51
|
Zhao J, Dai W, Zhan L, Lei L, Jin Q, Wang J, Tang Z. Sorafenib-Encapsulated Liposomes to Activate Hypoxia-Sensitive Tirapazamine for Synergistic Chemotherapy of Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11289-11304. [PMID: 38393963 DOI: 10.1021/acsami.3c18051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Combination therapy with the synergistic effect is an effective way in cancer chemotherapy. Herein, an antiangiogenic sorafenib (SOR) and hypoxia-activated prodrug tirapazamine (TPZ)-coencapsulated liposome (LipTPZ/SOR) is prepared for chemotherapy of hepatocellular carcinoma (HCC). SOR is a multi-target tyrosine kinase inhibitor that can inhibit tumor cell proliferation and angiogenesis. The antiangiogenesis effect of SOR can reduce oxygen supply and aggravate tumor hypoxia, which is able to activate hypoxia-sensitive prodrug TPZ, exhibiting the synergistic antitumor effect. LipTPZ/SOR at different molar ratios of TPZ and SOR can significantly inhibit the proliferation of hepatocellular carcinoma cells. The mole ratio of TPZ and SOR was optimized to 2:1, which exhibited the best synergetic antitumor effect. The synergistic antitumor mechanism of SOR and TPZ was also investigated in vivo. After treated with SOR, the number of vessels was decreased, and the degree of hypoxia was aggravated in tumor tissues. What is more, in the presence of SOR, TPZ could be activated to inhibit tumor growth. The combination of TPZ and SOR exhibited an excellent synergistic antitumor effect. This research not only provides an innovative strategy to aggravate tumor hypoxia to promote TPZ activation but also paints a blueprint about a new nanochemotherapy regimen for the synergistic chemotherapy of HCC, which has excellent biosafety and bright clinical application prospects.
Collapse
Affiliation(s)
- Jinchao Zhao
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Wenbin Dai
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Linxing Zhan
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Lei Lei
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jianwei Wang
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 322000, China
- Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhe Tang
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 322000, China
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
52
|
Huang X, Zhou LZ, Feng WJ, Liu YQ, Chen M, Tang LY, Gan ZY, Zhang P. Circ ubiquitin-like-containing plant homeodomain and RING finger domains protein 1 increases the stability of G9a and ubiquitin-like-containing plant homeodomain and RING finger domains protein 1 messenger RNA through recruiting eukaryotic translation initiation factor 4A3, transcriptionally inhibiting PDZ and homeobox protein domain protein 1, and promotes the metastasis of hepatocellular carcinoma. J Gastroenterol Hepatol 2024; 39:596-607. [PMID: 38059880 DOI: 10.1111/jgh.16408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND AND AIM Circular ubiquitin-like, containing PHD and ring finger domains 1 (circUHRF1) is aberrantly upregulated in human hepatocellular carcinoma (HCC) tissues. However, the underlying molecular mechanisms remain obscure. The present study aimed at elucidating the interactive function of circUHRF1-G9a-ubiquitin-like, containing PHD and ring finger domains 1 (UHRF1) mRNA-eukaryotic translation initiation factor 4A3 (EIF4A3)-PDZ and LIM domain 1 (PDLIM1) network in HCC. METHODS Expression of circUHRF1, mRNAs of G9a, UHRF1, PDLIM1, epithelial-mesenchymal transition (EMT)-related proteins, and Hippo-Yap pathway components was determined by quantitative polymerase chain reaction (Q-PCR), immunofluorescence, or Western blot analysis. Tumorigenic and metastatic capacities of HCC cells were examined by cellular assays including Cell Counting Kit-8, colony formation, wound healing, and transwell assays. Molecular interactions between EIF4A3 and UHRF1 mRNA were detected by RNA pull-down experiment. Complex formation between UHRF1 and PDLIM1 promoter was detected by chromatin immunoprecipitation assay. Co-immunoprecipitation was performed to examine the binding between UHRF1 and G9a. RESULTS Circular ubiquitin-like, containing PHD and ring finger domains 1, G9a, and UHRF1 were upregulated, while PDLIM1 was downregulated in HCC tissue samples and cell lines. Cellular silencing of circUHRF1 repressed HCC proliferation, invasion, migration, and EMT. G9a formed a complex with UHRF1 and inhibited PDLIM1 transcription. CONCLUSION Eukaryotic translation initiation factor 4A3 regulated circUHRF1 expression by binding to UHRF1 mRNA promoter. circUHRF1 increased the stability of G9a and UHRF1 mRNAs through recruiting EIF4A3. Overexpression of circUHRF1 aggravated HCC progression through Hippo-Yap pathway and PDLIM1 inhibition. By elucidating the molecular function of circUHRF1-G9a-UHRF1 mRNA-EIF4A3-PDLIM1 network, our data shed light on the HCC pathogenesis and suggest a novel therapeutic strategy for future HCC treatment.
Collapse
Affiliation(s)
- Xin Huang
- Department of Infectious Diseases, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li-Zhi Zhou
- Department of Infectious Diseases, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wan-Jiang Feng
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yu-Qing Liu
- Department of Infectious Diseases, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mi Chen
- Department of Infectious Diseases, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lan-Yan Tang
- Department of Infectious Diseases, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ze-Ying Gan
- Department of Infectious Diseases, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Pan Zhang
- Department of Infectious Diseases, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
53
|
Chen F, Jiang J, Liu D, Li H, Dong L, Song Y, Zhang Y, Wang J, Qin Y, Zhao G. The lncRNA lnc-TSI antagonizes sorafenib resistance in hepatocellular carcinoma via downregulating miR-4726-5p expression and upregulating KCNMA1 expression. J Mol Histol 2024; 55:83-96. [PMID: 38165571 DOI: 10.1007/s10735-023-10173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/25/2023] [Indexed: 01/04/2024]
Abstract
Acquired drug resistance is a main reason for limiting the application of sorafenib in HCC treatment. This study aimed to explore the role and mechanisms of a novel long non-coding RNA (lncRNA), lnc-TSI, in sorafenib resistance of HCC. The interaction between lnc-TSI and miR-4726-5p, and miR-4726-5p and KCNMA1 were predicted using bioinformatic tools. Expression of the molecules in the lnc-TSI/miR-4726-5p/KCNMA1 axis in clinical samples and cell lines, as well as the sorafenib resistant HCC cell lines, was determined using qRT-PCR or western blotting. Expressions of lnc-TSI, miR-4726-5p, and KCNMA1 were manipulated in HepG2 and Huh7 cells through plasmid transfection or lentivirus infection. The CCK-8, flow cytometry, and Tunel assays were employed to determine the role of this axis on sorafenib resistance of HCC. A xenograft model was established using sorafenib-resistant HepG2 and Huh7 cells followed by in vivo sorafenib treatments to confirm the in vitro findings. Lnc-TSI and KCNMA1 expressions were significantly downregulated in HCC clinical samples and cell lines, especially in sorafenib resistance ones, while mi-4726-5p presented a reversed expression pattern. Lnc-TSI interacted with miR-4726-5p, and Lnc-TSI acts as a ceRNA via sponging miR-4726-5p in HCC cells. Overexpression of lnc-TSI and KCNMA1 promoted apoptosis and decreased cell viability of sorafenib-treated HCC cells, thus alleviated sorafenib resistance. miR-4726-5p mimic reversed the KCNMA1-mediated sorafenib sensitivity-promoting effect, while additional overexpression of lnc-TSI reversed the effect of miR-4726-5p. In vivo analysis also showed that overexpression of ln-TSI diminished sorafenib resistance in mice inoculated with sorafenib-resistant HCC cells via increasing KCNMA1 expression and decreasing miR-4726-5p expression. The lnc-TSI/miR-4726-5p/KCNMA1 axis plays a critical role in regulating the resistance of HCC to sorafenib, and might serve as a therapeutic target to manage sorafenib resistance of HCC in clinic.
Collapse
Affiliation(s)
- Fengrong Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710003, Shaanxi, China
| | - Jiong Jiang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710003, Shaanxi, China
| | - Dong Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710003, Shaanxi, China
| | - Hong Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710003, Shaanxi, China
| | - Lei Dong
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710003, Shaanxi, China
| | - Yahua Song
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710003, Shaanxi, China
| | - Ying Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710003, Shaanxi, China
| | - Jing Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710003, Shaanxi, China
| | - Yun Qin
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710003, Shaanxi, China
| | - Gang Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710003, Shaanxi, China.
| |
Collapse
|
54
|
Wang Q, Liu J, Chen Z, Zheng J, Wang Y, Dong J. Targeting metabolic reprogramming in hepatocellular carcinoma to overcome therapeutic resistance: A comprehensive review. Biomed Pharmacother 2024; 170:116021. [PMID: 38128187 DOI: 10.1016/j.biopha.2023.116021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) poses a heavy burden on human health with high morbidity and mortality rates. Systematic therapy is crucial for advanced and mid-term HCC, but faces a significant challenge from therapeutic resistance, weakening drug effectiveness. Metabolic reprogramming has gained attention as a key contributor to therapeutic resistance. Cells change their metabolism to meet energy demands, adapt to growth needs, or resist environmental pressures. Understanding key enzyme expression patterns and metabolic pathway interactions is vital to comprehend HCC occurrence, development, and treatment resistance. Exploring metabolic enzyme reprogramming and pathways is essential to identify breakthrough points for HCC treatment. Targeting metabolic enzymes with inhibitors is key to addressing these points. Inhibitors, combined with systemic therapeutic drugs, can alleviate resistance, prolong overall survival for advanced HCC, and offer mid-term HCC patients a chance for radical resection. Advances in metabolic research methods, from genomics to metabolomics and cells to organoids, help build the HCC metabolic reprogramming network. Recent progress in biomaterials and nanotechnology impacts drug targeting and effectiveness, providing new solutions for systemic therapeutic drug resistance. This review focuses on metabolic enzyme changes, pathway interactions, enzyme inhibitors, research methods, and drug delivery targeting metabolic reprogramming, offering valuable references for metabolic approaches to HCC treatment.
Collapse
Affiliation(s)
- Qi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Juan Liu
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Ziye Chen
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Jingjing Zheng
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Yunfang Wang
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China; Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
55
|
Qin R, Jin T, Xu F. Biomarkers predicting the efficacy of immune checkpoint inhibitors in hepatocellular carcinoma. Front Immunol 2023; 14:1326097. [PMID: 38187399 PMCID: PMC10770866 DOI: 10.3389/fimmu.2023.1326097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
In recent years, immune checkpoint inhibitors (ICIs) have emerged as a transformative approach in treating advanced hepatocellular carcinoma (HCC). Despite their success, challenges persist, including concerns about their effectiveness, treatment costs, frequent occurrence of treatment-related adverse events, and tumor hyperprogression. Therefore, it is imperative to identify indicators capable of predicting the efficacy of ICIs treatment, enabling optimal patient selection to maximize clinical benefits while minimizing unnecessary toxic side effects and economic losses. This review paper categorizes prognostic biomarkers of ICIs treatment into the following categories: biochemical and cytological indicators, tumor-related markers, imaging and personal features, etiology, gut microbiome, and immune-related adverse events (irAEs). By organizing these indicators systematically, we aim to guide biomarker exploration and inform clinical treatment decisions.
Collapse
Affiliation(s)
| | - Tianqiang Jin
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
56
|
Tao S, Hu C, Fang Y, Zhang H, Xu Y, Zheng L, Chen L, Liang W. Targeted elimination of Vancomycin resistance gene vanA by CRISPR-Cas9 system. BMC Microbiol 2023; 23:380. [PMID: 38049763 PMCID: PMC10694887 DOI: 10.1186/s12866-023-03136-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023] Open
Abstract
OBJECTIVE The purpose of this study is to reduce the spread of the vanA gene by curing the vanA-harboring plasmid of vancomycin-resistant using the CRISPR-Cas9 system. METHODS Two specific spacer sequence (sgRNAs) specific was designed to target the vanA gene and cloned into plasmid CRISPR-Cas9. The role of the CRISPR-Cas system in the plasmid elimination of drug-resistance genes was verified by chemically transformation and conjugation delivery methods. Moreover, the elimination efficiency in strains was evaluated by plate counting, PCR, and quantitative real-time PCR (qPCR). Susceptibility testing was performed by broth microdilution assay and by Etest strips (bioMérieux, France) to detect changes in bacterial drug resistance phenotype after drug resistance plasmid clearance. RESULTS In the study, we constructed a specific prokaryotic CRISPR-Cas9 system plasmid targeting cleavage of the vanA gene. PCR and qPCR results indicated that recombinant pCas9-sgRNA plasmid can efficiently clear vanA-harboring plasmids. There was no significant correlation between sgRNA lengths and curing efficiency. In addition, the drug susceptibility test results showed that the bacterial resistance to vancomycin was significantly reduced after the vanA-containing drug-resistant plasmid was specifically cleaved by the CRISPR-Cas system. The CRISPR-Cas9 system can block the horizontal transfer of the conjugated plasmid pUC19-vanA. CONCLUSION In conclusion, our study demonstrated that CRISPR-Cas9 achieved plasmid clearance and reduced antimicrobial resistance. The CRISPR-Cas9 system could block the horizontal transfer of plasmid carrying vanA. This strategy provided a great potential to counteract the ever-worsening spread of the vanA gene among bacterial pathogens and laid the foundation for subsequent research using the CRISPR-Cas9 system as adjuvant antibiotic therapy.
Collapse
Affiliation(s)
- Shuan Tao
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, No 59. Liuting Road, Haishu District, Ningbo, 315010, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chunwei Hu
- The Biobank of The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yewei Fang
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, No 59. Liuting Road, Haishu District, Ningbo, 315010, China
| | - He Zhang
- Bengbu Medical College, Bengbu, China
| | - Yao Xu
- School of Medicine, Ningbo University, Ningbo, China
| | - Lin Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, No 59. Liuting Road, Haishu District, Ningbo, 315010, China
| | - Luyan Chen
- Department of Blood Transfusion, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Wei Liang
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, No 59. Liuting Road, Haishu District, Ningbo, 315010, China.
| |
Collapse
|
57
|
Liu K, Cao Z, Huang S, Kong F. Mechanism underlying the effect of Pulsatilla decoction in hepatocellular carcinoma treatment: a network pharmacology and in vitro analysis. BMC Complement Med Ther 2023; 23:405. [PMID: 37950195 PMCID: PMC10636957 DOI: 10.1186/s12906-023-04244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Currently, hepatocellular carcinoma (HCC) is associated with a poor prognosis. Moreover, there exist limited strategies for treating HCC. Pulsatilla decoction (PD), a traditional Chinese medicine formula, has been used to treat inflammatory bowel disease and several cancer types. Accordingly, we explored the mechanism of PD in HCC treatment via network pharmacology and in vitro experiments. METHODS Online databases were searched for gene data, active components, and potential target genes associated with HCC development. Subsequently, bioinformatics analysis was performed using protein-protein interaction and Network Construction and Kyoto Encyclopedia of Genes and Genomes (KEGG) to screen for potential anticancer components and therapeutic targets of PD. Finally, the effect of PD on HCC was further verified by in vitro experiments. RESULTS Network pharmacological analysis revealed that 65 compounds and 180 possible target genes were associated with the effect of PD on HCC. These included PI3K, AKT, NF-κB, FOS, and NFKBIA. KEGG analysis demonstrated that PD exerted its effect on HCC mainly via the PI3K-AKT, IL-17, and TNF signaling pathways. Cell viability and cell cycle experiments revealed that PD could significantly inhibit cancer cell proliferation and kill HCC cells by inducing apoptosis. Furthermore, western blotting confirmed that apoptosis was mediated primarily via the PI3K-AKT, IL-17, and TNF signaling pathways. CONCLUSION To the best of our knowledge, this is the first study to elucidate the molecular mechanism and potential targets of PD in the treatment of HCC using network pharmacology.
Collapse
Affiliation(s)
- Kuijie Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhenyu Cao
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Siqi Huang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Fanhua Kong
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
58
|
Pektas H, Demidov Y, Ahvan A, Abie N, Georgieva VS, Chen S, Farè S, Brachvogel B, Mathur S, Maleki H. MXene-Integrated Silk Fibroin-Based Self-Assembly-Driven 3D-Printed Theragenerative Scaffolds for Remotely Photothermal Anti-Osteosarcoma Ablation and Bone Regeneration. ACS MATERIALS AU 2023; 3:711-726. [PMID: 38089660 PMCID: PMC10636780 DOI: 10.1021/acsmaterialsau.3c00040] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 12/30/2023]
Abstract
Aiming to address the bone regeneration and cancer therapy functionalities in one single material, in this study, we developed a dual-functional theragenerative three-dimensional (3D) aerogel-based composite scaffold from hybridization of photo-cross-linked silk fibroin (SF) biopolymer with MXene (Ti3C2) two-dimensional (2D) nanosheets. To fabricate the scaffold, we first develop a dual-cross-linked SF-based aerogel scaffold through 3D printing and photo-cross-linking of the self-assembly-driven methacrylate-modified SF (SF-MA) gel with controlled pore size, macroscopic geometry, and mechanical stability. In the next step, to endow a remotely controlled photothermal antiosteosarcoma ablation function to fabricated aerogel scaffold, MXene 2D nanosheets with strong near-infrared (NIR) photon absorption properties were integrated into the 3D-printed scaffolds. While 3D-printed MXene-modified dual-cross-linked SF composite scaffolds can mediate the in vitro growth and proliferation of preosteoblastic cell lines, they also endow a strong photothermal effect upon remote irradiation with NIR laser but also significantly stimulate bone mineral deposition on the scaffold surface. Additionally, besides the local release of the anticancer model drug, the generated heat (45-53 °C) mediated the photothermal ablation of cancer cells. The developed aerogel-based composites and chosen therapeutic techniques are thought to render a significant breakthrough in biomaterials' future clinical applications.
Collapse
Affiliation(s)
- Hadice
Kübra Pektas
- Department
of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Cologne 50939, Germany
| | - Yan. Demidov
- Department
of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Cologne 50939, Germany
| | - Aslin Ahvan
- Department
of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Cologne 50939, Germany
| | - Nahal Abie
- Department
of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Cologne 50939, Germany
- Department
of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Milano 20054, Italy
| | - Veronika S. Georgieva
- Experimental
Neonatology, Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne 50939, Germany
- Center
for Biochemistry, Medical Faculty, University
of Cologne, Cologne 50923, Germany
| | - Shiyi Chen
- Department
of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Cologne 50939, Germany
| | - Silvia Farè
- Department
of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Milano 20054, Italy
| | - Bent Brachvogel
- Experimental
Neonatology, Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne 50939, Germany
- Center
for Biochemistry, Medical Faculty, University
of Cologne, Cologne 50923, Germany
| | - Sanjay Mathur
- Department
of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Cologne 50939, Germany
| | - Hajar Maleki
- Department
of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Cologne 50939, Germany
- Center
for Molecular Medicine Cologne, CMMC Research Center, Robert-Koch-Str. 21, Cologne 50931, Germany
| |
Collapse
|
59
|
Escutia-Gutiérrez R, Sandoval-Rodríguez A, Zamudio-Ojeda A, Guevara-Martínez SJ, Armendáriz-Borunda J. Advances of Nanotechnology in the Diagnosis and Treatment of Hepatocellular Carcinoma. J Clin Med 2023; 12:6867. [PMID: 37959332 PMCID: PMC10647688 DOI: 10.3390/jcm12216867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
Nanotechnology has emerged as a promising technology in the field of hepatocellular carcinoma (HCC), specifically in the implementation of diagnosis and treatment strategies. Nanotechnology-based approaches, such as nanoparticle-based contrast agents and nanoscale imaging techniques, have shown great potential for enhancing the sensitivity and specificity of HCC detection. These approaches provide high-resolution imaging and allow for the detection of molecular markers and alterations in cellular morphology associated with HCC. In terms of treatment, nanotechnology has revolutionized HCC therapy by enabling targeted drug delivery, enhancing therapeutic efficacy, and minimizing off-target effects. Nanoparticle-based drug carriers can be functionalized with ligands specific to HCC cells, allowing for selective accumulation of therapeutic agents at the tumor site. Furthermore, nanotechnology can facilitate combination therapy by co-encapsulating multiple drugs within a single nanoparticle, allowing for synergistic effects and overcoming drug resistance. This review aims to provide an overview of recent advances in nanotechnology-based approaches for the diagnosis and treatment of HCC. Further research is needed to optimize the design and functionality of nanoparticles, improve their biocompatibility and stability, and evaluate their long-term safety and efficacy. Nonetheless, the integration of nanotechnology in HCC management holds great promise and may lead to improved patient outcomes in the future.
Collapse
Affiliation(s)
- Rebeca Escutia-Gutiérrez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico; (R.E.-G.); (A.S.-R.)
| | - Ana Sandoval-Rodríguez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico; (R.E.-G.); (A.S.-R.)
| | - Adalberto Zamudio-Ojeda
- Department of Physics, Exact Sciences and Engineering University Center, University of Guadalajara, Guadalajara 44340, Mexico;
| | - Santiago José Guevara-Martínez
- Department of Physics, Exact Sciences and Engineering University Center, University of Guadalajara, Guadalajara 44340, Mexico;
| | - Juan Armendáriz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico; (R.E.-G.); (A.S.-R.)
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Zapopan 45201, Mexico
| |
Collapse
|
60
|
Tao S, Chen H, Li N, Fang Y, Zhang H, Xu Y, Chen L, Liang W. Elimination of bla KPC-2-mediated carbapenem resistance in Escherichia coli by CRISPR-Cas9 system. BMC Microbiol 2023; 23:310. [PMID: 37884864 PMCID: PMC10601263 DOI: 10.1186/s12866-023-03058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
OBJECTIVE The purpose of this study is to re-sensitive bacteria to carbapenemases and reduce the transmission of the blaKPC-2 gene by curing the blaKPC-2-harboring plasmid of carbapenem-resistant using the CRISPR-Cas9 system. METHODS The single guide RNA (sgRNA) specifically targeted to the blaKPC-2 gene was designed and cloned into plasmid pCas9. The recombinant plasmid pCas9-sgRNA(blaKPC-2) was transformed into Escherichia coli (E.coli) carrying pET24-blaKPC-2. The elimination efficiency in strains was evaluated by polymerase chain reaction (PCR) and quantitative real-time PCR (qPCR). Susceptibility testing was performed by broth microdilution assay and by E-test strips (bioMérieux, France) to detect changes in bacterial drug resistance phenotype after drug resistance plasmid clearance. RESULTS In the present study, we constructed a specific prokaryotic CRISPR-Cas9 system plasmid targeting cleavage of the blaKPC-2 gene. PCR and qPCR results indicated that prokaryotic CRISPR-Cas9 plasmid transforming drug-resistant bacteria can efficiently clear blaKPC-2-harboring plasmids. In addition, the drug susceptibility test results showed that the bacterial resistance to imipenem was significantly reduced and allowed the resistant model bacteria to restore susceptibility to antibiotics after the blaKPC-2-containing drug-resistant plasmid was specifically cleaved by the CRISPR-Cas system. CONCLUSION In conclusion, our study demonstrated that the one plasmid-mediated CRISPR-Cas9 system can be used as a novel tool to remove resistance plasmids and re-sensitize the recipient bacteria to antibiotics. This strategy provided a great potential to counteract the ever-worsening spread of the blaKPC-2 gene among bacterial pathogens and laid the foundation for subsequent research using the CRISPR-Cas9 system as adjuvant antibiotic therapy.
Collapse
Affiliation(s)
- Shuan Tao
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Huimin Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Na Li
- Bengbu Medical College, Bengbu, China
| | - Yewei Fang
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - He Zhang
- Bengbu Medical College, Bengbu, China
| | - Yao Xu
- School of Medicine, Ningbo University, Ningbo, China
| | - Luyan Chen
- Department of Blood Transfusion, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Wei Liang
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
61
|
Chen Y, Yin S, Liu R, Yang Y, Wu Q, Lin W, Li W. β-Sitosterol activates autophagy to inhibit the development of hepatocellular carcinoma by regulating the complement C5a receptor 1/alpha fetoprotein axis. Eur J Pharmacol 2023; 957:175983. [PMID: 37598926 DOI: 10.1016/j.ejphar.2023.175983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023]
Abstract
Hepatocellular carcinoma (HCC) is highly refractory. β-Sitosterol has been reported to suppress proliferation and migration as well as interfere with cell metabolism in tumors. However, there is limited information on the effects of β-sitosterol on HCC. Herein, we used a xenograft mouse model to investigate the effects of β-sitosterol on HCC tumor growth. The molecular mechanism was elucidated using quantitative real-time PCR, western blotting, lentiviral transfection, CCK8, scratch, Transwell, and Ad-mCherry-GFP-LC3B assays. The results showed that HepG2 cells highly expressed complement C5a receptor 1. β-Sitosterol antagonized complement component 5a and exerted inhibitory effects on the proliferation and migration of HepG2 cells. The inhibitory effect of β-sitosterol was reversed by the knockdown of complement C5a receptor 1. Bioinformatics analysis suggested alpha fetoprotein (AFP) as a downstream factor of complement C5a receptor 1. β-Sitosterol inhibited AFP expression, which was reversed by complement C5a receptor 1 knockdown. The inhibitory effects of β-sitosterol on cell proliferation and migration were weakened by AFP overexpression. Furthermore, β-sitosterol induced autophagy in HepG2 cells, which was reversed by complement C5a receptor 1 knockdown and AFP overexpression. Blockade of autophagy by 3-MA attenuated β-sitosterol inhibition of proliferation and migration in HepG2 cells. Moreover, β-sitosterol inhibited HCC progression in vivo. Our findings demonstrate that β-sitosterol inhibits HCC advancement by activating autophagy through the complement C5a receptor 1/AFP axis. These findings recommend β-sitosterol as a promising therapy for HCC.
Collapse
Affiliation(s)
- Yuankun Chen
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan, Haikou 570100, China; Key Laboratory of Tropical Translational Medicine of Ministry of Health, Hainan Medical University, Hainan, Haikou 571199, China
| | - Song Yin
- Department of Infectious Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, Hefei 230001, China; Wannan Medical College, Anhui, Wuhu 241002, China
| | - Rui Liu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan, Haikou 570100, China; Key Laboratory of Tropical Translational Medicine of Ministry of Health, Hainan Medical University, Hainan, Haikou 571199, China
| | - Yijun Yang
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan, Haikou 570100, China; Key Laboratory of Tropical Translational Medicine of Ministry of Health, Hainan Medical University, Hainan, Haikou 571199, China
| | - Qiuping Wu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan, Haikou 570100, China; Key Laboratory of Tropical Translational Medicine of Ministry of Health, Hainan Medical University, Hainan, Haikou 571199, China
| | - Wenyu Lin
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Wenting Li
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan, Haikou 570100, China; Key Laboratory of Tropical Translational Medicine of Ministry of Health, Hainan Medical University, Hainan, Haikou 571199, China; Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Anhui, Hefei 230022, China.
| |
Collapse
|
62
|
Tian H, Zhao F, Qi QR, Yue BS, Zhai BT. Targeted drug delivery systems for elemene in cancer therapy: The story thus far. Biomed Pharmacother 2023; 166:115331. [PMID: 37598477 DOI: 10.1016/j.biopha.2023.115331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/26/2023] [Accepted: 08/12/2023] [Indexed: 08/22/2023] Open
Abstract
Elemene (ELE) is a group of broad-spectrum anticancer active ingredients with low toxicity extracted from traditional Chinese medicines (TCMs), such as Curcumae Rhizoma and Curcuma Radix, which can exert antitumour activities by regulating various signal pathways and targets. However, the strong hydrophobicity, short half-life, low bioavailability and weak in vivo targeting ability of ELE restrict its use. Targeted drug delivery systems based on nanomaterials are among the most viable methods to overcome these shortcomings. In this review, we first summarize recent studies on the clinical uses of ELE as an adjunct antitumour drug. ELE-based combination strategies have great promise for enhancing efficacy, reducing adverse reactions, and improving patients' quality of life and immune function. Second, we summarize recent studies on the antitumour mechanisms of ELE and ELE-based combination strategies. The potential mechanisms include inducing pyroptosis and ferroptosis, promoting senescence, regulating METTL3-mediated m6A modification, suppressing the Warburg effect, and inducing apoptosis and cell cycle arrest. Most importantly, we comprehensively summarize studies on the combination of targeted drug delivery systems with ELE, including passively and actively targeted drug delivery systems, stimuli-responsive drug delivery systems, and codelivery systems for ELE combined with other therapies, which have great promise in improving drug bioavailability, increasing drug targeting ability, controlling drug release, enhancing drug efficacy, reducing drug adverse effects and reversing MDR. Our summary will provide a reference for the combination of TCMs such as ELE with advanced targeted drug delivery systems in the future.
Collapse
Affiliation(s)
- Huan Tian
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, PR China
| | - Feng Zhao
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, PR China
| | - Qing-Rui Qi
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China
| | - Bao-Sen Yue
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, PR China.
| | - Bing-Tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China.
| |
Collapse
|
63
|
Li R, Zhang J, Liu Q, Tang Q, Jia Q, Xiong Y, He J, Li Y. CREKA-modified liposomes target activated hepatic stellate cells to alleviate liver fibrosis by inhibiting collagen synthesis and angiogenesis. Acta Biomater 2023; 168:484-496. [PMID: 37392933 DOI: 10.1016/j.actbio.2023.06.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Activated hepatic stellate cells (HSCs) are considered the key driver of excessive extracellular matrix and abnormal angiogenesis, which are the main pathological manifestations of hepatic fibrosis. However, the absence of specific targeting moieties has rendered the development of HSC-targeted drug delivery systems a significant obstacle in the treatment of liver fibrosis. Here we have identified a notable increase in fibronectin expression on HSCs, which positively correlates with the progression of hepatic fibrosis. Thus, we decorated PEGylated liposomes with CREKA, a peptide with high affinity for fibronectin, to facilitate the targeted delivery of sorafenib to activated HSCs. The CREKA-coupled liposomes exhibited enhanced cellular uptake in the human hepatic stellate cell line LX2 and selective accumulation in CCl4-induced fibrotic liver through the recognition of fibronectin. When loaded with sorafenib, the CREKA-modified liposomes effectively suppressed HSC activation and collagen accumulation in vitro. Furthermore. in vivo results demonstrated that the administration of sorafenib-loaded CREKA-liposomes at a low dose significantly mitigated CCl4-induced hepatic fibrosis, prevented inflammatory infiltration and reduced angiogenesis in mice. These findings suggest that CREKA-coupled liposomes have promising potential as a targeted delivery system for therapeutic agents to activated HSCs, thereby providing an efficient treatment option for hepatic fibrosis. STATEMENT OF SIGNIFICANCE: In liver fibrosis, activated hepatic stellate cells (aHSCs) are the key driver of extracellular matrix and abnormal angiogenesis. Our investigation has revealed a significant elevation in fibronectin expression on aHSCs, which is positively associated with the progression of hepatic fibrosis. Thus, we developed PEGylated liposomes decorated with CREKA, a molecule with a high affinity for fibronectin, to facilitate the targeted delivery of sorafenib to aHSCs. The CREKA-coupled liposomes can specifically target aHSCs both in vitro and in vivo. Loading sorafenib into CREKA-Lip significantly alleviated CCl4-induced liver fibrosis, angiogenesis and inflammation at low doses. These findings suggest that our drug delivery system holds promise as a viable therapeutic option for liver fibrosis with minimal risk of adverse effects.
Collapse
Affiliation(s)
- Rui Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jinhang Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qinhui Liu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qin Tang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qingyi Jia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yimin Xiong
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
64
|
Caputo TM, Cusano AM, Principe S, Cicatiello P, Celetti G, Aliberti A, Micco A, Ruvo M, Tagliamonte M, Ragone C, Minopoli M, Carriero MV, Buonaguro L, Cusano A. Sorafenib-Loaded PLGA Carriers for Enhanced Drug Delivery and Cellular Uptake in Liver Cancer Cells. Int J Nanomedicine 2023; 18:4121-4142. [PMID: 37525693 PMCID: PMC10387258 DOI: 10.2147/ijn.s415968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/29/2023] [Indexed: 08/02/2023] Open
Abstract
Introduction Currently, conventional treatments of hepatocellular carcinoma (HCC) are not selective enough for tumor tissue and lead to multidrug resistance and drug toxicity. Although sorafenib (SOR) is the standard first-line systemic therapy approved for the clinical treatment of HCC, its poor aqueous solubility and rapid clearance result in low absorption efficiency and severely limit its use for local treatment. Methods Herein, we present the synthesis of biodegradable polymeric Poly (D, L-Lactide-co-glycolide) (PLGA) particles loaded with SOR (PS) by emulsion-solvent evaporation process. The particles are carefully characterized focusing on particle size, surface charge, morphology, drug loading content, encapsulation efficiency, in vitro stability, drug release behaviour and tested on HepG2 cells. Additionally, PLGA particles have been coupled on side emitting optical fibers (seOF) integrated in a microfluidic device for light-triggered local release. Results PS have a size of 248 nm, tunable surface charge and a uniform and spherical shape without aggregation. PS shows encapsulation efficiency of 89.7% and the highest drug loading (8.9%) between the SOR-loaded PLGA formulations. Treating HepG2 cells with PS containing SOR at 7.5 µM their viability is dampened to 40%, 30% and 17% after 48, 129 and 168 hours of incubation, respectively. Conclusion The high PS stability, their sustained release profile and the rapid cellular uptake corroborate the enhanced cytotoxicity effect on HepG2. With the prospect of developing biomedical tools to control the spatial and temporal release of drugs, we successfully demonstrated the potentiality of seOF for light-triggered local release of the carriers. Our prototypical system paves the way to new devices integrating microfluidics, optical fibers, and advanced carriers capable to deliver minimally invasive locoregional cancer treatments.
Collapse
Affiliation(s)
- Tania Mariastella Caputo
- Optoelectronics Group, Department of Engineering, University of Sannio, Palazzo Dell’ Aquila Bosco Lucarelli, Benevento, Italy
| | - Angela Maria Cusano
- CeRICTscrl Regional Center Information Communication Technology, Palazzo Ex Poste, Benevento, Italy
| | - Sofia Principe
- Optoelectronics Group, Department of Engineering, University of Sannio, Palazzo Dell’ Aquila Bosco Lucarelli, Benevento, Italy
| | - Paola Cicatiello
- Optoelectronics Group, Department of Engineering, University of Sannio, Palazzo Dell’ Aquila Bosco Lucarelli, Benevento, Italy
| | - Giorgia Celetti
- Optoelectronics Group, Department of Engineering, University of Sannio, Palazzo Dell’ Aquila Bosco Lucarelli, Benevento, Italy
| | - Anna Aliberti
- Optoelectronics Group, Department of Engineering, University of Sannio, Palazzo Dell’ Aquila Bosco Lucarelli, Benevento, Italy
| | - Alberto Micco
- CeRICTscrl Regional Center Information Communication Technology, Palazzo Ex Poste, Benevento, Italy
| | - Menotti Ruvo
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| | - Maria Tagliamonte
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - “Fond G. Pascale”, Naples, Italy
| | - Concetta Ragone
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - “Fond G. Pascale”, Naples, Italy
| | - Michele Minopoli
- Neoplastic Progression Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Naples, Italy
| | - Maria Vincenza Carriero
- Neoplastic Progression Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Naples, Italy
| | - Luigi Buonaguro
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - “Fond G. Pascale”, Naples, Italy
| | - Andrea Cusano
- Optoelectronics Group, Department of Engineering, University of Sannio, Palazzo Dell’ Aquila Bosco Lucarelli, Benevento, Italy
- CeRICTscrl Regional Center Information Communication Technology, Palazzo Ex Poste, Benevento, Italy
| |
Collapse
|
65
|
Yadav S. Advanced therapeutics avenues in hepatocellular carcinoma: a novel paradigm. Med Oncol 2023; 40:239. [PMID: 37442842 DOI: 10.1007/s12032-023-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer, and it poses a significant risk to patients health and longevity due to its high morbidity and fatality rates. Surgical ablation, radiotherapy, chemotherapy, and, most recently, immunotherapy have all been investigated for HCC, but none have yielded the desired outcomes. Several unique nanocarrier drug delivery techniques have been studied for their potential therapeutic implications in the treatment of HCC. Nanoparticle-based imaging could be effective for more accurate HCC diagnosis. Since its inception, nanomedicine has significantly transformed the approach to both the treatment and diagnostics of liver cancer. Nanoparticles (NPs) are being studied as a potential treatment for liver cancer because of their ability to carry small substances, such as treatment with chemotherapy, microRNA, and therapeutic genes. The primary focus of this study is on the most current discoveries and practical uses of nanomedicine-based diagnostic and therapeutic techniques for liver cancer. In this section, we had gone over what we know about metabolic dysfunction in HCC and the treatment options that attempt to fix it by targeting metabolic pathways. Furthermore, we propose a multi-target metabolic strategy as a viable HCC treatment option. Based on the findings given here, the scientists believe that smart nanomaterials have great promise for improving cancer theranostics and opening up new avenues for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Plot No.2, Sector 17-A, Yamuna Expressway, Gautam Buddhnagar, Greater Noida, Uttar Pradesh, 201310, India.
| |
Collapse
|
66
|
Yong F, Yan M, Zhang L, Ji W, Zhao S, Gao Y. Analysis of Functional Promoter of Camel FGF21 Gene and Identification of Small Compounds Targeting FGF21 Protein. Vet Sci 2023; 10:452. [PMID: 37505857 PMCID: PMC10383868 DOI: 10.3390/vetsci10070452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
The fibroblast growth factor 21 (FGF21) gene plays an important role in the mechanism of glucose and lipid metabolism and is a promising therapeutic target for metabolic disease. Camels display a unique regulation characteristic of glucose and lipid metabolism, endowing them with the ability to adapt to survive drought and chronic hunger. However, the knowledge about the camel FGF21 gene regulation and its differences between humans and mice is still limited. In this study, camel FGF21 gene promoter was obtained for ~2000 bp upstream of the transcriptional start site (TSS). Bioinformatics analysis showed that the proximal promoter region sequences near the TSS between humans and camels have high similarity. Two potential core active regions are located in the -445-612 bp region. In addition, camel FGF21 promoter contains three CpG islands (CGIs), located in the -435~-1168 bp regions, significantly more and longer than in humans and mice. The transcription factor binding prediction showed that most transcription factors, including major functional transcription factors, are the same in different species although the binding site positions in the promoter are different. These results indicated that the signaling pathways involved in FGF21 gene transcription regulation are conservative in mammals. Truncated fragments recombinant vectors and luciferase reporter assay determined that camel FGF21 core promoter is located within the 800 bp region upstream of the TSS and an enhancer may exist between the -1000 and -2000 bp region. Combining molecular docking and in silico ADMET druggability prediction, two compounds were screened as the most promising candidate drugs specifically targeting FGF21. This study expanded the functions of these small molecules and provided a foundation for drug development targeting FGF21.
Collapse
Affiliation(s)
- Fang Yong
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Meilin Yan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Lili Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Wangye Ji
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shuqin Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yuan Gao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
67
|
Pusta A, Tertis M, Crăciunescu I, Turcu R, Mirel S, Cristea C. Recent Advances in the Development of Drug Delivery Applications of Magnetic Nanomaterials. Pharmaceutics 2023; 15:1872. [PMID: 37514058 PMCID: PMC10383769 DOI: 10.3390/pharmaceutics15071872] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
With the predicted rise in the incidence of cancer, there is an ever-growing need for new cancer treatment strategies. Recently, magnetic nanoparticles have stood out as promising nanostructures for imaging and drug delivery systems as they possess unique properties. Moreover, magnetic nanomaterials functionalized with other compounds can lead to multicomponent nanoparticles with innovative structures and synergetic performance. The incorporation of chemotherapeutic drugs or RNA in magnetic drug delivery systems represents a promising alternative that can increase efficiency and reduce the side effects of anticancer therapy. This review presents a critical overview of the recent literature concerning the advancements in the field of magnetic nanoparticles used in drug delivery, with a focus on their classification, characteristics, synthesis and functionalization methods, limitations, and examples of magnetic drug delivery systems incorporating chemotherapeutics or RNA.
Collapse
Affiliation(s)
- Alexandra Pusta
- Department of Analytical Chemistry and Instrumental Analysis, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania
- Department of Medical Devices, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Mihaela Tertis
- Department of Analytical Chemistry and Instrumental Analysis, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Izabell Crăciunescu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Rodica Turcu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Simona Mirel
- Department of Medical Devices, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Cecilia Cristea
- Department of Analytical Chemistry and Instrumental Analysis, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| |
Collapse
|
68
|
Borriello R, Cerrito L, Gasbarrini A, Ponziani FR. Pharmacokinetic considerations for angiogenesis inhibitors used to treat hepatocellular carcinoma: an overview. Expert Opin Drug Metab Toxicol 2023; 19:785-794. [PMID: 37847538 DOI: 10.1080/17425255.2023.2272598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is the fifth malignancy in terms of frequency and the fourth malignancy in terms of cancer-related death worldwide. Systemic therapy of advanced HCC has probably gone through the greatest wave of change in the last decade, with the introduction of several anti-angiogenic drugs and immune checkpoint inhibitors, able to significantly improve patients' prognosis. AREAS COVERED In this review, we summarize the pharmacokinetic characteristic of the antiangiogenic drugs currently approved for the treatment of HCC, from oral tyrosine kinase inhibitors (sorafenib, lenvatinib, regorafenib and cabozantinib) to monoclonal antibodies (bevacizumab and ramucirumab), focusing on the main aspects that differ among compounds from the same class, on factors that can exert an influence on pharmacokinetic parameters and the main issues that could limit their clinical use. EXPERT OPINION Anti-angiogenic drugs have different profiles in terms of bioavailability, metabolism, elimination and interindividual variability in their pharmacokinetics and effectiveness. More studies should be developed to address the intrinsic and extrinsic factors influencing pharmacokinetics parameters to improve the individual therapeutic response and, furthermore, to evaluate the benefit and the harm of systemic therapy for advanced HCC in selected patients with liver impairment.
Collapse
Affiliation(s)
- Raffaele Borriello
- Digestive Disease Center-CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Lucia Cerrito
- Digestive Disease Center-CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center-CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesca Romana Ponziani
- Digestive Disease Center-CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
69
|
Alawyia B, Constantinou C. Hepatocellular Carcinoma: a Narrative Review on Current Knowledge and Future Prospects. Curr Treat Options Oncol 2023; 24:711-724. [PMID: 37103744 DOI: 10.1007/s11864-023-01098-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 04/28/2023]
Abstract
OPINION STATEMENT Hepatocellular carcinoma is the fourth leading cause of cancer-related deaths worldwide and its associated mortality rate is expected to rise within the next decade. The incidence rate of hepatocellular carcinoma varies significantly across countries and the latter can be attributed to the differences in risk factors that are prevalent across different countries. Some of the risk factors associated with hepatocellular carcinoma include hepatitis B and C infections, non-alcoholic fatty liver disease, and alcoholic liver disease. Regardless of the underlying aetiology, the end result is liver fibrosis and cirrhosis that ultimately progress into carcinoma. The treatment and management of hepatocellular carcinoma is complicated by treatment resistance and high tumor recurrence rates. Early stages of hepatocellular carcinoma are treated with liver resection and other forms of surgical therapy. Advanced stages of hepatocellular carcinoma can be treated with chemotherapy, immunotherapy, and the use of oncolytic viruses and these treatment options can be combined with nanotechnology to improve efficacy and reduce side effects. Moreover, chemotherapy and immunotherapy can be combined to further improve treatment efficacy and overcome resistance. Despite the treatment options available, the high mortality rates provide evidence that current treatment options for advanced-stage hepatocellular carcinoma are not achieving the desired therapeutic goals. Various clinical trials are ongoing to improve treatment efficacy, reduce recurrence rates, and ultimately prolong survival. This narrative review aims to provide an update on our current knowledge and future direction of research on hepatocellular carcinoma.
Collapse
Affiliation(s)
- Basil Alawyia
- University of Nicosia Medical School, Nicosia, Cyprus
| | - Constantina Constantinou
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, P.O. Box 24005, 21 Ilia Papakyriakou, 2414 Engomi, CY-1700, Nicosia, Cyprus.
| |
Collapse
|
70
|
A multi-bioresponsive self-assembled nano drug delivery system based on hyaluronic acid and geraniol against liver cancer. Carbohydr Polym 2023; 310:120695. [PMID: 36925236 DOI: 10.1016/j.carbpol.2023.120695] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
Herein, a multi-bioresponsive self-assembled nano-drug delivery system (HSSG) was constructed by conjugating the anticancer drug Geraniol (GER) to hyaluronic acid (HA) via a disulfide bond. The HSSG NPs displayed a uniform spherical shape with an average diameter of ∼110 nm, maintained high stability, and realized controlled drug release in the tumor microenvironment (pH/glutathione/hyaluronidase). Results of fluorescence microscopy and flow cytometry verified that HSSG NPs were selectively uptaken by human hepatocellular carcinoma cell lines HepG2 and Huh7 via CD44 receptor-mediated internalization. Studies on H22 tumor-bearing mice demonstrate that HSSG NPs could effectively accumulate at the tumor site for a long period. In vitro and in vivo studies show that HSSG NPs significantly promoted the death of cancer cells while reducing the toxicity as compared to GER. Therefore, the HSSG NPs have great potential in the treatment of tumors.
Collapse
|
71
|
Wang L, Chen M, Ran X, Tang H, Cao D. Sorafenib-Based Drug Delivery Systems: Applications and Perspectives. Polymers (Basel) 2023; 15:2638. [PMID: 37376284 DOI: 10.3390/polym15122638] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
As a Food and Drug Administration (FDA)-approved molecular-targeted chemotherapeutic drug, sorafenib (SF) can inhibit angiogenesis and tumor cell proliferation, leading to improved patient overall survival of hepatocellular carcinoma (HCC). In addition, SF is an oral multikinase inhibitor as a single-agent therapy in renal cell carcinoma. However, the poor aqueous solubility, low bioavailability, unfavorable pharmacokinetic properties and undesirable side effects (anorexia, gastrointestinal bleeding, and severe skin toxicity, etc.) seriously limit its clinical application. To overcome these drawbacks, the entrapment of SF into nanocarriers by nanoformulations is an effective strategy, which delivers SF in a target tumor with decreased adverse effects and improved treatment efficacy. In this review, significant advances and design strategies of SF nanodelivery systems from 2012 to 2023 are summarized. The review is organized by type of carriers including natural biomacromolecule (lipid, chitosan, cyclodextrin, etc.); synthetic polymer (poly(lactic-co-glycolic acid), polyethyleneimine, brush copolymer, etc.); mesoporous silica; gold nanoparticles; and others. Co-delivery of SF and other active agents (glypican-3, hyaluronic acid, apolipoprotein peptide, folate, and superparamagnetic iron oxide nanoparticles) for targeted SF nanosystems and synergistic drug combinations are also highlighted. All these studies showed promising results for targeted treatment of HCC and other cancers by SF-based nanomedicines. The outlook, challenges and future opportunities for the development of SF-based drug delivery are presented.
Collapse
Affiliation(s)
- Lingyun Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Meihuan Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Xueguang Ran
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510641, China
| | - Hao Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Derong Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| |
Collapse
|
72
|
Andrade F, German-Cortés J, Montero S, Carcavilla P, Baranda-Martínez-Abascal D, Moltó-Abad M, Seras-Franzoso J, Díaz-Riascos ZV, Rafael D, Abasolo I. The Nanotechnology-Based Approaches against Kirsten Rat Sarcoma-Mutated Cancers. Pharmaceutics 2023; 15:1686. [PMID: 37376135 DOI: 10.3390/pharmaceutics15061686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/18/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Kirsten rat sarcoma (KRAS) is a small GTPase which acts as a molecular switch to regulate several cell biological processes including cell survival, proliferation, and differentiation. Alterations in KRAS have been found in 25% of all human cancers, with pancreatic cancer (90%), colorectal cancer (45%), and lung cancer (35%) being the types of cancer with the highest mutation rates. KRAS oncogenic mutations are not only responsible for malignant cell transformation and tumor development but also related to poor prognosis, low survival rate, and resistance to chemotherapy. Although different strategies have been developed to specifically target this oncoprotein over the last few decades, almost all of them have failed, relying on the current therapeutic solutions to target proteins involved in the KRAS pathway using chemical or gene therapy. Nanomedicine can certainly bring a solution for the lack of specificity and effectiveness of anti-KRAS therapy. Therefore, nanoparticles of different natures are being developed to improve the therapeutic index of drugs, genetic material, and/or biomolecules and to allow their delivery specifically into the cells of interest. The present work aims to summarize the most recent advances related to the use of nanotechnology for the development of new therapeutic strategies against KRAS-mutated cancers.
Collapse
Affiliation(s)
- Fernanda Andrade
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Departament de Farmàcia i Tecnologia Farmacèutica i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Júlia German-Cortés
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
| | - Sara Montero
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
| | - Pilar Carcavilla
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
| | - Diego Baranda-Martínez-Abascal
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
| | - Marc Moltó-Abad
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Functional Validation & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Joaquín Seras-Franzoso
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Zamira Vanessa Díaz-Riascos
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Functional Validation & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Diana Rafael
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Functional Validation & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Ibane Abasolo
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Functional Validation & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Clinical Biochemistry Service, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| |
Collapse
|
73
|
Fang Y, Zhang X, Huang H, Zeng Z. The interplay between noncoding RNAs and drug resistance in hepatocellular carcinoma: the big impact of little things. J Transl Med 2023; 21:369. [PMID: 37286982 DOI: 10.1186/s12967-023-04238-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death in people, and a common primary liver cancer. Lacking early diagnosis and a high recurrence rate after surgical resection, systemic treatment is still an important treatment method for advanced HCC. Different drugs have distinct curative effects, side effects and drug resistance due to different properties. At present, conventional molecular drugs for HCC have displayed some limitations, such as adverse drug reactions, insensitivity to some medicines, and drug resistance. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), have been well documented to be involved in the occurrence and progression of cancer. Novel biomarkers and therapeutic targets, as well as research into the molecular basis of drug resistance, are urgently needed for the management of HCC. We review current research on ncRNAs and consolidate the known roles regulating drug resistance in HCC and examine the potential clinical applications of ncRNAs in overcoming drug resistance barriers in HCC based on targeted therapy, cell cycle non-specific chemotherapy and cell cycle specific chemotherapy.
Collapse
Affiliation(s)
- Yuan Fang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, People's Republic of China
| | - XiaoLi Zhang
- Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - HanFei Huang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, People's Republic of China.
| | - Zhong Zeng
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, People's Republic of China.
| |
Collapse
|
74
|
Ai W, Liu T, Lv C, Feng X, Wang Q. Modulation of cancer-associated fibroblasts by nanodelivery system to enhance efficacy of tumor therapy. Nanomedicine (Lond) 2023; 18:1025-1039. [PMID: 37584613 DOI: 10.2217/nnm-2023-0088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the most common cells in the tumor stroma and are essential for tumor development and metastasis. While decreasing the release and infiltration of nanomedicine through nonspecific internalization, CAFs specifically increase solid tumor pressure and interstitial fluid pressure by secreting tumor growth- and migration-promoting cytokines, which increases vascular and organ pressure caused by solid tumor pressure. Nanoparticles have good permeability and can penetrate tumor tissue to reach the lesion area, inhibiting tumor growth. Thus, CAFs are used as modifiable targets. Here, the authors review the biological functions, origins and biomarkers of CAFs and summarize strategies for modulating CAFs in nanodelivery systems. This study provides a prospective guide to modulating CAFs to enhance oncology treatment.
Collapse
Affiliation(s)
- Wei Ai
- College of Life Science & Technology, Changchun University of Science & Technology, Changchun, Jilin, 130022, China
| | - Tianhui Liu
- College of Life Science & Technology, Changchun University of Science & Technology, Changchun, Jilin, 130022, China
| | - Changshun Lv
- College of Life Science & Technology, Changchun University of Science & Technology, Changchun, Jilin, 130022, China
| | - Xiangru Feng
- College of Life Science & Technology, Changchun University of Science & Technology, Changchun, Jilin, 130022, China
| | - Qingshuang Wang
- College of Life Science & Technology, Changchun University of Science & Technology, Changchun, Jilin, 130022, China
| |
Collapse
|
75
|
Long J, Chen B, Liu Z. Comparative efficacy and safety of molecular targeted agents combined with transarterial chemoembolization in the treatment of unresectable hepatocellular carcinoma: a network meta-analysis. Front Oncol 2023; 13:1179431. [PMID: 37265792 PMCID: PMC10230082 DOI: 10.3389/fonc.2023.1179431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Objective At present, several molecular targeted agents(MTAs) combined with transarterial chemoembolization (TACE) have been employed to treat unresectable hepatocellular carcinoma (HCC). In this meta-analysis, we compared the efficacy and safety of different MTAs combined with TACE to enable effective decision-making for the clinical treatment of unresectable HCC. Methods Pubmed, Web of Science, EMBASE, and Cochrane Library were retrieved to evaluate the efficacy and safety of different MTAs combined with TACE in cohort studies and randomized controlled trials. The hazard ratios and 95% confidence intervals (CIs) were calculated to investigate the impact of various therapies on overall survival (OS) and progression-free survival. However, the objective response rate (ORR), disease control rate (DCR), adverse events (AEs), and ≥grade-3 adverse events (≥G3-AEs) were calculated using odd ratios and 95% CIs. The node-splitting approach was used to test the heterogeneity. The funnel plot was utilized to analyze the publication bias. Additionally, according to the ranking plots, we ranked various treatments. Results A total of 45 studies involving 10,774 patients with 8 treatment strategies were included in our network meta-analysis. Our network meta-analysis showed that apatinib+TACE provided the highest OS (62.2%), ORR (44.7%), and DCR (45.6%), while and lenvatinib+TACE offered the best PFS (78.9%). Besides, there was no statistically significant difference in AEs and ≥G3-AEs among treatment options. Conclusion Apatinib+TACE demonstrated the best OS, ORR, and DCR with no additional AEs and ≥G3-AEs. Therefore, for the treatment scheme of MTAs combined with TACE, apatinib+TACE may be the best option for patients with unresectable HCC. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023388609.
Collapse
Affiliation(s)
- Jiaye Long
- Department of Interventional Radiology, Inner Mongolia Forestry General Hospital, The Second Clinical Medical School of Inner Mongolia University for The Nationalities, Yakeshi, Inner Mongolia, China
| | - Baoxiang Chen
- Department of Interventional Radiology, Inner Mongolia Forestry General Hospital, The Second Clinical Medical School of Inner Mongolia University for The Nationalities, Yakeshi, Inner Mongolia, China
| | - Zhaohui Liu
- Department of Urology, Inner Mongolia Forestry General Hospital, The Second Clinical Medical School of Inner Mongolia University for The Nationalities, Yakeshi, Inner Mongolia, China
| |
Collapse
|
76
|
Wang S, Zhou L, Ji N, Sun C, Sun L, Sun J, Du Y, Zhang N, Li Y, Liu W, Lu W. Targeting ACYP1-mediated glycolysis reverses lenvatinib resistance and restricts hepatocellular carcinoma progression. Drug Resist Updat 2023; 69:100976. [PMID: 37210811 DOI: 10.1016/j.drup.2023.100976] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
Acylphosphatase 1 (ACYP1), a protein located in the mammalian cell cytoplasm, has been shown to be associated with tumor initiation and progression by functioning as a metabolism-related gene. Here we explored the potential mechanisms by which ACYP1 regulates the development of HCC and participates in the resistance to lenvatinib. ACYP1 can promote the proliferation, invasion, and migration capacities of HCC cells in vitro and in vivo. RNA sequencing reveals that ACYP1 markedly enhances the expression of genes related to aerobic glycolysis, and LDHA is identified as the downstream gene of ACYP1. Overexpression of ACYP1 upregulates LDHA levels, which then increases the malignancy potential of HCC cells. GSEA data analysis reveals the enrichment of differentially expressed genes in the MYC pathway, indicating a positive correlation between MYC and ACYP1 levels. Mechanistically, ACYP1 exerts its tumor-promoting roles by regulating the Warburg effect through activating the MYC/LDHA axis. Mass spectrometry analysis and Co-IP assays confirm that ACYP1 can bind to HSP90. The regulation of c-Myc protein expression and stability by ACYP1 is HSP90 dependent. Importantly, lenvatinib resistance is associated with ACYP1, and targeting ACYP1 remarkably decreases lenvatinib resistance and inhibits progression of HCC tumors with high ACYP1 expression when combined with lenvatinib in vitro and in vivo. These results illustrate that ACYP1 has a direct regulatory role in glycolysis and drives lenvatinib resistance and HCC progression via the ACYP1/HSP90/MYC/LDHA axis. Targeting ACYP1 could synergize with lenvatinib to treat HCC more effectively.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin 300060, PR China; Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lingyi Zhou
- Department of Blood Transfusion, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Ning Ji
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Chengtao Sun
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, Shandong, PR China
| | - Linlin Sun
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin 300060, PR China
| | - Jiao Sun
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin 300060, PR China
| | - Yawei Du
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin 300060, PR China
| | - Ningning Zhang
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin 300060, PR China.
| | - Yueguo Li
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Weishuai Liu
- Department of Pain Relief, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300060, PR China.
| | - Wei Lu
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin 300060, PR China.
| |
Collapse
|
77
|
Song H, Ge Y, Xu J, Shen R, Zhang PC, Wang GQ, Liu B. Identification and validation of novel signature associated with hepatocellular carcinoma prognosis using Single-cell and WGCNA analysis. Int J Med Sci 2023; 20:870-887. [PMID: 37324188 PMCID: PMC10266049 DOI: 10.7150/ijms.79274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/31/2023] [Indexed: 06/17/2023] Open
Abstract
Background: Hepatocellular carcinoma is a rapidly advancing malignancy with a poor prognosis. Therefore, further research is needed on its potential pathogenesis and therapeutic targets. Methods: In this study, the relevant datasets were downloaded from the TCGA database and the key modules were identified using WGCNA in the necroptosis-related gene set, while single-cell datasets were scored using the necroptosis gene set. Differential genes in the high- and low-expression groups were determined using the WGCNA module genes as intersection sets to identify key genes involved in necroptosis in liver cancer. Then, prognostic models were constructed using LASSO COX regression followed by multi-faceted validation. Finally, model genes were found to be correlated with key proteins of the necroptosis pathway and used to identify the most relevant genes, followed by their experimental validation. Subsequently, on the basis of the analysis results, the most relevant SFPQ was selected for cell-level verification. Results: We constructed a prognosis model that included five necroptosis-related genes (EHD1, RAC1, SFPQ, DAB2 and PABPC4) to predict the prognosis and survival of HCC patients. The results showed that the prognosis was more unfavorable in the high-risk group compared to the low-risk group, which was corroborated using ROC curves and risk factor plots. In addition, we further checked the differential genes using GO and KEGG analyses and found that they were predominantly enriched in the neuroactive ligand-receptor interaction pathway. The results of the GSVA analysis demonstrated that the high-risk group was mainly enriched in DNA replication, regulation of the mitotic cycle, and regulation of various cancer pathways, while the low-risk group was predominantly enriched in the metabolism of drugs and xenobiotics using cytochrome P450. SFPQ was found to be the main gene that affects the prognosis and SFPQ expression was positively correlated with the expression of RIPK1, RIPK3 and MLKL. Furthermore, the suppression of SFPQ could inhibit hyper-malignant phenotype HCC cells, while the WB results showed that inhibition of SFPQ expression also resulted in lower expression of necroptosis proteins, compared to the sh-NC group. Conclusions: Our prognostic model could accurately predict the prognosis of patients with HCC to further identify novel molecular candidates and interventions that can be used as alternative methods of treatment for HCC.
Collapse
Affiliation(s)
- Hang Song
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 230012, Hefei, China
| | - Yang Ge
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 230012, Hefei, China
| | - Jing Xu
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 230012, Hefei, China
| | - Rui Shen
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 230012, Hefei, China
| | - Peng-cheng Zhang
- Department of oncology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, 219 Moganshan Road, Xihu District, Hangzhou City, Zhejiang Province 310005, China
| | - Guo-quan Wang
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 230012, Hefei, China
| | - Bin Liu
- Cancer Research Centre, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, 101149, Beijing, China
| |
Collapse
|
78
|
Sperandio LP, Lins IVF, Erustes AG, Leão AHFF, Antunes F, Morais IBM, Vieira HF, de Campos LM, Bincoletto C, Smaili SS, Pereira GJS. Blocking autophagy by the two-pore channels antagonist tetrandrine improves sorafenib-induced death of hepatocellular carcinoma cells. Toxicol In Vitro 2023; 90:105603. [PMID: 37121360 DOI: 10.1016/j.tiv.2023.105603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/07/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
Sorafenib, an oral multi-kinase inhibitor, used to treat hepatocellular carcinoma (HCC). However, drug resistance is still common in several HCC patients. This complex mechanism is not yet fully elucidated, driving the search for new therapeutic targets to potentiate the antitumoral effect of sorafenib. Recent findings have linked the expression of Two-Pore Channels (TPCs) receptors with the development and progression of cancer. TPCs receptors are stimulated by NAADP, a Ca2+ messenger, and inhibited by their antagonists Ned-19 and tetrandrine. Here, we investigate the participation of TPCs inhibition in cell death and autophagy in sorafenib-treated HCC cells. Here, we show that the association of sorafenib with tetrandrine increased sorafenib-induced cell death accompanied by increased lysotracker fluorescence intensity. In contrast, these effects were not observed after treating these cells with Ned-19. The pharmacological TPC antagonists by Ned-19 and tetrandrine or siRNA-mediated TPC1/2 inhibition decreased sorafenib-induced Ca2+ release, reinforcing the participation of TPCs in sorafenib HCC responses. Furthermore, the association tetrandrine and sorafenib blocked autophagy through ERK1/2 pathway inhibition, which represents a putative target for potentiating HCC cell death. Therefore, our study proposes the use of tetrandrine analogs with the aim of improving sorafenib therapy. Also, our data also allow us to suggest that TPCs may be a new target in anticancer therapies.
Collapse
Affiliation(s)
- Letícia Paulino Sperandio
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Isis Valeska F Lins
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Adolfo G Erustes
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Anderson H F F Leão
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Fernanda Antunes
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Ingrid B M Morais
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Laís Maria de Campos
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Claudia Bincoletto
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Soraya S Smaili
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Gustavo J S Pereira
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
79
|
Lai C, Zhang B, Li D, Tan X, Luo B, Shen J, Li L, Shao J. Rational design of a minimum nanoplatform for maximizing therapeutic potency: Three birds with one stone. J Colloid Interface Sci 2023; 635:441-455. [PMID: 36599242 DOI: 10.1016/j.jcis.2022.12.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
Therapeutic modalities and drug formulations play a crucial and prominent role in actualizing effective treatment and radical cures of tumors. However, the therapeutic efficiency was severely limited by tumor recurrence and complex multi-step preparation of formulation. Therefore, the exploration of novel nanoparticles via a simple and green synthesis process for conquering traditional obstacles and improving therapeutic efficiency is an appealing, yet remarkably challenging task. Herein, a universal nanoplatform allows all cancerous cell-targeting, acid-responsive, cell imaging, synergistic chemotherapy, and nucleolar targeted phototherapy function was tactfully designed and constructed by using chemotherapeutic agents ursolic acid (UA), sorafenib (SF), and carbon dots (CDs) photosensitizers (PSs). The designed US NPs were formed by self-assembly of UA and SF associated with electrostatic, π-π stacking, and hydrophobic interactions. After hydrogen bonding reaction with CDs, the obtained (denoted as USC NPs) have a relatively uniform size of an average 125.6 nm, which facilitated the favorable accumulation of drugs at the tumor region through a potential enhanced permeability and retention (EPR) effect as compared to their counterpart of free CDs solution. Both in vitro and in vivo studies revealed that the advanced platform commenced synergistic anticancer therapeutic potency, imperceptible systematical toxicity, and remarkable reticence towards drug-resistant cancer cells. Moreover, the CDs PSs possess intrinsic nucleolus-targeting ability. Taken together, this theranostics system can fully play the role of "killing three birds with one stone" in a safe manner, implying a promising direction for exploring treatment strategies for cancer and endowing them with great potential for future translational research and providing a new vision for the advancing of an exceptionally forceful protocol for practical cancer therapy.
Collapse
Affiliation(s)
- Chunmei Lai
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Bingchen Zhang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China; Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523058, China
| | - Dongmiao Li
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiarong Tan
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Bangyue Luo
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jiangwen Shen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Linyan Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jingwei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China; Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|
80
|
Guo G, Yang W, Sun C, Wang X. Dissecting the potential role of ferroptosis in liver diseases: an updated review. Free Radic Res 2023; 57:282-293. [PMID: 37401821 DOI: 10.1080/10715762.2023.2232941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
Ferroptosis is a novel form of cell death, manifested by iron-dependent, non-apoptotic manner resulting from the intracellular accumulation of large clusters of reactive oxygen species (ROS) and lipid peroxides due to abnormal iron metabolism. Since the liver is the main organ of human body for storing iron, it is essential to perform in-depth investigation on the role and mechanistic basis of ferroptosis in the context of divergent liver diseases. We previously summarized the emerging role of ferroptosis among various liver diseases, however, the past few years have been a surge in research establishing ferroptosis as the molecular basis or treatment option. This review article concentrated on the accumulating research progress of ferroptosis in a range of liver diseases such as acute liver injury/failure (ALI/ALF), immune-mediated hepatitis, alcoholic liver disease (ALD), nonalcoholic fatty liver disease and liver fibrosis. Ferroptosis may be a promising target for the prevention and treatment of various liver diseases, providing a strategy for exploring new therapeutic avenues for these entities.
Collapse
Affiliation(s)
- Gaoyue Guo
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Wanting Yang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
- Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| | - Xiaoyu Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
81
|
Gong J, Shi T, Liu J, Pei Z, Liu J, Ren X, Li F, Qiu F. Dual-drug codelivery nanosystems: An emerging approach for overcoming cancer multidrug resistance. Biomed Pharmacother 2023; 161:114505. [PMID: 36921532 DOI: 10.1016/j.biopha.2023.114505] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Multidrug resistance (MDR) promotes tumor recurrence and metastasis and heavily reduces anticancer efficiency, which has become a primary reason for the failure of clinical chemotherapy. The mechanisms of MDR are so complex that conventional chemotherapy usually fails to achieve an ideal therapeutic effect and even accelerates the occurrence of MDR. In contrast, the combination of chemotherapy with dual-drug has significant advantages in tumor therapy. A novel dual-drug codelivery nanosystem, which combines dual-drug administration with nanotechnology, can overcome the application limitation of free drugs. Both the characteristics of nanoparticles and the synergistic effect of dual drugs contribute to circumventing various drug-resistant mechanisms in tumor cells. Therefore, developing dual-drug codelivery nanosystems with different multidrug-resistant mechanisms has an important reference value for reversing MDR and enhancing the clinical antitumor effect. In this review, the advantages, principles, and common codelivery nanocarriers in the application of dual-drug codelivery systems are summarized. The molecular mechanisms of MDR and the dual-drug codelivery nanosystems designed based on different mechanisms are mainly introduced. Meanwhile, the development prospects and challenges of codelivery nanosystems are also discussed, which provide guidelines to exploit optimized combined chemotherapy strategies in the future.
Collapse
Affiliation(s)
- Jianing Gong
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Taoran Shi
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jinfeng Liu
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zerong Pei
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingbo Liu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fengyun Li
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
82
|
Le JQ, Yang F, Song XH, Feng KK, Tong LW, Yin MD, Zhang WZ, Lin YQ, Wu H, Shao JW. A hemoglobin-based oxygen-carrying biomimetic nanosystem for enhanced chemo-phototherapy and hypoxia alleviation of hepatocellular carcinoma. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
83
|
Hu X, Zhu H, He X, Chen J, Xiong L, Shen Y, Li J, Xu Y, Chen W, Liu X, Cao D, Xu X. The application of nanoparticles in immunotherapy for hepatocellular carcinoma. J Control Release 2023; 355:85-108. [PMID: 36708880 DOI: 10.1016/j.jconrel.2023.01.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/30/2023]
Abstract
Hepatocellular carcinoma (HCC) remains one of the leading causes of cancer-related deaths worldwide, however, current clinical diagnostic and treatment approaches remain relatively limited, creating an urgent need for the development of effective technologies. Immunotherapy has emerged as a powerful treatment strategy for advanced cancer. The number of clinically approved drugs for HCC immunotherapy has been increasing. However, it remains challenging to improve their transport and therapeutic efficiency, control their targeting and release, and mitigate their adverse effects. Nanotechnology has recently gained attention for improving the effectiveness of precision therapy for HCC. We summarize the key features of HCC associated with nanoparticle (NPs) targeting, release, and uptake, the roles and limitations of several major immunotherapies in HCC, the use of NPs in immunotherapy, the properties of NPs that influence their design and application, and current clinical trials of NPs in HCC, with the aim of informing the design of delivery platforms that have the potential to improve the safety and efficacy of HCC immunotherapy,and thus, ultimately improve the prognosis of HCC patients.
Collapse
Affiliation(s)
- Xinyao Hu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaoqin He
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiayu Chen
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lin Xiong
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yang Shen
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiayi Li
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yangtao Xu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenliang Chen
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xin Liu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dedong Cao
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Ximing Xu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
84
|
Ebadi M, Rifqi Md Zain A, Tengku Abdul Aziz TH, Mohammadi H, Tee CATH, Rahimi Yusop M. Formulation and Characterization of Fe 3O 4@PEG Nanoparticles Loaded Sorafenib; Molecular Studies and Evaluation of Cytotoxicity in Liver Cancer Cell Lines. Polymers (Basel) 2023; 15:polym15040971. [PMID: 36850253 PMCID: PMC9959119 DOI: 10.3390/polym15040971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/18/2023] Open
Abstract
Iron oxide nanoparticles are one of the nanocarriers that are suitable for novel drug delivery systems due to low toxicity, biocompatibility, loading capacity, and controlled drug delivery to cancer cells. The purpose of the present study is the synthesis of coated iron oxide nanoparticles for the delivery of sorafenib (SFB) and its effects on cancer cells. In this study, Fe3O4 nanoparticles were synthesized by the co-precipitation method, and then sorafenib was loaded onto PEG@Fe3O4 nanoparticles. FTIR was used to ensure polyethylene glycol (PEG) binding to nanoparticles and loading the drug onto the nanoshells. A comparison of the mean size and the crystalline structure of nanoparticles was performed by TEM, DLS, and X-ray diffraction patterns. Then, cell viability was obtained by the MTT assay for 3T3 and HepG2 cell lines. According to FT-IR results, the presence of O-H and C-H bands at 3427 cm-1 and 1420 cm-1 peak correlate with PEG binding to nanoparticles. XRD pattern showed the cubic spinel structure of trapped magnetite nanoparticles carrying medium. The magnetic properties of nanoparticles were examined by a vibrating-sample magnetometer (VSM). IC50 values at 72 h for treatment with carriers of Fe3O4@PEG nanoparticle for the HepG2 cell line was 15.78 μg/mL (p < 0.05). This study showed that Fe3O4 nanoparticles coated by polyethylene glycol and using them in the drug delivery process could be beneficial for increasing the effect of sorafenib on cancer cells.
Collapse
Affiliation(s)
- Mona Ebadi
- College of Physics and Electrical Information Engineering, Zhejiang Normal University, Jinhua 321017, China
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Ahmad Rifqi Md Zain
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
- Correspondence: (C.A.T.H.T.); (A.R.M.Z.); Tel.: +86-(579)-8229-8650 (C.A.T.H.T.); +60-3-8911-8160 (A.R.M.Z.)
| | - Tengku Hasnan Tengku Abdul Aziz
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Hossein Mohammadi
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Clarence Augustine TH Tee
- College of Physics and Electrical Information Engineering, Zhejiang Normal University, Jinhua 321017, China
- Correspondence: (C.A.T.H.T.); (A.R.M.Z.); Tel.: +86-(579)-8229-8650 (C.A.T.H.T.); +60-3-8911-8160 (A.R.M.Z.)
| | - Muhammad Rahimi Yusop
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| |
Collapse
|
85
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Iron as a therapeutic target in chronic liver disease. World J Gastroenterol 2023; 29:616-655. [PMID: 36742167 PMCID: PMC9896614 DOI: 10.3748/wjg.v29.i4.616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/03/2022] [Accepted: 12/31/2022] [Indexed: 01/20/2023] Open
Abstract
It was clearly realized more than 50 years ago that iron deposition in the liver may be a critical factor in the development and progression of liver disease. The recent clarification of ferroptosis as a specific form of regulated hepatocyte death different from apoptosis and the description of ferritinophagy as a specific variation of autophagy prompted detailed investigations on the association of iron and the liver. In this review, we will present a brief discussion of iron absorption and handling by the liver with emphasis on the role of liver macrophages and the significance of the iron regulators hepcidin, transferrin, and ferritin in iron homeostasis. The regulation of ferroptosis by endogenous and exogenous mod-ulators will be examined. Furthermore, the involvement of iron and ferroptosis in various liver diseases including alcoholic and non-alcoholic liver disease, chronic hepatitis B and C, liver fibrosis, and hepatocellular carcinoma (HCC) will be analyzed. Finally, experimental and clinical results following interventions to reduce iron deposition and the promising manipulation of ferroptosis will be presented. Most liver diseases will be benefited by ferroptosis inhibition using exogenous inhibitors with the notable exception of HCC, where induction of ferroptosis is the desired effect. Current evidence mostly stems from in vitro and in vivo experimental studies and the need for well-designed future clinical trials is warranted.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71003, Greece
| | - Ioannis Tsomidis
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| | - Argyro Voumvouraki
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| |
Collapse
|
86
|
Kong F, Ye Q, Xiong Y. Comprehensive analysis of prognosis and immune function of CD70-CD27 signaling axis in pan-cancer. Funct Integr Genomics 2023; 23:48. [PMID: 36700974 DOI: 10.1007/s10142-023-00977-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/08/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023]
Abstract
The immune checkpoint molecule CD70 and its receptor CD27 constitute the signal transduction axis, which is abnormally expressed in many solid tumors and is crucial for T cell co-stimulation and immune escape. Tumor cells regulate CD27 expression in the tumor microenvironment by expressing CD70, which promotes immune escape. Although current research evidence suggests a link between CD70 and tumors, no pan-cancer analysis is available. Using the Cancer Genome Atlas, Gene Expression Omnibus datasets, and online databases, we first explored the potential carcinogenic role of the CD70-CD27 signaling axis in human malignancies. Furthermore, qRT-PCR, Western blot, immunohistochemistry, and a T cell-mediated tumor cell killing assay were used to assess the biological function of the CD70-CD27 signaling axis. CD70 expression is upregulated in most cancers and has an obvious correlation with the prognosis of tumor patients. The expression of CD70 and CD27 is associated with the level of regulatory T cell (Treg) infiltration. In addition, T cell receptor signaling pathways, PI3K-AKT, NF-κB, and TNF signaling pathways are also involved in CD70-mediated immune escape. CD70 mainly regulates tumor immune escape by regulating T cell-mediated tumor killing, with Tregs possibly being its primary T cell subset. Our first pan-cancer study provides a relatively comprehensive understanding of the carcinogenic role of the CD70-CD27 signaling axis in different tumors.
Collapse
Affiliation(s)
- Fanhua Kong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, Hubei, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, Hubei, China.
- The 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, 410013, China.
| | - Yan Xiong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, Hubei, China.
| |
Collapse
|
87
|
Paskeh MDA, Ghadyani F, Hashemi M, Abbaspour A, Zabolian A, Javanshir S, Razzazan M, Mirzaei S, Entezari M, Goharrizi MASB, Salimimoghadam S, Aref AR, Kalbasi A, Rajabi R, Rashidi M, Taheriazam A, Sethi G. Biological impact and therapeutic perspective of targeting PI3K/Akt signaling in hepatocellular carcinoma: Promises and Challenges. Pharmacol Res 2023; 187:106553. [PMID: 36400343 DOI: 10.1016/j.phrs.2022.106553] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Cancer progression results from activation of various signaling networks. Among these, PI3K/Akt signaling contributes to proliferation, invasion, and inhibition of apoptosis. Hepatocellular carcinoma (HCC) is a primary liver cancer with high incidence rate, especially in regions with high prevalence of viral hepatitis infection. Autoimmune disorders, diabetes mellitus, obesity, alcohol consumption, and inflammation can also lead to initiation and development of HCC. The treatment of HCC depends on the identification of oncogenic factors that lead tumor cells to develop resistance to therapy. The present review article focuses on the role of PI3K/Akt signaling in HCC progression. Activation of PI3K/Akt signaling promotes glucose uptake, favors glycolysis and increases tumor cell proliferation. It inhibits both apoptosis and autophagy while promoting HCC cell survival. PI3K/Akt stimulates epithelial-to-mesenchymal transition (EMT) and increases matrix-metalloproteinase (MMP) expression during HCC metastasis. In addition to increasing colony formation capacity and facilitating the spread of tumor cells, PI3K/Akt signaling stimulates angiogenesis. Therefore, silencing PI3K/Akt signaling prevents aggressive HCC cell behavior. Activation of PI3K/Akt signaling can confer drug resistance, particularly to sorafenib, and decreases the radio-sensitivity of HCC cells. Anti-cancer agents, like phytochemicals and small molecules can suppress PI3K/Akt signaling by limiting HCC progression. Being upregulated in tumor tissues and clinical samples, PI3K/Akt can also be used as a biomarker to predict patients' response to therapy.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ghadyani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Abbaspour
- Cellular and Molecular Research Center,Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amirhossein Zabolian
- Resident of department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salar Javanshir
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc. 6, Tide Street, Boston, MA 02210, USA
| | - Alireza Kalbasi
- Department of Pharmacy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| |
Collapse
|
88
|
Chen D, Liu X, Lu X, Tian J. Nanoparticle drug delivery systems for synergistic delivery of tumor therapy. Front Pharmacol 2023; 14:1111991. [PMID: 36874010 PMCID: PMC9978018 DOI: 10.3389/fphar.2023.1111991] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Nanoparticle drug delivery systems have proved anti-tumor effects; however, they are not widely used in tumor therapy due to insufficient ability to target specific sites, multidrug resistance to anti-tumor drugs, and the high toxicity of the drugs. With the development of RNAi technology, nucleic acids have been delivered to target sites to replace or correct defective genes or knock down specific genes. Also, synergistic therapeutic effects can be achieved for combined drug delivery, which is more effective for overcoming multidrug resistance of cancer cells. These combination therapies achieve better therapeutic effects than delivering nucleic acids or chemotherapeutic drugs alone, so the scope of combined drug delivery has also been expanded to three aspects: drug-drug, drug-gene, and gene-gene. This review summarizes the recent advances of nanocarriers to co-delivery agents, including i) the characterization and preparation of nanocarriers, such as lipid-based nanocarriers, polymer nanocarriers, and inorganic delivery carriers; ii) the advantages and disadvantages of synergistic delivery approaches; iii) the effectual delivery cases that are applied in the synergistic delivery systems; and iv) future perspectives in the design of nanoparticle drug delivery systems to co-deliver therapeutic agents.
Collapse
Affiliation(s)
- Daoyuan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Xuecun Liu
- Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Xiaoyan Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
89
|
Lu Y, Gao Y, Yang H, Hu Y, Li X. Nanomedicine-boosting icaritin-based immunotherapy of advanced hepatocellular carcinoma. Mil Med Res 2022; 9:69. [PMID: 36503490 PMCID: PMC9743634 DOI: 10.1186/s40779-022-00433-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Traditional treatments for advanced hepatocellular carcinoma (HCC), such as surgical resection, transplantation, radiofrequency ablation, and chemotherapy are unsatisfactory, and therefore the exploration of powerful therapeutic strategies is urgently needed. Immunotherapy has emerged as a promising strategy for advanced HCC treatment due to its minimal side effects and long-lasting therapeutic memory effects. Recent studies have demonstrated that icaritin could serve as an immunomodulator for effective immunotherapy of advanced HCC. Encouragingly, in 2022, icaritin soft capsules were approved by the National Medical Products Administration (NMPA) of China for the immunotherapy of advanced HCC. However, the therapeutic efficacy of icaritin in clinical practice is impaired by its poor bioavailability and unfavorable in vivo delivery efficiency. Recently, functionalized drug delivery systems including stimuli-responsive nanocarriers, cell membrane-coated nanocarriers, and living cell-nanocarrier systems have been designed to overcome the shortcomings of drugs, including the low bioavailability and limited delivery efficiency as well as side effects. Taken together, the development of icaritin-based nanomedicines is expected to further improve the immunotherapy of advanced HCC. Herein, we compared the different preparation methods for icaritin, interpreted the HCC immune microenvironment and the mechanisms underlying icaritin for treatment of advanced HCC, and discussed both the design of icaritin-based nanomedicines with high icaritin loading and the latest progress in icaritin-based nanomedicines for advanced HCC immunotherapy. Finally, the prospects to promote further clinical translation of icaritin-based nanomedicines for the immunotherapy of advanced HCC were proposed.
Collapse
Affiliation(s)
- Yi Lu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Yue Gao
- DWI-Leibniz-Institute for Interactive Materials e.V., 52056 Aachen, Germany
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620 China
| | - Huan Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Yong Hu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
| | - Xin Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
- DWI-Leibniz-Institute for Interactive Materials e.V., 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
90
|
Ling J, Jiang Y, Yan S, Dang H, Yue H, Liu K, Kuang L, Liu X, Tang H. A novel pH- and glutathione-responsive drug delivery system based on in situ growth of MOF199 on mesoporous organic silica nanoparticles targeting the hepatocellular carcinoma niche. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00139-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
For people with advanced hepatocellular carcinoma (HCC), systemic chemotherapy remains the only choice of palliative treatment. However, chemotherapy efficacy is not effective due to its short blood circulation times, nonspecific cell and tissue biodistribution, and rapid metabolism or excretion from the body. Therefore, a targeted nanomedicine delivery system is urgently needed.
Methods
In order to improve the treatment efficiency of HCC, based on in situ growth of a copper metal organic framework on mesoporous organic silica nanoparticles, dual pH- and glutathione (GSH)-responsive multifunctional nanocomposites were synthesized as nanocarriers for enhanced HCC therapy. In this research, cellular uptake studies were performed using CLSM and Bio-TEM observations. Flow cytometry, AO-EB fluorescent staining, EdU test and Western blot were utilized to explore the apoptosis and proliferation process. In vivo imaging was employed to research the distribution of the nanocomposites in HCC tumor-bearing nude mice and the xenograft model of HCC tumor-bearing nude mice was applied to investigate the anti-tumor effects of drug-loaded nanocomposites in vivo.
Results
This newly constructed degradable nanocomposite DOX/SOR@SP94 and mPEG-anchored MONs@MOF199 (D/S@SPMM) has the benefits of controllable pore size, high encapsulation efficiency, and precise targeting. According to the results of in vivo imaging and anti-tumor studies, as well as pharmacokinetic research, D/S@SPMM possessed precise HCC tumor targeting and long-lasting accumulation properties at the tumor region. Compared with traditional chemotherapy and non-targeted drug delivery systems, anti-tumor efficiency was increased by approximately 10- and 5-fold, respectively. The nanocomposites exhibited excellent anti-tumor properties without inducing observable systemic toxicity, owing to efficient DOX and SOR loading and release as well as the HCC specific targeting peptide SP94.
Conclusions
The in vitro and in vivo anti-tumor results indicated that these nanocomposites could be an efficient nanomedicine for targeting HCC therapy.
Collapse
|
91
|
Xu W, Ye C, Qing X, Liu S, Lv X, Wang W, Dong X, Zhang Y. Multi-target tyrosine kinase inhibitor nanoparticle delivery systems for cancer therapy. Mater Today Bio 2022; 16:100358. [PMID: 35880099 PMCID: PMC9307458 DOI: 10.1016/j.mtbio.2022.100358] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/19/2022] Open
Abstract
Multi-target Tyrosine Kinase Inhibitors (MTKIs) have drawn substantial attention in tumor therapy. MTKIs could inhibit tumor cell proliferation and induce apoptosis by blocking the activity of tyrosine kinase. However, the toxicity and drug resistance of MTKIs severely restrict their further clinical application. The nano pharmaceutical technology based on MTKIs has attracted ever-increasing attention in recent years. Researchers deliver MTKIs through various types of nanocarriers to overcome drug resistance and improve considerably therapeutic efficiency. This review intends to summarize comprehensive applications of MTKIs nanoparticles in malignant tumor treatment. Firstly, the mechanism and toxicity were introduced. Secondly, various nanocarriers for MTKIs delivery were outlined. Thirdly, the combination treatment schemes and drug resistance reversal strategies were emphasized to improve the outcomes of cancer therapy. Finally, conclusions and perspectives were summarized to guide future research.
Collapse
Affiliation(s)
- Wenjing Xu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Chunping Ye
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Qing
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Shengli Liu
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Xinyi Lv
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| |
Collapse
|
92
|
Improved anti-hepatocellular carcinoma effect by enhanced Co-delivery of Tim-3 siRNA and sorafenib via multiple pH triggered drug-eluting nanoparticles. Mater Today Bio 2022; 16:100350. [PMID: 35856043 PMCID: PMC9287642 DOI: 10.1016/j.mtbio.2022.100350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022] Open
Abstract
Effective systemic treatment for hepatocellular carcinoma (HCC) remains urgently needed. Sorafenib is the first FDA-approved systemic treatment for HCC. However, individual HCC patents’ response to sorafenib varies greatly. How to enhance the anti-HCC effect of sorafenib is still a significant challenge. T cell immunoglobulin mucin-3 (Tim-3) is a newly identified immune checkpoint molecule and a promising target for HCC treatment. Herein, we developed a novel pH-triggered drug-eluting nanoparticle (CC@SR&SF@PP) for simultaneously delivery of Tim-3 siRNA and sorafenib to HCC in situ. By a single emulsification method, a representative HCC targeted-therapeutic drug sorafenib (SF) was encapsulated into the pH-triggered positive-charged mPEG5K-PAE10K (PP) nanoparticles, followed by condensing of negative-charged Tim-3 siRNA. Then, carboxymethyl chitosan (CMCS), an amphoteric polysaccharide with negative charge in the physiological pH and positive charge in the acidic environment of the tumor, was eventually adsorbed onto the surface of nanoparticles. This co-delivery nanoparticle rapidly and specifically accumulated in the tumor site of the liver and enhanced the targeted, specific and multiple release of siRNA and sorafenib. Enhanced Tim-3 siRNA transfected into tumor cells can not only directly inhibit the growth of tumor cells by knock down the expression Tim-3, but also induce the immune response and enhance the recruitment of cytotoxic T cells to kill tumor cells. The following pH-triggered sorafenib release from SF@PP NPs greatly inhibited the tumor proliferation and angiogenesis, resulting in remarkable tumor growth inhibition in a mouse hepatoma 22 (H22) orthotopic tumor model. Thus, co-delivery of Tim-3 siRNA and sorafenib via this novel pH triggered drug-eluting nanoparticle enhances their anti-tumor efficacy. We expect that such combination treatment strategy will have great potential in future clinical applications.
Collapse
|
93
|
Teng C, Kong F, Mo J, Lin W, Jin C, Wang K, Wang Y. The roles of RNA N6-methyladenosine in esophageal cancer. Heliyon 2022; 8:e11430. [DOI: 10.1016/j.heliyon.2022.e11430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/15/2022] [Accepted: 10/31/2022] [Indexed: 11/08/2022] Open
|
94
|
m6A-Related Genes Contribute to Poor Prognosis of Hepatocellular Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2427987. [PMID: 36339682 PMCID: PMC9629938 DOI: 10.1155/2022/2427987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common and lethal digestive system cancers worldwide. N6-methyladenosine (m6A) modification plays an essential role in diverse critical biological processes and may participate in the development and progression of HCC. Methods We downloaded transcriptome data and clinical data from TCGA as the training set. COX and LASSO screened prognostic m6A genes. ROC and Kaplan-Meier curve analysis evaluated the effectiveness of the model. ICGC and our center data were used as verification sets. Results We include the “writer (METTL3, METTL14, WTAP, KIAA1429, RBM15, ZC3H13),” the “reader (YTHDC1, YTHDC2, YTHDF1, YTHDF2, HNRNPC),” and the “eraser (FTO, ALKBH5)” in the study. We obtained YTHDF2, YTHDF1, METTL3, and KIAA1429 through differential analysis, survival analysis, and LASSO regression analysis. The prediction model was established based on the expression of these 4 molecules. HCC patients were divided into “high-risk” and “low-risk” groups to compare survival differences. The model suggested a poor prognosis in the validation sets. Conclusion The four-m6A-related-gene combination model was an independent prognostic factor of HCC and could improve the prediction of the prognosis of HCC.
Collapse
|
95
|
Xie MH, Fu ZL, Hua AL, Zhou JF, Chen Q, Li JB, Yao S, Cai XJ, Ge M, Zhou L, Wu J. A new core–shell-type nanoparticle loaded with paclitaxel/norcantharidin and modified with APRPG enhances anti-tumor effects in hepatocellular carcinoma. Front Oncol 2022; 12:932156. [PMID: 36185205 PMCID: PMC9515951 DOI: 10.3389/fonc.2022.932156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/22/2022] [Indexed: 01/11/2023] Open
Abstract
Nanoparticle delivery systems have been shown to improve the therapeutic efficacy of anti-cancer drugs, including a variety of drugs for the treatment of hepatocellular carcinoma (HCC). However, the current systems show some limitations, and the delivery of more effective nanoparticle systems for anti-HCC drugs with better targeting ability are needed. Here, we created paclitaxel (PTX)/norcantharidin (NCTD)-loaded core–shell lipid nanoparticles modified with a tumor neovasculature-targeted peptide (Ala-Pro-Arg-Pro-Gly, APRPG) and investigated their anti-tumor effects in HCC. Core–shell-type lipid nanoparticles (PTX/NCTD-APRPG-NPs) were established by combining poly(lactic-co-glycolic acid) (PLGA)-wrapped PTX with phospholipid-wrapped NCTD, followed by modification with APRPG. For comparison, PTX-loaded PLGA nanoparticles (PTX-NPs) and PTX/NCTD-loaded core–shell-type nanoparticles without APRPG (PTX/NCTD-NPs) were prepared. The in vitro and in vivo anti-tumor effects were examined in HepG2 cells and tumor-bearing mice, respectively. Morphological and release characterization showed that PTX/NCTD-APRPG-NPs were prepared successfully and achieved up to 90% release of PTX in a sustained manner. Compared with PTX/NCTD-NPs, PTX/NCTD-APRPG-NPs significantly enhanced the uptake of PTX. Notably, the inhibition of proliferation and migration of hepatoma cells was significantly higher in the PTX/NCTD-APRPG-NP group than those in the PTX-NP and PTX/NCTD-NP groups, which reflected significantly greater anti-tumor properties as well. Furthermore, key molecules in cell proliferation and apoptosis signaling pathways were altered most in the PTX/NCTD-APRPG-NP group, compared with the PTX-NP and PTX/NCTD-NP groups. Collectively, PTX/NCTD-loaded core–shell lipid nanoparticles modified with APRPG enhance the effectiveness of anti-HCC drugs and may be an effective system for the delivery of anti-HCC drugs.
Collapse
Affiliation(s)
- Ming-Hua Xie
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, China
| | - Zai-Lin Fu
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, China
| | - Ai-Lian Hua
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, China
| | - Ji-Fang Zhou
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, China
| | - Qian Chen
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, China
| | - Jian-Bo Li
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, China
| | - Shen Yao
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, China
| | - Xin-Jun Cai
- Department of Pharmacy, Zhejiang Integrated Traditional Chinese and Western Medicine Hospital, Hangzhou, China
| | - Min Ge
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, China
| | - Li Zhou
- Department of Oncology, First People’s Hospital of Linping District, Hangzhou, China
| | - Jia Wu
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, China
- *Correspondence: Jia Wu,
| |
Collapse
|
96
|
Ma XL, Zhu KY, Chen YD, Tang WG, Xie SH, Zheng H, Tong Y, Wang YC, Ren N, Guo L, Lu RQ. Identification of a novel Calpain-2-SRC feed-back loop as necessity for β-Catenin accumulation and signaling activation in hepatocellular carcinoma. Oncogene 2022; 41:3554-3569. [PMID: 35697802 DOI: 10.1038/s41388-022-02367-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/17/2022] [Accepted: 05/30/2022] [Indexed: 11/09/2022]
Abstract
Rapid progression is the major cause of the poor prognosis of hepatocellular carcinoma (HCC); however, the underlying mechanism remained unclear. Here, we found Calpain-2 (CAPN2), a well-established protease that accelerates tumor progression in several malignancies, is overexpressed in HCC and acts as an independent predictor for poor outcomes. Furthermore, CAPN2 promoted the proliferation and invasion of HCC, and showed a positive correlation with the levels of invasion-related markers. Mechanistically, a novel CAPN2-SRC positive regulatory loop was identified upstream of β-catenin to prevent its ubiquitination and degradation, and subsequently promoted HCC progression: CAPN2 could proteolyze PTP1B to form a truncation of approximately 42 kDa with increased phosphatase activity, resulting in reduced SRC Y530 phosphorylation and increased SRC kinase activity; meanwhile, CAPN2 itself was a bone fide substrate of SRC that was primarily phosphorylated at Y625 by SRC and exhibited increased proteolysis activity upon phosphorylation. Interestingly, the CAPN2-SRC loop could not only restrain most of cytoplasmic β-catenin degradation by inhibiting GSK3β pathway, but also prevented TRIM33-induced nuclear β-catenin degradation even in β-catenin-mutant cells. Present study identified a CAPN2-SRC positive loop responsible for intracellular β-catenin accumulation and signaling activation, and targeting CAPN2 protease activity might be a promising approach for preventing HCC progression.
Collapse
Affiliation(s)
- Xiao-Lu Ma
- Department of clinical laboratory, Shanghai Cancer center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Ke-Yu Zhu
- Department of clinical laboratory, Shanghai Cancer center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Yue-Da Chen
- Department of general surgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei-Guo Tang
- Liver cancer institute, Zhongshan hospital, Fudan university, Shanghai, 200032, China.,Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Su-Hong Xie
- Department of clinical laboratory, Shanghai Cancer center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Hui Zheng
- Department of clinical laboratory, Shanghai Cancer center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Ying Tong
- Department of clinical laboratory, Shanghai Cancer center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Yan-Chun Wang
- Department of clinical laboratory, Shanghai Cancer center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Ning Ren
- Liver cancer institute, Zhongshan hospital, Fudan university, Shanghai, 200032, China. .,Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, 201100, China.
| | - Lin Guo
- Department of clinical laboratory, Shanghai Cancer center, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China.
| | - Ren-Quan Lu
- Department of clinical laboratory, Shanghai Cancer center, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
97
|
Yang X, Xiao J, Jiang L, Ran L, Fan Y, Zhang M, Xu Y, Yao C, An B, Yang Y, Yang C, Tian G, Zhang G, Zhang Y. A Multifunctional Vanadium-Iron-Oxide Nanoparticle Eradicates Hepatocellular Carcinoma via Targeting Tumor and Endothelial Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28514-28526. [PMID: 35698257 DOI: 10.1021/acsami.2c03474] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoparticles are widely used in biological research and cancer therapy. In hepatocellular carcinoma, several nanoplatforms have been synthesized and studied to improve the drug efficacy; however, these nanoplatforms are still insufficient to eradicate tumors. Herein, we have synthesized a novel vanadium (V)-iron-oxide (ION) nanoparticle (VIO) that combines chemodynamic, photothermal, and diagnostic capacities to enhance the tumor suppression effect in one agent with multiple functions. In the in vitro models, hepatocellular carcinoma cells are significantly inhibited by VIO-based nanoagents. The mechanistic study validates that VIO increases reactive oxygen species (ROS), which led to apoptosis and ferroptosis resulting in cell death. To our surprise, VIO targets not only tumor cells but also endothelial cells. In addition to inducing cell death, VIO also blocks tube formation and cell migration in human umbilical vein endothelial cell (HUVEC) and C166 models, indicating an antiangiogenic potential. In mouse tumor models, VIO retards tumor growth and induces apoptosis in tumor tissues. Furthermore, a significant blood vessel regression is seen in VIO-treated groups accompanied with larger necrotic areas. More interestingly, the activation of photothermal therapy completely eradicates tumor tissues. Taken together, this VIO nanoplatform could be a powerful anticancer candidate for nanodrug development.
Collapse
Affiliation(s)
- Xiaoming Yang
- School of Pharmacology, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P.R. China
| | - Jianmin Xiao
- School of Pharmacology, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P.R. China
| | - Lingyu Jiang
- School of Pharmacology, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P.R. China
| | - Lang Ran
- School of Pharmacology, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P.R. China
| | - Yangyang Fan
- School of Pharmacology, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P.R. China
| | - Minghui Zhang
- School of Pharmacology, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P.R. China
| | - Yuxue Xu
- School of Pharmacology, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P.R. China
| | - Cuifang Yao
- School of Pharmacology, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P.R. China
| | - Baijiao An
- School of Pharmacology, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P.R. China
| | - Yang Yang
- School of Pharmacology, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P.R. China
| | - Chunhua Yang
- School of Pharmacology, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P.R. China
| | - Geng Tian
- School of Pharmacology, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P.R. China
| | - Guilong Zhang
- School of Pharmacology, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P.R. China
| | - Yin Zhang
- School of Pharmacology, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P.R. China
| |
Collapse
|
98
|
Xia Z, Kong F, Wang K, Zhang X. Role of N6-Methyladenosine Methylation Regulators in the Drug Therapy of Digestive System Tumours. Front Pharmacol 2022; 13:908079. [PMID: 35754499 PMCID: PMC9218687 DOI: 10.3389/fphar.2022.908079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
Digestive system tumours, including stomach, colon, esophagus, liver and pancreatic tumours, are serious diseases affecting human health. Although surgical treatment and postoperative chemoradiotherapy effectively improve patient survival, current diagnostic and therapeutic strategies for digestive system tumours lack sensitivity and specificity. Moreover, the tumour's tolerance to drug therapy is enhanced owing to tumour cell heterogeneity. Thus, primary or acquired treatment resistance is currently the main hindrance to chemotherapy efficiency. N6-methyladenosine (m6A) has various biological functions in RNA modification. m6A modification, a key regulator of transcription expression, regulates RNA metabolism and biological processes through the interaction of m6A methyltransferase ("writers") and demethylase ("erasers") with the binding protein decoding m6A methylation ("readers"). Additionally, m6A modification regulates the occurrence and development of tumours and is a potential driving factor of tumour drug resistance. This review systematically summarises the regulatory mechanisms of m6A modification in the drug therapy of digestive system malignancies. Furthermore, it clarifies the related mechanisms and therapeutic prospects of m6A modification in the resistence of digestive system malignancies to drug therapy.
Collapse
Affiliation(s)
- Zhelin Xia
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Fanhua Kong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, China
| | - Kunpeng Wang
- Department of General Surgery Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, China
| | - Xin Zhang
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
99
|
Gopakumar L, Sreeranganathan M, Chappan S, James S, Gowd GS, Manohar M, Sukumaran A, Unni AKK, Nair SV, Koyakutty M. Enhanced oral bioavailability and antitumor therapeutic efficacy of sorafenib administered in core-shell protein nanoparticle. Drug Deliv Transl Res 2022; 12:2824-2837. [PMID: 35678961 DOI: 10.1007/s13346-022-01142-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2022] [Indexed: 12/17/2022]
Abstract
Orally delivered molecularly targeted small-molecule drugs play a significant role in managing cancer as a chronic disease. However, due to the poor oral bioavailability of some of these molecules, high-dose administration is required leading to dose-limiting toxicity especially when delivered daily for a long duration. Here, we report an oral nanoformulation for small-molecule multi-kinase inhibitor, sorafenib tosylate, showing nearly two fold enhancement in the oral bioavailability and enhanced therapeutic efficacy with a better safety profile compared to the current clinical formulation. Using a scalable process involving high-pressure homogenization, sorafenib was loaded into an albumin nanocarrier at ~ 50 w/w%. Repeated preparation of gram-scale batches (n = 7) showed an average particle size of 180 ± 9 nm, encapsulation efficiency of 95 [Formula: see text] 2%, and drug-loading efficiency of 48 [Formula: see text] 0.7%. Further, surface engineering with a mucoadhesive layer on nanoparticles (referred to as ABSORF) resulted in the final size of 299 ± 38 nm and surface charge of -54 ± 8 mV. Single-dose and multidose pharmacokinetic studies showed two fold enhancement in the plasma concentration of sorafenib compared to current clinically used tablets. Antitumor efficacy studies in the orthotopic rat liver tumor model showed significant tumor regression (p value = 0.0037) even at half dose (eqv. to 200 mg of human equivalent dose) of ABSORF compared to clinical control (eqv. to 400 mg). The biodistribution of sorafenib from ABSORF was higher in the liver; however, liver and kidney function test parameters were comparable with that of the 2 × dose of clinical control. No abnormalities and signs of toxicity were seen in the histopathological analysis for ABSORF-treated animals. In summary, we demonstrate a scalable preparation of small-molecule drug-loaded nanoformulation with approximately two fold enhancement in oral bioavailability, improved antitumor efficacy, and acceptable toxicity profile.
Collapse
Affiliation(s)
- Lekshmi Gopakumar
- Centre for Nanosciences and Molecular Medicine, Amrita University, Ponekkara PO, Edappally, Kochi, 41, Kerala, India
| | - Maya Sreeranganathan
- Centre for Nanosciences and Molecular Medicine, Amrita University, Ponekkara PO, Edappally, Kochi, 41, Kerala, India
| | - Shalin Chappan
- Centre for Nanosciences and Molecular Medicine, Amrita University, Ponekkara PO, Edappally, Kochi, 41, Kerala, India
| | - Sneha James
- Centre for Nanosciences and Molecular Medicine, Amrita University, Ponekkara PO, Edappally, Kochi, 41, Kerala, India
| | - Genekehal Siddaramana Gowd
- Centre for Nanosciences and Molecular Medicine, Amrita University, Ponekkara PO, Edappally, Kochi, 41, Kerala, India
| | - Maneesh Manohar
- Centre for Nanosciences and Molecular Medicine, Amrita University, Ponekkara PO, Edappally, Kochi, 41, Kerala, India
| | - Arya Sukumaran
- Centre for Nanosciences and Molecular Medicine, Amrita University, Ponekkara PO, Edappally, Kochi, 41, Kerala, India
| | - Ayalur Kodakara Kochugovindan Unni
- Central Lab Animal Facility, Amrita Institute of Medical Sciences and Research Centre, Amrita University, Ponekkara PO, Edappally, Kochi, 41, Kerala, India
| | - Shantikumar Vasudevan Nair
- Centre for Nanosciences and Molecular Medicine, Amrita University, Ponekkara PO, Edappally, Kochi, 41, Kerala, India
| | - Manzoor Koyakutty
- Centre for Nanosciences and Molecular Medicine, Amrita University, Ponekkara PO, Edappally, Kochi, 41, Kerala, India.
| |
Collapse
|
100
|
Zhou X, Fu Y, Liu W, Mu Y, Zhang H, Chen J, Liu P. Ferroptosis in Chronic Liver Diseases: Opportunities and Challenges. Front Mol Biosci 2022; 9:928321. [PMID: 35720113 PMCID: PMC9205467 DOI: 10.3389/fmolb.2022.928321] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 01/01/2023] Open
Abstract
Ferroptosis, an iron-dependent non-apoptotic cell death characterized by lipid peroxidation, is a cell death pathway discovered in recent years. Ferroptosis plays an important role in tumors, ischemia-reperfusion injury, neurological diseases, blood diseases, etc. Recent studies have shown the importance of ferroptosis in chronic liver disease. This article summarizes the pathological mechanisms of ferroptosis involved in System Xc-, iron metabolism, lipid metabolism, and some GPX4-independent pathways, and the latest research on ferroptosis in chronic liver diseases such as alcoholic liver disease, non-alcoholic fatty liver disease, liver fibrosis, hepatocellular carcinoma. In addition, the current bottleneck issues that restrict the research on ferroptosis are proposed to provide ideas and strategies for exploring new therapeutic targets for chronic liver diseases.
Collapse
Affiliation(s)
- Xiaoxi Zhou
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Yadong Fu
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Institute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Yongping Mu
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Hua Zhang
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Jiamei Chen
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Institute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|