51
|
Kistenev YV, Das A, Mazumder N, Cherkasova OP, Knyazkova AI, Shkurinov AP, Tuchin VV, Lednev IK. Label-free laser spectroscopy for respiratory virus detection: A review. JOURNAL OF BIOPHOTONICS 2022; 15:e202200100. [PMID: 35866572 DOI: 10.1002/jbio.202200100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Infectious diseases are among the most severe threats to modern society. Current methods of virus infection detection based on genome tests need reagents and specialized laboratories. The desired characteristics of new virus detection methods are noninvasiveness, simplicity of implementation, real-time, low cost and label-free detection. There are two groups of methods for molecular biomarkers' detection and analysis: (i) a sample physical separation into individual molecular components and their identification, and (ii) sample content analysis by laser spectroscopy. Variations in the spectral data are typically minor. It requires the use of sophisticated analytical methods like machine learning. This review examines the current technological level of laser spectroscopy and machine learning methods in applications for virus infection detection.
Collapse
Affiliation(s)
- Yury V Kistenev
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| | - Anubhab Das
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Olga P Cherkasova
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
- Institute of Laser Physics, Siberian Branch of the RAS, Novosibirsk, Russia
| | - Anastasia I Knyazkova
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| | - Alexander P Shkurinov
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
- Institute on Laser and Information Technologies, Branch of the Federal Scientific Research Centre "Crystallography and Photonics" of RAS, Shatura, Russia
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - Valery V Tuchin
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
- Science Medical Center, Saratov State University, Saratov, Russia
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control of the RAS, Saratov, Russia
| | - Igor K Lednev
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
- Department of Chemistry, University at Albany, SUNY, Albany, NY, USA
| |
Collapse
|
52
|
Fujiwara S, Kawasaki D, Sueyoshi K, Hisamoto H, Endo T. Gold Nanocone Array with Extensive Electromagnetic Fields for Highly Reproducible Surface-Enhanced Raman Scattering Measurements. MICROMACHINES 2022; 13:mi13081182. [PMID: 35893179 PMCID: PMC9332797 DOI: 10.3390/mi13081182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a technique used to distinguish the constitution of disease-related biomarkers in liquid biopsies, such as exosomes and circulating tumor cells, without any recognition elements. Previous studies using metal nanoparticle aggregates and angular nanostructures have achieved the detection of various biomarkers owing to strong hot spots and electromagnetic (EM) fields by localized surface plasmon resonance (LSPR). Although these SERS platforms enable significant enhancement of Raman signals, they still have some problems with the fabrication reproducibility of platforms in obtaining reproducible SERS signals. Therefore, highly reproducible fabrication of SERS platforms is required. Here, we propose the application of a polymer-based gold (Au) nanocone array (Au NCA), which extensively generates an enhanced EM field near the Au NCA surface by LSPR. This approach was experimentally demonstrated using a 785 nm laser, typically used for SERS measurements, and showed excellent substrate-to-substrate reproducibility (relative standard deviation (RSD) < 6%) using an extremely simple fabrication procedure and very low laser energy. These results proved that a Au NCA can be used as a highly reproducible SERS measurement to distinguish the constitution of biomarkers.
Collapse
Affiliation(s)
- Satoko Fujiwara
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan; (S.F.); (D.K.); (K.S.); (H.H.)
| | - Daiki Kawasaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan; (S.F.); (D.K.); (K.S.); (H.H.)
| | - Kenji Sueyoshi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan; (S.F.); (D.K.); (K.S.); (H.H.)
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo 102-8666, Japan
| | - Hideaki Hisamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan; (S.F.); (D.K.); (K.S.); (H.H.)
| | - Tatsuro Endo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan; (S.F.); (D.K.); (K.S.); (H.H.)
- Correspondence: ; Tel.: +81-72-254-9284
| |
Collapse
|
53
|
Exosome detection via surface-enhanced Raman spectroscopy for cancer diagnosis. Acta Biomater 2022; 144:1-14. [PMID: 35358734 DOI: 10.1016/j.actbio.2022.03.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
As nanoscale extracellular vesicles, exosomes are secreted by various cell types, and they are widely distributed in multiple biological fluids. Studies have shown that tumor-derived exosomes can carry a variety of primary tumor-specific molecules, which may represent a novel tool for the early detection of cancer. However, the clinical translation of exosomes remains a challenge due to the requirement of large quantities of samples when enriching the cancer-related exosomes in biological fluids, the insufficiency of traditional techniques for exosome subpopulations, and the complex exosome isolation of the current commercially available exosome phenotype profiling approaches. The evolving surface-enhanced Raman scattering (SERS) technology, with properties of unique optoelectronics, easy functionalization, and the particular interaction between light and nanoscale metallic materials, can achieve sensitive detection of exosomes without large quantities of samples and multiplexed phenotype profiling, providing a new mode of real-time and noninvasive analysis for cancer patients. In the present review, we mainly discussed exosome detection based on SERS, especially SERS immunoassay. The basic structure and function of exosomes were firstly introduced. Then, recent studies using the SERS technique for cancer detection were critically reviewed, which mainly included various SERS substrates, biological modification of SERS substrates, SERS-based exosome detection, and the combination of SERS and other technologies for cancer diagnosis. This review systematically discussed the essential aspects, limitations, and considerations of applying SERS technology in the detection and analysis of cancer-derived exosomes, which could provide a valuable reference for the early diagnosis of cancer through SERS technology. STATEMENT OF SIGNIFICANCE: Surface-enhanced Raman scattering (SERS) has been applied to exosomes detection to obtain better diagnostic results. In past three years, several reviews have been published in exosome detection, which were narrowly focus on methods of exosome detection. Selection and surface functionalization of the substrate and the combination detection with different methods based on SERS will provide new strategies for the detection of exosomes. This review will focus on the above aspects. This emerging detection method is constantly evolving and contributing to the early discovery of diseases in the future.
Collapse
|
54
|
Use of Raman Spectroscopy, Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy in a Multi-Technique Approach for Physical Characterization of Purple Urine Bag Syndrome. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12084034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purple urine bag syndrome (PUBS) is a rare condition characterized by purple discoloration of urine and urine bags. Although it is benign, it represents an alarming symptom to the patients and their relatives because of purple discoloration. We have physically characterized urine and urine bags belonging to a patient suffering from PUBS using an approach that combines Raman spectroscopy (RS) and scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX). Five “blue” discolored bags and one sterile urine bag, representing the control, were cut into 1 cm2 square samples and analyzed by using RS and SEM + EDX technique. RS enabled us to identify the presence of indigo, a metabolite of tryptophan, while SEM analysis showed the biofilm deposit, probably due to the presence of microorganisms, and the EDX measurements exhibited the elemental composition of the bags. In particular, urine bags before and after the presence of PUBS urine showed an increase of ~32% of Cl, ~33% of O, ~667% of Ca, ~65% of Al and Mg, while C decreased by about 41%. Our results, to be taken as a proof-of-principle study, are promising for the aim to characterizing the urine bags in a flexible, inexpensive, and comprehensive manner.
Collapse
|
55
|
Serafinelli C, Fantoni A, Alegria ECBA, Vieira M. Plasmonic Metal Nanoparticles Hybridized with 2D Nanomaterials for SERS Detection: A Review. BIOSENSORS 2022; 12:bios12040225. [PMID: 35448285 PMCID: PMC9029226 DOI: 10.3390/bios12040225] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 05/27/2023]
Abstract
In SERS analysis, the specificity of molecular fingerprints is combined with potential single-molecule sensitivity so that is an attractive tool to detect molecules in trace amounts. Although several substrates have been widely used from early on, there are still some problems such as the difficulties to bind some molecules to the substrate. With the development of nanotechnology, an increasing interest has been focused on plasmonic metal nanoparticles hybridized with (2D) nanomaterials due to their unique properties. More frequently, the excellent properties of the hybrids compounds have been used to improve the drawbacks of the SERS platforms in order to create a system with outstanding properties. In this review, the physics and working principles of SERS will be provided along with the properties of differently shaped metal nanoparticles. After that, an overview on how the hybrid compounds can be engineered to obtain the SERS platform with unique properties will be given.
Collapse
Affiliation(s)
- Caterina Serafinelli
- Instituto Superior de Engenharia de Lisboa—Instituto Politécnico de Lisboa, 1949-014 Lisboa, Portugal; (A.F.); (E.C.B.A.A.); (M.V.)
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- CTS—Centre of Technology and Systems, Caparica, 2829-516 Almada, Portugal
- Department of Electrotechnical and Computer Engineering, Faculty of Science and Technology, Universidade NOVA de Lisboa, DEE-FCT-UNL, Caparica, 2829-516 Almada, Portugal
| | - Alessandro Fantoni
- Instituto Superior de Engenharia de Lisboa—Instituto Politécnico de Lisboa, 1949-014 Lisboa, Portugal; (A.F.); (E.C.B.A.A.); (M.V.)
- CTS—Centre of Technology and Systems, Caparica, 2829-516 Almada, Portugal
| | - Elisabete C. B. A. Alegria
- Instituto Superior de Engenharia de Lisboa—Instituto Politécnico de Lisboa, 1949-014 Lisboa, Portugal; (A.F.); (E.C.B.A.A.); (M.V.)
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Manuela Vieira
- Instituto Superior de Engenharia de Lisboa—Instituto Politécnico de Lisboa, 1949-014 Lisboa, Portugal; (A.F.); (E.C.B.A.A.); (M.V.)
- CTS—Centre of Technology and Systems, Caparica, 2829-516 Almada, Portugal
- Department of Electrotechnical and Computer Engineering, Faculty of Science and Technology, Universidade NOVA de Lisboa, DEE-FCT-UNL, Caparica, 2829-516 Almada, Portugal
| |
Collapse
|
56
|
Zacharovas E, Velička M, Platkevičius G, Čekauskas A, Želvys A, Niaura G, Šablinskas V. Toward a SERS Diagnostic Tool for Discrimination between Cancerous and Normal Bladder Tissues via Analysis of the Extracellular Fluid. ACS OMEGA 2022; 7:10539-10549. [PMID: 35382275 PMCID: PMC8973049 DOI: 10.1021/acsomega.2c00058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/03/2022] [Indexed: 05/09/2023]
Abstract
Vibrational spectroscopy provides the possibility for sensitive and precise detection of chemical changes in biomolecules due to development of cancers. In this work, label-free near-infrared surface enhanced Raman spectroscopy (SERS) was applied for the differentiation between cancerous and normal human bladder tissues via analysis of the extracellular fluid of the tissue. Specific cancer-related SERS marker bands were identified by using a 1064 nm excitation wavelength. The prominent spectral marker band was found to be located near 1052 cm-1 and was assigned to the C-C, C-O, and C-N stretching vibrations of lactic acid and/or cysteine molecules. The correct identification of 80% of samples is achieved with even limited data set and could be further improved. The further development of such a detection method could be implemented in clinical practice for the aid of surgeons in determining of boundaries of malignant tumors during the surgery.
Collapse
Affiliation(s)
- Edvinas Zacharovas
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekis Avenue 3, LT-10257 Vilnius, Lithuania
| | - Martynas Velička
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekis Avenue 3, LT-10257 Vilnius, Lithuania
| | - Gediminas Platkevičius
- Clinic
of Gastroenterology, Nephrourology, and Surgery, Institute of Clinical
Medicine, Faculty of Medicine, Vilnius University, M.K. Čiurlionio st. 21/27, LT-03101 Vilnius, Lithuania
| | - Albertas Čekauskas
- Clinic
of Gastroenterology, Nephrourology, and Surgery, Institute of Clinical
Medicine, Faculty of Medicine, Vilnius University, M.K. Čiurlionio st. 21/27, LT-03101 Vilnius, Lithuania
| | - Aru̅nas Želvys
- Clinic
of Gastroenterology, Nephrourology, and Surgery, Institute of Clinical
Medicine, Faculty of Medicine, Vilnius University, M.K. Čiurlionio st. 21/27, LT-03101 Vilnius, Lithuania
| | - Gediminas Niaura
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekis Avenue 3, LT-10257 Vilnius, Lithuania
- Department
of Organic Chemistry, Center for Physical
Sciences and Technology (FTMC), Saulėtekis Avenue 3, LT 10257, Vilnius, Lithuania
| | - Valdas Šablinskas
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekis Avenue 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
57
|
Wang T, Xing Y, Cheng Z, Yu F. Analysis of Single Extracellular Vesicles for Biomedical Applications with Especial Emphasis on Cancer Investigations. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
58
|
Faur C, Falamas A, Chirila M, Roman R, Rotaru H, Moldovan M, Albu S, Baciut M, Robu I, Hedesiu M. Raman spectroscopy in oral cavity and oropharyngeal cancer: a systematic review. Int J Oral Maxillofac Surg 2022; 51:1373-1381. [DOI: 10.1016/j.ijom.2022.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/24/2022]
|
59
|
Morsby J, Thimes RL, Olson JE, McGarraugh HH, Payne JN, Camden JP, Smith BD. Enzyme Sensing Using 2-Mercaptopyridine-Carbonitrile Reporters and Surface-Enhanced Raman Scattering. ACS OMEGA 2022; 7:6419-6426. [PMID: 35224403 PMCID: PMC8867545 DOI: 10.1021/acsomega.2c00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The high sensitivity and functional group selectivity of surface-enhanced Raman scattering (SERS) make it an attractive method for enzyme sensing, but there is currently a severe lack of enzyme substrates that release SERS reporter molecules with favorable detection properties. We find that 2-mercaptopyridine-3-carbonitrile ( o-MPN) and 2-mercaptopyridine-5-carbonitrile ( p-MPN) are highly effective as SERS reporter molecules that can be captured by silver or gold nanoparticles to give intense SERS spectra, each with a distinctive nitrile peak at 2230 cm-1. p-MPN is a more sensitive reporter and can be detected at low nanomolar concentrations. An assay validation study synthesized two novel substrate molecules, Glc-o-MPN and Glc-p-MPN, and showed that they can be cleaved efficiently by β-glucosidase (K m = 228 and 162 μM, respectively), an enzyme with broad industrial and biomedical utility. Moreover, SERS detection of the released reporters ( o-MPN or p-MPN) enabled sensing of β-glucosidase activity and β-glucosidase inhibition. Comparative experiments using a crude almond flour extract showed that the presence of β-glucosidase activity could be confirmed by SERS detection in a much shorter time period (>10 time shorter) than by UV-vis absorption detection. It is likely that a wide range of enzyme assays and diagnostic tests can be developed using 2-mercaptopyridine-carbonitriles as SERS reporter molecules.
Collapse
Affiliation(s)
- Janeala
J. Morsby
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, Unites States
| | - Rebekah L. Thimes
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, Unites States
| | - Jacob E. Olson
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, Unites States
| | - Hannah H. McGarraugh
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, Unites States
| | - Jason N. Payne
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, Unites States
| | - Jon P. Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, Unites States
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, Unites States
| |
Collapse
|
60
|
Wen C, Wang L, Liu L, Shen XC, Chen H. Surface-enhanced Raman probes based on gold nanomaterials for in vivo diagnosis and imaging. Chem Asian J 2022; 17:e202200014. [PMID: 35178878 DOI: 10.1002/asia.202200014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/17/2022] [Indexed: 11/11/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has received considerable attention from researchers due to its high molecular specificity, high sensitivity, non-invasive and multiplexing. Recently, various metal substrates have been exploited for SERS analysis and imaging. Among them, gold nanomaterials are important SERS substrates with outstanding surface plasmon resonance effects, structural adjustability and good biocompatibility, making them widely used in biomedical diagnosis and clinical fields. In this minireview, we discuss the latest progress about the application of gold-based nanomaterials as SERS probes in biomedical research, primarily for in vivo disease diagnosis and imaging. This review mainly includes the basic shapes and morphologies of gold based SERS probes, such as gold nanoparticles (AuNPs), gold nanorods (AuNRs), gold nanostars (AuNSs), as well as other gold nanostructures. Finally, a brief outlook for the future development of SERS technique in the context of efficient diagnostics and therapy guidance is provided. We hope that this minireview will facilitate the design and future development of Surface-enhanced Raman probes based on gold nanomaterials.
Collapse
Affiliation(s)
| | | | - Li Liu
- Guangxi Normal University, chemistry, CHINA
| | | | - Hua Chen
- Guangxi Normal University, school of chemistry, 15 Yucai Road, 541004, Guilin, CHINA
| |
Collapse
|
61
|
Plou J, Valera PS, García I, de Albuquerque CDL, Carracedo A, Liz-Marzán LM. Prospects of Surface-Enhanced Raman Spectroscopy for Biomarker Monitoring toward Precision Medicine. ACS PHOTONICS 2022; 9:333-350. [PMID: 35211644 PMCID: PMC8855429 DOI: 10.1021/acsphotonics.1c01934] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 05/14/2023]
Abstract
Future precision medicine will be undoubtedly sustained by the detection of validated biomarkers that enable a precise classification of patients based on their predicted disease risk, prognosis, and response to a specific treatment. Up to now, genomics, transcriptomics, and immunohistochemistry have been the main clinically amenable tools at hand for identifying key diagnostic, prognostic, and predictive biomarkers. However, other molecular strategies, including metabolomics, are still in their infancy and require the development of new biomarker detection technologies, toward routine implementation into clinical diagnosis. In this context, surface-enhanced Raman scattering (SERS) spectroscopy has been recognized as a promising technology for clinical monitoring thanks to its high sensitivity and label-free operation, which should help accelerate the discovery of biomarkers and their corresponding screening in a simpler, faster, and less-expensive manner. Many studies have demonstrated the excellent performance of SERS in biomedical applications. However, such studies have also revealed several variables that should be considered for accurate SERS monitoring, in particular, when the signal is collected from biological sources (tissues, cells or biofluids). This Perspective is aimed at piecing together the puzzle of SERS in biomarker monitoring, with a view on future challenges and implications. We address the most relevant requirements of plasmonic substrates for biomedical applications, as well as the implementation of tools from artificial intelligence or biotechnology to guide the development of highly versatile sensors.
Collapse
Affiliation(s)
- Javier Plou
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- CIC
bioGUNE, Basque Research and Technology
Alliance (BRTA), 48160 Derio, Spain
| | - Pablo S. Valera
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- CIC
bioGUNE, Basque Research and Technology
Alliance (BRTA), 48160 Derio, Spain
| | - Isabel García
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), 20014 Donostia-San Sebastián, Spain
| | | | - Arkaitz Carracedo
- CIC
bioGUNE, Basque Research and Technology
Alliance (BRTA), 48160 Derio, Spain
- Biomedical
Research Networking Center in Cancer (CIBERONC), 48160, Derio, Spain
- Ikerbasque,
Basque Foundation for Science, 48009 Bilbao, Spain
- Translational
Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, 48160 Derio, Spain
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- Ikerbasque,
Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
62
|
Chen X, Li X, Yang H, Xie J, Liu A. Diagnosis and staging of diffuse large B-cell lymphoma using label-free surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120571. [PMID: 34752994 DOI: 10.1016/j.saa.2021.120571] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 05/27/2023]
Abstract
Non-invasive diagnosis and staging of diffuse large B-cell lymphoma (DLBCL) were achieved using label-free surface-enhanced Raman spectroscopy (SERS). SERS spectra were measured for serum samples of DLBCL patients at different progressive stages and healthy controls (HCs), using colloidal silver nano-particles (AgNPs) as the substrate. Differences in the spectral intensities of Raman peaks were observed between the DLBCL and HC groups, and a close correlation between the spectral intensities of Raman peaks with the progressive stages of the cancer was obtained, demonstrating the possibility of diagnosis and staging of the disease using the serum SERS spectra. Multivariate analysis methods, including principal component analysis (PCA), linear discriminant analysis (LDA), support vector machine (SVM) classifier, and k-nearest neighbors (kNN) classifier, were used to build the diagnosis and staging models for DLBCL. Leave-one-out cross-validation was used to evaluate the performances of the models. The kNN model achieved the best performances for both diagnosis and staging of DLBCL: for the diagnosis analysis, the accuracy, sensitivity, and specificity were 87.3%, 0.921, and 0.809, respectively; for the staging analysis between the early (Stage I & II) and the late (Stage III & IV) stages, the accuracy was 90.6%, and the sensitivity values for the early and the late stages were 0.947 and 0.800, respectively. The label-free serum SERS in combination with multivariate analysis could serve as a potential technique for non-invasive diagnosis and staging of DLBCL.
Collapse
Affiliation(s)
- Xue Chen
- Department of Hematology, Harbin Medical University Cancer Hospital, 150 Haping Road, 150081 Harbin, China.
| | - Xiaohui Li
- Institute of Opto-electronics, Harbin Institute of Technology, 2 Yikuang Street, 150080 Harbin, China; National Key Laboratory on Tunable Laser, Harbin Institute of Technology, 2 Yikuang Street, 150080 Harbin, China.
| | - Hao Yang
- Institute of Opto-electronics, Harbin Institute of Technology, 2 Yikuang Street, 150080 Harbin, China; National Key Laboratory on Tunable Laser, Harbin Institute of Technology, 2 Yikuang Street, 150080 Harbin, China
| | - Jinmei Xie
- Institute of Opto-electronics, Harbin Institute of Technology, 2 Yikuang Street, 150080 Harbin, China; National Key Laboratory on Tunable Laser, Harbin Institute of Technology, 2 Yikuang Street, 150080 Harbin, China
| | - Aichun Liu
- Department of Hematology, Harbin Medical University Cancer Hospital, 150 Haping Road, 150081 Harbin, China
| |
Collapse
|
63
|
Liu H, Gao X, Xu C, Liu D. SERS Tags for Biomedical Detection and Bioimaging. Theranostics 2022; 12:1870-1903. [PMID: 35198078 PMCID: PMC8825578 DOI: 10.7150/thno.66859] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/09/2021] [Indexed: 11/05/2022] Open
Abstract
Surface-enhanced Raman scattering (SERS) has emerged as a valuable technique for molecular identification. Due to the characteristics of high sensitivity, excellent signal specificity, and photobleaching resistance, SERS has been widely used in the fields of environmental monitoring, food safety, and disease diagnosis. By attaching the organic molecules to the surface of plasmonic nanoparticles, the obtained SERS tags show high-performance multiplexing capability for biosensing. The past decade has witnessed the progress of SERS tags for liquid biopsy, bioimaging, and theranostics applications. This review focuses on the advances of SERS tags in biomedical fields. We first introduce the building blocks of SERS tags, followed by the summarization of recent progress in SERS tags employed for detecting biomarkers, such as DNA, miRNA, and protein in biological fluids, as well as imaging from in vitro cell, bacteria, tissue to in vivo tumors. Further, we illustrate the appealing applications of SERS tags for delineating tumor margins and cancer diagnosis. In the end, perspectives of SERS tags projecting into the possible obstacles are deliberately proposed in future clinical translation.
Collapse
Affiliation(s)
- Huiqiao Liu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Xia Gao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chen Xu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, Tianjin 300000, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
64
|
Xu Y, Lin J, Wu X, Xu X, Zhang D, Xie Y, Pan T, He Y, Wu A, Shao G. TiO2-Based Bioprobe Enabling Excellent SERS Activity in Detection of Diverse Circulating Tumor Cells. J Mater Chem B 2022; 10:3808-3816. [DOI: 10.1039/d2tb00464j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circulating tumor cells (CTCs), can be the seeds of tumor metastasis, and are closely linked to cancer-related death. Fast and effective detection of CTCs is important for early diagnosis of...
Collapse
|
65
|
Liquid Surface-Enhanced Raman Spectroscopy (SERS) Sensor-Based Au-Ag Colloidal Nanoparticles for Easy and Rapid Detection of Deltamethrin Pesticide in Brewed Tea. CRYSTALS 2021. [DOI: 10.3390/cryst12010024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Deltamethrin pesticides can cause inflammation, nephrotoxicity and hepatotoxicity as well as affect the activity of antioxidant enzymes in tissues. As a result of this concern, there is a rising focus on the development of fast and reliable pesticide residue testing to minimise potential risks to humans. The goal of this study is to use Au-Ag colloid nanoparticles as liquid surface-enhanced Raman spectroscopy (SERS) to improve the Raman signal in the detection of deltamethrin pesticide in a brewed tea. The liquid SERS system is fascinating to study due to its ease of use and its unlikeliness to cause several phenomena, such as photo-bleaching, combustion, sublimation and even photo-catalysis, which can interfere with the Raman signal, as shown in the SERS substrate. Our liquid SERS system is simpler than previous liquid SERS systems that have been reported. We performed the detection of pesticide analyte directly on brewed tea, without diluting it with ethanol or centrifuging it. Femtosecond laser-induced photo-reduction was employed to synthesise the liquid SERS of Au, Au-Ag, and Ag colloidal nanoparticles. The SERS was utilised to detect deltamethrin pesticide in brewed tea. The result showed that liquid SERS-based Ag NPs significantly enhance the Raman signal of pesticides compared with liquid SERS-based Au NPs and Au-Ag Nanoalloys. The maximum residue limits (MRLs) in tea in Indonesia are set at 10 ppm. Therefore, this method was also utilised to detect and improve, to 0.01 ppm, the deltamethrin pesticide Limit of Detection (LOD).
Collapse
|
66
|
Cialla-May D, Krafft C, Rösch P, Deckert-Gaudig T, Frosch T, Jahn IJ, Pahlow S, Stiebing C, Meyer-Zedler T, Bocklitz T, Schie I, Deckert V, Popp J. Raman Spectroscopy and Imaging in Bioanalytics. Anal Chem 2021; 94:86-119. [PMID: 34920669 DOI: 10.1021/acs.analchem.1c03235] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dana Cialla-May
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany.,InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Christoph Krafft
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Petra Rösch
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany
| | - Tanja Deckert-Gaudig
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany
| | - Torsten Frosch
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany
| | - Izabella J Jahn
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany
| | - Susanne Pahlow
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany.,InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Clara Stiebing
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Tobias Meyer-Zedler
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany
| | - Thomas Bocklitz
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany
| | - Iwan Schie
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Ernst-Abbe-Hochschule Jena, University of Applied Sciences, Department of Biomedical Engineering and Biotechnology, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
| | - Volker Deckert
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany
| | - Jürgen Popp
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany.,InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
67
|
Kozik A, Pavlova M, Petrov I, Bychkov V, Kim L, Dorozhko E, Cheng C, Rodriguez RD, Sheremet E. A review of surface-enhanced Raman spectroscopy in pathological processes. Anal Chim Acta 2021; 1187:338978. [PMID: 34753586 DOI: 10.1016/j.aca.2021.338978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022]
Abstract
With the continuous growth of the human population and new challenges in the quality of life, it is more important than ever to diagnose diseases and pathologies with high accuracy, sensitivity and in different scenarios from medical implants to the operation room. Although conventional methods of diagnosis revolutionized healthcare, alternative analytical methods are making their way out of academic labs into clinics. In this regard, surface-enhanced Raman spectroscopy (SERS) developed immensely with its capability to achieve single-molecule sensitivity and high-specificity in the last two decades, and now it is well on its way to join the arsenal of physicians. This review discusses how SERS is becoming an essential tool for the clinical investigation of pathologies including inflammation, infections, necrosis/apoptosis, hypoxia, and tumors. We critically discuss the strategies reported so far in nanoparticle assembly, functionalization, non-metallic substrates, colloidal solutions and how these techniques improve SERS characteristics during pathology diagnoses like sensitivity, selectivity, and detection limit. Moreover, it is crucial to introduce the most recent developments and future perspectives of SERS as a biomedical analytical method. We finally discuss the challenges that remain as bottlenecks for a routine SERS implementation in the medical room from in vitro to in vivo applications. The review showcases the adaptability and versatility of SERS to resolve pathological processes by covering various experimental and analytical methods and the specific spectral features and analysis results achieved by these methods.
Collapse
Affiliation(s)
- Alexey Kozik
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia; Siberian Medical State University, Moskovskiy Trakt, 2, Tomsk, 634050, Russia
| | - Marina Pavlova
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia; Siberian Medical State University, Moskovskiy Trakt, 2, Tomsk, 634050, Russia
| | - Ilia Petrov
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Vyacheslav Bychkov
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Cancer Research Institute, 5 Kooperativny Street, Tomsk, 634009, Russia
| | - Larissa Kim
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Elena Dorozhko
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Raul D Rodriguez
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia.
| | | |
Collapse
|
68
|
Liu J, Dong Y, Xu D, Zhang C, Lan T, Chang D. Progress in diagnosis of bone metastasis of prostate cancer. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:1147-1152. [PMID: 34911846 PMCID: PMC10930230 DOI: 10.11817/j.issn.1672-7347.2021.200999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 11/03/2022]
Abstract
The diagnosis of bone metastasis of prostate cancer (PC) is of great significance to the treatment and prognosis of patients with PC.Bone scan is the most commonly used in the early diagnosis of bone metastasis, but its specificity is low and there is a high false positive.In recent years, with the in-depth study of the application of CT, MRI, emission computed tomography (ECT), positron emission computed tomography/computed tomography (PET/CT) and deep learning algorithm-convolutional neural networks (CNN) in the diagnosis of bone metastasis, the combined application of various auxiliary parameters in the diagnosis of bone metastasis has significantly been improved. The therapeutic effect of PC patients with bone metastasis can also be evaluated, which is expected to achieve the treatment of bone metastasis as well as diagnosis. By systematically expounding the research progress of the above-mentioned techniques in the diagnosis of bone metastasis, it can provide clinicians with new methods for the diagnosis of bone metastasis and improve the diagnostic efficiency for bone metastasis.
Collapse
Affiliation(s)
- Jun Liu
- First Clinical Medical College of Gansu University of Traditional Chinese Medicine, Lanzhou 730000.
- Department of Urology, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050.
| | - Yongchao Dong
- Department of Urology, Sichuan Gem Flower Hospital, Chengdu 610095
| | - Dongbo Xu
- Department of Urology, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050
| | - Chunlei Zhang
- Department of Urology, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050
| | - Tian Lan
- Department of Urology, Pinghu Hospital, Shenzhen University, Guangdong Shenzhen 518060, China
| | - Dehui Chang
- Department of Urology, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050.
| |
Collapse
|
69
|
Samoylenko A, Kögler M, Zhyvolozhnyi A, Makieieva O, Bart G, Andoh SS, Roussey M, Vainio SJ, Hiltunen J. Time-gated Raman spectroscopy and proteomics analyses of hypoxic and normoxic renal carcinoma extracellular vesicles. Sci Rep 2021; 11:19594. [PMID: 34599227 PMCID: PMC8486794 DOI: 10.1038/s41598-021-99004-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/14/2021] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs) represent a diverse group of small membrane-encapsulated particles involved in cell-cell communication, but the technologies to characterize EVs are still limited. Hypoxia is a typical condition in solid tumors, and cancer-derived EVs support tumor growth and invasion of tissues by tumor cells. We found that exposure of renal adenocarcinoma cells to hypoxia induced EV secretion and led to notable changes in the EV protein cargo in comparison to normoxia. Proteomics analysis showed overrepresentation of proteins involved in adhesion, such as integrins, in hypoxic EV samples. We further assessed the efficacy of time-gated Raman spectroscopy (TG-RS) and surface-enhanced time-gated Raman spectroscopy (TG-SERS) to characterize EVs. While the conventional continuous wave excitation Raman spectroscopy did not provide a notable signal, prominent signals were obtained with the TG-RS that were further enhanced in the TG-SERS. The Raman signal showed characteristic changes in the amide regions due to alteration in the chemical bonds of the EV proteins. The results illustrate that the TG-RS and the TG-SERS are promising label free technologies to study cellular impact of external stimuli, such as oxygen deficiency, on EV production, as well as differences arising from distinct EV purification protocols.
Collapse
Affiliation(s)
- Anatoliy Samoylenko
- Laboratory of Developmental Biology, Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu and Kvantum Institute, 90014, Oulu, Finland.
| | - Martin Kögler
- VTT Technical Research Centre of Finland, 90570, Oulu, Finland
| | - Artem Zhyvolozhnyi
- Laboratory of Developmental Biology, Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu and Kvantum Institute, 90014, Oulu, Finland
| | - Olha Makieieva
- Laboratory of Developmental Biology, Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu and Kvantum Institute, 90014, Oulu, Finland
| | - Geneviève Bart
- Laboratory of Developmental Biology, Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu and Kvantum Institute, 90014, Oulu, Finland
| | - Sampson S Andoh
- Institute of Photonics, University of Eastern Finland, 80101, Joensuu, Finland
| | - Matthieu Roussey
- Institute of Photonics, University of Eastern Finland, 80101, Joensuu, Finland
| | - Seppo J Vainio
- Laboratory of Developmental Biology, Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu and Kvantum Institute, 90014, Oulu, Finland
| | - Jussi Hiltunen
- VTT Technical Research Centre of Finland, 90570, Oulu, Finland
| |
Collapse
|
70
|
Fan C, Zhao N, Cui K, Chen G, Chen Y, Wu W, Li Q, Cui Y, Li R, Xiao Z. Ultrasensitive Exosome Detection by Modularized SERS Labeling for Postoperative Recurrence Surveillance. ACS Sens 2021; 6:3234-3241. [PMID: 34472832 DOI: 10.1021/acssensors.1c00890] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Exosome-based liquid biopsy holds great potential in monitoring tumor progression. Current exosome detection biosensors rely on signal amplification strategies to improve sensitivity; however, these strategies pay little attention to manipulating the number of signal reporters, limiting the rational optimization of the biosensors. Here, we have developed a modularized surface-enhanced Raman spectroscopy (SERS) labeling strategy, where each Raman reporter is coupled with lysine as a signal-lysine module, and thus the number of Raman reporters can be precisely controlled by the modularized solid-phase peptide synthesis. Using this strategy, we screened out an optimum Raman biosensor for ultrasensitive exosome detection, with the limit of detection of 2.4 particles per microliter. This biosensor enables a successful detection of the tumor with an average diameter of approximately 3.55 mm, and thus enables successful surveillance of the postoperative tumor recurrence in mice models and distinguishing cancer patients from healthy subjects. Our work provides a de novo strategy to precisely amplify signals toward a myriad of biosensor-related medical applications.
Collapse
Affiliation(s)
- Chenchen Fan
- Department of Pharmacology and Chemical Biology, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Na Zhao
- Department of Pharmacology and Chemical Biology, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Kai Cui
- Department of Pharmacology and Chemical Biology, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Gaoxian Chen
- Department of Pharmacology and Chemical Biology, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Yingzhi Chen
- Department of Pharmacology and Chemical Biology, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Wenwei Wu
- Department of Pharmacology and Chemical Biology, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Qingyun Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanna Cui
- Department of Pharmacology and Chemical Biology, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Ruike Li
- Department of Pharmacology and Chemical Biology, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Zeyu Xiao
- Department of Pharmacology and Chemical Biology, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| |
Collapse
|
71
|
Moisoiu V, Iancu SD, Stefancu A, Moisoiu T, Pardini B, Dragomir MP, Crisan N, Avram L, Crisan D, Andras I, Fodor D, Leopold LF, Socaciu C, Bálint Z, Tomuleasa C, Elec F, Leopold N. SERS liquid biopsy: An emerging tool for medical diagnosis. Colloids Surf B Biointerfaces 2021; 208:112064. [PMID: 34517219 DOI: 10.1016/j.colsurfb.2021.112064] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 02/02/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is emerging as a novel strategy for biofluid analysis. In this review, we delineate four experimental SERS protocols that are frequently used for the profiling of biofluids: 1) liquid SERS for the detection of purine metabolites; 2) iodide-modified liquid SERS for the detection of proteins; 3) dried SERS for the detection of both purine metabolites and proteins; 4) resonant Raman for the detection of carotenoids. To explain the selectivity of each experimental SERS protocol, we introduce a heuristic model for the chemisorption of analytes mediated by adsorbed ions (adions) onto the SERS substrate. Next, we show that the promising results of SERS liquid biopsy stem from the fact that the concentration levels of purine metabolites, proteins and carotenoids are informative of the cellular turnover rate, inflammation, and oxidative stress, respectively. These processes are perturbed in virtually every disease, from cancer to autoimmune maladies. Finally, we review recent SERS liquid biopsy studies and discuss future steps that are required for translating SERS in the clinical setting.
Collapse
Affiliation(s)
- Vlad Moisoiu
- Faculty of Physics, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania
| | - Stefania D Iancu
- Faculty of Physics, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania
| | - Andrei Stefancu
- Faculty of Physics, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania
| | - Tudor Moisoiu
- Clinical Institute of Urology and Renal Transplant, 400006, Cluj-Napoca, Romania; Biomed Data Analytics SRL, 400696, Cluj-Napoca, Romania; Department of Urology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania
| | - Barbara Pardini
- Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, Italy; Italian Institute of Genomic Medicine (IIGM), 10060, Candiolo, Italy
| | - Mihnea P Dragomir
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Nicolae Crisan
- Department of Urology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania; Clinical Municipal Hospital, 400139, Cluj-Napoca, Romania
| | - Lucretia Avram
- Clinical Municipal Hospital, 400139, Cluj-Napoca, Romania; Department of Geriatrics, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania
| | - Dana Crisan
- Clinical Municipal Hospital, 400139, Cluj-Napoca, Romania; 5th Internal Medicine Department, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania
| | - Iulia Andras
- Department of Urology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania; Clinical Municipal Hospital, 400139, Cluj-Napoca, Romania
| | - Daniela Fodor
- 2nd Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania
| | - Loredana F Leopold
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Carmen Socaciu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania; BIODIATECH Research Centre for Applied Biotechnology, SC Proplanta, 400478, Cluj-Napoca, Romania
| | - Zoltán Bálint
- Faculty of Physics, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124, Cluj-Napoca, Romania; Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400124, Cluj-Napoca, Romania; Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349, Cluj-Napoca, Romania
| | - Florin Elec
- Clinical Institute of Urology and Renal Transplant, 400006, Cluj-Napoca, Romania; Department of Urology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania.
| | - Nicolae Leopold
- Faculty of Physics, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania; Biomed Data Analytics SRL, 400696, Cluj-Napoca, Romania.
| |
Collapse
|
72
|
Zhang L, Zhao Q, Jiang Z, Shen J, Wu W, Liu X, Fan Q, Huang W. Recent Progress of SERS Nanoprobe for pH Detecting and Its Application in Biological Imaging. BIOSENSORS 2021; 11:282. [PMID: 34436084 PMCID: PMC8392648 DOI: 10.3390/bios11080282] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 08/15/2021] [Indexed: 02/07/2023]
Abstract
As pH value almost affects the function of cells and organisms in all aspects, in biology, biochemical and many other research fields, it is necessary to apply simple, intuitive, sensitive, stable detection of pH and base characteristics inside and outside the cell. Therefore, many research groups have explored the design and application of pH probes based on surface enhanced Raman scattering (SERS). In this review article, we discussed the basic theoretical background of explaining the working mechanism of pH SERS sensors, and also briefly described the significance of cell pH measurement, and simply classified and summarized the factors that affected the performance of pH SERS probes. Some applications of pH probes based on surface enhanced Raman scattering in intracellular and extracellular pH imaging and the combination of other analytical detection techniques are described. Finally, the development prospect of this field is presented.
Collapse
Affiliation(s)
- Lei Zhang
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, China; (Q.Z.); (Z.J.); (J.S.); (X.L.); (Q.F.); (W.H.)
| | - Qianqian Zhao
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, China; (Q.Z.); (Z.J.); (J.S.); (X.L.); (Q.F.); (W.H.)
| | - Zhitao Jiang
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, China; (Q.Z.); (Z.J.); (J.S.); (X.L.); (Q.F.); (W.H.)
| | - Jingjing Shen
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, China; (Q.Z.); (Z.J.); (J.S.); (X.L.); (Q.F.); (W.H.)
| | - Weibing Wu
- Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, 159 Longpan Road, Nanjing 210023, China;
| | - Xingfen Liu
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, China; (Q.Z.); (Z.J.); (J.S.); (X.L.); (Q.F.); (W.H.)
| | - Quli Fan
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, China; (Q.Z.); (Z.J.); (J.S.); (X.L.); (Q.F.); (W.H.)
| | - Wei Huang
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, China; (Q.Z.); (Z.J.); (J.S.); (X.L.); (Q.F.); (W.H.)
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| |
Collapse
|
73
|
Lukose J, M. SP, N. M, Barik AK, Pai KM, Unnikrishnan VK, George SD, Kartha VB, Chidangil S. Photonics of human saliva: potential optical methods for the screening of abnormal health conditions and infections. Biophys Rev 2021; 13:359-385. [PMID: 34093888 PMCID: PMC8170462 DOI: 10.1007/s12551-021-00807-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022] Open
Abstract
Human saliva can be treated as a pool of biological markers able to reflect on the state of personal health. Recent years have witnessed an increase in the use of optical devices for the analysis of body fluids. Several groups have carried out studies investigating the potential of saliva as a non-invasive and reliable clinical specimen for use in medical diagnostics. This brief review aims to highlight the optical technologies, mainly surface plasmon resonance (SPR), Raman, and Fourier transform infrared (FTIR) spectroscopy, which are being used for the probing of saliva for diverse biomedical applications. Advances in bio photonics offer the promise of unambiguous, objective and fast detection of abnormal health conditions and viral infections (such as COVID-19) from the analysis of saliva.
Collapse
Affiliation(s)
- Jijo Lukose
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Sanoop Pavithran M.
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Mithun N.
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Ajaya Kumar Barik
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Keerthilatha M. Pai
- Department of Oral Medicine and Radiology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - V. K. Unnikrishnan
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Sajan D. George
- Centre for Applied Nanoscience, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - V. B. Kartha
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
74
|
Szaniawska A, Kudelski A. Applications of Surface-Enhanced Raman Scattering in Biochemical and Medical Analysis. Front Chem 2021; 9:664134. [PMID: 34026727 PMCID: PMC8138180 DOI: 10.3389/fchem.2021.664134] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
In this mini-review, we briefly describe certain recently developed applications of the surface-enhanced Raman spectroscopy (SERS) for determining various biochemically (especially medically) important species from ones as simple as hydrogen cations to those as complex as specific DNA fragments. We present a SERS analysis of species whose characterization is important to our understanding of various mechanisms in the human body and to show its potential as an alternative for methods routinely used in diagnostics and clinics. Furthermore, we explain how such SERS-based sensors operate and point out future prospects in this field.
Collapse
|
75
|
Sun Z, Yang J, Li H, Wang C, Fletcher C, Li J, Zhan Y, Du L, Wang F, Jiang Y. Progress in the research of nanomaterial-based exosome bioanalysis and exosome-based nanomaterials tumor therapy. Biomaterials 2021; 274:120873. [PMID: 33989972 DOI: 10.1016/j.biomaterials.2021.120873] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 04/13/2021] [Accepted: 05/02/2021] [Indexed: 12/18/2022]
Abstract
Exosomes and their internal components have been proven to play critical roles in cell-cell interactions and intrinsic cellular regulations, showing promising prospects in both biomedical and clinical fields. Although conventional methods have so far been utilized to great effect, accurate bioanalysis remains a major challenge. In recent years, the fast-paced development of nanomaterials with unique physiochemical properties has led to a boom in the potential bioapplications of such materials. In particular, the application of nanomaterials in exosome bioanalysis provides a great opportunity to overcome the current challenges and limitations of conventional methods. A timely review of the research progress in this field is thus of great significance to the continued development of new methods. This review outlines the properties and potential uses of exosomes, and discusses the conventional methods currently used for their analysis. We then focus on exploring the current state of the art regarding the use of nanomaterials for the isolation, detection and even the subsequent profiling of exosomes. The main methods are based on principles including fluorescence, surface-enhanced Raman spectroscopy, colorimetry, electrochemistry, and surface plasmon resonance. Additionally, research on exosome-based nanomaterials tumor therapy is also promising from a clinical perspective, so the research progress in this branch is also summarized. Finally, we look at ways in which the field might develop in the future.
Collapse
Affiliation(s)
- Zhiwei Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China
| | - Jingjing Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China; Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Cameron Fletcher
- School of Chemical Engineering, University of New South Wales, Sydney, Australia
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China; Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Yao Zhan
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China; Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China; Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China.
| | - Fenglong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China.
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China.
| |
Collapse
|
76
|
Suarasan S, Liu J, Imanbekova M, Rojalin T, Hilt S, Voss JC, Wachsmann-Hogiu S. Superhydrophobic bowl-like SERS substrates patterned from CMOS sensors for extracellular vesicle characterization. J Mater Chem B 2021; 8:8845-8852. [PMID: 33026405 DOI: 10.1039/d0tb00889c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Using a regular CMOS sensor as a template, we are able to fabricate a simple but highly effective superhydrophobic SERS substrate. Specifically, we decorated the microlens layer of the sensor with 7 μm polystyrene beads to obtain a PDMS patterned replica. The process resulted in a uniform pattern of voids in the PDMS (denoted nanobowls) that are intercalated with a few larger voids (denoted here microbowls). The voids act as superhydrophobic substrates with analyte concentration capabilities in bigger bowl-like structures. Silver nanoparticles were directly grown on the patterned PDMS substrate inside both the nano- and microbowls, and serve as strong electromagnetic field enhancers for the SERS substrate. After systematic characterization of the fabricated SERS substrate by atomic force microscopy and scanning electron microscopy, we demonstrated its SERS performance using 4-aminothiophenol as a reporter molecule. Finally, we employed this innovative substrate to concentrate and analyze extracellular vesicles (EVs) isolated from an MC65 neural cell line in an ultralow sample volume. This substrate can be further exploited for the investigation of various EV biomarkers for early diagnosis of different diseases using liquid biopsy.
Collapse
Affiliation(s)
- Sorina Suarasan
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada.
| | - Juanjuan Liu
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada.
| | - Meruyert Imanbekova
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada.
| | - Tatu Rojalin
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Silvia Hilt
- Department of Biochemistry & Molecular Medicine, University of California, Davis, CA 95616, USA
| | - John C Voss
- Department of Biochemistry & Molecular Medicine, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
77
|
Li Y, Zheng Y, Wu L, Li J, Ji J, Yu Q, Dai W, Feng J, Wu J, Guo C. Current status of ctDNA in precision oncology for hepatocellular carcinoma. J Exp Clin Cancer Res 2021; 40:140. [PMID: 33902698 PMCID: PMC8074474 DOI: 10.1186/s13046-021-01940-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/06/2021] [Indexed: 01/12/2023] Open
Abstract
The conventional method used to obtain a tumor biopsy for hepatocellular carcinoma (HCC) is invasive and does not evaluate dynamic cancer progression or assess tumor heterogeneity. It is thus imperative to create a novel non-invasive diagnostic technique for improvement in cancer screening, diagnosis, treatment selection, response assessment, and predicting prognosis for HCC. Circulating tumor DNA (ctDNA) is a non-invasive liquid biopsy method that reveals cancer-specific genetic and epigenetic aberrations. Owing to the development of technology in next-generation sequencing and PCR-based assays, the detection and quantification of ctDNA have greatly improved. In this publication, we provide an overview of current technologies used to detect ctDNA, the ctDNA markers utilized, and recent advances regarding the multiple clinical applications in the field of precision medicine for HCC.
Collapse
Affiliation(s)
- Yan Li
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Yuanyuan Zheng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Weiqi Dai
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China.
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China.
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China.
| |
Collapse
|
78
|
Ryu HJ, Lee WK, Kim YH, Lee JS. Interfacial interactions of SERS-active noble metal nanostructures with functional ligands for diagnostic analysis of protein cancer markers. Mikrochim Acta 2021; 188:164. [PMID: 33844071 DOI: 10.1007/s00604-021-04807-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/22/2021] [Indexed: 12/27/2022]
Abstract
Noble metal nanostructures with designed hot spots have been widely investigated as surface-enhanced Raman spectroscopy (SERS)-active substrates, particularly for selective and sensitive detection of protein cancer markers. For specific target recognition and efficient signal amplification, SERS probe design requires a choice of SERS-active nanostructures as well as their controlled functionalization with Raman dyes and target recognition entities such as antibodies. However, the chemical conjugation of antibodies and Raman dyes to SERS substrates has rarely been discussed to date, despite their substantial roles in detection schemes. The interfacial interactions of metal nanostructures with functional ligands during conjugation are known to be strongly influenced by the various chemical and physical properties of the ligands, such as size, molecular weight, surface charge, 3-dimensional structures, and hydrophilicity/hydrophobicity. In this review, we discuss recent developments in the design of SERS probes over the last 4 years, focusing on their conjugation chemistry for functionalization. A strong preference for covalent bonding is observed with Raman dyes having simpler molecular structures, whereas more complicated ones are non-covalently adsorbed. Antibodies are both covalently and non-covalently bonded to nanostructures, depending on their activity in the SERS probes. Considering that ligand conjugation is highly important for chemical stability, biocompatibility, and functionality of SERS probes, this review is expected to expand the understanding of their interfacial design, leading to SERS as one of the most promising spectroscopic analytical tools for the early detection of protein cancer markers.
Collapse
Affiliation(s)
- Han-Jung Ryu
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Won Kyu Lee
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yoon Hyuck Kim
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jae-Seung Lee
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
79
|
Lin J, Zheng J, Wu A. An efficient strategy for circulating tumor cell detection: surface-enhanced Raman spectroscopy. J Mater Chem B 2021; 8:3316-3326. [PMID: 31833526 DOI: 10.1039/c9tb02327e] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Circulating tumor cells (CTCs) are circulating cancer cells that shed from tumor tissue into blood vessels and circulate in the blood to invade other organs, which results in fatal metastases. The CTCs in human peripheral blood are the main cause of death in most cancer patients. The detection of CTCs is of great scientific significance and clinical application value for early diagnosis, rapid evaluation of the treatment effect, in vivo drug resistance testing, individualized treatment, tumor recurrence detection and survival time judgment, etc. The surface-enhanced Raman scattering (SERS) method possesses the features of remarkable detection sensitivity, a non-destructive nature, label-free detection, a quick spectrum response and a molecular fingerprint spectrum, which give it great potential in the detection field. In the past decade, SERS technology serving as a bioprobe has been increasingly applied to detect and analyze biological components due to its unique detection advantages. Here, we present an overview of SERS biosensing substrates and recent achievements in detecting CTCs using high-sensitivity SERS platforms, and provide a unique perspective on the design and application of high-performance SERS platforms for CTC detection, especially using non-metal materials.
Collapse
Affiliation(s)
- Jie Lin
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, 315201, China.
| | | | | |
Collapse
|
80
|
Hu D, Xu X, Zhao Z, Li C, Tian Y, Liu Q, Shao B, Chen S, Zhao Y, Li L, Bi H, Chen A, Fu C, Cui X, Zeng Y. Detecting urine metabolites of bladder cancer by surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119108. [PMID: 33161263 DOI: 10.1016/j.saa.2020.119108] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 05/20/2023]
Abstract
AIM Metabolites present in urine reflect the current phenotype of the cancer state. Surface-enhanced Raman spectroscopy (SERS) can be used in urine supernatant or sediment to largely reflect the metabolic status of the body. MATERIALS & METHODS SERS was performed to detect bladder cancer (BCa) and predict tumour grade from urine supernatant, which contains various system metabolites, as well as from urine sediment, which contains exfoliated tumour cells. RESULTS & DISCUSSION Upon combining the urinary supernatant and sediment results, the total diagnostic sensitivity and specificity of SERS were 100% and 98.85%, respectively, for high-grade tumours and 97.53% and 90.80%, respectively, for low-grade tumours. CONCLUSION The present results suggest high potential for SERS to detect BCa from urine, especially when combining both urinary supernatant and sediment results.
Collapse
Affiliation(s)
- Dayu Hu
- College of Medicine and Biological Information Engineering, Northeastern University, No. 500 Wisdom Street, Shenyang 110169, China
| | - Xiaosong Xu
- College of Medicine and Biological Information Engineering, Northeastern University, No. 500 Wisdom Street, Shenyang 110169, China
| | - Zeyin Zhao
- College of Medicine and Biological Information Engineering, Northeastern University, No. 500 Wisdom Street, Shenyang 110169, China
| | - Changqi Li
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 44 Xiaoheyan Road, Shenyang, Liaoning 110042, China
| | - Ye Tian
- College of Medicine and Biological Information Engineering, Northeastern University, No. 500 Wisdom Street, Shenyang 110169, China
| | - Qiang Liu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 44 Xiaoheyan Road, Shenyang, Liaoning 110042, China
| | - Bo Shao
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 44 Xiaoheyan Road, Shenyang, Liaoning 110042, China
| | - Shuo Chen
- College of Medicine and Biological Information Engineering, Northeastern University, No. 500 Wisdom Street, Shenyang 110169, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Wenhua Road, Shenyang 110819, China
| | - Yue Zhao
- College of Medicine and Biological Information Engineering, Northeastern University, No. 500 Wisdom Street, Shenyang 110169, China
| | - Ling Li
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 44 Xiaoheyan Road, Shenyang, Liaoning 110042, China
| | - Huan Bi
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 44 Xiaoheyan Road, Shenyang, Liaoning 110042, China
| | - Ang Chen
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 44 Xiaoheyan Road, Shenyang, Liaoning 110042, China
| | - Cheng Fu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 44 Xiaoheyan Road, Shenyang, Liaoning 110042, China
| | - Xiaoyu Cui
- College of Medicine and Biological Information Engineering, Northeastern University, No. 500 Wisdom Street, Shenyang 110169, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Wenhua Road, Shenyang 110819, China.
| | - Yu Zeng
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 44 Xiaoheyan Road, Shenyang, Liaoning 110042, China.
| |
Collapse
|
81
|
Velička M, Zacharovas E, Adomavičiūtė S, Šablinskas V. Detection of caffeine intake by means of EC-SERS spectroscopy of human saliva. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:118956. [PMID: 32992239 DOI: 10.1016/j.saa.2020.118956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
This work presents the application of EC-SERS spectroscopy for the detection of caffeine consumption from human saliva. Caffeine and paraxanthine as the major metabolite of caffeine were tested. Model samples of saliva spiked with caffeine were investigated, and detection of caffeine in real-life saliva samples was tested in order to ensure the viability of the method for clinical applications. Two doses of caffeine (2 mg/kg and 3.5 mg/kg) were ingested by volunteers, and their saliva samples were taken at different time periods ranging from 1 h to 10 h after the consumption. Density functional theory calculations of caffeine and paraxanthine adsorbed on the silver surface were performed in order to better understand the adsorption of the investigated molecules and to make a correct assignment of the experimental spectral bands of the EC-SERS spectra. It was determined that a low dose caffeine consumption can be detected by the appearance of the SERS spectral marker band of caffeine and paraxanthine at 692 cm-1. The intensity of this band is mostly reasoned by the paraxanthine concentration since the intensity changes of the band over time correlates to the concentration changes of paraxanthine determined by the pharmacokinetic studies of paraxanthine and caffeine in the human saliva. It was found that the limit of detection paraxanthine in saliva by means of EC-SERS is as low as 15 μM and can be further improved.
Collapse
Affiliation(s)
- Martynas Velička
- Institute of Chemical Physics, Vilnius University, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania.
| | - Edvinas Zacharovas
- Institute of Chemical Physics, Vilnius University, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania
| | - Sonata Adomavičiūtė
- Institute of Chemical Physics, Vilnius University, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania
| | - Valdas Šablinskas
- Institute of Chemical Physics, Vilnius University, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
82
|
Combined negative dielectrophoresis with a flexible SERS platform as a novel strategy for rapid detection and identification of bacteria. Anal Bioanal Chem 2021; 413:2007-2020. [PMID: 33507352 DOI: 10.1007/s00216-021-03169-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/25/2020] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a vibrational method successfully applied in analytical chemistry, molecular biology and medical diagnostics. In this article, we demonstrate the combination of the negative dielectrophoretic (nDEP) phenomenon and a flexible surface-enhanced Raman platform for quick isolation (3 min), concentration and label-free identification of bacteria. The platform ensures a strong enhancement factor, high stability and reproducibility for the SERS response of analyzed samples. By introducing radial dielectrophoretic forces directed at the SERS platform, we can efficiently execute bacterial cell separation, concentration and deposition onto the SERS-active surface, which simultaneously works as a counter electrode and thus enables such hybrid DEP-SERS device vibration-based detection. Additionally, we show the ability of our DEP-SERS system to perform rapid, cultivation-free, direct detection of bacteria in urine and apple juice samples. The device provides new opportunities for the detection of pathogens.
Collapse
|
83
|
Tadesse LF, Safir F, Ho CS, Hasbach X, Khuri-Yakub BP, Jeffrey SS, Saleh AAE, Dionne J. Toward rapid infectious disease diagnosis with advances in surface-enhanced Raman spectroscopy. J Chem Phys 2021; 152:240902. [PMID: 32610995 DOI: 10.1063/1.5142767] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In a pandemic era, rapid infectious disease diagnosis is essential. Surface-enhanced Raman spectroscopy (SERS) promises sensitive and specific diagnosis including rapid point-of-care detection and drug susceptibility testing. SERS utilizes inelastic light scattering arising from the interaction of incident photons with molecular vibrations, enhanced by orders of magnitude with resonant metallic or dielectric nanostructures. While SERS provides a spectral fingerprint of the sample, clinical translation is lagged due to challenges in consistency of spectral enhancement, complexity in spectral interpretation, insufficient specificity and sensitivity, and inefficient workflow from patient sample collection to spectral acquisition. Here, we highlight the recent, complementary advances that address these shortcomings, including (1) design of label-free SERS substrates and data processing algorithms that improve spectral signal and interpretability, essential for broad pathogen screening assays; (2) development of new capture and affinity agents, such as aptamers and polymers, critical for determining the presence or absence of particular pathogens; and (3) microfluidic and bioprinting platforms for efficient clinical sample processing. We also describe the development of low-cost, point-of-care, optical SERS hardware. Our paper focuses on SERS for viral and bacterial detection, in hopes of accelerating infectious disease diagnosis, monitoring, and vaccine development. With advances in SERS substrates, machine learning, and microfluidics and bioprinting, the specificity, sensitivity, and speed of SERS can be readily translated from laboratory bench to patient bedside, accelerating point-of-care diagnosis, personalized medicine, and precision health.
Collapse
Affiliation(s)
- Loza F Tadesse
- Department of Bioengineering, Stanford University School of Medicine and School of Engineering, Stanford, California 94305, USA
| | - Fareeha Safir
- Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California 94305, USA
| | - Chi-Sing Ho
- Department of Applied Physics, Stanford University School of Humanities and Sciences, Stanford, California 94305, USA
| | - Ximena Hasbach
- Department of Materials Science and Engineering, Stanford University School of Engineering, Stanford, California 94305, USA
| | - Butrus Pierre Khuri-Yakub
- Department of Electrical Engineering, Stanford University School of Engineering, Stanford, California 94305, USA
| | - Stefanie S Jeffrey
- Department of Surgery, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Amr A E Saleh
- Department of Materials Science and Engineering, Stanford University School of Engineering, Stanford, California 94305, USA
| | - Jennifer Dionne
- Department of Materials Science and Engineering, Stanford University School of Engineering, Stanford, California 94305, USA
| |
Collapse
|
84
|
Towards translation of surface-enhanced Raman spectroscopy (SERS) to clinical practice: Progress and trends. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116122] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
85
|
Xing Y, Cheng Z, Wang R, Lv C, James TD, Yu F. Analysis of extracellular vesicles as emerging theranostic nanoplatforms. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213506] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
86
|
Avram L, Stefancu A, Crisan D, Leopold N, Donca V, Buzdugan E, Craciun R, Andras D, Coman I. Recent advances in surface-enhanced Raman spectroscopy based liquid biopsy for colorectal cancer (Review). Exp Ther Med 2020; 20:213. [PMID: 33149777 DOI: 10.3892/etm.2020.9342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/29/2020] [Indexed: 12/24/2022] Open
Abstract
As colorectal cancer (CRC) is one of the forms of cancer with the highest prevalence globally and with a high mortality, screening and early detection remains a major issue. Colonoscopy is still the gold standard for detecting premalignant lesions, but it is burdened by some complications. For instance, it is laborious, with some difficulties of acceptance for some patients, and is ultimately an imperfect standard, given that some premalignant lesions or incipient malignancies can be missed by colonoscopic evaluation. In this context, new non-invasive approaches such as surface-enhanced Raman spectroscopy (SERS) based liquid biopsy have gained ground in recent years, showing promising results in oncological pathology diagnosis. These new methods have enabled the detection of subtle molecular profile alterations prior to any macroscopic morphological changes, thus providing a useful tool for early CRC detection. In the present review, we provide a summary of published studies applying SERS in CRC detection, along with our personal experience in using SERS in the diagnosis of different oncological pathologies, including CRC.
Collapse
Affiliation(s)
- Lucretia Avram
- Medical Specialities Department, 5th Medical Clinic, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andrei Stefancu
- Faculty of Physics, 'Babe?-Bolyai' University, 400084 Cluj-Napoca, Romania
| | - Dana Crisan
- Internal Medicine Department, 5th Medical Clinic, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Nicolae Leopold
- Faculty of Physics, 'Babe?-Bolyai' University, 400084 Cluj-Napoca, Romania.,MEDFUTURE Research Center for Advanced Medicine, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Valer Donca
- Medical Specialities Department, 5th Medical Clinic, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Elena Buzdugan
- Internal Medicine Department, 5th Medical Clinic, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Rares Craciun
- Internal Medicine Department, 5th Medical Clinic, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - David Andras
- Surgery Department, 1st Surgery Clinic, 'Iuliu Hatieganu'University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Ioan Coman
- Urology Department,'Iuliu Hatieganu'University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
87
|
Rojalin T, Koster HJ, Liu J, Mizenko RR, Tran D, Wachsmann-Hogiu S, Carney RP. Hybrid Nanoplasmonic Porous Biomaterial Scaffold for Liquid Biopsy Diagnostics Using Extracellular Vesicles. ACS Sens 2020; 5:2820-2833. [PMID: 32935542 PMCID: PMC7522966 DOI: 10.1021/acssensors.0c00953] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
For
more effective early-stage cancer diagnostics, there is a need
to develop sensitive and specific, non- or minimally invasive, and
cost-effective methods for identifying circulating nanoscale extracellular
vesicles (EVs). Here, we report the utilization of a simple plasmonic
scaffold composed of a microscale biosilicate substrate embedded with
silver nanoparticles for surface-enhanced Raman scattering (SERS)
analysis of ovarian and endometrial cancer EVs. These substrates are
rapidly and inexpensively produced without any complex equipment or
lithography. We extensively characterize the substrates with electron
microscopy and outline a reproducible methodology for their use in
analyzing EVs from in vitro and in vivo biofluids. We report effective
chemical treatments for (i) decoration of metal surfaces with cysteamine
to nonspecifically pull down EVs to SERS hotspots and (ii) enzymatic
cleavage of extraluminal moieties at the surface of EVs that prevent
localization of complementary chemical features (lipids/proteins)
to the vicinity of the metal-enhanced fields. We observe a major loss
of sensitivity for ovarian and endometrial cancer following enzymatic
cleavage of EVs’ extraluminal domain, suggesting its critical
significance for diagnostic platforms. We demonstrate that the SERS
technique represents an ideal tool to assess and measure the high
heterogeneity of EVs isolated from clinical samples in an inexpensive,
rapid, and label-free assay.
Collapse
Affiliation(s)
- Tatu Rojalin
- Department of Biomedical Engineering, University of California, Davis 95616, United States
| | - Hanna J. Koster
- Department of Biomedical Engineering, University of California, Davis 95616, United States
| | - Juanjuan Liu
- Department of Bioengineering, McGill University, Montreal H3A 0G4, Canada
| | - Rachel R. Mizenko
- Department of Biomedical Engineering, University of California, Davis 95616, United States
| | - Di Tran
- Department of Biomedical Engineering, University of California, Davis 95616, United States
| | | | - Randy P. Carney
- Department of Biomedical Engineering, University of California, Davis 95616, United States
| |
Collapse
|
88
|
MicroRNAs from Liquid Biopsy Derived Extracellular Vesicles: Recent Advances in Detection and Characterization Methods. Cancers (Basel) 2020; 12:cancers12082009. [PMID: 32707943 PMCID: PMC7465219 DOI: 10.3390/cancers12082009] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Liquid biopsies have become a convenient tool in cancer diagnostics, real-time disease monitoring, and evaluation of residual disease. Yet, the information still encrypted in the variety of tumor-derived molecules identified in biofluids has proven difficult to decipher due to the technological limitations imposed by their biological nature. Such is the case of extracellular vesicle (EV) encapsulated ncRNAs, which have gained traction in recent years as biomarkers. Due to their resilience towards degrading factors they may act as suitable disease indicators. This review addresses the less described issues in this context. We present an overview of less investigated biofluids that can be used for EV isolation in addition to different isolation approaches to overcome the technical challenges these specimens harbor. Furthermore, we summarize the latest technological advances providing improvement to ncRNA detection and analysis. Thereby, this review summarizes the current state-of-the-art methodologies regarding EV and EV derived miRNA analysis and how they compare to current approaches.
Collapse
|
89
|
Shao X, Zhang H, Wang Y, Qian H, Zhu Y, Dong B, Xu F, Chen N, Liu S, Pan J, Xue W. Deep convolutional neural networks combine Raman spectral signature of serum for prostate cancer bone metastases screening. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102245. [PMID: 32592757 DOI: 10.1016/j.nano.2020.102245] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/27/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
Prostate cancer most frequently metastasizes to bone, resulting in abnormal bone metabolism and the release of components into the blood stream. Here, we evaluated the capacity of convolutional neural networks (CNNs) to use Raman data for screening of prostate cancer bone metastases. We used label-free surface-enhanced Raman spectroscopy (SERS) to collect 1281 serum Raman spectra from 427 patients with prostate cancer, and then we constructed a CNN based on LetNet-5 to recognize prostate cancer patients with bone metastases. We then used 5-fold cross-validation method to train and test the CNN model and evaluated its actual performance. Our CNN model for bone metastases detection revealed a mean training accuracy of 99.51% ± 0.23%, mean testing accuracy of 81.70% ± 2.83%, mean testing sensitivity of 80.63% ± 5.07%, and mean testing specificity of 82.82% ± 2.94%.
Collapse
Affiliation(s)
- Xiaoguang Shao
- Department of Urology, RenJi hospital, school of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Heng Zhang
- Shanghai Institute for Advanced Communication and Data science, Key laboratory of specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Yanqing Wang
- Department of Urology, RenJi hospital, school of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hongyang Qian
- Department of Urology, RenJi hospital, school of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yinjie Zhu
- Department of Urology, RenJi hospital, school of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Baijun Dong
- Department of Urology, RenJi hospital, school of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Fan Xu
- Department of Urology, RenJi hospital, school of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Na Chen
- Shanghai Institute for Advanced Communication and Data science, Key laboratory of specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Shupeng Liu
- Shanghai Institute for Advanced Communication and Data science, Key laboratory of specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai, People's Republic of China.
| | - Jiahua Pan
- Department of Urology, RenJi hospital, school of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| | - Wei Xue
- Department of Urology, RenJi hospital, school of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| |
Collapse
|
90
|
Dey S, Trau M, Koo KM. Surface-Enhanced Raman Spectroscopy for Cancer Immunotherapy Applications: Opportunities, Challenges, and Current Progress in Nanomaterial Strategies. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1145. [PMID: 32545182 PMCID: PMC7353228 DOI: 10.3390/nano10061145] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy encompasses a variety of approaches which target or use a patient's immune system components to eliminate cancer. Notably, the current use of immune checkpoint inhibitors to target immune checkpoint receptors such as CTLA-4 or PD-1 has led to remarkable treatment responses in a variety of cancers. To predict cancer patients' immunotherapy responses effectively and efficiently, multiplexed immunoassays have been shown to be advantageous in sensing multiple immunomarkers of the tumor microenvironment simultaneously for patient stratification. Surface-enhanced Raman spectroscopy (SERS) is well-regarded for its capabilities in multiplexed bioassays and has been increasingly demonstrated in cancer immunotherapy applications in recent years. This review focuses on SERS-active nanomaterials in the modern literature which have shown promise for enabling cancer patient-tailored immunotherapies, including multiplexed in vitro and in vivo immunomarker sensing and imaging, as well as immunotherapy drug screening and delivery.
Collapse
Affiliation(s)
- Shuvashis Dey
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, QLD 4072, Australia
| | - Kevin M. Koo
- XING Technologies Pty Ltd., Brisbane, QLD 4073, Australia
- The University of Queensland Centre for Clinical Research (UQCCR), Brisbane, QLD 4029, Australia
| |
Collapse
|
91
|
Weng C, Fan N, Xu T, Chen H, Li Z, Li Y, Tan H, Fu Q, Ding M. FRET-based polymer materials for detection of cellular microenvironments. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
92
|
Wu J, Hu S, Zhang L, Xin J, Sun C, Wang L, Ding K, Wang B. Tumor circulome in the liquid biopsies for cancer diagnosis and prognosis. Theranostics 2020; 10:4544-4556. [PMID: 32292514 PMCID: PMC7150480 DOI: 10.7150/thno.40532] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022] Open
Abstract
Liquid biopsy is a convenient, fast, non-invasive and reproducible sampling method that can dynamically reflect the changes in tumor gene expression profile, and provide a robust basis for individualized therapy and early diagnosis of cancer. Circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs) are the currently approved diagnostic biomarkers for screening cancer patients. In addition, tumor-derived extracellular vesicles (tdEVs), circulating tumor-derived proteins, circulating tumor RNA (ctRNA) and tumor-bearing platelets (TEPs) are other components of liquid biopsies with diagnostic potential. In this review, we have discussed the clinical applications of these biomarkers, and the factors that limit their implementation in routine clinical practice. In addition, the most recent developments in the isolation and analysis of circulating tumor biomarkers have been summarized, and the potential of non-blood liquid biopsies in tumor diagnostics has also been discussed.
Collapse
Affiliation(s)
- Jicheng Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Shen Hu
- Department of Obstetrics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Lihong Zhang
- Department of Biochemistry, College of Biomedical Sciences, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jinxia Xin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Chongran Sun
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Liquan Wang
- Department of Obstetrics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Kefeng Ding
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
93
|
MiRNA-Based Inspired Approach in Diagnosis of Prostate Cancer. ACTA ACUST UNITED AC 2020; 56:medicina56020094. [PMID: 32102477 PMCID: PMC7074198 DOI: 10.3390/medicina56020094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 12/14/2022]
Abstract
Prostate cancer is one of the most encountered cancer diseases in men worldwide and in consequence it requires the improvement of therapeutic strategies. For the clinical diagnosis, the standard approach is represented by solid biopsy. From a surgical point of view, this technique represents an invasive procedure that may imply several postoperative complications. To overcome these impediments, many trends are focusing on developing liquid biopsy assays and on implementing them in clinical practice. Liquid samples (blood, urine) are rich in analytes, especially in transcriptomic information provided by genetic markers. Additionally, molecular characterization regarding microRNAs content reveals outstanding prospects in understanding cancer progression mechanisms. Moreover, these analytes have great potential for prostate cancer early detection, more accurate prostate cancer staging and also for decision making respecting therapy schemes. However, there are still questionable topics and more research is needed to standardize liquid biopsy-based techniques.
Collapse
|
94
|
Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, Bazan GC, Bell SEJ, Boisen A, Brolo AG, Choo J, Cialla-May D, Deckert V, Fabris L, Faulds K, García de Abajo FJ, Goodacre R, Graham D, Haes AJ, Haynes CL, Huck C, Itoh T, Käll M, Kneipp J, Kotov NA, Kuang H, Le Ru EC, Lee HK, Li JF, Ling XY, Maier SA, Mayerhöfer T, Moskovits M, Murakoshi K, Nam JM, Nie S, Ozaki Y, Pastoriza-Santos I, Perez-Juste J, Popp J, Pucci A, Reich S, Ren B, Schatz GC, Shegai T, Schlücker S, Tay LL, Thomas KG, Tian ZQ, Van Duyne RP, Vo-Dinh T, Wang Y, Willets KA, Xu C, Xu H, Xu Y, Yamamoto YS, Zhao B, Liz-Marzán LM. Present and Future of Surface-Enhanced Raman Scattering. ACS NANO 2020; 14:28-117. [PMID: 31478375 PMCID: PMC6990571 DOI: 10.1021/acsnano.9b04224] [Citation(s) in RCA: 1640] [Impact Index Per Article: 328.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/03/2019] [Indexed: 04/14/2023]
Abstract
The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.
Collapse
Affiliation(s)
- Judith Langer
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
| | | | - Javier Aizpurua
- Materials
Physics Center (CSIC-UPV/EHU), and Donostia
International Physics Center, Paseo Manuel de Lardizabal 5, Donostia-San
Sebastián 20018, Spain
| | - Ramon A. Alvarez-Puebla
- Departamento
de Química Física e Inorgánica and EMaS, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Baptiste Auguié
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Guillermo C. Bazan
- Department
of Materials and Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106-9510, United States
| | - Steven E. J. Bell
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Anja Boisen
- Department
of Micro- and Nanotechnology, The Danish National Research Foundation
and Villum Foundation’s Center for Intelligent Drug Delivery
and Sensing Using Microcontainers and Nanomechanics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Alexandre G. Brolo
- Department
of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3 V6, Canada
- Center
for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Jaebum Choo
- Department
of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Dana Cialla-May
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Volker Deckert
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Laura Fabris
- Department
of Materials Science and Engineering, Rutgers
University, 607 Taylor Road, Piscataway New Jersey 08854, United States
| | - Karen Faulds
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - F. Javier García de Abajo
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
- The Barcelona
Institute of Science and Technology, Institut
de Ciencies Fotoniques, Castelldefels (Barcelona) 08860, Spain
| | - Royston Goodacre
- Department
of Biochemistry, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Duncan Graham
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Amanda J. Haes
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Christy L. Haynes
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christian Huck
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Tamitake Itoh
- Nano-Bioanalysis
Research Group, Health Research Institute, National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan
| | - Mikael Käll
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Janina Kneipp
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Str. 2, Berlin-Adlershof 12489, Germany
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hua Kuang
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Eric C. Le Ru
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Hiang Kwee Lee
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Jian-Feng Li
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Yi Ling
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Stefan A. Maier
- Chair in
Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich 80539, Germany
| | - Thomas Mayerhöfer
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Martin Moskovits
- Department
of Chemistry & Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Kei Murakoshi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, North 10 West 8, Kita-ku, Sapporo,
Hokkaido 060-0810, Japan
| | - Jwa-Min Nam
- Department
of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Yukihiro Ozaki
- Department
of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | | | - Jorge Perez-Juste
- Departamento
de Química Física and CINBIO, University of Vigo, Vigo 36310, Spain
| | - Juergen Popp
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Annemarie Pucci
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Stephanie Reich
- Department
of Physics, Freie Universität Berlin, Berlin 14195, Germany
| | - Bin Ren
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Timur Shegai
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Sebastian Schlücker
- Physical
Chemistry I, Department of Chemistry and Center for Nanointegration
Duisburg-Essen, University of Duisburg-Essen, Essen 45141, Germany
| | - Li-Lin Tay
- National
Research Council Canada, Metrology Research
Centre, Ottawa K1A0R6, Canada
| | - K. George Thomas
- School
of Chemistry, Indian Institute of Science
Education and Research Thiruvananthapuram, Vithura Thiruvananthapuram 695551, India
| | - Zhong-Qun Tian
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Richard P. Van Duyne
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Tuan Vo-Dinh
- Fitzpatrick
Institute for Photonics, Department of Biomedical Engineering, and
Department of Chemistry, Duke University, 101 Science Drive, Box 90281, Durham, North Carolina 27708, United States
| | - Yue Wang
- Department
of Chemistry, College of Sciences, Northeastern
University, Shenyang 110819, China
| | - Katherine A. Willets
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Chuanlai Xu
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Hongxing Xu
- School
of Physics and Technology and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yikai Xu
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Yuko S. Yamamoto
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Bing Zhao
- State Key
Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
95
|
Ly NH, Joo SW. Recent advances in cancer bioimaging using a rationally designed Raman reporter in combination with plasmonic gold. J Mater Chem B 2020; 8:186-198. [DOI: 10.1039/c9tb01598a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gold nanomaterials (AuNMs) have been widely implemented for the purpose of bioimaging of cancer and tumor cells in combination with Raman spectral markers.
Collapse
Affiliation(s)
| | - Sang-Woo Joo
- Department of Chemistry
- Soongsil University
- Seoul 06978
- Korea
- Department of Information Communication, Materials
| |
Collapse
|
96
|
Li X, Yang T, Li CS, Song Y, Wang D, Jin L, Lou H, Li W. Polymerase chain reaction - surface-enhanced Raman spectroscopy (PCR-SERS) method for gene methylation level detection in plasma. Theranostics 2020; 10:898-909. [PMID: 31903158 PMCID: PMC6929977 DOI: 10.7150/thno.30204] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Gene promoter hypermethylation is a vital step in tumorigenesis. This paper set out to explore the use of polymerase chain reaction - surface-enhanced Raman spectroscopy (PCR-SERS) for the detection of gene methylation levels, with a focus on cancer diagnosis. Methods: PCR with methylation independent primers were used on DNA samples to amplify target genes regardless of their methylation states. SERS was used on the obtained PCR products to generate spectra that contained peak changes belonging to CG and AT base pairs. Multiple linear regression (MLR) was then used to deconvolute the SERS spectra so that the CG/AT ratios of the sample could be obtained. These MLR results were used to calculate methylation levels of the target genes. For protocol verification, three sets of seven reference DNA solutions with known methylation levels (0%, 1%, 5%, 25%, 50%, 75%, and 100%) were analysed. Clinically, blood plasma samples were taken from 48 non-small-cell lung cancer (NSCLC) patients and 51 healthy controls. The methylation levels of the genes p16, MGMT, and RASSF1 were determined for each patient using this method. Results: Verification experiment on the mixtures with known methylation levels resulted in an error of less than 6% from the actual levels. When applied to our clinical samples, the frequency of methylation in at least one of the three target genes among the NSCLC patients was 87.5%, but this percentage decreased to 11.8% for the control group. The methylation levels of p16 were found to be significantly higher in NSCLC patients with more pack-years smoked (p=0.04), later cancer stages (p=0.03), and cancer types of squamous cell and large cell versus adenocarcinoma (p=0.03). Prediction accuracy of 88% was achieved from classification and regression trees (CART) based on methylation levels and states, respectively. Conclusion: This research showed that the PCR-SERS protocol could quantitatively measure the methylation levels of genes in plasma. The methylation levels of the genes p16, MGMT, and RASSF1 were higher in NSCLC patients than in controls.
Collapse
Affiliation(s)
- Xiaozhou Li
- School of Science, Shenyang Ligong University, Shenyang 110159, China
- College of Environmental Sciences, Liaoning University, Shenyang 110036, China
| | - Tianyue Yang
- School of Science, Shenyang Ligong University, Shenyang 110159, China
- College of Environmental Sciences, Liaoning University, Shenyang 110036, China
| | - Caesar Siqi Li
- College of Medicine, Northeast Ohio Medical University, Rootstown 44272, USA
| | - Youtao Song
- College of Environmental Sciences, Liaoning University, Shenyang 110036, China
| | - Deli Wang
- School of Science, Shenyang Ligong University, Shenyang 110159, China
| | - Lili Jin
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Hong Lou
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Wei Li
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
97
|
Huang X, Zhou Y, Ding L, Yu G, Leng Y, Lai W, Xiong Y, Chen X. Supramolecular Recognition-Mediated Layer-by-Layer Self-Assembled Gold Nanoparticles for Customized Sensitivity in Paper-Based Strip Nanobiosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903861. [PMID: 31736250 DOI: 10.1002/smll.201903861] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/25/2019] [Indexed: 05/24/2023]
Abstract
Herein, a smart supramolecular self-assembly-mediated signal amplification strategy is developed on a paper-based nanobiosensor to achieve the sensitive and customized detection of biomarkers. The host-guest recognition between β-cyclodextrin-coated gold nanoparticles (AuNPs) and 1-adamantane acetic acid or tetrakis(4-carboxyphenyl)porphyrin is designed and applied to the layer-by-layer self-assembly of AuNPs at the test area of the strip. Thus, the amplified platform exhibits a high sensitivity with a detection limit at subattogram levels (approximately dozens of molecules per strip) and a wide dynamic range of concentration over seven orders of magnitude. The applicability and universality of this sensitive platform are demonstrated in clinically significant ranges to measure carcinoembryonic antigen and HIV-1 capsid p24 antigen in spiked serum and clinical samples. The customized biomarker detection ability for the on-demand needs of clinicians is further verified through cycle incubation-mediated controllable self-assembly. Collectively, the supramolecular self-assembly amplification method is suitable as a universal point-of-care diagnostic tool and can be readily adapted as a platform technology for the sensitive assay of many different target analytes.
Collapse
Affiliation(s)
- Xiaolin Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Yaofeng Zhou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Lu Ding
- Hypertension Research Institute of Jiangxi Province, Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Yuankui Leng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| |
Collapse
|
98
|
|
99
|
Das J, Kelley SO. High-Performance Nucleic Acid Sensors for Liquid Biopsy Applications. Angew Chem Int Ed Engl 2019; 59:2554-2564. [PMID: 31332937 DOI: 10.1002/anie.201905005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/21/2019] [Indexed: 12/18/2022]
Abstract
Circulating tumour nucleic acids (ctNAs) are released from tumours cells and can be detected in blood samples, providing a way to track tumors without requiring a tissue sample. This "liquid biopsy" approach has the potential to replace invasive, painful, and costly tissue biopsies in cancer diagnosis and management. However, a very sensitive and specific approach is required to detect relatively low amounts of mutant sequences linked to cancer because they are masked by the high levels of wild-type sequences. This review discusses high-performance nucleic acid biosensors for ctNA analysis in patient samples. We compare sequencing- and amplification-based methods to next-generation sensors for ctDNA and ctRNA (including microRNA) profiling, such as electrochemical methods, surface plasmon resonance, Raman spectroscopy, and microfluidics and dielectrophoresis-based assays. We present an overview of the analytical sensitivity and accuracy of these methods as well as the biological and technical challenges they present.
Collapse
Affiliation(s)
- Jagotamoy Das
- Department of Pharmaceutical Sciences, Department of Chemistry, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Shana O Kelley
- Department of Pharmaceutical Sciences, Department of Chemistry, University of Toronto, Toronto, ON, M5S 3M2, Canada
| |
Collapse
|
100
|
Soda N, Rehm BHA, Sonar P, Nguyen NT, Shiddiky MJA. Advanced liquid biopsy technologies for circulating biomarker detection. J Mater Chem B 2019; 7:6670-6704. [PMID: 31646316 DOI: 10.1039/c9tb01490j] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Liquid biopsy is a new diagnostic concept that provides important information for monitoring and identifying tumor genomes in body fluid samples. Detection of tumor origin biomolecules like circulating tumor cells (CTCs), circulating tumor specific nucleic acids (circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), microRNAs (miRNAs), long non-coding RNAs (lnRNAs)), exosomes, autoantibodies in blood, saliva, stool, urine, etc. enables cancer screening, early stage diagnosis and evaluation of therapy response through minimally invasive means. From reliance on painful and hazardous tissue biopsies or imaging depending on sophisticated equipment, cancer management schemes are witnessing a rapid evolution towards minimally invasive yet highly sensitive liquid biopsy-based tools. Clinical application of liquid biopsy is already paving the way for precision theranostics and personalized medicine. This is achieved especially by enabling repeated sampling, which in turn provides a more comprehensive molecular profile of tumors. On the other hand, integration with novel miniaturized platforms, engineered nanomaterials, as well as electrochemical detection has led to the development of low-cost and simple platforms suited for point-of-care applications. Herein, we provide a comprehensive overview of the biogenesis, significance and potential role of four widely known biomarkers (CTCs, ctDNA, miRNA and exosomes) in cancer diagnostics and therapeutics. Furthermore, we provide a detailed discussion of the inherent biological and technical challenges associated with currently available methods and the possible pathways to overcome these challenges. The recent advances in the application of a wide range of nanomaterials in detecting these biomarkers are also highlighted.
Collapse
Affiliation(s)
- Narshone Soda
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery (GRIDD), Griffith University, Nathan, QLD 4111, Australia
| | - Prashant Sonar
- School of Chemistry, Physics and Mechanical Engineering, Molecular Design and Synthesis, Queensland University of Technology (QUT), Brisbane, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia
| |
Collapse
|