51
|
Zhang CL, Koukouli F, Allegra M, Ortiz C, Kao HL, Maskos U, Changeux JP, Schmidt-Hieber C. Inhibitory control of synaptic signals preceding locomotion in mouse frontal cortex. Cell Rep 2021; 37:110035. [PMID: 34818555 PMCID: PMC8640223 DOI: 10.1016/j.celrep.2021.110035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/29/2021] [Accepted: 10/31/2021] [Indexed: 11/03/2022] Open
Abstract
The frontal cortex is essential for organizing voluntary movement. The secondary motor cortex (MOs) is a frontal subregion thought to integrate internal and external inputs before motor action. However, how excitatory and inhibitory synaptic inputs to MOs neurons are integrated preceding movement remains unclear. Here, we address this question by performing in vivo whole-cell recordings from MOs neurons of head-fixed mice moving on a treadmill. We find that principal neurons produce slowly increasing membrane potential and spike ramps preceding spontaneous running. After goal-directed training, ramps show larger amplitudes and accelerated kinetics. Chemogenetic suppression of interneurons combined with modeling suggests that the interplay between parvalbumin-positive (PV+) and somatostatin-positive (SOM+) interneurons, along with principal neuron recurrent connectivity, shape ramping signals. Plasticity of excitatory synapses on SOM+ interneurons can explain the ramp acceleration after training. Altogether, our data reveal that local interneurons differentially control task-dependent ramping signals when MOs neurons integrate inputs preceding movement.
Collapse
Affiliation(s)
- Chun-Lei Zhang
- Institut Pasteur, Université de Paris, Neural Circuits for Spatial Navigation and Memory, 75015 Paris, France.
| | - Fani Koukouli
- Institut Pasteur, Université de Paris, CNRS UMR 3571, Integrative Neurobiology of Cholinergic Systems, 75015 Paris, France; Institut Du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm U1127, CNRS UMR 7225, 75013 Paris, France
| | - Manuela Allegra
- Institut Pasteur, Université de Paris, Neural Circuits for Spatial Navigation and Memory, 75015 Paris, France
| | - Cantin Ortiz
- Institut Pasteur, Université de Paris, Neural Circuits for Spatial Navigation and Memory, 75015 Paris, France; Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Hsin-Lun Kao
- Institut Pasteur, Université de Paris, Neural Circuits for Spatial Navigation and Memory, 75015 Paris, France
| | - Uwe Maskos
- Institut Pasteur, Université de Paris, CNRS UMR 3571, Integrative Neurobiology of Cholinergic Systems, 75015 Paris, France
| | - Jean-Pierre Changeux
- Institut Pasteur, Université de Paris, Department of Neuroscience, 75015 Paris, France; Collège de France, 75005 Paris, France
| | - Christoph Schmidt-Hieber
- Institut Pasteur, Université de Paris, Neural Circuits for Spatial Navigation and Memory, 75015 Paris, France.
| |
Collapse
|
52
|
Rikhye RV, Yildirim M, Hu M, Breton-Provencher V, Sur M. Reliable Sensory Processing in Mouse Visual Cortex through Cooperative Interactions between Somatostatin and Parvalbumin Interneurons. J Neurosci 2021; 41:8761-8778. [PMID: 34493543 PMCID: PMC8528503 DOI: 10.1523/jneurosci.3176-20.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 11/21/2022] Open
Abstract
Intrinsic neuronal variability significantly limits information encoding in the primary visual cortex (V1). However, under certain conditions, neurons can respond reliably with highly precise responses to the same visual stimuli from trial to trial. This suggests that there exists intrinsic neural circuit mechanisms that dynamically modulate the intertrial variability of visual cortical neurons. Here, we sought to elucidate the role of different inhibitory interneurons (INs) in reliable coding in mouse V1. To study the interactions between somatostatin-expressing interneurons (SST-INs) and parvalbumin-expressing interneurons (PV-INs), we used a dual-color calcium imaging technique that allowed us to simultaneously monitor these two neural ensembles while awake mice, of both sexes, passively viewed natural movies. SST neurons were more active during epochs of reliable pyramidal neuron firing, whereas PV neurons were more active during epochs of unreliable firing. SST neuron activity lagged that of PV neurons, consistent with a feedback inhibitory SST→PV circuit. To dissect the role of this circuit in pyramidal neuron activity, we used temporally limited optogenetic activation and inactivation of SST and PV interneurons during periods of reliable and unreliable pyramidal cell firing. Transient firing of SST neurons increased pyramidal neuron reliability by actively suppressing PV neurons, a proposal that was supported by a rate-based model of V1 neurons. These results identify a cooperative functional role for the SST→PV circuit in modulating the reliability of pyramidal neuron activity.SIGNIFICANCE STATEMENT Cortical neurons often respond to identical sensory stimuli with large variability. However, under certain conditions, the same neurons can also respond highly reliably. The circuit mechanisms that contribute to this modulation remain unknown. Here, we used novel dual-wavelength calcium imaging and temporally selective optical perturbation to identify an inhibitory neural circuit in visual cortex that can modulate the reliability of pyramidal neurons to naturalistic visual stimuli. Our results, supported by computational models, suggest that somatostatin interneurons increase pyramidal neuron reliability by suppressing parvalbumin interneurons via the inhibitory SST→PV circuit. These findings reveal a novel role of the SST→PV circuit in modulating the fidelity of neural coding critical for visual perception.
Collapse
Affiliation(s)
- Rajeev V Rikhye
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Murat Yildirim
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Ming Hu
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Vincent Breton-Provencher
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
53
|
Hwang EJ, Sato TR, Sato TK. A Canonical Scheme of Bottom-Up and Top-Down Information Flows in the Frontoparietal Network. Front Neural Circuits 2021; 15:691314. [PMID: 34475815 PMCID: PMC8406690 DOI: 10.3389/fncir.2021.691314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/21/2021] [Indexed: 11/25/2022] Open
Abstract
Goal-directed behavior often involves temporal separation and flexible context-dependent association between sensory input and motor output. The control of goal-directed behavior is proposed to lie in the frontoparietal network, but the computational architecture of this network remains elusive. Based on recent rodent studies that measured and manipulated projection neurons in the frontoparietal network together with findings from earlier primate studies, we propose a canonical scheme of information flows in this network. The parietofrontal pathway transmits the spatial information of a sensory stimulus or internal motor bias to drive motor programs in the frontal areas. This pathway might consist of multiple parallel connections, each controlling distinct motor effectors. The frontoparietal pathway sends the spatial information of cognitively processed motor plans through multiple parallel connections. Each of these connections could support distinct spatial functions that use the motor target information, including attention allocation, multi-body part coordination, and forward estimation of movement state (i.e., forward models). The parallel pathways in the frontoparietal network enable dynamic interactions between regions that are tuned for specific goal-directed behaviors. This scheme offers a promising framework within which the computational architecture of the frontoparietal network and the underlying circuit mechanisms can be delineated in a systematic way, providing a holistic understanding of information processing in this network. Clarifying this network may also improve the diagnosis and treatment of behavioral deficits associated with dysfunctional frontoparietal connectivity in various neurological disorders including Alzheimer's disease.
Collapse
Affiliation(s)
- Eun Jung Hwang
- Stanson Toshok Center for Brain Function and Repair, Brain Science Institute, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Takashi R. Sato
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Tatsuo K. Sato
- Department of Physiology, Monash University, Clayton, VIC, Australia
- Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
54
|
Franco LM, Goard MJ. A distributed circuit for associating environmental context with motor choice in retrosplenial cortex. SCIENCE ADVANCES 2021; 7:eabf9815. [PMID: 34433557 PMCID: PMC8386923 DOI: 10.1126/sciadv.abf9815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/02/2021] [Indexed: 05/03/2023]
Abstract
During navigation, animals often use recognition of familiar environmental contexts to guide motor action selection. The retrosplenial cortex (RSC) receives inputs from both visual cortex and subcortical regions required for spatial memory and projects to motor planning regions. However, it is not known whether RSC is important for associating familiar environmental contexts with specific motor actions. We test this possibility by developing a task in which motor trajectories are chosen based on the context. We find that mice exhibit differential predecision activity in RSC and that optogenetic suppression of RSC activity impairs task performance. Individual RSC neurons encode a range of task variables, often multiplexed with distinct temporal profiles. However, the responses are spatiotemporally organized, with task variables represented along a posterior-to-anterior gradient along RSC during the behavioral performance, consistent with histological characterization. These results reveal an anatomically organized retrosplenial cortical circuit for associating environmental contexts with appropriate motor outputs.
Collapse
Affiliation(s)
- Luis M Franco
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Michael J Goard
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA.
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
55
|
Ivashkina OI, Gruzdeva AM, Roshchina MA, Toropova KA, Anokhin KV. Imaging of C-fos Activity in Neurons of the Mouse Parietal Association Cortex during Acquisition and Retrieval of Associative Fear Memory. Int J Mol Sci 2021; 22:ijms22158244. [PMID: 34361009 PMCID: PMC8347746 DOI: 10.3390/ijms22158244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
The parietal cortex of rodents participates in sensory and spatial processing, movement planning, and decision-making, but much less is known about its role in associative learning and memory formation. The present study aims to examine the involvement of the parietal association cortex (PtA) in associative fear memory acquisition and retrieval in mice. Using ex vivo c-Fos immunohistochemical mapping and in vivo Fos-EGFP two-photon imaging, we show that PtA neurons were specifically activated both during acquisition and retrieval of cued fear memory. Fos immunohistochemistry revealed specific activation of the PtA neurons during retrieval of the 1-day-old fear memory. In vivo two-photon Fos-EGFP imaging confirmed this result and in addition detected specific c-Fos responses of the PtA neurons during acquisition of cued fear memory. To allow a more detailed study of the long-term activity of such PtA engram neurons, we generated a Fos-Cre-GCaMP transgenic mouse line that employs the Targeted Recombination in Active Populations (TRAP) technique to detect calcium events specifically in cells that were Fos-active during conditioning. We show that gradual accumulation of GCaMP3 in the PtA neurons of Fos-Cre-GCaMP mice peaks at the 4th day after fear learning. We also describe calcium transients in the cell bodies and dendrites of the TRAPed neurons. This provides a proof-of-principle for TRAP-based calcium imaging of PtA functions during memory processes as well as in experimental models of fear- and anxiety-related psychiatric disorders and their specific therapies.
Collapse
Affiliation(s)
- Olga I. Ivashkina
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.A.T.); (K.V.A.)
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia;
- Laboratory for Neurobiology of Memory, P.K. Anokhin Institute of Normal Physiology, 125315 Moscow, Russia
- Correspondence: ; Tel.: +7-9264289555
| | - Anna M. Gruzdeva
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia;
| | - Marina A. Roshchina
- Institute of Higher Nervous Activity and Neurophysiology of RAS, 117485 Moscow, Russia;
| | - Ksenia A. Toropova
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.A.T.); (K.V.A.)
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia;
- Laboratory for Neurobiology of Memory, P.K. Anokhin Institute of Normal Physiology, 125315 Moscow, Russia
| | - Konstantin V. Anokhin
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.A.T.); (K.V.A.)
- Laboratory for Neurobiology of Memory, P.K. Anokhin Institute of Normal Physiology, 125315 Moscow, Russia
| |
Collapse
|
56
|
Zatka-Haas P, Steinmetz NA, Carandini M, Harris KD. Sensory coding and the causal impact of mouse cortex in a visual decision. eLife 2021; 10:e63163. [PMID: 34328419 PMCID: PMC8324299 DOI: 10.7554/elife.63163] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 07/07/2021] [Indexed: 01/05/2023] Open
Abstract
Correlates of sensory stimuli and motor actions are found in multiple cortical areas, but such correlates do not indicate whether these areas are causally relevant to task performance. We trained mice to discriminate visual contrast and report their decision by steering a wheel. Widefield calcium imaging and Neuropixels recordings in cortex revealed stimulus-related activity in visual (VIS) and frontal (MOs) areas, and widespread movement-related activity across the whole dorsal cortex. Optogenetic inactivation biased choices only when targeted at VIS and MOs,proportionally to each site's encoding of the visual stimulus, and at times corresponding to peak stimulus decoding. A neurometric model based on summing and subtracting activity in VIS and MOs successfully described behavioral performance and predicted the effect of optogenetic inactivation. Thus, sensory signals localized in visual and frontal cortex play a causal role in task performance, while widespread dorsal cortical signals correlating with movement reflect processes that do not play a causal role.
Collapse
Affiliation(s)
- Peter Zatka-Haas
- UCL Queen Square Institute of Neurology, University College London, LondonLondonUnited Kingdom
- Department of Physiology, Anatomy & Genetics, University of OxfordOxfordUnited Kingdom
| | - Nicholas A Steinmetz
- UCL Queen Square Institute of Neurology, University College London, LondonLondonUnited Kingdom
| | - Matteo Carandini
- UCL Institute of Ophthalmology, University College London, LondonLondonUnited Kingdom
| | - Kenneth D Harris
- UCL Queen Square Institute of Neurology, University College London, LondonLondonUnited Kingdom
| |
Collapse
|
57
|
Lyamzin DR, Aoki R, Abdolrahmani M, Benucci A. Probabilistic discrimination of relative stimulus features in mice. Proc Natl Acad Sci U S A 2021; 118:e2103952118. [PMID: 34301903 PMCID: PMC8325293 DOI: 10.1073/pnas.2103952118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
During perceptual decision-making, the brain encodes the upcoming decision and the stimulus information in a mixed representation. Paradigms suitable for studying decision computations in isolation rely on stimulus comparisons, with choices depending on relative rather than absolute properties of the stimuli. The adoption of tasks requiring relative perceptual judgments in mice would be advantageous in view of the powerful tools available for the dissection of brain circuits. However, whether and how mice can perform a relative visual discrimination task has not yet been fully established. Here, we show that mice can solve a complex orientation discrimination task in which the choices are decoupled from the orientation of individual stimuli. Moreover, we demonstrate a typical discrimination acuity of 9°, challenging the common belief that mice are poor visual discriminators. We reached these conclusions by introducing a probabilistic choice model that explained behavioral strategies in 40 mice and demonstrated that the circularity of the stimulus space is an additional source of choice variability for trials with fixed difficulty. Furthermore, history biases in the model changed with task engagement, demonstrating behavioral sensitivity to the availability of cognitive resources. In conclusion, our results reveal that mice adopt a diverse set of strategies in a task that decouples decision-relevant information from stimulus-specific information, thus demonstrating their usefulness as an animal model for studying neural representations of relative categories in perceptual decision-making research.
Collapse
Affiliation(s)
- Dmitry R Lyamzin
- RIKEN Center for Brain Science, RIKEN, Wako-shi 351-0198, Japan;
| | - Ryo Aoki
- RIKEN Center for Brain Science, RIKEN, Wako-shi 351-0198, Japan
| | | | - Andrea Benucci
- RIKEN Center for Brain Science, RIKEN, Wako-shi 351-0198, Japan;
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, University of Tokyo, Bunkyo City 113-0032, Japan
| |
Collapse
|
58
|
Curtis CE, Sprague TC. Persistent Activity During Working Memory From Front to Back. Front Neural Circuits 2021; 15:696060. [PMID: 34366794 PMCID: PMC8334735 DOI: 10.3389/fncir.2021.696060] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/28/2021] [Indexed: 01/06/2023] Open
Abstract
Working memory (WM) extends the duration over which information is available for processing. Given its importance in supporting a wide-array of high level cognitive abilities, uncovering the neural mechanisms that underlie WM has been a primary goal of neuroscience research over the past century. Here, we critically review what we consider the two major "arcs" of inquiry, with a specific focus on findings that were theoretically transformative. For the first arc, we briefly review classic studies that led to the canonical WM theory that cast the prefrontal cortex (PFC) as a central player utilizing persistent activity of neurons as a mechanism for memory storage. We then consider recent challenges to the theory regarding the role of persistent neural activity. The second arc, which evolved over the last decade, stemmed from sophisticated computational neuroimaging approaches enabling researchers to decode the contents of WM from the patterns of neural activity in many parts of the brain including early visual cortex. We summarize key findings from these studies, their implications for WM theory, and finally the challenges these findings pose. Our goal in doing so is to identify barriers to developing a comprehensive theory of WM that will require a unification of these two "arcs" of research.
Collapse
Affiliation(s)
- Clayton E. Curtis
- Department of Psychology, New York University, New York, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
| | - Thomas C. Sprague
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
59
|
Takahashi N, Moberg S, Zolnik TA, Catanese J, Sachdev RNS, Larkum ME, Jaeger D. Thalamic input to motor cortex facilitates goal-directed action initiation. Curr Biol 2021; 31:4148-4155.e4. [PMID: 34302741 PMCID: PMC8478854 DOI: 10.1016/j.cub.2021.06.089] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/20/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022]
Abstract
Prompt execution of planned motor action is essential for survival. The interactions between frontal cortical circuits and the basal ganglia are central to goal-oriented action selection and initiation.1-4 In rodents, the ventromedial thalamic nucleus (VM) is one of the critical nodes that conveys the output of the basal ganglia to the frontal cortical areas including the anterior lateral motor cortex (ALM).5-9 Recent studies showed the critical role of ALM and its interplay with the motor thalamus in preparing sensory-cued rewarded movements, specifically licking.10-12 Work in primates suggests that the basal ganglia output to the motor thalamus transmits an urgency or vigor signal,13-15 which leads to shortened reaction times and faster movement initiation. As yet, little is known about what signals are transmitted from the motor thalamus to the cortex during cued movements and how these signals contribute to movement initiation. In the present study, we employed a tactile-cued licking task in mice while monitoring reaction times of the initial lick. We found that inactivation of ALM delayed the initiation of cued licking. Two-photon Ca2+ imaging of VM axons revealed that the majority of the axon terminals in ALM were transiently active during licking. Their activity was predictive of the time of the first lick. Chemogenetic and optogenetic manipulation of VM axons in ALM indicated that VM inputs facilitate the initiation of cue-triggered and impulsive licking in trained mice. Our results suggest that VM thalamocortical inputs increase the probability and vigor of initiating planned motor responses.
Collapse
Affiliation(s)
- Naoya Takahashi
- Institute for Biology, Humboldt University of Berlin, 10117 Berlin, Germany.
| | - Sara Moberg
- Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany
| | - Timothy A Zolnik
- Institute for Biology, Humboldt University of Berlin, 10117 Berlin, Germany
| | - Julien Catanese
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Robert N S Sachdev
- Institute for Biology, Humboldt University of Berlin, 10117 Berlin, Germany
| | - Matthew E Larkum
- Institute for Biology, Humboldt University of Berlin, 10117 Berlin, Germany
| | - Dieter Jaeger
- Department of Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
60
|
Visual stimulation with blue wavelength light drives V1 effectively eliminating stray light contamination during two-photon calcium imaging. J Neurosci Methods 2021; 362:109287. [PMID: 34256082 DOI: 10.1016/j.jneumeth.2021.109287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/27/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Brain visual circuits are often studied in vivo by imaging Ca2+ indicators with green-shifted emission spectra. Polychromatic white visual stimuli have a spectrum that partially overlaps indicators´ emission spectra, resulting in significant contamination of calcium signals. NEW METHOD To overcome light contamination problems we choose blue visual stimuli, having a spectral composition not overlapping with Ca2+ indicator´s emission spectrum. To compare visual responsiveness to blue and white stimuli we used electrophysiology (visual evoked potentials -VEPs) and 3D acousto-optic two-photon (2P) population Ca2+ imaging in mouse primary visual cortex (V1). RESULTS VEPs in response to blue and white stimuli had comparable peak amplitudes and latencies. Ca2+ imaging in a Thy1 GP4.3 line revealed that the populations of neurons responding to blue and white stimuli were largely overlapping, that their responses had similar amplitudes, and that functional response properties such as orientation and direction selectivities were also comparable. COMPARISON WITH EXISTING METHODS Masking or shielding the microscope are often used to minimize the contamination of Ca2+ signal by white light, but they are time consuming, bulky and thus can limit experimental design, particularly in the more and more frequently used awake set-up. Blue stimuli not interfering with imaging allow to omit shielding. CONCLUSIONS Together, our results show that the selected blue light stimuli evoke responses comparable to those evoked by white stimuli in mouse V1. This will make complex designs of imaging experiments in behavioral set-ups easier, and facilitate the combination of Ca2+ imaging with electrophysiology and optogenetics.
Collapse
|
61
|
Contribution of non-sensory neurons in visual cortical areas to visually guided decisions in the rat. Curr Biol 2021; 31:2757-2769.e6. [DOI: 10.1016/j.cub.2021.03.099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/15/2021] [Accepted: 03/31/2021] [Indexed: 01/18/2023]
|
62
|
Cortex-dependent corrections as the tongue reaches for and misses targets. Nature 2021; 594:82-87. [PMID: 34012117 DOI: 10.1038/s41586-021-03561-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 04/16/2021] [Indexed: 11/08/2022]
Abstract
Precise tongue control is necessary for drinking, eating and vocalizing1-3. However, because tongue movements are fast and difficult to resolve, neural control of lingual kinematics remains poorly understood. Here we combine kilohertz-frame-rate imaging and a deep-learning-based neural network to resolve 3D tongue kinematics in mice drinking from a water spout. Successful licks required corrective submovements that-similar to online corrections during primate reaches4-11-occurred after the tongue missed unseen, distant or displaced targets. Photoinhibition of anterolateral motor cortex impaired corrections, which resulted in hypometric licks that missed the spout. Neural activity in anterolateral motor cortex reflected upcoming, ongoing and past corrective submovements, as well as errors in predicted spout contact. Although less than a tenth of a second in duration, a single mouse lick exhibits the hallmarks of online motor control associated with a primate reach, including cortex-dependent corrections after misses.
Collapse
|
63
|
Ren C, Komiyama T. Characterizing Cortex-Wide Dynamics with Wide-Field Calcium Imaging. J Neurosci 2021; 41:4160-4168. [PMID: 33893217 PMCID: PMC8143209 DOI: 10.1523/jneurosci.3003-20.2021] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/27/2022] Open
Abstract
The brain functions through coordinated activity among distributed regions. Wide-field calcium imaging, combined with improved genetically encoded calcium indicators, allows sufficient signal-to-noise ratio and spatiotemporal resolution to afford a unique opportunity to capture cortex-wide dynamics on a moment-by-moment basis in behaving animals. Recent applications of this approach have been uncovering cortical dynamics at unprecedented scales during various cognitive processes, ranging from relatively simple sensorimotor integration to more complex decision-making tasks. In this review, we will highlight recent scientific advances enabled by wide-field calcium imaging in behaving mice. We then summarize several technical considerations and future opportunities for wide-field imaging to uncover large-scale circuit dynamics.
Collapse
Affiliation(s)
- Chi Ren
- Neurobiology Section, Center for Neural Circuits and Behavior, Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, California 92093
| | - Takaki Komiyama
- Neurobiology Section, Center for Neural Circuits and Behavior, Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
64
|
Duan CA, Pan Y, Ma G, Zhou T, Zhang S, Xu NL. A cortico-collicular pathway for motor planning in a memory-dependent perceptual decision task. Nat Commun 2021; 12:2727. [PMID: 33976124 PMCID: PMC8113349 DOI: 10.1038/s41467-021-22547-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/19/2021] [Indexed: 11/09/2022] Open
Abstract
Survival in a dynamic environment requires animals to plan future actions based on past sensory evidence, known as motor planning. However, the neuronal circuits underlying this crucial brain function remain elusive. Here, we employ projection-specific imaging and perturbation methods to investigate the direct pathway linking two key nodes in the motor planning network, the secondary motor cortex (M2) and the midbrain superior colliculus (SC), in mice performing a memory-dependent perceptual decision task. We find dynamic coding of choice information in SC-projecting M2 neurons during motor planning and execution, and disruption of this information by inhibiting M2 terminals in SC selectively impaired decision maintenance. Furthermore, we show that while both excitatory and inhibitory SC neurons receive synaptic inputs from M2, these SC subpopulations display differential temporal patterns in choice coding during behavior. Our results reveal the dynamic recruitment of the premotor-collicular pathway as a circuit mechanism for motor planning. Duan, Pan et al. find that the premotor cortex cooperates with the midbrain superior colliculus via direct projections to implement decision maintenance. These results reveal mechanisms of cortico-collicular interaction during cognition and action in a pathway- and cell-type-specific manner.
Collapse
Affiliation(s)
- Chunyu A Duan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Yuxin Pan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guofen Ma
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Taotao Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Siyu Zhang
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning-Long Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China. .,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China.
| |
Collapse
|
65
|
Yu L, Hu J, Shi C, Zhou L, Tian M, Zhang J, Xu J. The causal role of auditory cortex in auditory working memory. eLife 2021; 10:64457. [PMID: 33913809 PMCID: PMC8169109 DOI: 10.7554/elife.64457] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/28/2021] [Indexed: 01/18/2023] Open
Abstract
Working memory (WM), the ability to actively hold information in memory over a delay period of seconds, is a fundamental constituent of cognition. Delay-period activity in sensory cortices has been observed in WM tasks, but whether and when the activity plays a functional role for memory maintenance remains unclear. Here, we investigated the causal role of auditory cortex (AC) for memory maintenance in mice performing an auditory WM task. Electrophysiological recordings revealed that AC neurons were active not only during the presentation of the auditory stimulus but also early in the delay period. Furthermore, optogenetic suppression of neural activity in AC during the stimulus epoch and early delay period impaired WM performance, whereas suppression later in the delay period did not. Thus, AC is essential for information encoding and maintenance in auditory WM task, especially during the early delay period.
Collapse
Affiliation(s)
- Liping Yu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiawei Hu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, and School of Life Sciences, East China Normal University, Shanghai, China
| | - Chenlin Shi
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, and School of Life Sciences, East China Normal University, Shanghai, China
| | - Li Zhou
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, and School of Life Sciences, East China Normal University, Shanghai, China
| | - Maozhi Tian
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiping Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jinghong Xu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, and School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
66
|
Le Merre P, Ährlund-Richter S, Carlén M. The mouse prefrontal cortex: Unity in diversity. Neuron 2021; 109:1925-1944. [PMID: 33894133 DOI: 10.1016/j.neuron.2021.03.035] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/28/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022]
Abstract
The prefrontal cortex (PFC) is considered to constitute the highest stage of neural integration and to be devoted to representation and production of actions. Studies in primates have laid the foundation for theories regarding the principles of prefrontal function and provided mechanistic insights. The recent surge of studies of the PFC in mice holds promise for evolvement of present theories and development of novel concepts, particularly regarding principles shared across mammals. Here we review recent empirical work on the mouse PFC capitalizing on the experimental toolbox currently privileged to studies in this species. We conclude that this line of research has revealed cellular and structural distinctions of the PFC and neuronal activity with direct relevance to theories regarding the functions of the PFC. We foresee that data-rich mouse studies will be key to shed light on the general prefrontal architecture and mechanisms underlying cognitive aspects of organized actions.
Collapse
Affiliation(s)
- Pierre Le Merre
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Marie Carlén
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden.
| |
Collapse
|
67
|
Evaluating Visual Cues Modulates Their Representation in Mouse Visual and Cingulate Cortex. J Neurosci 2021; 41:3531-3544. [PMID: 33687964 DOI: 10.1523/jneurosci.1828-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 11/21/2022] Open
Abstract
Choosing an action in response to visual cues relies on cognitive processes, such as perception, evaluation, and prediction, which can modulate visual representations even at early processing stages. In the mouse, it is challenging to isolate cognitive modulations of sensory signals because concurrent overt behavior patterns, such as locomotion, can also have brainwide influences. To address this challenge, we designed a task, in which head-fixed mice had to evaluate one of two visual cues. While their global shape signaled the opportunity to earn reward, the cues provided equivalent local stimulation to receptive fields of neurons in primary visual (V1) and anterior cingulate cortex (ACC). We found that mice evaluated these cues within few hundred milliseconds. During this period, ∼30% of V1 neurons became cue-selective, with preferences for either cue being balanced across the recorded population. This selectivity emerged in response to the behavioral demands because the same neurons could not discriminate the cues in sensory control measurements. In ACC, cue evaluation affected a similar fraction of neurons; emerging selectivity, however, was stronger than in V1, and preferences in the recorded population were biased toward the cue promising reward. Such a biased selectivity regime might allow the mouse to infer the promise of reward simply by the overall level of activity. Together, these experiments isolate the impact of task demands on neural responses in mouse cerebral cortex, and document distinct neural signatures of cue evaluation in V1 and ACC.SIGNIFICANCE STATEMENT Performing a cognitive task, such as evaluating visual cues, not only recruits frontal and parietal brain regions, but also modulates sensory processing stages. We trained mice to evaluate two visual cues, and show that, during this task, ∼30% of neurons recorded in V1 became selective for either cue, although they provided equivalent visual stimulation. We also show that, during cue evaluation, mice frequently move their eyes, even under head fixation, and that ignoring systematic differences in eye position can substantially obscure the modulations seen in V1 neurons. Finally, we document that modulations are stronger in ACC, and biased toward the reward-predicting cue, suggesting a transition in the neural representation of task-relevant information across processing stages in mouse cerebral cortex.
Collapse
|
68
|
Salkoff DB, Zagha E, McCarthy E, McCormick DA. Movement and Performance Explain Widespread Cortical Activity in a Visual Detection Task. Cereb Cortex 2021; 30:421-437. [PMID: 31711133 DOI: 10.1093/cercor/bhz206] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 11/14/2022] Open
Abstract
Recent studies in mice reveal widespread cortical signals during task performance; however, the various task-related and task-independent processes underlying this activity are incompletely understood. Here, we recorded wide-field neural activity, as revealed by GCaMP6s, from dorsal cortex while simultaneously monitoring orofacial movements, walking, and arousal (pupil diameter) of head-fixed mice performing a Go/NoGo visual detection task and examined the ability of task performance and spontaneous or task-related movements to predict cortical activity. A linear model was able to explain a significant fraction (33-55% of variance) of widefield dorsal cortical activity, with the largest factors being movements (facial, walk, eye), response choice (hit, miss, false alarm), and arousal and indicate that a significant fraction of trial-to-trial variability arises from both spontaneous and task-related changes in state (e.g., movements, arousal). Importantly, secondary motor cortex was highly correlated with lick rate, critical for optimal task performance (high d'), and was the first region to significantly predict the lick response on target trials. These findings suggest that secondary motor cortex is critically involved in the decision and performance of learned movements and indicate that a significant fraction of trial-to-trial variation in cortical activity results from spontaneous and task-related movements and variations in behavioral/arousal state.
Collapse
Affiliation(s)
- David B Salkoff
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Edward Zagha
- Department of Psychology, University of California Riverside, Riverside, CA 92521, USA
| | - Erin McCarthy
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - David A McCormick
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.,Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
69
|
Bale MR, Bitzidou M, Giusto E, Kinghorn P, Maravall M. Sequence Learning Induces Selectivity to Multiple Task Parameters in Mouse Somatosensory Cortex. Curr Biol 2021; 31:473-485.e5. [PMID: 33186553 PMCID: PMC7883307 DOI: 10.1016/j.cub.2020.10.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/01/2020] [Accepted: 10/20/2020] [Indexed: 11/20/2022]
Abstract
Sequential temporal ordering and patterning are key features of natural signals, used by the brain to decode stimuli and perceive them as sensory objects. To explore how cortical neuronal activity underpins sequence discrimination, we developed a task in which mice distinguished between tactile "word" sequences constructed from distinct vibrations delivered to the whiskers, assembled in different orders. Animals licked to report the presence of the target sequence. Mice could respond to the earliest possible cues allowing discrimination, effectively solving the task as a "detection of change" problem, but enhanced their performance when responding later. Optogenetic inactivation showed that the somatosensory cortex was necessary for sequence discrimination. Two-photon imaging in layer 2/3 of the primary somatosensory "barrel" cortex (S1bf) revealed that, in well-trained animals, neurons had heterogeneous selectivity to multiple task variables including not just sensory input but also the animal's action decision and the trial outcome (presence or absence of the predicted reward). Many neurons were activated preceding goal-directed licking, thus reflecting the animal's learned action in response to the target sequence; these neurons were found as soon as mice learned to associate the rewarded sequence with licking. In contrast, learning evoked smaller changes in sensory response tuning: neurons responding to stimulus features were found in naive mice, and training did not generate neurons with enhanced temporal integration or categorical responses. Therefore, in S1bf, sequence learning results in neurons whose activity reflects the learned association between target sequence and licking rather than a refined representation of sensory features.
Collapse
Affiliation(s)
- Michael R Bale
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Malamati Bitzidou
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Elena Giusto
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Paul Kinghorn
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Miguel Maravall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.
| |
Collapse
|
70
|
Cortical Localization of the Sensory-Motor Transformation in a Whisker Detection Task in Mice. eNeuro 2021; 8:ENEURO.0004-21.2021. [PMID: 33495240 PMCID: PMC7901152 DOI: 10.1523/eneuro.0004-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/21/2022] Open
Abstract
Responding to a stimulus requires transforming an internal sensory representation into an internal motor representation. Where and how this sensory-motor transformation occurs is a matter of vigorous debate. Here, we trained male and female mice in a whisker detection go/no-go task in which they learned to respond (lick) following a transient whisker deflection. Using single unit recordings, we quantified sensory-related, motor-related, and choice-related activities in whisker primary somatosensory cortex (S1), whisker region of primary motor cortex (wMC), and anterior lateral motor cortex (ALM), three regions that have been proposed to be critical for the sensory-motor transformation in whisker detection. We observed strong sensory encoding in S1 and wMC, with enhanced encoding in wMC, and a lack of sensory encoding in ALM. We observed strong motor encoding in all three regions, yet largest in wMC and ALM. We observed the earliest choice probability in wMC, despite earliest sensory responses in S1. Based on the criteria of having both strong sensory and motor representations and early choice probability, we identify whisker motor cortex as the cortical region most directly related to the sensory-motor transformation. Our data support a model of sensory encoding originating in S1, sensory amplification and sensory-motor transformation occurring within wMC, and motor signals emerging in ALM after the sensory-motor transformation.
Collapse
|
71
|
Kondo M, Matsuzaki M. Neuronal representations of reward-predicting cues and outcome history with movement in the frontal cortex. Cell Rep 2021; 34:108704. [PMID: 33535051 DOI: 10.1016/j.celrep.2021.108704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 12/30/2022] Open
Abstract
Transformation of sensory inputs to goal-directed actions requires estimation of sensory-cue values based on outcome history. We conduct wide-field and two-photon calcium imaging of the mouse neocortex during classical conditioning with two cues with different water-reward probabilities. Although licking movement dominates the area-averaged activity over the whole dorsal neocortex, the dorsomedial frontal cortex (dmFrC) affects other dorsal frontal cortical activities, and its inhibition extinguishes differences in anticipatory licking between the cues. Many dorsal frontal and medial prefrontal cortical neurons are task related. Subsets of these neurons are more excited by the low-reward-predicting cue or unrewarded outcomes than by the high-reward-predicting cue or rewarded outcomes, respectively. Task-related activities of these neurons and the others are counterbalanced, so that population activity appears dominated by licking. The reward-predicting cue and outcome history are most strongly represented in dmFrC. Our results suggest that dmFrC is crucial for initiating cortical processes to select or inhibit action.
Collapse
Affiliation(s)
- Masashi Kondo
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; JSPS Research Fellow, Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Masanori Matsuzaki
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo 113-0033, Japan; Brain Functional Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Saitama 351-0198, Japan.
| |
Collapse
|
72
|
Oh SW, Son SJ, Morris JA, Choi JH, Lee C, Rah JC. Comprehensive Analysis of Long-Range Connectivity from and to the Posterior Parietal Cortex of the Mouse. Cereb Cortex 2021; 31:356-378. [PMID: 32901251 DOI: 10.1093/cercor/bhaa230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/27/2020] [Accepted: 07/27/2020] [Indexed: 11/14/2022] Open
Abstract
The posterior parietal cortex (PPC) is a major multimodal association cortex implicated in a variety of higher order cognitive functions, such as visuospatial perception, spatial attention, categorization, and decision-making. The PPC is known to receive inputs from a collection of sensory cortices as well as various subcortical areas and integrate those inputs to facilitate the execution of functions that require diverse information. Although many recent works have been performed with the mouse as a model system, a comprehensive understanding of long-range connectivity of the mouse PPC is scarce, preventing integrative interpretation of the rapidly accumulating functional data. In this study, we conducted a detailed neuroanatomic and bioinformatic analysis of the Allen Mouse Brain Connectivity Atlas data to summarize afferent and efferent connections to/from the PPC. Then, we analyzed variability between subregions of the PPC, functional/anatomical modalities, and species, and summarized the organizational principle of the mouse PPC. Finally, we confirmed key results by using additional neurotracers. A comprehensive survey of the connectivity will provide an important future reference to comprehend the function of the PPC and allow effective paths forward to various studies using mice as a model system.
Collapse
Affiliation(s)
| | - Sook Jin Son
- Laboratory of Neurophysiology, Korea Brain Research Institute, Daegu 41062, Korea
| | | | - Joon Ho Choi
- Laboratory of Neurophysiology, Korea Brain Research Institute, Daegu 41062, Korea
| | - Changkyu Lee
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Jong-Cheol Rah
- Laboratory of Neurophysiology, Korea Brain Research Institute, Daegu 41062, Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
| |
Collapse
|
73
|
Warriner CL, Fageiry SK, Carmona LM, Miri A. Towards Cell and Subtype Resolved Functional Organization: Mouse as a Model for the Cortical Control of Movement. Neuroscience 2020; 450:151-160. [PMID: 32771500 PMCID: PMC10727850 DOI: 10.1016/j.neuroscience.2020.07.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/06/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
Despite a long history of interrogation, the functional organization of motor cortex remains obscure. A major barrier has been the inability to measure and perturb activity with sufficient resolution to reveal clear functional elements within motor cortex and its associated circuits. Increasingly, the mouse has been employed as a model to facilitate application of contemporary approaches with the potential to surmount this barrier. In this brief essay, we consider these approaches and their use in the context of studies aimed at resolving the logic of motor cortical operation.
Collapse
Affiliation(s)
- Claire L Warriner
- Department of Neuroscience, The Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Samaher K Fageiry
- Department of Neuroscience, The Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Lina M Carmona
- Department of Neuroscience, The Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Andrew Miri
- Department of Neurobiology, Northwestern University, Evanston, IL 60201, USA.
| |
Collapse
|
74
|
Kang B, Druckmann S. Approaches to inferring multi-regional interactions from simultaneous population recordings: Inferring multi-regional interactions from simultaneous population recordings. Curr Opin Neurobiol 2020; 65:108-119. [PMID: 33227602 PMCID: PMC7853322 DOI: 10.1016/j.conb.2020.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 12/20/2022]
Abstract
Most past studies of neural representations and dynamics have focused on recordings from single brain areas. However, growing evidence of brain-wide, parallel representations of cognitive variables suggests that analyzing neural representations and dynamics in individual brain areas can benefit from understanding the context of multi-regional interactions that support them. Moreover, perturbation experiments revealed that the manner in which these parallel representations interact with each other can differ dramatically across different pairs of brain areas. Recent advances in recording technology offer a potentially powerful substrate to study how multi-regional interactions coordinate neural representations in individual brain areas and dictate behavior on a single-trial basis through simultaneous recordings of multiple brain areas. We review pragmatic approaches to studying multi-regional interactions and illustrate them in the concrete context of a rodent delayed response task paradigm.
Collapse
Affiliation(s)
- Byungwoo Kang
- Dept. of Neurobiology, Stanford University, Stanford, CA, United States; Physics Department, Stanford University, Stanford, CA, United States
| | - Shaul Druckmann
- Dept. of Neurobiology, Stanford University, Stanford, CA, United States.
| |
Collapse
|
75
|
Huda R, Sipe GO, Breton-Provencher V, Cruz KG, Pho GN, Adam E, Gunter LM, Sullins A, Wickersham IR, Sur M. Distinct prefrontal top-down circuits differentially modulate sensorimotor behavior. Nat Commun 2020; 11:6007. [PMID: 33243980 PMCID: PMC7691329 DOI: 10.1038/s41467-020-19772-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/26/2020] [Indexed: 02/04/2023] Open
Abstract
Sensorimotor behaviors require processing of behaviorally relevant sensory cues and the ability to select appropriate responses from a vast behavioral repertoire. Modulation by the prefrontal cortex (PFC) is thought to be key for both processes, but the precise role of specific circuits remains unclear. We examined the sensorimotor function of anatomically distinct outputs from a subdivision of the mouse PFC, the anterior cingulate cortex (ACC). Using a visually guided two-choice behavioral paradigm with multiple cue-response mappings, we dissociated the sensory and motor response components of sensorimotor control. Projection-specific two-photon calcium imaging and optogenetic manipulations show that ACC outputs to the superior colliculus, a key midbrain structure for response selection, principally coordinate specific motor responses. Importantly, ACC outputs exert control by reducing the innate response bias of the superior colliculus. In contrast, ACC outputs to the visual cortex facilitate sensory processing of visual cues. Our results ascribe motor and sensory roles to ACC projections to the superior colliculus and the visual cortex and demonstrate for the first time a circuit motif for PFC function wherein anatomically non-overlapping output pathways coordinate complementary but distinct aspects of visual sensorimotor behavior. The neural circuit mechanisms for sensorimotor control by the prefrontal cortex (PFC) are unclear. Here, the authors show that PFC outputs to the visual cortex and superior colliculus respectively facilitate sensory processing and action selection, allowing the PFC to independently control complementary but distinct behavioral functions.
Collapse
Affiliation(s)
- Rafiq Huda
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Grayson O Sipe
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vincent Breton-Provencher
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - K Guadalupe Cruz
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Gerald N Pho
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Elie Adam
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Liadan M Gunter
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Austin Sullins
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ian R Wickersham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
76
|
Gallero-Salas Y, Han S, Sych Y, Voigt FF, Laurenczy B, Gilad A, Helmchen F. Sensory and Behavioral Components of Neocortical Signal Flow in Discrimination Tasks with Short-Term Memory. Neuron 2020; 109:135-148.e6. [PMID: 33159842 DOI: 10.1016/j.neuron.2020.10.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 09/13/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022]
Abstract
In the neocortex, each sensory modality engages distinct sensory areas that route information to association areas. Where signal flow converges for maintaining information in short-term memory and how behavior may influence signal routing remain open questions. Using wide-field calcium imaging, we compared cortex-wide neuronal activity in layer 2/3 for mice trained in auditory and tactile tasks with delayed response. In both tasks, mice were either active or passive during stimulus presentation, moving their body or sitting quietly. Irrespective of behavioral strategy, auditory and tactile stimulation activated distinct subdivisions of the posterior parietal cortex, anterior area A and rostrolateral area RL, which held stimulus-related information necessary for the respective tasks. In the delay period, in contrast, behavioral strategy rather than sensory modality determined short-term memory location, with activity converging frontomedially in active trials and posterolaterally in passive trials. Our results suggest behavior-dependent routing of sensory-driven cortical signals flow from modality-specific posterior parietal cortex (PPC) subdivisions to higher association areas.
Collapse
Affiliation(s)
- Yasir Gallero-Salas
- Brain Research Institute, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland
| | - Shuting Han
- Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Yaroslav Sych
- Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Fabian F Voigt
- Brain Research Institute, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland
| | - Balazs Laurenczy
- Brain Research Institute, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland
| | - Ariel Gilad
- Brain Research Institute, University of Zurich, Zurich, Switzerland; Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland.
| |
Collapse
|
77
|
Aoi MC, Mante V, Pillow JW. Prefrontal cortex exhibits multidimensional dynamic encoding during decision-making. Nat Neurosci 2020; 23:1410-1420. [PMID: 33020653 PMCID: PMC7610668 DOI: 10.1038/s41593-020-0696-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 07/21/2020] [Indexed: 01/27/2023]
Abstract
Recent work has suggested that the prefrontal cortex (PFC) plays a key role in context-dependent perceptual decision-making. In this study, we addressed that role using a new method for identifying task-relevant dimensions of neural population activity. Specifically, we show that the PFC has a multidimensional code for context, decisions and both relevant and irrelevant sensory information. Moreover, these representations evolve in time, with an early linear accumulation phase followed by a phase with rotational dynamics. We identify the dimensions of neural activity associated with these phases and show that they do not arise from distinct populations but from a single population with broad tuning characteristics. Finally, we use model-based decoding to show that the transition from linear to rotational dynamics coincides with a plateau in decoding accuracy, revealing that rotational dynamics in the PFC preserve sensory choice information for the duration of the stimulus integration period.
Collapse
Affiliation(s)
- Mikio C Aoi
- Department of Psychology and Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Division of Biological Sciences & Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, USA.
| | - Valerio Mante
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Jonathan W Pillow
- Department of Psychology and Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| |
Collapse
|
78
|
Kawabata M, Soma S, Saiki-Ishikawa A, Nonomura S, Yoshida J, Ríos A, Sakai Y, Isomura Y. A spike analysis method for characterizing neurons based on phase locking and scaling to the interval between two behavioral events. J Neurophysiol 2020; 124:1923-1941. [PMID: 33085554 DOI: 10.1152/jn.00200.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Standard analysis of neuronal functions assesses the temporal correlation between animal behaviors and neuronal activity by aligning spike trains with the timing of a specific behavioral event, e.g., visual cue. However, spike activity is often involved in information processing dependent on a relative phase between two consecutive events rather than a single event. Nevertheless, less attention has so far been paid to such temporal features of spike activity in relation to two behavioral events. Here, we propose "Phase-Scaling analysis" to simultaneously evaluate the phase locking and scaling to the interval between two events in task-related spike activity of individual neurons. This analysis method can discriminate conceptual "scaled"-type neurons from "nonscaled"-type neurons using an activity variation map that combines phase locking with scaling to the interval. Its robustness was validated by spike simulation using different spike properties. Furthermore, we applied it to analyzing actual spike data from task-related neurons in the primary visual cortex (V1), posterior parietal cortex (PPC), primary motor cortex (M1), and secondary motor cortex (M2) of behaving rats. After hierarchical clustering of all neurons using their activity variation maps, we divided them objectively into four clusters corresponding to nonscaled-type sensory and motor neurons and scaled-type neurons including sustained and ramping activities, etc. Cluster/subcluster compositions for V1 differed from those of PPC, M1, and M2. The V1 neurons showed the fastest functional activities among those areas. Our method was also applicable to determine temporal "forms" and the latency of spike activity changes. These findings demonstrate its utility for characterizing neurons.NEW & NOTEWORTHY Phase-Scaling analysis is a novel technique to unbiasedly characterize the temporal dependency of functional neuron activity on two behavioral events and objectively determine the latency and form of the activity change. This powerful analysis can uncover several classes of latently functioning neurons that have thus far been overlooked, which may participate differently in intermediate processes of a brain function. The Phase-Scaling analysis will yield profound insights into neural mechanisms for processing internal information.
Collapse
Affiliation(s)
- Masanori Kawabata
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Graduate School of Brain Sciences, Tamagawa University, Tokyo, Japan
| | - Shogo Soma
- Brain Science Institute, Tamagawa University, Tokyo, Japan.,Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akiko Saiki-Ishikawa
- Brain Science Institute, Tamagawa University, Tokyo, Japan.,Department of Neurobiology, Northwestern University, Evanston, Illinois
| | - Satoshi Nonomura
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Brain Science Institute, Tamagawa University, Tokyo, Japan.,Systems Neuroscience Section, Primate Research Institute, Kyoto University, Aichi, Japan
| | - Junichi Yoshida
- Brain Science Institute, Tamagawa University, Tokyo, Japan.,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York
| | - Alain Ríos
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Graduate School of Brain Sciences, Tamagawa University, Tokyo, Japan
| | - Yutaka Sakai
- Graduate School of Brain Sciences, Tamagawa University, Tokyo, Japan.,Brain Science Institute, Tamagawa University, Tokyo, Japan
| | - Yoshikazu Isomura
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Graduate School of Brain Sciences, Tamagawa University, Tokyo, Japan.,Brain Science Institute, Tamagawa University, Tokyo, Japan
| |
Collapse
|
79
|
Babl SS, Rummell BP, Sigurdsson T. The Spatial Extent of Optogenetic Silencing in Transgenic Mice Expressing Channelrhodopsin in Inhibitory Interneurons. Cell Rep 2020; 29:1381-1395.e4. [PMID: 31665647 DOI: 10.1016/j.celrep.2019.09.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/05/2019] [Accepted: 09/18/2019] [Indexed: 02/09/2023] Open
Abstract
Optogenetic stimulation of inhibitory interneurons has become a commonly used strategy for silencing neuronal activity. This is typically achieved using transgenic mice expressing excitatory opsins in inhibitory interneurons throughout the brain, raising the question of how spatially extensive the resulting inhibition is. Here, we characterize neuronal silencing in VGAT-ChR2 mice, which express channelrhodopsin-2 in inhibitory interneurons, as a function of light intensity and distance from the light source in several cortical and subcortical regions. We show that light stimulation, even at relatively low intensities, causes inhibition not only in brain regions targeted for silencing but also in their subjacent areas. In contrast, virus-mediated expression of an inhibitory opsin enables robust silencing that is restricted to the region of opsin expression. Our results reveal important constraints on using inhibitory interneuron activation to silence neuronal activity and emphasize the necessity of carefully controlling light stimulation parameters when using this silencing strategy.
Collapse
Affiliation(s)
- Susanne Stefanie Babl
- Institute of Neurophysiology, Neuroscience Center, Goethe University, Frankfurt, Germany
| | - Brian Paul Rummell
- Institute of Neurophysiology, Neuroscience Center, Goethe University, Frankfurt, Germany
| | - Torfi Sigurdsson
- Institute of Neurophysiology, Neuroscience Center, Goethe University, Frankfurt, Germany.
| |
Collapse
|
80
|
Yao JD, Gimoto J, Constantinople CM, Sanes DH. Parietal Cortex Is Required for the Integration of Acoustic Evidence. Curr Biol 2020; 30:3293-3303.e4. [PMID: 32619478 DOI: 10.1016/j.cub.2020.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/12/2020] [Accepted: 06/04/2020] [Indexed: 01/31/2023]
Abstract
Sensory-driven decisions are formed by accumulating information over time. Although parietal cortex activity is thought to represent accumulated evidence for sensory-based decisions, recent perturbation studies in rodents and non-human primates have challenged the hypothesis that these representations actually influence behavior. Here, we asked whether the parietal cortex integrates acoustic features from auditory cortical inputs during a perceptual decision-making task. If so, we predicted that selective inactivation of this projection should impair subjects' ability to accumulate sensory evidence. We trained gerbils to perform an auditory discrimination task and obtained measures of integration time as a readout of evidence accumulation capability. Minimum integration time was calculated behaviorally as the shortest stimulus duration for which subjects could discriminate the acoustic signals. Direct pharmacological inactivation of parietal cortex increased minimum integration times, suggesting its role in the behavior. To determine the specific impact of sensory evidence, we chemogenetically inactivated the excitatory projections from auditory cortex to parietal cortex and found this was sufficient to increase minimum behavioral integration times. Our signal-detection-theory-based model accurately replicated behavioral outcomes and indicated that the deficits in task performance were plausibly explained by elevated sensory noise. Together, our findings provide causal evidence that parietal cortex plays a role in the network that integrates auditory features for perceptual judgments.
Collapse
Affiliation(s)
- Justin D Yao
- Center for Neural Science, New York University, New York, NY 10003, USA.
| | - Justin Gimoto
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Christine M Constantinople
- Center for Neural Science, New York University, New York, NY 10003, USA; Neuroscience Institute, NYU Langone Medical Center, New York University, New York, NY 10016, USA
| | - Dan H Sanes
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Psychology, New York University, New York, NY 10003, USA; Department of Biology, New York University, New York, NY 10003, USA; Neuroscience Institute, NYU Langone Medical Center, New York University, New York, NY 10016, USA
| |
Collapse
|
81
|
Laha M, Konar A, Rakshit P, Nagar AK. Exploration of Subjective Color Perceptual-Ability by EEG-Induced Type-2 Fuzzy Classifiers. IEEE Trans Cogn Dev Syst 2020. [DOI: 10.1109/tcds.2019.2959138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
82
|
Cognitive Capacity Limits Are Remediated by Practice-Induced Plasticity between the Putamen and Pre-Supplementary Motor Area. eNeuro 2020; 7:ENEURO.0139-20.2020. [PMID: 32817195 PMCID: PMC7458802 DOI: 10.1523/eneuro.0139-20.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 01/10/2023] Open
Abstract
Humans show striking limitations in information processing when multitasking yet can modify these limits with practice. Such limitations have been linked to a frontal-parietal network, but recent models of decision-making implicate a striatal-cortical network. We adjudicated these accounts by investigating the circuitry underpinning multitasking in 100 human individuals and the plasticity caused by practice. We observed that multitasking costs, and their practice-induced remediation, are best explained by modulations in information transfer between the striatum and the cortical areas that represent stimulus-response mappings. Specifically, our results support the view that multitasking stems at least in part from taxation in information sharing between the putamen and pre-supplementary motor area (pre-SMA). Moreover, we propose that modulations to information transfer between these two regions leads to practice-induced improvements in multitasking.
Collapse
|
83
|
Wang TY, Liu J, Yao H. Control of adaptive action selection by secondary motor cortex during flexible visual categorization. eLife 2020; 9:54474. [PMID: 32579113 PMCID: PMC7343391 DOI: 10.7554/elife.54474] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/24/2020] [Indexed: 01/07/2023] Open
Abstract
Adaptive action selection during stimulus categorization is an important feature of flexible behavior. To examine neural mechanism underlying this process, we trained mice to categorize the spatial frequencies of visual stimuli according to a boundary that changed between blocks of trials in a session. Using a model with a dynamic decision criterion, we found that sensory history was important for adaptive action selection after the switch of boundary. Bilateral inactivation of the secondary motor cortex (M2) impaired adaptive action selection by reducing the behavioral influence of sensory history. Electrophysiological recordings showed that M2 neurons carried more information about upcoming choice and previous sensory stimuli when sensorimotor association was being remapped than when it was stable. Thus, M2 causally contributes to flexible action selection during stimulus categorization, with the representations of upcoming choice and sensory history regulated by the demand to remap stimulus-action association.
Collapse
Affiliation(s)
- Tian-Yi Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Haishan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| |
Collapse
|
84
|
Groblewski PA, Ollerenshaw DR, Kiggins JT, Garrett ME, Mochizuki C, Casal L, Cross S, Mace K, Swapp J, Manavi S, Williams D, Mihalas S, Olsen SR. Characterization of Learning, Motivation, and Visual Perception in Five Transgenic Mouse Lines Expressing GCaMP in Distinct Cell Populations. Front Behav Neurosci 2020; 14:104. [PMID: 32655383 PMCID: PMC7324787 DOI: 10.3389/fnbeh.2020.00104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/25/2020] [Indexed: 01/01/2023] Open
Abstract
To study the mechanisms of perception and cognition, neural measurements must be made during behavior. A goal of the Allen Brain Observatory is to map the activity of distinct cortical cell classes underlying visual and behavioral processing. Here we describe standardized methodology for training head-fixed mice on a visual change detection task, and we use our paradigm to characterize learning and behavior of five GCaMP6-expressing transgenic lines. We used automated training procedures to facilitate comparisons across mice. Training times varied, but most transgenic mice learned the behavioral task. Motivation levels also varied across mice. To compare mice in similar motivational states we subdivided sessions into over-, under-, and optimally motivated periods. When motivated, the pattern of perceptual decisions were highly correlated across transgenic lines, although overall performance (d-prime) was lower in one line labeling somatostatin inhibitory cells. These results provide important context for using these mice to map neural activity underlying perception and behavior.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Shawn R. Olsen
- Allen Institute for Brain Science, Seattle, WA, United States
| |
Collapse
|
85
|
Kozhemiako N, Nunes AS, Samal A, Rana KD, Calabro FJ, Hämäläinen MS, Khan S, Vaina LM. Neural activity underlying the detection of an object movement by an observer during forward self-motion: Dynamic decoding and temporal evolution of directional cortical connectivity. Prog Neurobiol 2020; 195:101824. [PMID: 32446882 DOI: 10.1016/j.pneurobio.2020.101824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/09/2020] [Accepted: 05/18/2020] [Indexed: 01/13/2023]
Abstract
Relatively little is known about how the human brain identifies movement of objects while the observer is also moving in the environment. This is, ecologically, one of the most fundamental motion processing problems, critical for survival. To study this problem, we used a task which involved nine textured spheres moving in depth, eight simulating the observer's forward motion while the ninth, the target, moved independently with a different speed towards or away from the observer. Capitalizing on the high temporal resolution of magnetoencephalography (MEG) we trained a Support Vector Classifier (SVC) using the sensor-level data to identify correct and incorrect responses. Using the same MEG data, we addressed the dynamics of cortical processes involved in the detection of the independently moving object and investigated whether we could obtain confirmatory evidence for the brain activity patterns used by the classifier. Our findings indicate that response correctness could be reliably predicted by the SVC, with the highest accuracy during the blank period after motion and preceding the response. The spatial distribution of the areas critical for the correct prediction was similar but not exclusive to areas underlying the evoked activity. Importantly, SVC identified frontal areas otherwise not detected with evoked activity that seem to be important for the successful performance in the task. Dynamic connectivity further supported the involvement of frontal and occipital-temporal areas during the task periods. This is the first study to dynamically map cortical areas using a fully data-driven approach in order to investigate the neural mechanisms involved in the detection of moving objects during observer's self-motion.
Collapse
Affiliation(s)
- N Kozhemiako
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - A S Nunes
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.
| | - A Samal
- Departments of Biomedical Engineering, Neurology and the Graduate Program for Neuroscience, Boston University, Boston, MA, USA.
| | - K D Rana
- Departments of Biomedical Engineering, Neurology and the Graduate Program for Neuroscience, Boston University, Boston, MA, USA; National Institute of Mental Health, Bethesda, MD, USA.
| | - F J Calabro
- Department of Psychiatry and Biomedical Engineering, University of Pittsburgh, PA, USA.
| | - M S Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - S Khan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - L M Vaina
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Departments of Biomedical Engineering, Neurology and the Graduate Program for Neuroscience, Boston University, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
86
|
Scott GA, Cai S, Song Y, Liu MC, Greba Q, Howland JG. Task phase-specific involvement of the rat posterior parietal cortex in performance of the TUNL task. GENES BRAIN AND BEHAVIOR 2020; 20:e12659. [PMID: 32348610 DOI: 10.1111/gbb.12659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022]
Abstract
The posterior parietal cortex (PPC) participates in cognitive processes including working memory (WM), sensory evidence accumulation, and perceptually guided decision making. However, surprisingly little work has used temporally precise manipulations to dissect its role in different epochs of behavior taking place over short timespans, such as WM tasks. As a result, a consistent view of the temporally precise role of the PPC in these processes has not been described. In the present study, we investigated the temporally specific role of the PPC in the Trial-Unique, Nonmatching-to-Location (TUNL) task, a touchscreen-based, visuospatial WM task that relies on the PPC. To disrupt PPC activity in a temporally precise manner, we applied mild intracranial electrical stimulation (ICES). We found that intra-PPC ICES (100 μA) significantly impaired accuracy in TUNL without significantly altering response latency. Moreover, we found that the impairment was specific to ICES applied during the delay and test phases of TUNL. Consistent with previous reports showing delay- and choice-specific neuronal activity in the PPC, the results provide evidence that the rat PPC is required for maintaining memory representations of stimuli over a delay period as well as for making successful comparisons and choices between test stimuli. In contrast, the PPC appears not to be critical for initial encoding of sample stimuli. This pattern of results may indicate that early encoding of visual stimuli is independent of the PPC or that the PPC becomes engaged only when visual stimuli are spatially complex or involve memory or decision making.
Collapse
Affiliation(s)
- Gavin A Scott
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Shuang Cai
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yuanyi Song
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Max C Liu
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Quentin Greba
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
87
|
Gilad A, Helmchen F. Spatiotemporal refinement of signal flow through association cortex during learning. Nat Commun 2020; 11:1744. [PMID: 32269226 PMCID: PMC7142160 DOI: 10.1038/s41467-020-15534-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 03/12/2020] [Indexed: 11/17/2022] Open
Abstract
Association areas in neocortex encode novel stimulus-outcome relationships, but the principles of their engagement during task learning remain elusive. Using chronic wide-field calcium imaging, we reveal two phases of spatiotemporal refinement of layer 2/3 cortical activity in mice learning whisker-based texture discrimination in the dark. Even before mice reach learning threshold, association cortex-including rostro-lateral (RL), posteromedial (PM), and retrosplenial dorsal (RD) areas-is generally suppressed early during trials (between auditory start cue and whisker-texture touch). As learning proceeds, a spatiotemporal activation sequence builds up, spreading from auditory areas to RL immediately before texture touch (whereas PM and RD remain suppressed) and continuing into barrel cortex, which eventually efficiently discriminates between textures. Additional correlation analysis substantiates this diverging learning-related refinement within association cortex. Our results indicate that a pre-learning phase of general suppression in association cortex precedes a learning-related phase of task-specific signal flow enhancement.
Collapse
Affiliation(s)
- Ariel Gilad
- Brain Research Institute, University of Zurich, CH-8057, Zurich, Switzerland
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University, 9112001, Jerusalem, Israel
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, CH-8057, Zurich, Switzerland.
- Neuroscience Center Zurich, CH-8057, Zurich, Switzerland.
| |
Collapse
|
88
|
Bjerre AS, Palmer LM. Probing Cortical Activity During Head-Fixed Behavior. Front Mol Neurosci 2020; 13:30. [PMID: 32180705 PMCID: PMC7059801 DOI: 10.3389/fnmol.2020.00030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/10/2020] [Indexed: 01/20/2023] Open
Abstract
The cortex is crucial for many behaviors, ranging from sensory-based behaviors to working memory and social behaviors. To gain an in-depth understanding of the contribution to these behaviors, cellular and sub-cellular recordings from both individual and populations of cortical neurons are vital. However, techniques allowing such recordings, such as two-photon imaging and whole-cell electrophysiology, require absolute stability of the head, a requirement not often fulfilled in freely moving animals. Here, we review and compare behavioral paradigms that have been developed and adapted for the head-fixed preparation, which together offer the needed stability for live recordings of neural activity in behaving animals. We also review how the head-fixed preparation has been used to explore the function of primary sensory cortices, posterior parietal cortex (PPC) and anterior lateral motor (ALM) cortex in sensory-based behavioral tasks, while also discussing the considerations of performing such recordings. Overall, this review highlights the head-fixed preparation as allowing in-depth investigation into the neural activity underlying behaviors by providing highly controllable settings for precise stimuli presentation which can be combined with behavioral paradigms ranging from simple sensory detection tasks to complex, cross-modal, memory-guided decision-making tasks.
Collapse
Affiliation(s)
- Ann-Sofie Bjerre
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Lucy M Palmer
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
89
|
The Contribution of AMPA and NMDA Receptors to Persistent Firing in the Dorsolateral Prefrontal Cortex in Working Memory. J Neurosci 2020; 40:2458-2470. [PMID: 32051326 PMCID: PMC7083532 DOI: 10.1523/jneurosci.2121-19.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/24/2019] [Accepted: 02/02/2020] [Indexed: 12/12/2022] Open
Abstract
Many tasks demand that information is kept online for a few seconds before it is used to guide behavior. The information is kept in working memory as the persistent firing of neurons encoding the memorized information. The neural mechanisms responsible for persistent activity are not yet well understood. Theories attribute an important role to ionotropic glutamate receptors, and it has been suggested that NMDARs are particularly important for persistent firing because they exhibit long time constants. Ionotropic AMPARs have shorter time constants and have been suggested to play a smaller role in working memory. Here we compared the contribution of AMPARs and NMDARs to persistent firing in the dlPFC of male macaque monkeys performing a delayed saccade to a memorized spatial location. We used iontophoresis to eject small amounts of glutamate receptor antagonists, aiming to perturb, but not abolish, neuronal activity. We found that both AMPARs and NMDARs contributed to persistent activity. Blockers of the NMDARs decreased persistent firing associated with the memory of the neuron's preferred spatial location but had comparatively little effect on the representation of the antipreferred location. They therefore decreased the information conveyed by persistent firing about the memorized location. In contrast, AMPAR blockers decreased activity elicited by the memory of both the preferred and antipreferred location, with a smaller effect on the information conveyed by persistent activity. Our results provide new insights into the contribution of AMPARs and NMDARs to persistent activity during working memory tasks. SIGNIFICANCE STATEMENT Working memory enables us to hold on to information that is no longer available to the senses. It relies on the persistent activity of neurons that code for the memorized information, but the detailed mechanisms are not yet well understood. Here we investigated the role of NMDARs and AMPARs in working memory using iontophoresis of antagonists in the PFC of monkeys remembering the location of a visual stimulus for an eye movement response. AMPARs and NMDARs both contributed to persistent activity. NMDAR blockers mostly decreased persistent firing associated with the memory of the neuron's preferred spatial location, whereas AMPAR blockers caused a more general suppression. These results provide new insight into the contribution of AMPARs and NMDARs to working memory.
Collapse
|
90
|
Repeated Exposure to Multiple Concurrent Stresses Induce Circuit Specific Loss of Inputs to the Posterior Parietal Cortex. J Neurosci 2020; 40:1849-1861. [PMID: 31949108 DOI: 10.1523/jneurosci.1838-19.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 11/21/2022] Open
Abstract
Severe loss of excitatory synapses in key brain regions is thought to be one of the major mechanisms underlying stress-induced cognitive impairment. To date, however, the identity of the affected circuits remains elusive. Here we examined the effect of exposure to repeated multiple concurrent stressors (RMS) on the connectivity of the posterior parietal cortex (PPC) in adolescent male mice. We found that RMS led to layer-specific elimination of excitatory synapses with the most pronounced loss observed in deeper cortical layers. Quantitative analysis of cortical projections to the PPC revealed a significant loss of sensory and retrosplenial inputs to the PPC while contralateral and frontal projections were preserved. These results were confirmed by decreased synaptic strength from sensory, but not from contralateral, projections in stress-exposed animals. Functionally, RMS disrupted visuospatial working memory performance, implicating disrupted higher-order visual processing. These effects were not observed in mice subjected to restraint-only stress for an identical period of time. The PPC is considered to be a cortical hub for multisensory integration, working memory, and perceptual decision-making. Our data suggest that sensory information streams targeting the PPC may be impacted by recurring stress, likely contributing to stress-induced cognitive impairment.SIGNIFICANCE STATEMENT Repeated exposure to stress profoundly impairs cognitive functions like memory, attention, or decision-making. There is emerging evidence that stress not only impacts high-order regions of the brain, but may affect earlier stages of cognitive processing. Our work focuses on the posterior parietal cortex, a brain region supporting short-term memory, multisensory integration, and decision-making. We show evidence that repeated stress specifically damages sensory inputs to this region. This disruption of synaptic connectivity is linked to working memory impairment and is specific to repeated exposure to multiple stressors. Altogether, our data provide a potential alternative explanation to ailments previously attributed to downstream, cognitive brain structures.
Collapse
|
91
|
Pinto L, Rajan K, DePasquale B, Thiberge SY, Tank DW, Brody CD. Task-Dependent Changes in the Large-Scale Dynamics and Necessity of Cortical Regions. Neuron 2019; 104:810-824.e9. [PMID: 31564591 PMCID: PMC7036751 DOI: 10.1016/j.neuron.2019.08.025] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 06/18/2019] [Accepted: 08/13/2019] [Indexed: 12/15/2022]
Abstract
Neural activity throughout the cortex is correlated with perceptual decisions, but inactivation studies suggest that only a small number of areas are necessary for these behaviors. Here we show that the number of required cortical areas and their dynamics vary across related tasks with different cognitive computations. In a visually guided virtual T-maze task, bilateral inactivation of only a few dorsal cortical regions impaired performance. In contrast, in tasks requiring evidence accumulation and/or post-stimulus memory, performance was impaired by inactivation of widespread cortical areas with diverse patterns of behavioral deficits across areas and tasks. Wide-field imaging revealed widespread ramps of Ca2+ activity during the accumulation and visually guided tasks. Additionally, during accumulation, different regions had more diverse activity profiles, leading to reduced inter-area correlations. Using a modular recurrent neural network model trained to perform analogous tasks, we argue that differences in computational strategies alone could explain these findings.
Collapse
Affiliation(s)
- Lucas Pinto
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Kanaka Rajan
- Joseph Henry Laboratories of Physics and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10014, USA
| | - Brian DePasquale
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Stephan Y Thiberge
- Bezos Center for Neural Dynamics, Princeton University, Princeton, NJ 08544, USA
| | - David W Tank
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Bezos Center for Neural Dynamics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Carlos D Brody
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
92
|
Najafi F, Elsayed GF, Cao R, Pnevmatikakis E, Latham PE, Cunningham JP, Churchland AK. Excitatory and Inhibitory Subnetworks Are Equally Selective during Decision-Making and Emerge Simultaneously during Learning. Neuron 2019; 105:165-179.e8. [PMID: 31753580 DOI: 10.1016/j.neuron.2019.09.045] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/28/2019] [Accepted: 09/25/2019] [Indexed: 12/23/2022]
Abstract
Inhibitory neurons, which play a critical role in decision-making models, are often simplified as a single pool of non-selective neurons lacking connection specificity. This assumption is supported by observations in the primary visual cortex: inhibitory neurons are broadly tuned in vivo and show non-specific connectivity in slice. The selectivity of excitatory and inhibitory neurons within decision circuits and, hence, the validity of decision-making models are unknown. We simultaneously measured excitatory and inhibitory neurons in the posterior parietal cortex of mice judging multisensory stimuli. Surprisingly, excitatory and inhibitory neurons were equally selective for the animal's choice, both at the single-cell and population level. Further, both cell types exhibited similar changes in selectivity and temporal dynamics during learning, paralleling behavioral improvements. These observations, combined with modeling, argue against circuit architectures assuming non-selective inhibitory neurons. Instead, they argue for selective subnetworks of inhibitory and excitatory neurons that are shaped by experience to support expert decision-making.
Collapse
Affiliation(s)
- Farzaneh Najafi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Robin Cao
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | | | - Peter E Latham
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | | | | |
Collapse
|
93
|
Li N, Chen S, Guo ZV, Chen H, Huo Y, Inagaki HK, Chen G, Davis C, Hansel D, Guo C, Svoboda K. Spatiotemporal constraints on optogenetic inactivation in cortical circuits. eLife 2019; 8:e48622. [PMID: 31736463 PMCID: PMC6892606 DOI: 10.7554/elife.48622] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/16/2019] [Indexed: 12/21/2022] Open
Abstract
Optogenetics allows manipulations of genetically and spatially defined neuronal populations with excellent temporal control. However, neurons are coupled with other neurons over multiple length scales, and the effects of localized manipulations thus spread beyond the targeted neurons. We benchmarked several optogenetic methods to inactivate small regions of neocortex. Optogenetic excitation of GABAergic neurons produced more effective inactivation than light-gated ion pumps. Transgenic mice expressing the light-dependent chloride channel GtACR1 produced the most potent inactivation. Generally, inactivation spread substantially beyond the photostimulation light, caused by strong coupling between cortical neurons. Over some range of light intensity, optogenetic excitation of inhibitory neurons reduced activity in these neurons, together with pyramidal neurons, a signature of inhibition-stabilized neural networks ('paradoxical effect'). The offset of optogenetic inactivation was followed by rebound excitation in a light dose-dependent manner, limiting temporal resolution. Our data offer guidance for the design of in vivo optogenetics experiments.
Collapse
Affiliation(s)
- Nuo Li
- Department of NeuroscienceBaylor College of MedicineHoustonUnited States
- Janelia Research CampusAshburnUnited States
| | - Susu Chen
- Janelia Research CampusAshburnUnited States
| | - Zengcai V Guo
- Janelia Research CampusAshburnUnited States
- School of MedicineTsinghua UniversityBeijingChina
| | - Han Chen
- School of MedicineTsinghua UniversityBeijingChina
| | - Yan Huo
- School of MedicineTsinghua UniversityBeijingChina
| | | | - Guang Chen
- Department of NeuroscienceBaylor College of MedicineHoustonUnited States
| | - Courtney Davis
- Department of NeuroscienceBaylor College of MedicineHoustonUnited States
- Janelia Research CampusAshburnUnited States
| | - David Hansel
- Center of Neurophysics, Physiology and Pathologies, CNRS-UMR8119ParisFrance
| | | | | |
Collapse
|
94
|
Heeger DJ, Mackey WE. Oscillatory recurrent gated neural integrator circuits (ORGaNICs), a unifying theoretical framework for neural dynamics. Proc Natl Acad Sci U S A 2019; 116:22783-22794. [PMID: 31636212 PMCID: PMC6842604 DOI: 10.1073/pnas.1911633116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Working memory is an example of a cognitive and neural process that is not static but evolves dynamically with changing sensory inputs; another example is motor preparation and execution. We introduce a theoretical framework for neural dynamics, based on oscillatory recurrent gated neural integrator circuits (ORGaNICs), and apply it to simulate key phenomena of working memory and motor control. The model circuits simulate neural activity with complex dynamics, including sequential activity and traveling waves of activity, that manipulate (as well as maintain) information during working memory. The same circuits convert spatial patterns of premotor activity to temporal profiles of motor control activity and manipulate (e.g., time warp) the dynamics. Derivative-like recurrent connectivity, in particular, serves to manipulate and update internal models, an essential feature of working memory and motor execution. In addition, these circuits incorporate recurrent normalization, to ensure stability over time and robustness with respect to perturbations of synaptic weights.
Collapse
Affiliation(s)
- David J Heeger
- Department of Psychology, New York University, New York, NY 10003;
- Center for Neural Science, New York University, New York, NY 10003
| | - Wayne E Mackey
- Department of Psychology, New York University, New York, NY 10003
- Center for Neural Science, New York University, New York, NY 10003
| |
Collapse
|
95
|
Katzner S, Born G, Busse L. V1 microcircuits underlying mouse visual behavior. Curr Opin Neurobiol 2019; 58:191-198. [PMID: 31585332 DOI: 10.1016/j.conb.2019.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/12/2019] [Accepted: 09/06/2019] [Indexed: 11/29/2022]
Abstract
Visual behavior is based on the concerted activity of neurons in visual areas, where sensory signals are integrated with top-down information. In the past decade, the advent of new tools, such as functional imaging of populations of identified single neurons, high-density electrophysiology, virus-assisted circuit mapping, and precisely timed, cell-type specific manipulations, has advanced our understanding of the neuronal microcircuits underlying visual behavior. Studies in head-fixed mice, where such tools can routinely be applied, begin to provide new insights into the neural code of primary visual cortex (V1) underlying visual perception, and the micro-circuits of attention, predictive processing, and learning.
Collapse
Affiliation(s)
- Steffen Katzner
- Division of Neurobiology, Department Biology II, LMU Munich, 82151 Munich, Germany
| | - Gregory Born
- Division of Neurobiology, Department Biology II, LMU Munich, 82151 Munich, Germany; Graduate School of Systemic Neuroscience (GSN), LMU Munich, 82151 Munich, Germany
| | - Laura Busse
- Division of Neurobiology, Department Biology II, LMU Munich, 82151 Munich, Germany; Bernstein Center for Computational Neuroscience, 82151 Munich, Germany.
| |
Collapse
|
96
|
Abstract
In this article, we review the anatomical inputs and outputs to the mouse primary visual cortex, area V1. Our survey of data from the Allen Institute Mouse Connectivity project indicates that mouse V1 is highly interconnected with both cortical and subcortical brain areas. This pattern of innervation allows for computations that depend on the state of the animal and on behavioral goals, which contrasts with simple feedforward, hierarchical models of visual processing. Thus, to have an accurate description of the function of V1 during mouse behavior, its involvement with the rest of the brain circuitry has to be considered. Finally, it remains an open question whether the primary visual cortex of higher mammals displays the same degree of sensorimotor integration in the early visual system.
Collapse
Affiliation(s)
- Emmanouil Froudarakis
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Paul G Fahey
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Stelios M Smirnakis
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Jamaica Plain VA Medical Center, Boston, Massachusetts 02130, USA
| | - Edward J Tehovnik
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
97
|
Hishida R, Horie M, Tsukano H, Tohmi M, Yoshitake K, Meguro R, Takebayashi H, Yanagawa Y, Shibuki K. Feedback inhibition derived from the posterior parietal cortex regulates the neural properties of the mouse visual cortex. Eur J Neurosci 2019; 50:2970-2987. [PMID: 31012509 DOI: 10.1111/ejn.14424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/22/2019] [Accepted: 04/09/2019] [Indexed: 11/28/2022]
Abstract
Feedback regulation from the higher association areas is thought to control the primary sensory cortex, contribute to the cortical processing of sensory information, and work for higher cognitive functions such as multimodal integration and attentional control. However, little is known about the underlying neural mechanisms. Here, we show that the posterior parietal cortex (PPC) persistently inhibits the activity of the primary visual cortex (V1) in mice. Activation of the PPC causes the suppression of visual responses in V1 and induces the short-term depression, which is specific to visual stimuli. In contrast, pharmacological inactivation of the PPC or disconnection of cortical pathways from the PPC to V1 results in an effect of transient enhancement of visual responses in V1. Two-photon calcium imaging demonstrated that the cortical disconnection caused V1 excitatory neurons an enhancement of visual responses and a reduction of orientation selectivity index (OSI). These results show that the PPC regulates the response properties of V1 excitatory neurons. Our findings reveal one of the functions of the PPC, which may contribute to higher brain functions in mice.
Collapse
Affiliation(s)
- Ryuichi Hishida
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masao Horie
- Department of Morphological Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroaki Tsukano
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Manavu Tohmi
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kohei Yoshitake
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Reiko Meguro
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Katsuei Shibuki
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
98
|
Mayrhofer JM, El-Boustani S, Foustoukos G, Auffret M, Tamura K, Petersen CCH. Distinct Contributions of Whisker Sensory Cortex and Tongue-Jaw Motor Cortex in a Goal-Directed Sensorimotor Transformation. Neuron 2019; 103:1034-1043.e5. [PMID: 31402199 PMCID: PMC6859494 DOI: 10.1016/j.neuron.2019.07.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/29/2019] [Accepted: 07/09/2019] [Indexed: 01/14/2023]
Abstract
The neural circuits underlying goal-directed sensorimotor transformations in the mammalian brain are incompletely understood. Here, we compared the role of primary tongue-jaw motor cortex (tjM1) and primary whisker sensory cortex (wS1) in head-restrained mice trained to lick a reward spout in response to whisker deflection. Two-photon microscopy combined with microprisms allowed imaging of neuronal network activity across cortical layers in transgenic mice expressing a genetically encoded calcium indicator. Early-phase activity in wS1 encoded the whisker sensory stimulus and was necessary for detection of whisker stimuli. Activity in tjM1 encoded licking direction during task execution and was necessary for contralateral licking. Pre-stimulus activity in tjM1, but not wS1, was predictive of lick direction and contributed causally to small preparatory jaw movements. Our data reveal a shift in coding scheme from wS1 to tjM1, consistent with the hypothesis that these areas represent cortical start and end points for this goal-directed sensorimotor transformation.
Collapse
Affiliation(s)
- Johannes M Mayrhofer
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Sami El-Boustani
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Georgios Foustoukos
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matthieu Auffret
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Keita Tamura
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
99
|
Functional Architecture and Encoding of Tactile Sensorimotor Behavior in Rat Posterior Parietal Cortex. J Neurosci 2019; 39:7332-7343. [PMID: 31332000 DOI: 10.1523/jneurosci.0693-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/24/2019] [Accepted: 07/07/2019] [Indexed: 11/21/2022] Open
Abstract
The posterior parietal cortex (PPC) in rodents is reciprocally connected to primary somatosensory and vibrissal motor cortices. The PPC neuronal circuitry could thus encode and potentially integrate incoming somatosensory information and whisker motor output. However, the information encoded across PPC layers during refined sensorimotor behavior remains largely unknown. To uncover the sensorimotor features represented in PPC during voluntary whisking and object touch, we performed loose-patch single-unit recordings and extracellular recordings of ensemble activity, covering all layers of PPC in anesthetized and awake, behaving male rats. First, using single-cell receptive field mapping, we revealed the presence of coarse somatotopy along the mediolateral axis in PPC. Second, we found that spiking activity was modulated during exploratory whisking in layers 2-4 and layer 6, but not in layer 5 of awake, behaving rats. Population spiking activity preceded actual movement, and whisker trajectory endpoints could be decoded by population spiking, suggesting that PPC is involved in movement planning. Finally, population spiking activity further increased in response to active whisker touch but only in PPC layers 2-4. Thus, we find layer-specific processing, which emphasizes the computational role of PPC during whisker sensorimotor behavior.SIGNIFICANCE STATEMENT The posterior parietal cortex (PPC) is thought to merge information on motor output and sensory input to orchestrate interaction with the environment, but the function of different PPC microcircuit components is poorly understood. We recorded neuronal activity in rat PPC during sensorimotor behavior involving motor and sensory pathways. We uncovered that PPC layers have dedicated function: motor and sensory information is merged in layers 2-4; layer 6 predominantly represents motor information. Collectively, PPC activity predicts future motor output, thus entailing a motor plan. Our results are important for understanding how PPC computationally processes motor output and sensory input. This understanding may facilitate decoding of brain activity when using brain-machine interfaces to overcome loss of function after, for instance, spinal cord injury.
Collapse
|
100
|
Finkel EA, O'Connor DH. Learning Recruits Higher Cortical Areas into Rapid Sensorimotor Streams. Neuron 2019; 97:1-2. [PMID: 29301096 DOI: 10.1016/j.neuron.2017.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
How the brain maps sensory information to adaptive behavior remains unresolved. A new study in this issue of Neuron (Le Merre et al., 2017) uncovers learning-related recruitment of higher cortical areas into the rapid sensory processing stream that links a whisker stimulus to rewarded action.
Collapse
Affiliation(s)
- Eric A Finkel
- Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel H O'Connor
- Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|