51
|
Bayly-Jones C, Pang SS, Spicer BA, Whisstock JC, Dunstone MA. Ancient but Not Forgotten: New Insights Into MPEG1, a Macrophage Perforin-Like Immune Effector. Front Immunol 2020; 11:581906. [PMID: 33178209 PMCID: PMC7593815 DOI: 10.3389/fimmu.2020.581906] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/25/2020] [Indexed: 12/29/2022] Open
Abstract
Macrophage-expressed gene 1 [MPEG1/Perforin-2 (PRF2)] is an ancient metazoan protein belonging to the Membrane Attack Complex/Perforin (MACPF) branch of the MACPF/Cholesterol Dependent Cytolysin (CDC) superfamily of pore-forming proteins (PFPs). MACPF/CDC proteins are a large and extremely diverse superfamily that forms large transmembrane aqueous channels in target membranes. In humans, MACPFs have known roles in immunity and development. Like perforin (PRF) and the membrane attack complex (MAC), MPEG1 is also postulated to perform a role in immunity. Indeed, bioinformatic studies suggest that gene duplications of MPEG1 likely gave rise to PRF and MAC components. Studies reveal partial or complete loss of MPEG1 causes an increased susceptibility to microbial infection in both cells and animals. To this end, MPEG1 expression is upregulated in response to proinflammatory signals such as tumor necrosis factor α (TNFα) and lipopolysaccharides (LPS). Furthermore, germline mutations in MPEG1 have been identified in connection with recurrent pulmonary mycobacterial infections in humans. Structural studies on MPEG1 revealed that it can form oligomeric pre-pores and pores. Strikingly, the unusual domain arrangement within the MPEG1 architecture suggests a novel mechanism of pore formation that may have evolved to guard against unwanted lysis of the host cell. Collectively, the available data suggest that MPEG1 likely functions as an intracellular pore-forming immune effector. Herein, we review the current understanding of MPEG1 evolution, regulation, and function. Furthermore, recent structural studies of MPEG1 are discussed, including the proposed mechanisms of action for MPEG1 bactericidal activity. Lastly limitations, outstanding questions, and implications of MPEG1 models are explored in the context of the broader literature and in light of newly available structural data.
Collapse
Affiliation(s)
- Charles Bayly-Jones
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Siew Siew Pang
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Bradley A Spicer
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - James C Whisstock
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Michelle A Dunstone
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
52
|
Wang G, Liu H, Liu Y, Li H, Li Z, Shao G, Lv X. Formononetin alleviates Streptococcus suis infection by targeting suilysin. Microb Pathog 2020; 147:104388. [DOI: 10.1016/j.micpath.2020.104388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 01/29/2023]
|
53
|
Liu Y, Wang H, Gao J, Wen Z, Peng L. Cryptotanshinone ameliorates the pathogenicity of Streptococcus suis by targeting suilysin and inflammation. J Appl Microbiol 2020; 130:736-744. [PMID: 32750224 DOI: 10.1111/jam.14810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022]
Abstract
AIMS Streptococcus suis is a highly zoonotic pathogen that is a serious threat to human health and the development of the pig industry worldwide. The virulence factors produced during S. suis infection play an important role, and the pore-forming activity of suilysin is considered an important virulence-related factor, especially in meningitis. Treatment of S. suis infection with traditional antibiotics is becoming increasingly challenging due to bacterial resistance. The purpose of this study is to verify the role of cryptotanshinone in the process of S. suis infection and provide a new drug precursor for the treatment of S. suis infection. METHODS AND RESULTS In this study, we used circular dichroism spectroscopy to demonstrate that cryptotanshinone alters the secondary structure of suilysin. The results of the antibacterial activity and haemolysis assays showed cryptotanshinone could inhibit the pore-forming activity of suilysin without affecting bacterial growth or its expression. We also showed that cryptotanshinone reduces bacterial damage and penetration in vitro, reduce the S. suis-induced inflammatory response and provide protection against bacterial infections in vivo and in vitro. CONCLUSIONS Cryptotanshinone is a potential compound precursor for treating S. suis infection. SIGNIFICANCE AND IMPACT OF THE STUDY Cryptotanshinone may be a promising leading compound for S. suis infection and related diseases.
Collapse
Affiliation(s)
- Y Liu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - H Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - J Gao
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Z Wen
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - L Peng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
54
|
Bacterial killing by complement requires direct anchoring of membrane attack complex precursor C5b-7. PLoS Pathog 2020; 16:e1008606. [PMID: 32569291 PMCID: PMC7351214 DOI: 10.1371/journal.ppat.1008606] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/10/2020] [Accepted: 05/06/2020] [Indexed: 12/22/2022] Open
Abstract
An important effector function of the human complement system is to directly kill Gram-negative bacteria via Membrane Attack Complex (MAC) pores. MAC pores are assembled when surface-bound convertase enzymes convert C5 into C5b, which together with C6, C7, C8 and multiple copies of C9 forms a transmembrane pore that damages the bacterial cell envelope. Recently, we found that bacterial killing by MAC pores requires local conversion of C5 by surface-bound convertases. In this study we aimed to understand why local assembly of MAC pores is essential for bacterial killing. Here, we show that rapid interaction of C7 with C5b6 is required to form bactericidal MAC pores on Escherichia coli. Binding experiments with fluorescently labelled C6 show that C7 prevents release of C5b6 from the bacterial surface. Moreover, trypsin shaving experiments and atomic force microscopy revealed that this rapid interaction between C7 and C5b6 is crucial to efficiently anchor C5b-7 to the bacterial cell envelope and form complete MAC pores. Using complement-resistant clinical E. coli strains, we show that bacterial pathogens can prevent complement-dependent killing by interfering with the anchoring of C5b-7. While C5 convertase assembly was unaffected, these resistant strains blocked efficient anchoring of C5b-7 and thus prevented stable insertion of MAC pores into the bacterial cell envelope. Altogether, these findings provide basic molecular insights into how bactericidal MAC pores are assembled and how bacteria evade MAC-dependent killing. In this paper we focus on how the complement system, an essential part of the immune system, kills bacteria via so-called membrane attack complex (MAC) pores. The MAC is a large, ring-shaped pore that consists of five different proteins, which is assembled when the complement system is activated on the bacterial surface. Here, we aimed to better understand how MAC pores are assembled on Escherichia coli and how clinical E. coli strains resist killing by MAC pores. We uncover that rapid recruitment of one of the MAC proteins, namely C7, is crucial to efficiently anchor the MAC precursor to the bacterial surface and ensure killing of a variety of E. coli strains via MAC pores. Furthermore, we reveal that some clinical E. coli strains prevent this efficient anchoring of MAC precursors and thereby resist bacterial killing. These insights help us to better understand how the immune system kills bacteria and how pathogenic bacteria evade this.
Collapse
|
55
|
Shewell LK, Day CJ, Jen FEC, Haselhorst T, Atack JM, Reijneveld JF, Everest-Dass A, James DBA, Boguslawski KM, Brouwer S, Gillen CM, Luo Z, Kobe B, Nizet V, von Itzstein M, Walker MJ, Paton AW, Paton JC, Torres VJ, Jennings MP. All major cholesterol-dependent cytolysins use glycans as cellular receptors. SCIENCE ADVANCES 2020; 6:eaaz4926. [PMID: 32494740 PMCID: PMC7244308 DOI: 10.1126/sciadv.aaz4926] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/17/2020] [Indexed: 05/03/2023]
Abstract
Cholesterol-dependent cytolysins (CDCs) form pores in cholesterol-rich membranes, but cholesterol alone is insufficient to explain their cell and host tropism. Here, we show that all eight major CDCs have high-affinity lectin activity that identifies glycans as candidate cellular receptors. Streptolysin O, vaginolysin, and perfringolysin O bind multiple glycans, while pneumolysin, lectinolysin, and listeriolysin O recognize a single glycan class. Addition of exogenous carbohydrate receptors for each CDC inhibits toxin activity. We present a structure for suilysin domain 4 in complex with two distinct glycan receptors, P1 antigen and αGal/Galili. We report a wide range of binding affinities for cholesterol and for the cholesterol analog pregnenolone sulfate and show that CDCs bind glycans and cholesterol independently. Intermedilysin binds to the sialyl-TF O-glycan on its erythrocyte receptor, CD59. Removing sialyl-TF from CD59 reduces intermedilysin binding. Glycan-lectin interactions underpin the cellular tropism of CDCs and provide molecular targets to block their cytotoxic activity.
Collapse
Affiliation(s)
- Lucy K. Shewell
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Christopher J. Day
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Freda E.-C. Jen
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - John M. Atack
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | | | - Arun Everest-Dass
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - David B. A. James
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | | | - Stephan Brouwer
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Christine M. Gillen
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhenyao Luo
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Mark J. Walker
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Adrienne W. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide 5005, Australia
| | - James C. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide 5005, Australia
| | - Victor J. Torres
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Michael P. Jennings
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
56
|
Nonaka S, Salim E, Kamiya K, Hori A, Nainu F, Asri RM, Masyita A, Nishiuchi T, Takeuchi S, Kodera N, Kuraishi T. Molecular and Functional Analysis of Pore-Forming Toxin Monalysin From Entomopathogenic Bacterium Pseudomonas entomophila. Front Immunol 2020; 11:520. [PMID: 32292407 PMCID: PMC7118224 DOI: 10.3389/fimmu.2020.00520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/06/2020] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas entomophila is a highly pathogenic bacterium that infects insects. It is also used as a suitable model pathogen to analyze Drosophila's innate immunity. P. entomophila's virulence is largely derived from Monalysin, a β-barrel pore-forming toxin that damages Drosophila tissues, inducing necrotic cell death. Here we report the first and efficient purification of endogenous Monalysin and its characterization. Monalysin is successfully purified as a pro-form, and trypsin treatment results in a cleaved mature form of purified Monalysin which kills Drosophila cell lines and adult flies. Electrophysiological measurement of Monalysin in a lipid membrane with an on-chip device confirms that Monalysin forms a pore, in a cleavage-dependent manner. This analysis also provides a pore-size estimate of Monalysin using current amplitude for a single pore and suggests lipid preferences for the insertion. Atomic Force Microscope (AFM) analysis displays its structure in a solution and shows that active-Monalysin is stable and composed of an 8-mer complex; this observation is consistent with mass spectrometry data. AFM analysis also shows the 8-mer structure of active-Monalysin in a lipid bilayer, and real-time imaging demonstrates the moment at which Monalysin is inserted into the lipid membrane. These results collectively suggest that endogenous Monalysin is indeed a pore-forming toxin composed of a rigid structure before pore formation in the lipid membrane. The endogenous Monalysin characterized in this study could be a desirable tool for analyzing host defense mechanisms against entomopathogenic bacteria producing damage-inducing toxins.
Collapse
Affiliation(s)
- Saori Nonaka
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Emil Salim
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.,Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Koki Kamiya
- Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan.,Graduate School of Science and Technology, Gunma University, Maebashi, Japan
| | - Aki Hori
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Firzan Nainu
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.,Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | - Rangga Meidianto Asri
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.,Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | - Ayu Masyita
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.,Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | - Takumi Nishiuchi
- Institute for Gene Research, Kanazawa University, Kanazawa, Japan
| | - Shoji Takeuchi
- Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan.,Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Takayuki Kuraishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
57
|
Formation of pre-pore complexes of pneumolysin is accompanied by a decrease in short-range order of lipid molecules throughout vesicle bilayers. Sci Rep 2020; 10:4585. [PMID: 32165654 PMCID: PMC7067851 DOI: 10.1038/s41598-020-60348-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 02/06/2020] [Indexed: 01/07/2023] Open
Abstract
Oligomers of pneumolysin form transmembrane channels in cholesterol-containing lipid bilayers. The mechanism of pore formation involves a multistage process in which the protein, at first, assembles into a ring-shaped complex on the outer-bilayer leaflet. In a subsequent step, the complex inserts into the membrane. Contrary to most investigations of pore formation that have focussed on protein changes, we have deduced how the lipid-packing order is altered in different stages of the pore-forming mechanism. An optical tweezing apparatus was used, in combination with microfluidics, to isolate large-unilamellar vesicles and control exposure of the bilayer to pneumolysin. By monitoring Raman-scattered light from a single-trapped liposome, the effect of the protein on short-range order and rotational diffusion of lipids could be inferred from changes in the envelope of the C-H stretch. A significant change in the lipid-packing order takes place during assembly of pre-pore oligomers. We were not able to detect a change in the lipid-packing order during the initial stage of protein binding, or any further change during the insertion of oligomers. Pre-pore complexes induce a transformation in which a bilayer, resembling a liquid-ordered phase is changed into a bilayer resembling a fluid-liquid-disordered phase surrounding ordered microdomains enriched in cholesterol and protein complexes.
Collapse
|
58
|
Pleckaityte M. Cholesterol-Dependent Cytolysins Produced by Vaginal Bacteria: Certainties and Controversies. Front Cell Infect Microbiol 2020; 9:452. [PMID: 31998661 PMCID: PMC6966277 DOI: 10.3389/fcimb.2019.00452] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/12/2019] [Indexed: 01/16/2023] Open
Abstract
Bacterial vaginosis (BV) is a vaginal anaerobic dysbiosis that affects women of reproductive age worldwide. BV is microbiologically characterized by the depletion of vaginal lactobacilli and the overgrowth of anaerobic bacterial species. Accumulated evidence suggests that Gardnerella spp. have a pivotal role among BV-associated bacteria in the initiation and development of BV. However, Gardnerella spp. often colonize healthy women. Lactobacillus iners is considered as a prevalent constituent of healthy vaginal microbiota, and is abundant in BV. Gardnerella spp. and L. iners secrete the toxins vaginolysin (VLY) and inerolysin (INY), which have structural and activity features attributed to cholesterol-dependent cytolysins (CDCs). CDCs are produced by many pathogenic bacteria as virulence factors that participate in various stages of disease progression by forming lytic and non-lytic pores in cell membranes or via pore-independent pathways. VLY is expressed in the majority of Gardnerella spp. isolates; less is known about the prevalence of the gene that encodes INY. INY is a classical CDC; membrane cholesterol acts a receptor for INY. VLY uses human CD59 as its receptor, although cholesterol remains indispensable for VLY pore-forming activity. INY-induced damage of artificial membranes is directly dependent on cholesterol concentration in the bilayer, whereas VLY-induced damage occurs with high levels of membrane cholesterol (>40 mol%). VLY primarily forms membrane-embedded complete rings in the synthetic bilayer, whereas INY forms arciform structures with smaller pore sizes. VLY activity is high at elevated pH, which is characteristic of BV, whereas INY activity is high at more acidic pH, which is specific for a healthy vagina. Increased VLY levels in vaginal mucosa in vivo were associated with clinical indicators of BV. However, experimental evidence is lacking for the specific roles of VLY and INY in BV. The interplay between vaginal bacterial species affects the expression of the gene encoding VLY, thereby modulating the virulence of Gardnerella spp. This review discusses the current evidence for VLY and INY cytolysins, including their structures and activities, factors affecting their expression, and their potential impacts on the progression of anaerobic dysbiosis.
Collapse
Affiliation(s)
- Milda Pleckaityte
- Laboratory of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
59
|
Vötsch D, Willenborg M, Oelemann WM, Brogden G, Valentin-Weigand P. Membrane Binding, Cellular Cholesterol Content and Resealing Capacity Contribute to Epithelial Cell Damage Induced by Suilysin of Streptococcus suis. Pathogens 2019; 9:pathogens9010033. [PMID: 31905867 PMCID: PMC7168673 DOI: 10.3390/pathogens9010033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 12/31/2022] Open
Abstract
Streptococcus (S.) suis is a major cause of economic losses in the pig industry worldwide and is an emerging zoonotic pathogen. One important virulence-associated factor is suilysin (SLY), a toxin that belongs to the family of cholesterol-dependent pore-forming cytolysins (CDC). However, the precise role of SLY in host–pathogen interactions is still unclear. Here, we investigated the susceptibility of different respiratory epithelial cells to SLY, including immortalized cell lines (HEp-2 and NPTr cells), which are frequently used in in vitro studies on S. suis virulence mechanisms, as well as primary porcine respiratory cells, which represent the first line of barrier during S. suis infections. SLY-induced cell damage was determined by measuring the release of lactate dehydrogenase after infection with a virulent S. suis serotype 2 strain, its isogenic SLY-deficient mutant strain, or treatment with the recombinant protein. HEp-2 cells were most susceptible, whereas primary epithelial cells were hardly affected by the toxin. This prompted us to study possible explanations for these differences. We first investigated the binding capacity of SLY using flow cytometry analysis. Since binding and pore-formation of CDC is dependent on the membrane composition, we also determined the cellular cholesterol content of the different cell types using TLC and HPLC. Finally, we examined the ability of those cells to reseal SLY-induced pores using flow cytometry analysis. Our results indicated that the amount of membrane-bound SLY, the cholesterol content of the cells, as well as their resealing capacity all affect the susceptibility of the different cells regarding the effects of SLY. These findings underline the differences of in vitro pathogenicity models and may further help to dissect the biological role of SLY during S. suis infections.
Collapse
Affiliation(s)
- Désirée Vötsch
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (D.V.); (M.W.)
| | - Maren Willenborg
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (D.V.); (M.W.)
| | - Walter M.R. Oelemann
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (D.V.); (M.W.)
- Departamento de Imunologia, Instituto de Microbiologia Paulo Góes, Universidade Federal do Rio de Janeiro (UFRJ), 21941-901 Rio de Janeiro, Brazil
| | - Graham Brogden
- Department of Physiological Chemistry, University for Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Peter Valentin-Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (D.V.); (M.W.)
- Correspondence: ; Tel.: +49-(0)511-856-7362
| |
Collapse
|
60
|
Rudd-Schmidt JA, Hodel AW, Noori T, Lopez JA, Cho HJ, Verschoor S, Ciccone A, Trapani JA, Hoogenboom BW, Voskoboinik I. Lipid order and charge protect killer T cells from accidental death. Nat Commun 2019; 10:5396. [PMID: 31776337 PMCID: PMC6881447 DOI: 10.1038/s41467-019-13385-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/06/2019] [Indexed: 01/24/2023] Open
Abstract
Killer T cells (cytotoxic T lymphocytes, CTLs) maintain immune homoeostasis by eliminating virus-infected and cancerous cells. CTLs achieve this by forming an immunological synapse with their targets and secreting a pore-forming protein (perforin) and pro-apoptotic serine proteases (granzymes) into the synaptic cleft. Although the CTL and the target cell are both exposed to perforin within the synapse, only the target cell membrane is disrupted, while the CTL is invariably spared. How CTLs escape unscathed remains a mystery. Here, we report that CTLs achieve this via two protective properties of their plasma membrane within the synapse: high lipid order repels perforin and, in addition, exposed phosphatidylserine sequesters and inactivates perforin. The resulting resistance of CTLs to perforin explains their ability to kill target cells in rapid succession and to survive these encounters. Furthermore, these mechanisms imply an unsuspected role for plasma membrane organization in protecting cells from immune attack.
Collapse
Affiliation(s)
- Jesse A Rudd-Schmidt
- Killer Cell Biology Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Adrian W Hodel
- London Centre for Nanotechnology, University College London, 19 Gordon Street, London, WC1H 0AH, UK
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Tahereh Noori
- Killer Cell Biology Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Jamie A Lopez
- Killer Cell Biology Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
- Bristol-Myers Squibb, 4 Nexus Ct, Mulgrave, VIC, 3170, Australia
| | - Hyun-Jung Cho
- Biological Optical Microscopy Platform, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Sandra Verschoor
- Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Annette Ciccone
- Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Joseph A Trapani
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, 3000, Australia
- Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, 19 Gordon Street, London, WC1H 0AH, UK.
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK.
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Ilia Voskoboinik
- Killer Cell Biology Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
61
|
Zeng W, Ma H, Fan W, Yang Y, Zhang C, Arnaud Kombe Kombe J, Fan X, Zhang Y, Dong Z, Shen Z, Zhou Y, Yang M, Jin T. Structure determination of CAMP factor of Mobiluncus curtisii and insights into structural dynamics. Int J Biol Macromol 2019; 150:1027-1036. [PMID: 31739050 DOI: 10.1016/j.ijbiomac.2019.10.107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/31/2022]
Abstract
Bacterial vaginosis (BV) is a common type of vaginal inflammation caused by a proliferation of pathogenic bacteria, among which Mobiluncus curtisii. In our previous studies on M. curtisii genome, we identified the presence of a genomic fragment encoding a 25 kDa pore-forming toxin, the CAMP factor, which is known to be involved in the synergistic lysis of erythrocytes namely CAMP reaction. However, whether this hypothetical gene product has hemolytic activity is unknown. Moreover, its relative structure and function are not yet solved. Here we found that the M. curtisii CAMP factor is a monomer at pH 4.4 and oligomer at pH > 4.6. Hemolysis assays showed that M. curtisii CAMP factor could lyse sheep red blood cells efficiently in pH 5.4-7.4. Negative staining electron microscope analysis of the CAMP factor revealed ring-like structures at pH above 4.6. Additionally, the crystal structure of M. curtisii CAMP factor, determineded at 1.85 Å resolution, reveals a 5 + 3 helix motif. Further functional analysis suggested that the structural rearrangement of the N-terminal domain might be required for protein function. In conclusion, this structure-function relationship study of CAMP factor provides a new perspective of the M. curtisii role in BV development.
Collapse
Affiliation(s)
- Weihong Zeng
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong 510632, China; Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, Guangdong 519000, China; Hefei National Laboratory for Physical Sciences at Microscale, Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Huan Ma
- Hefei National Laboratory for Physical Sciences at Microscale, Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Weirong Fan
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Yunru Yang
- Hefei National Laboratory for Physical Sciences at Microscale, Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Caiying Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - John Arnaud Kombe Kombe
- Hefei National Laboratory for Physical Sciences at Microscale, Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiaojiao Fan
- Hefei National Laboratory for Physical Sciences at Microscale, Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yuzhu Zhang
- Healthy Processed Foods Research Unit, United States Department of Agriculture Agricultural Research Service, Western Regional Research Center, Albany, CA 94710, United States
| | - Zhongjun Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Zhen Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Meixiang Yang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong 510632, China; Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, Guangdong 519000, China.
| | - Tengchuan Jin
- Hefei National Laboratory for Physical Sciences at Microscale, Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
62
|
The cryo-EM structure of the acid activatable pore-forming immune effector Macrophage-expressed gene 1. Nat Commun 2019; 10:4288. [PMID: 31537793 PMCID: PMC6753088 DOI: 10.1038/s41467-019-12279-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/28/2019] [Indexed: 11/08/2022] Open
Abstract
Macrophage-expressed gene 1 (MPEG1/Perforin-2) is a perforin-like protein that functions within the phagolysosome to damage engulfed microbes. MPEG1 is thought to form pores in target membranes, however, its mode of action remains unknown. We use cryo-Electron Microscopy (cryo-EM) to determine the 2.4 Å structure of a hexadecameric assembly of MPEG1 that displays the expected features of a soluble prepore complex. We further discover that MPEG1 prepore-like assemblies can be induced to perforate membranes through acidification, such as would occur within maturing phagolysosomes. We next solve the 3.6 Å cryo-EM structure of MPEG1 in complex with liposomes. These data reveal that a multi-vesicular body of 12 kDa (MVB12)-associated β-prism (MABP) domain binds membranes such that the pore-forming machinery of MPEG1 is oriented away from the bound membrane. This unexpected mechanism of membrane interaction suggests that MPEG1 remains bound to the phagolysosome membrane while simultaneously forming pores in engulfed bacterial targets. Macrophage-expressed gene 1 (MPEG1) functions within the phagolysosome to damage engulfed microbes, presumably via forming pores in target membranes. In order to provide insights into the mechanism of MPEG1 function and membrane binding, the authors present structures of hexadecameric MPEG1 prepores both in solution and in complex with liposomes.
Collapse
|
63
|
Doorduijn DJ, Rooijakkers SHM, Heesterbeek DAC. How the Membrane Attack Complex Damages the Bacterial Cell Envelope and Kills Gram‐Negative Bacteria. Bioessays 2019; 41:e1900074. [DOI: 10.1002/bies.201900074] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/11/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Dennis J. Doorduijn
- Medical Microbiology, University Medical Center UtrechtUtrecht University Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Suzan H. M. Rooijakkers
- Medical Microbiology, University Medical Center UtrechtUtrecht University Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Dani A. C. Heesterbeek
- Medical Microbiology, University Medical Center UtrechtUtrecht University Heidelberglaan 100 3584 CX Utrecht The Netherlands
| |
Collapse
|
64
|
Inerolysin and vaginolysin, the cytolysins implicated in vaginal dysbiosis, differently impair molecular integrity of phospholipid membranes. Sci Rep 2019; 9:10606. [PMID: 31337831 PMCID: PMC6650466 DOI: 10.1038/s41598-019-47043-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
The pore-forming toxins, inerolysin (INY) and vaginolysin (VLY), produced by vaginal bacteria Lactobacillus iners and Gardnerella vaginalis were studied using the artificial cholesterol-rich tethered bilayer membranes (tBLMs) by electrochemical techniques. The electrochemical impedance spectroscopy (EIS) of tBLMs attested for the toxin-induced impairment of the integrity of phospholipid membranes. This observation was in line with the atomic force microscopy data demonstrating formation of oligomeric protein assemblies in tBLMs. These assemblies exhibited different morphologies: VLY mostly formed complete rings, whereas INY produced arciform structures. We found that both EIS (membrane damage) and the surface plasmon resonance (protein binding) data obtained on tBLMs are in-line with the data obtained in human cell lysis experiments. EIS, however, is capable of capturing effects inaccessible for biological activity assays. Specifically, we found that the INY-induced damage of tBLMs is nearly a linear function of membrane cholesterol content, whereas VLY triggered significant damage only at high (50 mol%) cholesterol concentrations. The observed differences of INY and VLY activities on phospholipid membranes might have clinical importance: both toxin-producing bacteria have been found in healthy vagina and dysbiosis, suggesting the need for adaptation at different vaginal conditions. Our results broaden the possibilities of application of tBLMs in medical diagnostics.
Collapse
|
65
|
Morton CJ, Sani MA, Parker MW, Separovic F. Cholesterol-Dependent Cytolysins: Membrane and Protein Structural Requirements for Pore Formation. Chem Rev 2019; 119:7721-7736. [DOI: 10.1021/acs.chemrev.9b00090] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Craig J. Morton
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Marc-Antoine Sani
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Michael W. Parker
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
- St. Vincent’s Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
66
|
Parsons ES, Stanley GJ, Pyne ALB, Hodel AW, Nievergelt AP, Menny A, Yon AR, Rowley A, Richter RP, Fantner GE, Bubeck D, Hoogenboom BW. Single-molecule kinetics of pore assembly by the membrane attack complex. Nat Commun 2019; 10:2066. [PMID: 31061395 PMCID: PMC6502846 DOI: 10.1038/s41467-019-10058-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/12/2019] [Indexed: 12/24/2022] Open
Abstract
The membrane attack complex (MAC) is a hetero-oligomeric protein assembly that kills pathogens by perforating their cell envelopes. The MAC is formed by sequential assembly of soluble complement proteins C5b, C6, C7, C8 and C9, but little is known about the rate-limiting steps in this process. Here, we use rapid atomic force microscopy (AFM) imaging to show that MAC proteins oligomerize within the membrane, unlike structurally homologous bacterial pore-forming toxins. C5b-7 interacts with the lipid bilayer prior to recruiting C8. We discover that incorporation of the first C9 is the kinetic bottleneck of MAC formation, after which rapid C9 oligomerization completes the pore. This defines the kinetic basis for MAC assembly and provides insight into how human cells are protected from bystander damage by the cell surface receptor CD59, which is offered a maximum temporal window to halt the assembly at the point of C9 insertion.
Collapse
Affiliation(s)
- Edward S Parsons
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK.
| | - George J Stanley
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
| | - Alice L B Pyne
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
| | - Adrian W Hodel
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Adrian P Nievergelt
- Laboratory for Bio- and Nano-Instrumentation, Swiss Federal Institute of Technology Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Anaïs Menny
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Alexander R Yon
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Ashlea Rowley
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Ralf P Richter
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- School of Physics and Astronomy, Faculty of Mathematics and Physical Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Georg E Fantner
- Laboratory for Bio- and Nano-Instrumentation, Swiss Federal Institute of Technology Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Doryen Bubeck
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK.
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK.
- Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
67
|
Laterre PF, Colin G, Dequin PF, Dugernier T, Boulain T, Azeredo da Silveira S, Lajaunias F, Perez A, François B. CAL02, a novel antitoxin liposomal agent, in severe pneumococcal pneumonia: a first-in-human, double-blind, placebo-controlled, randomised trial. THE LANCET. INFECTIOUS DISEASES 2019; 19:620-630. [PMID: 31056427 DOI: 10.1016/s1473-3099(18)30805-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Severe community-acquired pneumonia caused by Streptococcus pneumoniae is associated with high morbidity and mortality rates. CAL02, a novel antitoxin agent with an unprecedented mode of action, consists of liposomes that capture bacterial toxins known to dysregulate inflammation, cause organ damage, and impede immune defence. We aimed to assess the safety of CAL02 as an add-on therapy to antibiotics. METHODS This randomised, double-blind, multicentre, placebo-controlled trial was done in ten intensive care units (ICUs) in France and Belgium (but only six units enrolled patients), in patients with severe community-acquired pneumococcal pneumonia who required ICU admission and had been identified as being infected with S pneumoniae. We randomly assigned participants in two stages-the first stage randomly assigned six patients (1:1) to either low-dose CAL02 or placebo, and the second stage randomly assigned 18 patients (14:4) to either high-dose CAL02 or placebo, and stratified in four blocks (4:1, 4:1, 3:1, and 3:1), in addition to standard of care. Block randomisation was done with a computer-generated random number list. Participants, investigators, other site study personnel, the sponsor, and the sponsor's designees involved in study management and monitoring were masked to the randomisation list and treatment assignment. Patients were treated with low-dose (4 mg/kg) or high-dose (16 mg/kg) CAL02 or placebo (saline), in addition to standard antibiotic therapy. Two intravenous doses of study treatment were infused, with a 24 h interval, at a concentration of 10 mg/mL, stepwise, over a maximum of 2 h on days 1 and 2. The primary objective of the study was to assess the safety and tolerability of low-dose and high-dose CAL02 in patients with severe community-acquired pneumonia treated with standard antibiotic therapy, and the primary analysis was done on the safety population (all patients who received at least one dose of the study treatment). Efficacy was a secondary outcome. This trial is registered with ClinicalTrials.gov, number NCT02583373. FINDINGS Between March 21, 2016, and Jan 13, 2018, we screened 280 patients with community-acquired pneumonia. 19 patients were enrolled and randomly assigned, resulting in 13 patients in the CAL02 groups (three assigned to low-dose CAL02 and ten assigned to high-dose CAL02) and six in the placebo group. One patient randomly assigned to placebo was allocated to the wrong treatment group and received high-dose CAL02 instead of placebo. Thus, 14 patients received CAL02 (three received low-dose CAL02 and 11 received high-dose CAL02) and five patients received placebo, constituting the safety population. At baseline, the mean APACHE II score for the total study population was 21·5 (SD 4·9; 95% CI 19·3-23·7) and 11 (58%) of 19 patients had septic shock. Adverse events occurred in 12 (86%) of 14 patients in the CAL02 treatment groups combined and all five (100%) patients in the placebo group. Serious adverse events occurred in four (29%) of 14 patients in the CAL02 treatment groups combined and two (40%) of five patients in the placebo group. One non-serious adverse event (mild increase in triglycerides) in a patient in the high-dose CAL02 group was reported as related to study drug. However, analysis of the changes in triglyceride levels in the CAL02 groups compared with the placebo group revealed no correlation with administration of CAL02. No adverse events were linked to local tolerability events. All patients, apart from one who died in the low CAL02 group (death not related to the study drug) achieved clinical cure at the test of cure visit between days 15 and 22. The sequential organ failure assessment score decreased by mean 65·0% (95% CI 50·7-79·4) in the combined CAL02 groups compared with 29·2% (12·8-45·5) in the placebo group between baseline and day 8. INTERPRETATION The nature of adverse events was consistent with the profile of the study population and CAL02 showed a promising safety profile and tolerability. However, the difference between high-dose and low-dose CAL02 could not be assessed in this study. Efficacy was in line with the expected benefits of neutralising toxins. The results of this study support further clinical development of CAL02 and provide a solid basis for a larger clinical study. FUNDING Combioxin.
Collapse
Affiliation(s)
- Pierre-François Laterre
- Intensive Care Unit, Cliniques Universitaires Saint-Luc, Université catholique de Louvain (UCL), Brussels, Belgium.
| | - Gwenhael Colin
- Medical-Surgical Intensive Care Unit, District Hospital Center, La Roche-sur-Yon, France
| | | | | | - Thierry Boulain
- Service de Médecine Intensive Réanimation, Hôpital La Source, Centre Hospitalier Régional d'Orléans, Orléans, France
| | | | | | | | - Bruno François
- Medical-Surgical Intensive Care Unit, University Hospital Limoges Dupuytren Hospital, Limoges, France; Inserm CIC-1435, University Hospital Limoges Dupuytren Hospital, Limoges, France; Inserm UMR 1092, Faculté de Médecine, Université de Limoges, Limoges, France
| |
Collapse
|
68
|
Visualizing Biological Membrane Organization and Dynamics. J Mol Biol 2019; 431:1889-1919. [DOI: 10.1016/j.jmb.2019.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/02/2019] [Accepted: 02/13/2019] [Indexed: 11/22/2022]
|
69
|
Electrochemical impedance of randomly distributed defects in tethered phospholipid bilayers: Finite element analysis. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.148] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
70
|
Heesterbeek DA, Bardoel BW, Parsons ES, Bennett I, Ruyken M, Doorduijn DJ, Gorham RD, Berends ET, Pyne AL, Hoogenboom BW, Rooijakkers SH. Bacterial killing by complement requires membrane attack complex formation via surface-bound C5 convertases. EMBO J 2019; 38:e99852. [PMID: 30643019 PMCID: PMC6376327 DOI: 10.15252/embj.201899852] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/05/2018] [Accepted: 12/14/2018] [Indexed: 12/16/2022] Open
Abstract
The immune system kills bacteria by the formation of lytic membrane attack complexes (MACs), triggered when complement enzymes cleave C5. At present, it is not understood how the MAC perturbs the composite cell envelope of Gram-negative bacteria. Here, we show that the role of C5 convertase enzymes in MAC assembly extends beyond the cleavage of C5 into the MAC precursor C5b. Although purified MAC complexes generated from preassembled C5b6 perforate artificial lipid membranes and mammalian cells, these components lack bactericidal activity. In order to permeabilize both the bacterial outer and inner membrane and thus kill a bacterium, MACs need to be assembled locally by the C5 convertase enzymes. Our data indicate that C5b6 rapidly loses the capacity to form bactericidal pores; therefore, bacterial killing requires both in situ conversion of C5 and immediate insertion of C5b67 into the membrane. Using flow cytometry and atomic force microscopy, we show that local assembly of C5b6 at the bacterial surface is required for the efficient insertion of MAC pores into bacterial membranes. These studies provide basic molecular insights into MAC assembly and bacterial killing by the immune system.
Collapse
Affiliation(s)
- Dani Ac Heesterbeek
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Bart W Bardoel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Edward S Parsons
- London Centre for Nanotechnology, University College London, London, UK
| | - Isabel Bennett
- London Centre for Nanotechnology, University College London, London, UK
| | - Maartje Ruyken
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Dennis J Doorduijn
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ronald D Gorham
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Evelien Tm Berends
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Alice Lb Pyne
- London Centre for Nanotechnology, University College London, London, UK
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London, UK
- Department of Physics and Astronomy, University College London, London, UK
| | - Suzan Hm Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
71
|
Li G, Shen X, Wei Y, Si X, Deng X, Wang J. Quercetin reduces Streptococcus suis virulence by inhibiting suilysin activity and inflammation. Int Immunopharmacol 2019; 69:71-78. [PMID: 30682719 DOI: 10.1016/j.intimp.2019.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/31/2018] [Accepted: 01/10/2019] [Indexed: 12/14/2022]
Abstract
Streptococcus suis, a globally distributed bacterial pathogen, is an important zoonotic agent for humans and animals that can lead to multiple deaths and cause major economic losses. Suilysin (SLY), secreted by most pathogenic S. suis strains, is a cytotoxic toxin that belongs to the cholesterol-dependent cytolysin family; this toxin plays a key role in a mouse meningitis model, suggesting that effective interference with the biological activity of SLY may be a potential treatment for S. suis infection. In addition, the inflammatory response induced by S. suis is an important manifestation in infections and is associated with multiple fatal diseases. In this study, we found that the natural compound quercetin can directly inhibit the pore-forming activity of SLY without affecting bacterial growth and SLY secretion at the concentrations tested in our assay. In addition, quercetin treatment significantly alleviated cytotoxicity caused by S. suis infection and effectively reduced the release of the pro-inflammatory cytokines IL-1β, IL-6, and tumor necrosis factor alpha (TNF-α) stimulated by bacteria. Significantly decreased mortality was observed for the S. suis-infected mice that received quercetin. Our results suggested that quercetin may represent a promising therapeutic candidate for S. suis infection by targeting SLY and the subsequent inflammation. The present study provides a new strategy and leading compound for S. suis infection.
Collapse
Affiliation(s)
- Gen Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xue Shen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuhang Wei
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaosa Si
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Jianfeng Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
72
|
Nguyen BN, Peterson BN, Portnoy DA. Listeriolysin O: A phagosome-specific cytolysin revisited. Cell Microbiol 2019; 21:e12988. [PMID: 30511471 DOI: 10.1111/cmi.12988] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/17/2022]
Abstract
Listeriolysin O (LLO) is an essential determinant of Listeria monocytogenes pathogenesis that mediates the escape of L. monocytogenes from host cell vacuoles, thereby allowing replication in the cytosol without causing appreciable cell death. As a member of the cholesterol-dependent cytolysin (CDC) family of pore-forming toxins, LLO is unique in that it is secreted by a facultative intracellular pathogen, whereas all other CDCs are produced by pathogens that are largely extracellular. Replacement of LLO with other CDCs results in strains that are extremely cytotoxic and 10,000-fold less virulent in mice. LLO has structural and regulatory features that allow it to function intracellularly without causing cell death, most of which map to a unique N-terminal region of LLO referred to as the proline, glutamic acid, serine, threonine (PEST)-like sequence. Yet, while LLO has unique properties required for its intracellular site of action, extracellular LLO, like other CDCs, affects cells in a myriad of ways. Because all CDCs form pores in cholesterol-containing membranes that lead to rapid Ca2+ influx and K+ efflux, they consequently trigger a wide range of host cell responses, including mitogen-activated protein kinase activation, histone modification, and caspase-1 activation. There is no debate that extracellular LLO, like all other CDCs, can stimulate multiple cellular activities, but the primary question we wish to address in this perspective is whether these activities contribute to L. monocytogenes pathogenesis.
Collapse
Affiliation(s)
- Brittney N Nguyen
- Graduate Group in Microbiology, University of California, Berkeley, Berkeley, California
| | - Bret N Peterson
- Graduate Group in Microbiology, University of California, Berkeley, Berkeley, California
| | - Daniel A Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California
| |
Collapse
|
73
|
Lam JGT, Song C, Seveau S. High-throughput Measurement of Plasma Membrane Resealing Efficiency in Mammalian Cells. J Vis Exp 2019. [PMID: 30663635 DOI: 10.3791/58351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In their physiological environment, mammalian cells are often subjected to mechanical and biochemical stresses that result in plasma membrane damage. In response to these damages, complex molecular machineries rapidly reseal the plasma membrane to restore its barrier function and maintain cell survival. Despite 60 years of research in this field, we still lack a thorough understanding of the cell resealing machinery. With the goal of identifying cellular components that control plasma membrane resealing or drugs that can improve resealing, we have developed a fluorescence-based high-throughput assay that measures the plasma membrane resealing efficiency in mammalian cells cultured in microplates. As a model system for plasma membrane damage, cells are exposed to the bacterial pore-forming toxin listeriolysin O (LLO), which forms large 30-50 nm diameter proteinaceous pores in cholesterol-containing membranes. The use of a temperature-controlled multi-mode microplate reader allows for rapid and sensitive spectrofluorometric measurements in combination with brightfield and fluorescence microscopy imaging of living cells. Kinetic analysis of the fluorescence intensity emitted by a membrane impermeant nucleic acid-binding fluorochrome reflects the extent of membrane wounding and resealing at the cell population level, allowing for the calculation of the cell resealing efficiency. Fluorescence microscopy imaging allows for the enumeration of cells, which constitutively express a fluorescent chimera of the nuclear protein histone 2B, in each well of the microplate to account for potential variations in their number and allows for eventual identification of distinct cell populations. This high-throughput assay is a powerful tool expected to expand our understanding of membrane repair mechanisms via screening for host genes or exogenously added compounds that control plasma membrane resealing.
Collapse
Affiliation(s)
- Jonathan G T Lam
- Department of Microbial Infection and Immunity, The Ohio State University; Department of Microbiology, The Ohio State University; Infectious Diseases Institute, The Ohio State University
| | - Chi Song
- Division of Biostatistics, College of Public Health, The Ohio State University
| | - Stephanie Seveau
- Department of Microbial Infection and Immunity, The Ohio State University; Department of Microbiology, The Ohio State University; Infectious Diseases Institute, The Ohio State University;
| |
Collapse
|
74
|
Visualization of perforin/gasdermin/complement-formed pores in real cell membranes using atomic force microscopy. Cell Mol Immunol 2018; 16:611-620. [PMID: 30283066 PMCID: PMC6804747 DOI: 10.1038/s41423-018-0165-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 01/05/2023] Open
Abstract
Different types of pores ubiquitously form in cell membranes, leading to various types of cell death that profoundly influence the fate of inflammation and the disease status. However, these pores have never truly been visualized to date. Atomic force microscopy (AFM), which is emerging as a powerful tool to analyze the mechanical properties of biomolecules and cells, is actually an excellent imaging platform that allows biological samples to be visualized by probing surface roughness at the level of atomic resolution. Here, membrane pore structures were clearly visualized using AFM. This visualization not only describes the aperture and depth of the pore complexes but also highlights differences among the pores formed by perforin and gasdermins in tumor cell membranes and by complement in immune cell membranes. Additionally, this type of visualization also reveals the dynamic process of pore formation, fusion, and repair.
Collapse
|
75
|
Boyd CM, Bubeck D. Advances in cryoEM and its impact on β-pore forming proteins. Curr Opin Struct Biol 2018; 52:41-49. [PMID: 30125772 PMCID: PMC6302071 DOI: 10.1016/j.sbi.2018.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 01/04/2023]
Abstract
Deployed by both hosts and pathogens, β-pore-forming proteins (β-PFPs) rupture membranes and lyse target cells. Soluble protein monomers oligomerize on the lipid bilayer where they undergo dramatic structural rearrangements, resulting in a transmembrane β-barrel pore. Advances in electron cryo-microscopy (cryoEM) sample preparation, image detection, and computational algorithms have led to a number of recent structures that reveal a molecular mechanism of pore formation in atomic detail.
Collapse
Affiliation(s)
- Courtney M Boyd
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Doryen Bubeck
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
76
|
Scott H, Huang W, Bann JG, Taylor DJ. Advances in structure determination by cryo-EM to unravel membrane-spanning pore formation. Protein Sci 2018; 27:1544-1556. [PMID: 30129169 PMCID: PMC6194281 DOI: 10.1002/pro.3454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 01/03/2023]
Abstract
The beta pore-forming proteins (β-PFPs) are a large class of polypeptides that are produced by all Kingdoms of life to contribute to their species' own survival. Pore assembly is a sophisticated multi-step process that includes receptor/membrane recognition and oligomerization events, and is ensued by large-scale structural rearrangements, which facilitate maturation of a prepore into a functional membrane spanning pore. A full understanding of pore formation, assembly, and maturation has traditionally been hindered by a lack of structural data; particularly for assemblies representing differing conformations of functional pores. However, recent advancements in cryo-electron microscopy (cryo-EM) techniques have provided the opportunity to delineate the structures of such flexible complexes, and in different states, to near-atomic resolution. In this review, we place a particular emphasis on the use of cryo-EM to uncover the mechanistic details including architecture, activation, and maturation for some of the prominent members of this family.
Collapse
Affiliation(s)
- Harry Scott
- Department of PharmacologyCase Western Reserve UniversityClevelandOhio44106
| | - Wei Huang
- Department of PharmacologyCase Western Reserve UniversityClevelandOhio44106
| | - James G. Bann
- Department of ChemistryWichita State UniversityWichitaKansas67260
| | - Derek J. Taylor
- Department of PharmacologyCase Western Reserve UniversityClevelandOhio44106
- Department of BiochemistryCase Western Reserve UniversityClevelandOhio44106
| |
Collapse
|
77
|
Christie MP, Johnstone BA, Tweten RK, Parker MW, Morton CJ. Cholesterol-dependent cytolysins: from water-soluble state to membrane pore. Biophys Rev 2018; 10:1337-1348. [PMID: 30117093 DOI: 10.1007/s12551-018-0448-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/07/2018] [Indexed: 12/22/2022] Open
Abstract
The cholesterol-dependent cytolysins (CDCs) are a family of bacterial toxins that are important virulence factors for a number of pathogenic Gram-positive bacterial species. CDCs are secreted as soluble, stable monomeric proteins that bind specifically to cholesterol-rich cell membranes, where they assemble into well-defined ring-shaped complexes of around 40 monomers. The complex then undergoes a concerted structural change, driving a large pore through the membrane, potentially lysing the target cell. Understanding the details of this process as the protein transitions from a discrete monomer to a complex, membrane-spanning protein machine is an ongoing challenge. While many of the details have been revealed, there are still questions that remain unanswered. In this review, we present an overview of some of the key features of the structure and function of the CDCs, including the structure of the secreted monomers, the process of interaction with target membranes, and the transition from bound monomers to complete pores. Future directions in CDC research and the potential of CDCs as research tools will also be discussed.
Collapse
Affiliation(s)
- Michelle P Christie
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Bronte A Johnstone
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Rodney K Tweten
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Michael W Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia.
- Australian Cancer Research Foundation Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia.
| | - Craig J Morton
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
78
|
The first transmembrane region of complement component-9 acts as a brake on its self-assembly. Nat Commun 2018; 9:3266. [PMID: 30111885 PMCID: PMC6093860 DOI: 10.1038/s41467-018-05717-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/09/2018] [Indexed: 11/09/2022] Open
Abstract
Complement component 9 (C9) functions as the pore-forming component of the Membrane Attack Complex (MAC). During MAC assembly, multiple copies of C9 are sequentially recruited to membrane associated C5b8 to form a pore. Here we determined the 2.2 Å crystal structure of monomeric murine C9 and the 3.9 Å resolution cryo EM structure of C9 in a polymeric assembly. Comparison with other MAC proteins reveals that the first transmembrane region (TMH1) in monomeric C9 is uniquely positioned and functions to inhibit its self-assembly in the absence of C5b8. We further show that following C9 recruitment to C5b8, a conformational change in TMH1 permits unidirectional and sequential binding of additional C9 monomers to the growing MAC. This mechanism of pore formation contrasts with related proteins, such as perforin and the cholesterol dependent cytolysins, where it is believed that pre-pore assembly occurs prior to the simultaneous release of the transmembrane regions.
Collapse
|
79
|
Zhang Y, Zong B, Wang X, Zhu Y, Hu L, Li P, Zhang A, Chen H, Liu M, Tan C. Fisetin Lowers Streptococcus suis serotype 2 Pathogenicity in Mice by Inhibiting the Hemolytic Activity of Suilysin. Front Microbiol 2018; 9:1723. [PMID: 30105012 PMCID: PMC6077255 DOI: 10.3389/fmicb.2018.01723] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022] Open
Abstract
Streptococcus suis serotype 2 is a serious zoonotic pathogen and has attracted worldwide attention since the first human case was reported in Denmark in 1968. Some virulence factors have been reported to be involved in the pathogenesis of the infection caused by Streptococcus suis serotype 2, and then novel strategies to identify some anti-virulence compounds which can effectively inhibit the pathogenic bacterial infection have recently been reported. Suilysin is an essential virulence factor for Streptococcus suis serotype 2 since it creates pores in the target cells membranes, which aids bacterial colonization. The important role of suilysin in the virulence of Streptococcus suis serotype 2 renders it an ideal target for designing novel anti-virulence therapeutics. We find that fisetin, as a natural flavonoid, is a potent antagonist against suilysin-mediated hemolysis. The aim of this study is to evaluate the effect of fisetin on the hemolytic activity of suilysin from Streptococcus suis serotype 2. Fisetin is found to significantly inhibit the hemolytic activity of suilysin. Within the range of effective concentrations, fisetin does not influence the growth of Streptococcus suis serotype 2 and the expression of suilysin protein. In vitro, fisetin effectively inhibits the death of macrophages (J774A.1 and RAW264.7) infected with Streptococcus suis serotype 2 by weakening intracellular bacterial multiplication. Animal model experiment shows that fisetin effectively improves the survival rate of animals infected with Streptococcus suis serotype 2. Our findings suggest that fisetin could be used as an antitoxin against suilysin and be developed into a promising therapeutic candidate for treating Streptococcus suis serotype 2 infection.
Collapse
Affiliation(s)
- Yanyan Zhang
- Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bingbing Zong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yongwei Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Linlin Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Pei Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Manli Liu
- Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| |
Collapse
|
80
|
Mulvihill E, Sborgi L, Mari SA, Pfreundschuh M, Hiller S, Müller DJ. Mechanism of membrane pore formation by human gasdermin-D. EMBO J 2018; 37:embj.201798321. [PMID: 29898893 PMCID: PMC6043855 DOI: 10.15252/embj.201798321] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 05/02/2018] [Accepted: 05/07/2018] [Indexed: 11/09/2022] Open
Abstract
Gasdermin‐D (GSDMD), a member of the gasdermin protein family, mediates pyroptosis in human and murine cells. Cleaved by inflammatory caspases, GSDMD inserts its N‐terminal domain (GSDMDNterm) into cellular membranes and assembles large oligomeric complexes permeabilizing the membrane. So far, the mechanisms of GSDMDNterm insertion, oligomerization, and pore formation are poorly understood. Here, we apply high‐resolution (≤ 2 nm) atomic force microscopy (AFM) to describe how GSDMDNterm inserts and assembles in membranes. We observe GSDMDNterm inserting into a variety of lipid compositions, among which phosphatidylinositide (PI(4,5)P2) increases and cholesterol reduces insertion. Once inserted, GSDMDNterm assembles arc‐, slit‐, and ring‐shaped oligomers, each of which being able to form transmembrane pores. This assembly and pore formation process is independent on whether GSDMD has been cleaved by caspase‐1, caspase‐4, or caspase‐5. Using time‐lapse AFM, we monitor how GSDMDNterm assembles into arc‐shaped oligomers that can transform into larger slit‐shaped and finally into stable ring‐shaped oligomers. Our observations translate into a mechanistic model of GSDMDNterm transmembrane pore assembly, which is likely shared within the gasdermin protein family.
Collapse
Affiliation(s)
- Estefania Mulvihill
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | | | - Stefania A Mari
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | - Moritz Pfreundschuh
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | | | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| |
Collapse
|
81
|
|
82
|
Gigadalton-scale shape-programmable DNA assemblies. Nature 2018; 552:78-83. [PMID: 29219966 DOI: 10.1038/nature24651] [Citation(s) in RCA: 314] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/25/2017] [Indexed: 12/19/2022]
Abstract
Natural biomolecular assemblies such as molecular motors, enzymes, viruses and subcellular structures often form by self-limiting hierarchical oligomerization of multiple subunits. Large structures can also assemble efficiently from a few components by combining hierarchical assembly and symmetry, a strategy exemplified by viral capsids. De novo protein design and RNA and DNA nanotechnology aim to mimic these capabilities, but the bottom-up construction of artificial structures with the dimensions and complexity of viruses and other subcellular components remains challenging. Here we show that natural assembly principles can be combined with the methods of DNA origami to produce gigadalton-scale structures with controlled sizes. DNA sequence information is used to encode the shapes of individual DNA origami building blocks, and the geometry and details of the interactions between these building blocks then control their copy numbers, positions and orientations within higher-order assemblies. We illustrate this strategy by creating planar rings of up to 350 nanometres in diameter and with atomic masses of up to 330 megadaltons, micrometre-long, thick tubes commensurate in size to some bacilli, and three-dimensional polyhedral assemblies with sizes of up to 1.2 gigadaltons and 450 nanometres in diameter. We achieve efficient assembly, with yields of up to 90 per cent, by using building blocks with validated structure and sufficient rigidity, and an accurate design with interaction motifs that ensure that hierarchical assembly is self-limiting and able to proceed in equilibrium to allow for error correction. We expect that our method, which enables the self-assembly of structures with sizes approaching that of viruses and cellular organelles, can readily be used to create a range of other complex structures with well defined sizes, by exploiting the modularity and high degree of addressability of the DNA origami building blocks used.
Collapse
|
83
|
Dunstone MA, de Marco A. Cryo-electron tomography: an ideal method to study membrane-associated proteins. Philos Trans R Soc Lond B Biol Sci 2018. [PMID: 28630150 DOI: 10.1098/rstb.2016.0210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cryo-electron tomography (cryo-ET) is a three-dimensional imaging technique that makes it possible to analyse the structure of complex and dynamic biological assemblies in their native conditions. The latest technological and image processing developments demonstrate that it is possible to obtain structural information at nanometre resolution. The sample preparation required for the cryo-ET technique does not require the isolation of a protein and other macromolecular complexes from its native environment. Therefore, cryo-ET is emerging as an important tool to study the structure of membrane-associated proteins including pores.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.
Collapse
Affiliation(s)
- Michelle A Dunstone
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia.,Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
| | - Alex de Marco
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia .,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
| |
Collapse
|
84
|
Wang J, Liu M, Shen Y, Sun J, Shao Z, Czajkowsky DM. Compressive Force Spectroscopy: From Living Cells to Single Proteins. Int J Mol Sci 2018; 19:E960. [PMID: 29570665 PMCID: PMC5979447 DOI: 10.3390/ijms19040960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/20/2022] Open
Abstract
One of the most successful applications of atomic force microscopy (AFM) in biology involves monitoring the effect of force on single biological molecules, often referred to as force spectroscopy. Such studies generally entail the application of pulling forces of different magnitudes and velocities upon individual molecules to resolve individualistic unfolding/separation pathways and the quantification of the force-dependent rate constants. However, a less recognized variation of this method, the application of compressive force, actually pre-dates many of these "tensile" force spectroscopic studies. Further, beyond being limited to the study of single molecules, these compressive force spectroscopic investigations have spanned samples as large as living cells to smaller, multi-molecular complexes such as viruses down to single protein molecules. Correspondingly, these studies have enabled the detailed characterization of individual cell states, subtle differences between seemingly identical viral structures, as well as the quantification of rate constants of functionally important, structural transitions in single proteins. Here, we briefly review some of the recent achievements that have been obtained with compressive force spectroscopy using AFM and highlight exciting areas of its future development.
Collapse
Affiliation(s)
- Jiabin Wang
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Meijun Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yi Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jielin Sun
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhifeng Shao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Daniel Mark Czajkowsky
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
85
|
Molecular mechanisms of action of sphingomyelin-specific pore-forming toxin, lysenin. Semin Cell Dev Biol 2018; 73:188-198. [DOI: 10.1016/j.semcdb.2017.07.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 11/21/2022]
|
86
|
Spicer BA, Conroy PJ, Law RH, Voskoboinik I, Whisstock JC. Perforin—A key (shaped) weapon in the immunological arsenal. Semin Cell Dev Biol 2017; 72:117-123. [DOI: 10.1016/j.semcdb.2017.07.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/05/2017] [Accepted: 07/21/2017] [Indexed: 12/31/2022]
|
87
|
Munguira ILB, Takahashi H, Casuso I, Scheuring S. Lysenin Toxin Membrane Insertion Is pH-Dependent but Independent of Neighboring Lysenins. Biophys J 2017; 113:2029-2036. [PMID: 29117526 DOI: 10.1016/j.bpj.2017.08.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/11/2017] [Indexed: 10/18/2022] Open
Abstract
Pore-forming toxins form a family of proteins that act as virulence factors of pathogenic bacteria, but similar proteins are found in all kingdoms of life, including the vertebrate immune system. They are secreted as soluble monomers that oligomerize on target membranes in the so-called prepore state; after activation, they insert into the membrane and adopt the pore state. Lysenin is a pore-forming toxin from the earthworm Eisenida foetida, of which both the soluble and membrane-inserted structures are solved. However, the activation and membrane-insertion mechanisms have remained elusive. Here, we used high-speed atomic force microscopy to directly visualize the membrane-insertion mechanism. Changing the environmental pH from pH 7.5 to below pH 6.0 favored membrane insertion. We detected a short α-helix in the soluble structure that comprised three glutamic acids (Glu92, Glu94, and Glu97) that we hypothesized may represent a pH-sensor (as in similar toxins, e.g., Listeriolysin). Mutant lysenin still can form pores, but mutating these glutamic acids to glutamines rendered the toxin pH-insensitive. On the other hand, toxins in the pore state did not favor insertion of neighboring prepores; indeed, pore insertion breaks the hexagonal ordered domains of prepores and separates from neighboring molecules in the membrane. pH-dependent activation of toxins may represent a common feature of pore-forming toxins. High-speed atomic force microscopy with single-molecule resolution at high temporal resolution and the possibility of exchanging buffers during the experiments presents itself as a unique tool for the study of toxin-state conversion.
Collapse
Affiliation(s)
- Ignacio L B Munguira
- U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Hirohide Takahashi
- U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, Marseille, France; Departments of Anesthesiology and Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - Ignacio Casuso
- U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Simon Scheuring
- U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, Marseille, France; Departments of Anesthesiology and Physiology and Biophysics, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
88
|
Desikan R, Maiti PK, Ayappa KG. Assessing the Structure and Stability of Transmembrane Oligomeric Intermediates of an α-Helical Toxin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:11496-11510. [PMID: 28930630 DOI: 10.1021/acs.langmuir.7b02277] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Protein membrane interactions play an important role in our understanding of diverse phenomena ranging from membrane-assisted protein aggregation to oligomerization and folding. Pore-forming toxins (PFTs) are the primary vehicle for infection by several strains of bacteria. These proteins which are expressed in a water-soluble form (monomers) bind to the target membrane and conformationally transform (protomers) and self-assemble to form a multimer transmembrane pore complex through a process of oligomerization. On the basis of the structure of the transmembrane domains, PFTs are broadly classified into β or α toxins. In contrast to β-PFTs, the paucity of available crystal structures coupled with the amphipathic nature of the transmembrane domains has hindered our understanding of α-PFT pore formation. In this article, we use molecular dynamics (MD) simulations to examine the process of pore formation of the bacterial α-PFT, cytolysin A from Escherichia coli (ClyA) in lipid bilayer membranes. Using atomistic MD simulations ranging from 50 to 500 ns, we show that transmembrane oligomeric intermediates or "arcs" form stable proteolipidic complexes consisting of protein arcs with toroidal lipids lining the free edges. By creating initial conditions where the lipids are contained within the arcs, we study the dynamics of spontaneous lipid evacuation and toroidal edge formation. This process occurs on the time scale of tens of nanoseconds, suggesting that once protomers oligomerize, transmembrane arcs are rapidly stabilized to form functional water channels capable of leakage. Using umbrella sampling with a coarse-grained molecular model, we obtain the free energy of insertion of a single protomer into the membrane. A single inserted protomer has a stabilization free energy of -52.9 ± 1.2 kJ/mol and forms a stable transmembrane water channel capable of leakage. Our simulations reveal that arcs are stable and viable intermediates that can occur during the pore-formation pathway for ClyA.
Collapse
Affiliation(s)
- Rajat Desikan
- Department of Chemical Engineering, ‡Centre for Condensed Matter Theory, Department of Physics, and §Centre for Biosystems Science and Engineering, Indian Institute of Science , Bengaluru, India 560012
| | - Prabal K Maiti
- Department of Chemical Engineering, ‡Centre for Condensed Matter Theory, Department of Physics, and §Centre for Biosystems Science and Engineering, Indian Institute of Science , Bengaluru, India 560012
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, ‡Centre for Condensed Matter Theory, Department of Physics, and §Centre for Biosystems Science and Engineering, Indian Institute of Science , Bengaluru, India 560012
| |
Collapse
|
89
|
Light Scattering By Optically-Trapped Vesicles Affords Unprecedented Temporal Resolution Of Lipid-Raft Dynamics. Sci Rep 2017; 7:8589. [PMID: 28819244 PMCID: PMC5561052 DOI: 10.1038/s41598-017-08980-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/20/2017] [Indexed: 12/24/2022] Open
Abstract
A spectroscopic technique is presented that is able to identify rapid changes in the bending modulus and fluidity of vesicle lipid bilayers on the micrometer scale, and distinguish between the presence and absence of heterogeneities in lipid-packing order. Individual unilamellar vesicles have been isolated using laser tweezers and, by measuring the intensity modulation of elastic back-scattered light, changes in the biophysical properties of lipid bilayers were revealed. Our approach offers unprecedented temporal resolution and, uniquely, physical transformations of lipid bilayers can be monitored on a length scale of micrometers. As an example, the deformation of a membrane bilayer following the gel-to-fluid phase transition in a pure phospholipid vesicle was observed to take place across an interval of 54 ± 5 ms corresponding to an estimated full-width of only ~1 m°C. Dynamic heterogeneities in packing order were detected in mixed-lipid bilayers. Using a ternary mixture of lipids, the modulated-intensity profile of elastic back-scattered light from an optically-trapped vesicle revealed an abrupt change in the bending modulus of the bilayer which could be associated with the dissolution of ordered microdomains (i.e., lipid rafts). This occurred across an interval of 30 ± 5 ms (equivalent to ~1 m°C).
Collapse
|
90
|
de Jorge EG, Yebenes H, Serna M, Tortajada A, Llorca O, de Córdoba SR. How novel structures inform understanding of complement function. Semin Immunopathol 2017; 40:3-14. [PMID: 28808775 DOI: 10.1007/s00281-017-0643-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/03/2017] [Indexed: 11/30/2022]
Abstract
During the last decade, the complement field has experienced outstanding advancements in the mechanistic understanding of how complement activators are recognized, what C3 activation means, how protein complexes like the C3 convertases and the membrane attack complex are assembled, and how positive and negative complement regulators perform their function. All of this has been made possible mostly because of the contributions of structural biology to the study of the complement components. The wealth of novel structural data has frequently provided support to previously held knowledge, but often has added alternative and unexpected insights into complement function. Here, we will review some of these findings focusing in the alternative and terminal complement pathways.
Collapse
Affiliation(s)
- Elena Goicoechea de Jorge
- Department of Microbiology I (Immunology), Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Hugo Yebenes
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Marina Serna
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Agustín Tortajada
- Department of Microbiology I (Immunology), Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Oscar Llorca
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain.,Structural Biology Programme, CNIO, C/ Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Santiago Rodríguez de Córdoba
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain. .,Ciber de Enfermedades Raras, Madrid, Spain.
| |
Collapse
|
91
|
Bayly-Jones C, Bubeck D, Dunstone MA. The mystery behind membrane insertion: a review of the complement membrane attack complex. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160221. [PMID: 28630159 PMCID: PMC5483522 DOI: 10.1098/rstb.2016.0221] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2016] [Indexed: 12/14/2022] Open
Abstract
The membrane attack complex (MAC) is an important innate immune effector of the complement terminal pathway that forms cytotoxic pores on the surface of microbes. Despite many years of research, MAC structure and mechanism of action have remained elusive, relying heavily on modelling and inference from biochemical experiments. Recent advances in structural biology, specifically cryo-electron microscopy, have provided new insights into the molecular mechanism of MAC assembly. Its unique 'split-washer' shape, coupled with an irregular giant β-barrel architecture, enable an atypical mechanism of hole punching and represent a novel system for which to study pore formation. This review will introduce the complement terminal pathway that leads to formation of the MAC. Moreover, it will discuss how structures of the pore and component proteins underpin a mechanism for MAC function, modulation and inhibition.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.
Collapse
Affiliation(s)
- Charles Bayly-Jones
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Biomedicine Discovery Institute, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
| | - Doryen Bubeck
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW2 7AZ, UK
| | - Michelle A Dunstone
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Biomedicine Discovery Institute, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
| |
Collapse
|
92
|
Ni T, Gilbert RJC. Repurposing a pore: highly conserved perforin-like proteins with alternative mechanisms. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160212. [PMID: 28630152 PMCID: PMC5483515 DOI: 10.1098/rstb.2016.0212] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2017] [Indexed: 12/02/2022] Open
Abstract
Pore-forming proteins play critical roles in pathogenic attack and immunological defence. The membrane attack complex/perforin (MACPF) group of homologues represents, with cholesterol-dependent cytolysins, the largest family of such proteins. In this review, we begin by describing briefly the structure of MACPF proteins, outlining their common mechanism of pore formation. We subsequently discuss some examples of MACPF proteins likely implicated in pore formation or other membrane-remodelling processes. Finally, we focus on astrotactin and bone morphogenetic protein and retinoic acid-induced neural-specific proteins, highly conserved MACPF family members involved in developmental processes, which have not been well studied to date or observed to form a pore-and which data suggest may act by alternative mechanisms.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.
Collapse
Affiliation(s)
- Tao Ni
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Robert J C Gilbert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
93
|
Leung C, Hodel AW, Brennan AJ, Lukoyanova N, Tran S, House CM, Kondos SC, Whisstock JC, Dunstone MA, Trapani JA, Voskoboinik I, Saibil HR, Hoogenboom BW. Real-time visualization of perforin nanopore assembly. NATURE NANOTECHNOLOGY 2017; 12:467-473. [PMID: 28166206 DOI: 10.1038/nnano.2016.303] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 12/29/2016] [Indexed: 06/06/2023]
Abstract
Perforin is a key protein of the vertebrate immune system. Secreted by cytotoxic lymphocytes as soluble monomers, perforin can self-assemble into oligomeric pores of 10-20 nm inner diameter in the membranes of virus-infected and cancerous cells. These large pores facilitate the entry of pro-apoptotic granzymes, thereby rapidly killing the target cell. To elucidate the pathways of perforin pore assembly, we carried out real-time atomic force microscopy and electron microscopy studies. Our experiments reveal that the pore assembly proceeds via a membrane-bound prepore intermediate state, typically consisting of up to approximately eight loosely but irreversibly assembled monomeric subunits. These short oligomers convert to more closely packed membrane nanopore assemblies, which can subsequently recruit additional prepore oligomers to grow the pore size.
Collapse
Affiliation(s)
- Carl Leung
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
- Department of Crystallography/Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | - Adrian W Hodel
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Amelia J Brennan
- Killer Cell Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia
| | - Natalya Lukoyanova
- Department of Crystallography/Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | - Sharon Tran
- Killer Cell Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia
| | - Colin M House
- Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia
| | - Stephanie C Kondos
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - James C Whisstock
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
- The ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria 3800, Australia
| | - Michelle A Dunstone
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
- The ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria 3800, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia
| | - Joseph A Trapani
- Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Ilia Voskoboinik
- Killer Cell Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Helen R Saibil
- Department of Crystallography/Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| |
Collapse
|
94
|
van Pee K, Neuhaus A, D'Imprima E, Mills DJ, Kühlbrandt W, Yildiz Ö. CryoEM structures of membrane pore and prepore complex reveal cytolytic mechanism of Pneumolysin. eLife 2017; 6. [PMID: 28323617 PMCID: PMC5437283 DOI: 10.7554/elife.23644] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/17/2017] [Indexed: 12/20/2022] Open
Abstract
Many pathogenic bacteria produce pore-forming toxins to attack and kill human cells. We have determined the 4.5 Å structure of the ~2.2 MDa pore complex of pneumolysin, the main virulence factor of Streptococcus pneumoniae, by cryoEM. The pneumolysin pore is a 400 Å ring of 42 membrane-inserted monomers. Domain 3 of the soluble toxin refolds into two ~85 Å β-hairpins that traverse the lipid bilayer and assemble into a 168-strand β-barrel. The pore complex is stabilized by salt bridges between β-hairpins of adjacent subunits and an internal α-barrel. The apolar outer barrel surface with large sidechains is immersed in the lipid bilayer, while the inner barrel surface is highly charged. Comparison of the cryoEM pore complex to the prepore structure obtained by electron cryo-tomography and the x-ray structure of the soluble form reveals the detailed mechanisms by which the toxin monomers insert into the lipid bilayer to perforate the target membrane.
Collapse
Affiliation(s)
- Katharina van Pee
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Alexander Neuhaus
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Edoardo D'Imprima
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Deryck J Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Özkan Yildiz
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| |
Collapse
|
95
|
Li G, Lu G, Qi Z, Li H, Wang L, Wang Y, Liu B, Niu X, Deng X, Wang J. Morin Attenuates Streptococcus suis Pathogenicity in Mice by Neutralizing Suilysin Activity. Front Microbiol 2017; 8:460. [PMID: 28373868 PMCID: PMC5357624 DOI: 10.3389/fmicb.2017.00460] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/06/2017] [Indexed: 12/24/2022] Open
Abstract
Streptococcus suis, a Gram-positive pathogen, is widely recognized as an important agent of swine infection, and it is also known to cause a variety of zoonoses, such as meningitis, polyarthritis and pneumonia. Suilysin (SLY), an extracellular pore-forming toxin that belongs to the cholesterol-dependent cytolysin family, is an essential virulence factor of S. suis capsular type 2 (SS2). Here, we found that morin hydrate (morin), a natural flavonoid that lacks anti-SS2 activity, inhibits the hemolytic activity of SLY, protects J774 cells from SS2-induced injury and protects mice from SS2 infection. Further, by molecular modeling and mutational analysis, we found that morin binds to the "stem" domain 2 in SLY and hinders its transformation from the monomer form to the oligomer form, which causes the loss of SLY activity. Our study demonstrates that morin hinders the cell lysis activity of SLY through a novel mechanism of interrupting the heptamer formation. These findings may lead to the development of promising therapeutic candidates for the treatment of SS2 infections.
Collapse
Affiliation(s)
- Gen Li
- The First Hospital and Institute of Infection and Immunity, Jilin UniversityChangchun, China; Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Gejin Lu
- The First Hospital and Institute of Infection and Immunity, Jilin UniversityChangchun, China; Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Zhimin Qi
- The First Hospital and Institute of Infection and Immunity, Jilin UniversityChangchun, China; Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Hongen Li
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University Changchun, China
| | - Lin Wang
- The First Hospital and Institute of Infection and Immunity, Jilin UniversityChangchun, China; Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Yanhui Wang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University Changchun, China
| | - Bowen Liu
- The First Hospital and Institute of Infection and Immunity, Jilin UniversityChangchun, China; Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Xiaodi Niu
- The First Hospital and Institute of Infection and Immunity, Jilin UniversityChangchun, China; Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Xuming Deng
- The First Hospital and Institute of Infection and Immunity, Jilin UniversityChangchun, China; Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Jianfeng Wang
- The First Hospital and Institute of Infection and Immunity, Jilin UniversityChangchun, China; Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchun, China
| |
Collapse
|
96
|
Agrawal A, Apoorva K, Ayappa KG. Transmembrane oligomeric intermediates of pore forming toxin Cytolysin A determine leakage kinetics. RSC Adv 2017. [DOI: 10.1039/c7ra07304f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Leakage kinetics of Cytolysin A, an α pore forming toxin, occurs through stochastic insertion of oligomeric intermediates or ‘arcs’.
Collapse
Affiliation(s)
- Ayush Agrawal
- Department of Chemical Engineering
- Indian Institute of Science
- Bangalore-560012
- India
| | - K. Apoorva
- Department of Chemical Engineering
- Indian Institute of Technology
- Hyderabad-502205
- India
| | - K. G. Ayappa
- Department of Chemical Engineering
- Indian Institute of Science
- Bangalore-560012
- India
- Centre for Biosystems Science and Engineering
| |
Collapse
|
97
|
van Pee K, Mulvihill E, Müller DJ, Yildiz Ö. Unraveling the Pore-Forming Steps of Pneumolysin from Streptococcus pneumoniae. NANO LETTERS 2016; 16:7915-7924. [PMID: 27796097 DOI: 10.1021/acs.nanolett.6b04219] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Pneumolysin (PLY) is the main virulence factor of Streptococcus pneumoniae that causes pneumonia, meningitis, and invasive pneumococcal infection. PLY is produced as monomers, which bind to cholesterol-containing membranes, where they oligomerize into large pores. To investigate the pore-forming mechanism, we determined the crystal structure of PLY at 2.4 Å and used it to design mutants on the surface of monomers. Electron microscopy of liposomes incubated with PLY mutants revealed that several mutations interfered with ring formation. Mutants that formed incomplete rings or linear arrays had strongly reduced hemolytic activity. By high-resolution time-lapse atomic force microscopy of wild-type PLY, we observed two different ring-shaped complexes. Most of the complexes protruded ∼8 nm above the membrane surface, while a smaller number protruded ∼11 nm or more. The lower complexes were identified as pores or prepores by the presence or absence of a lipid bilayer in their center. The taller complexes were side-by-side assemblies of monomers of soluble PLY that represent an early form of the prepore. Our observations suggest a four-step mechanism of membrane attachment and pore formation by PLY, which is discussed in the context of recent structural models. The functional separation of these steps is necessary for the understanding how cholesterol-dependent cytolysins form pores and lyse cells.
Collapse
Affiliation(s)
- Katharina van Pee
- Department of Structural Biology, Max PIanck Institute of Biophysics , Max von Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | - Estefania Mulvihill
- Department of Biosystems Science and Engineering, ETH Zurich , Mattenstrasse 26, 4058 Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zurich , Mattenstrasse 26, 4058 Basel, Switzerland
| | - Özkan Yildiz
- Department of Structural Biology, Max PIanck Institute of Biophysics , Max von Laue Strasse 3, 60438 Frankfurt am Main, Germany
| |
Collapse
|
98
|
Boyd CM, Parsons ES, Smith RAG, Seddon JM, Ces O, Bubeck D. Disentangling the roles of cholesterol and CD59 in intermedilysin pore formation. Sci Rep 2016; 6:38446. [PMID: 27910935 PMCID: PMC5133593 DOI: 10.1038/srep38446] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/08/2016] [Indexed: 01/08/2023] Open
Abstract
The plasma membrane provides an essential barrier, shielding a cell from the pressures of its external environment. Pore-forming proteins, deployed by both hosts and pathogens alike, breach this barrier to lyse target cells. Intermedilysin is a cholesterol-dependent cytolysin that requires the human immune receptor CD59, in addition to cholesterol, to form giant β-barrel pores in host membranes. Here we integrate biochemical assays with electron microscopy and atomic force microscopy to distinguish the roles of these two receptors in mediating structural transitions of pore formation. CD59 is required for the specific coordination of intermedilysin (ILY) monomers and for triggering collapse of an oligomeric prepore. Movement of Domain 2 with respect to Domain 3 of ILY is essential for forming a late prepore intermediate that releases CD59, while the role of cholesterol may be limited to insertion of the transmembrane segments. Together these data define a structural timeline for ILY pore formation and suggest a mechanism that is relevant to understanding other pore-forming toxins that also require CD59.
Collapse
Affiliation(s)
- Courtney M. Boyd
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London SW7 2AZ, UK
| | - Edward S. Parsons
- Department of Chemistry and Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
| | - Richard A. G. Smith
- MRC Centre for Transplantation, King’s College London, 5th Floor Tower Wing, Guys’ Hospital, London SE1 9RT, UK
| | - John M. Seddon
- Department of Chemistry and Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Oscar Ces
- Department of Chemistry and Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Doryen Bubeck
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
99
|
Mahendran KR, Niitsu A, Kong L, Thomson AR, Sessions RB, Woolfson DN, Bayley H. A monodisperse transmembrane α-helical peptide barrel. Nat Chem 2016; 9:411-419. [PMID: 28430192 DOI: 10.1038/nchem.2647] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 09/13/2016] [Indexed: 12/13/2022]
Abstract
The fabrication of monodisperse transmembrane barrels formed from short synthetic peptides has not been demonstrated previously. This is in part because of the complexity of the interactions between peptides and lipids within the hydrophobic environment of a membrane. Here we report the formation of a transmembrane pore through the self-assembly of 35 amino acid α-helical peptides. The design of the peptides is based on the C-terminal D4 domain of the Escherichia coli polysaccharide transporter Wza. By using single-channel current recording, we define discrete assembly intermediates and show that the pore is most probably a helix barrel that contains eight D4 peptides arranged in parallel. We also show that the peptide pore is functional and capable of conducting ions and binding blockers. Such α-helix barrels engineered from peptides could find applications in nanopore technologies such as single-molecule sensing and nucleic-acid sequencing.
Collapse
Affiliation(s)
- Kozhinjampara R Mahendran
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA UK
| | - Ai Niitsu
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, UK
| | - Lingbing Kong
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA UK
| | - Andrew R Thomson
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, UK
| | - Richard B Sessions
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK.,BrisSynBio, Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol BS8 1TQ, UK
| | - Derek N Woolfson
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, UK.,School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK.,BrisSynBio, Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol BS8 1TQ, UK
| | - Hagan Bayley
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA UK
| |
Collapse
|
100
|
Pyne A, Pfeil MP, Bennett I, Ravi J, Iavicoli P, Lamarre B, Roethke A, Ray S, Jiang H, Bella A, Reisinger B, Yin D, Little B, Muñoz-García JC, Cerasoli E, Judge PJ, Faruqui N, Calzolai L, Henrion A, Martyna GJ, Grovenor CRM, Crain J, Hoogenboom BW, Watts A, Ryadnov MG. Engineering monolayer poration for rapid exfoliation of microbial membranes. Chem Sci 2016; 8:1105-1115. [PMID: 28451250 PMCID: PMC5369539 DOI: 10.1039/c6sc02925f] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 09/25/2016] [Indexed: 12/04/2022] Open
Abstract
A novel mechanism of monolayer poration leading to the rapid exfoliation and lysis of microbial membranes is reported.
The spread of bacterial resistance to traditional antibiotics continues to stimulate the search for alternative antimicrobial strategies. All forms of life, from bacteria to humans, are postulated to rely on a fundamental host defense mechanism, which exploits the formation of open pores in microbial phospholipid bilayers. Here we predict that transmembrane poration is not necessary for antimicrobial activity and reveal a distinct poration mechanism that targets the outer leaflet of phospholipid bilayers. Using a combination of molecular-scale and real-time imaging, spectroscopy and spectrometry approaches, we introduce a structural motif with a universal insertion mode in reconstituted membranes and live bacteria. We demonstrate that this motif rapidly assembles into monolayer pits that coalesce during progressive membrane exfoliation, leading to bacterial cell death within minutes. The findings offer a new physical basis for designing effective antibiotics.
Collapse
Affiliation(s)
- Alice Pyne
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK . .,London Centre for Nanotechnology and Department of Physics and Astronomy , University College London , London WC1E 6BT , UK
| | - Marc-Philipp Pfeil
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK . .,Department of Biochemistry , University of Oxford , Oxford OX1 3QU , UK
| | - Isabel Bennett
- London Centre for Nanotechnology and Department of Physics and Astronomy , University College London , London WC1E 6BT , UK
| | - Jascindra Ravi
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK .
| | - Patrizia Iavicoli
- European Commission , Joint Research Centre , Institute for Health and Consumer Protection , Ispra (VA) , Italy
| | - Baptiste Lamarre
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK .
| | - Anita Roethke
- Physikalisch-Technische Bundesanstalt , 38116 Braunschweig , Germany
| | - Santanu Ray
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK .
| | - Haibo Jiang
- Centre for Microscopy , Characterisation and Analysis , The University of Western Australia , Crawley , Western Australia 6009 , Australia
| | - Angelo Bella
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK .
| | - Bernd Reisinger
- Physikalisch-Technische Bundesanstalt , 38116 Braunschweig , Germany
| | - Daniel Yin
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK . .,Department of Biochemistry , University of Oxford , Oxford OX1 3QU , UK
| | - Benjamin Little
- School of Physics and Astronomy , University of Edinburgh , Edinburgh EH9 3JZ , UK
| | | | - Eleonora Cerasoli
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK .
| | - Peter J Judge
- Department of Biochemistry , University of Oxford , Oxford OX1 3QU , UK
| | - Nilofar Faruqui
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK .
| | - Luigi Calzolai
- European Commission , Joint Research Centre , Institute for Health and Consumer Protection , Ispra (VA) , Italy
| | - Andre Henrion
- Physikalisch-Technische Bundesanstalt , 38116 Braunschweig , Germany
| | - Glenn J Martyna
- IBM T. J. Watson Research Center , Yorktown Heights , NY 10598 , USA
| | | | - Jason Crain
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK . .,School of Physics and Astronomy , University of Edinburgh , Edinburgh EH9 3JZ , UK
| | - Bart W Hoogenboom
- London Centre for Nanotechnology and Department of Physics and Astronomy , University College London , London WC1E 6BT , UK
| | - Anthony Watts
- Department of Biochemistry , University of Oxford , Oxford OX1 3QU , UK
| | - Maxim G Ryadnov
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK .
| |
Collapse
|