University Hospital, 17007 Girona, Spain
| | - Manel Ramírez
- Girona Biomedical Research Institute (IDIBGI), Dr. J. Trueta University Hospital, 17007 Girona, Spain; Clinic Laboratory, Dr. J. Trueta University Hospital, 17007 Girona, Spain
| | - Rosa N Aleixandre
- Girona Biomedical Research Institute (IDIBGI), Dr. J. Trueta University Hospital, 17007 Girona, Spain; Clinic Laboratory, Dr. J. Trueta University Hospital, 17007 Girona, Spain
| | - Antoinette S Perry
- Cancer Biology and Therapeutics Laboratory, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Rafael de Llorens
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Campus de Montilivi, 17003 Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Dr. J. Trueta University Hospital, 17007 Girona, Spain
| | - Rosa Peracaula
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Campus de Montilivi, 17003 Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Dr. J. Trueta University Hospital, 17007 Girona, Spain.
| |
Collapse
|
96
|
Ferrer-Batallé M, Llop E, Ramírez M, Aleixandre RN, Saez M, Comet J, de Llorens R, Peracaula R. Comparative Study of Blood-Based Biomarkers, α2,3-Sialic Acid PSA and PHI, for High-Risk Prostate Cancer Detection. Int J Mol Sci 2017; 18:ijms18040845. [PMID: 28420168 PMCID: PMC5412429 DOI: 10.3390/ijms18040845] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 12/18/2022] Open
Abstract
Prostate Specific Antigen (PSA) is the most commonly used serum marker for prostate cancer (PCa), although it is not specific and sensitive enough to allow the differential diagnosis of the more aggressive tumors. For that, new diagnostic methods are being developed, such as PCA-3, PSA isoforms that have resulted in the 4K score or the Prostate Health Index (PHI), and PSA glycoforms. In the present study, we have compared the PHI with our recently developed PSA glycoform assay, based on the determination of the α2,3-sialic acid percentage of serum PSA (% α2,3-SA), in a cohort of 79 patients, which include 50 PCa of different grades and 29 benign prostate hyperplasia (BPH) patients. The % α2,3-SA could distinguish high-risk PCa patients from the rest of patients better than the PHI (area under the curve (AUC) of 0.971 vs. 0.840), although the PHI correlated better with the Gleason score than the % α2,3-SA. The combination of both markers increased the AUC up to 0.985 resulting in 100% sensitivity and 94.7% specificity to differentiate high-risk PCa from the other low and intermediate-risk PCa and BPH patients. These results suggest that both serum markers complement each other and offer an improved diagnostic tool to identify high-risk PCa, which is an important requirement for guiding treatment decisions.
Collapse
Affiliation(s)
- Montserrat Ferrer-Batallé
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, 17003 Girona, Spain.
- Girona Biomedical Research Institute (IDIBGI), 17190 Salt (Girona), Spain.
| | - Esther Llop
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, 17003 Girona, Spain.
- Girona Biomedical Research Institute (IDIBGI), 17190 Salt (Girona), Spain.
| | - Manel Ramírez
- Girona Biomedical Research Institute (IDIBGI), 17190 Salt (Girona), Spain.
- Catalan Health Institute, University Hospital of Girona Dr. Josep Trueta, 17007 Girona, Spain.
| | - Rosa Núria Aleixandre
- Girona Biomedical Research Institute (IDIBGI), 17190 Salt (Girona), Spain.
- Catalan Health Institute, University Hospital of Girona Dr. Josep Trueta, 17007 Girona, Spain.
| | - Marc Saez
- Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, 17003 Girona, Spain.
- CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain.
| | - Josep Comet
- Girona Biomedical Research Institute (IDIBGI), 17190 Salt (Girona), Spain.
- Catalan Health Institute, University Hospital of Girona Dr. Josep Trueta, 17007 Girona, Spain.
| | - Rafael de Llorens
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, 17003 Girona, Spain.
- Catalan Health Institute, University Hospital of Girona Dr. Josep Trueta, 17007 Girona, Spain.
| | - Rosa Peracaula
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, 17003 Girona, Spain.
- Catalan Health Institute, University Hospital of Girona Dr. Josep Trueta, 17007 Girona, Spain.
| |
Collapse
|
97
|
Akizhanova M, Iskakova EE, Kim V, Wang X, Kogay R, Turebayeva A, Sun Q, Zheng T, Wu S, Miao L, Xie Y. PSA and Prostate Health Index based prostate cancer screening in a hereditary migration complicated population: implications in precision diagnosis. J Cancer 2017; 8:1223-1228. [PMID: 28607597 PMCID: PMC5463437 DOI: 10.7150/jca.18012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 12/23/2016] [Indexed: 12/03/2022] Open
Abstract
Precision diagnosis requires specific markers for differential ethnic populations. Prostate-Specific Antigen (PSA) level (threshold of 4ng/ml) has been widely used to screen prostate cancer and as reference of pro-biopsy but false diagnosis frequently occurs. Prostate health Index (PHI) is a new diagnosis marker which combines PSA, free PSA and p2PSA4. Overall the PCa screening database is lacking in Kazakhstani patients. We analyzed the PSA levels and Gleason scores of 222 biopsies collected in 2015 in Almaty area, Kazakhstan approved by institutional ethics board. We found using PSA of 4ng/ml as threshold, only 25.68% of patients have cancer with Gleason score ranged 6-8 and 65.77% of patients have no character of cancer. Moreover, there is no significant correlation between PSA and cancerous (P=0.266) or Gleason grade (P=0.3046) based on pathological biopsy. In addition, PHI is not correlated to prostate cancer (P=0.4301). Our data suggest that false-positive rate is much higher than the correct-positive diagnosis when using PSA as the first screening. Thus in this cohort study, most patients can not get benefit from the PSA screening for precision PCa diagnosis. As Kazakhstani family trees are unique and complicated because of history and migration, the high rate of over diagnosis might be due to the hyperexpression of PSA via heterosis in Eurasian men. Therefore we should be cautious when using pro-biopsy in precision diagnosis for Eurasian prostate cancer patients.
Collapse
Affiliation(s)
- Mariyam Akizhanova
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, 010000, Republic of Kazakhstan
| | - Elzira E Iskakova
- Module of Pathological Anatomy, Kazakh National Medical University, Almaty, 050000, Republic of Kazakhstan
| | - Valdemir Kim
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, 010000, Republic of Kazakhstan
| | - Xiao Wang
- Shandong Analysis and Test Center, Shandong Academy of Sciences, 19 keyuan Street, Jinan, 250014, P.R. China
| | - Roman Kogay
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, 010000, Republic of Kazakhstan
| | - Aiym Turebayeva
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, 010000, Republic of Kazakhstan
| | - Qinglei Sun
- Shandong Analysis and Test Center, Shandong Academy of Sciences, 19 keyuan Street, Jinan, 250014, P.R. China
| | - Ting Zheng
- Shandong Analysis and Test Center, Shandong Academy of Sciences, 19 keyuan Street, Jinan, 250014, P.R. China
| | - Shenghui Wu
- Department of Epidemiology & Biostatistics, University of Texas Health at San Antonio Laredo Campus, Laredo, TX 78041, USA
| | - Lixia Miao
- College of Basic Medicine, Wuhan University, Wuhan, 430071, P.R. China
| | - Yingqiu Xie
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, 010000, Republic of Kazakhstan
| |
Collapse
|
98
|
Munkley J. Glycosylation is a global target for androgen control in prostate cancer cells. Endocr Relat Cancer 2017; 24:R49-R64. [PMID: 28159857 DOI: 10.1530/erc-16-0569] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 02/03/2017] [Indexed: 12/17/2022]
Abstract
Changes in glycan composition are common in cancer and can play important roles in all of the recognised hallmarks of cancer. We recently identified glycosylation as a global target for androgen control in prostate cancer cells and further defined a set of 8 glycosylation enzymes (GALNT7, ST6GalNAc1, GCNT1, UAP1, PGM3, CSGALNACT1, ST6GAL1 and EDEM3), which are also significantly upregulated in prostate cancer tissue. These 8 enzymes are under direct control of the androgen receptor (AR) and are linked to the synthesis of important cancer-associated glycans such as sialyl-Tn (sTn), sialyl LewisX (SLeX), O-GlcNAc and chondroitin sulfate. Glycosylation has a key role in many important biological processes in cancer including cell adhesion, migration, interactions with the cell matrix, immune surveillance, cell signalling and cellular metabolism. Our results suggest that alterations in patterns of glycosylation via androgen control might modify some or all of these processes in prostate cancer. The prostate is an abundant secretor of glycoproteins of all types, and alterations in glycans are, therefore, attractive as potential biomarkers and therapeutic targets. Emerging data on these often overlooked glycan modifications have the potential to improve risk stratification and therapeutic strategies in patients with prostate cancer.
Collapse
Affiliation(s)
- Jennifer Munkley
- Institute of Genetic MedicineNewcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
99
|
Sweet Strategies in Prostate Cancer Biomarker Research: Focus on a Prostate Specific Antigen. BIONANOSCIENCE 2017. [DOI: 10.1007/s12668-017-0397-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
100
|
Ishikawa T, Yoneyama T, Tobisawa Y, Hatakeyama S, Kurosawa T, Nakamura K, Narita S, Mitsuzuka K, Duivenvoorden W, Pinthus JH, Hashimoto Y, Koie T, Habuchi T, Arai Y, Ohyama C. An Automated Micro-Total Immunoassay System for Measuring Cancer-Associated α2,3-linked Sialyl N-Glycan-Carrying Prostate-Specific Antigen May Improve the Accuracy of Prostate Cancer Diagnosis. Int J Mol Sci 2017; 18:ijms18020470. [PMID: 28241428 PMCID: PMC5344002 DOI: 10.3390/ijms18020470] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 11/16/2022] Open
Abstract
The low specificity of the prostate-specific antigen (PSA) for early detection of prostate cancer (PCa) is a major issue worldwide. The aim of this study to examine whether the serum PCa-associated α2,3-linked sialyl N-glycan-carrying PSA (S2,3PSA) ratio measured by automated micro-total immunoassay systems (μTAS system) can be applied as a diagnostic marker of PCa. The μTAS system can utilize affinity-based separation involving noncovalent interaction between the immunocomplex of S2,3PSA and Maackia amurensis lectin to simultaneously determine concentrations of free PSA and S2,3PSA. To validate quantitative performance, both recombinant S2,3PSA and benign-associated α2,6-linked sialyl N-glycan-carrying PSA (S2,6PSA) purified from culture supernatant of PSA cDNA transiently-transfected Chinese hamster ovary (CHO)-K1 cells were used as standard protein. Between 2007 and 2016, fifty patients with biopsy-proven PCa were pair-matched for age and PSA levels, with the same number of benign prostatic hyperplasia (BPH) patients used to validate the diagnostic performance of serum S2,3PSA ratio. A recombinant S2,3PSA- and S2,6PSA-spiked sample was clearly discriminated by μTAS system. Limit of detection of S2,3PSA was 0.05 ng/mL and coefficient variation was less than 3.1%. The area under the curve (AUC) for detection of PCa for the S2,3PSA ratio (%S2,3PSA) with cutoff value 43.85% (AUC; 0.8340) was much superior to total PSA (AUC; 0.5062) using validation sample set. Although the present results are preliminary, the newly developed μTAS platform for measuring %S2,3PSA can achieve the required assay performance specifications for use in the practical and clinical setting and may improve the accuracy of PCa diagnosis. Additional validation studies are warranted.
Collapse
Affiliation(s)
- Tomokazu Ishikawa
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
- Diagnostics Research Laboratories, Wako Pure Chemical Industries, Hyogo 661-0963, Japan.
| | - Tohru Yoneyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
- Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Yuki Tobisawa
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Shingo Hatakeyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Tatsuo Kurosawa
- Diagnostics Research Laboratories, Wako Pure Chemical Industries, Hyogo 661-0963, Japan.
| | - Kenji Nakamura
- Diagnostics Research Laboratories, Wako Pure Chemical Industries, Hyogo 661-0963, Japan.
| | - Shintaro Narita
- Department of Urology, Akita University Graduate School of Medicine, Akita 010-8543, Japan.
| | - Koji Mitsuzuka
- Department of Urology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| | | | | | - Yasuhiro Hashimoto
- Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Takuya Koie
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Tomonori Habuchi
- Department of Urology, Akita University Graduate School of Medicine, Akita 010-8543, Japan.
| | - Yoichi Arai
- Department of Urology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| | - Chikara Ohyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
- Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| |
Collapse
|