51
|
Ghoula M, Deyawe Kongmeneck A, Eid R, Camproux AC, Moroy G. Comparative Study of the Mutations Observed in the SARS-CoV-2 RBD Variants of Concern and Their Impact on the Interaction with the ACE2 Protein. J Phys Chem B 2023; 127:8586-8602. [PMID: 37775095 PMCID: PMC10578311 DOI: 10.1021/acs.jpcb.3c01467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Indexed: 10/01/2023]
Abstract
SARS-CoV-2 strains have made an appearance across the globe, causing over 757 million cases and over 6.85 million deaths at the time of writing. The emergence of these variants shows the amplitude of genetic variation to which the wild-type strains have been subjected. The rise of the different SARS-CoV-2 variants resulting from such genetic modification has significantly affected COVD-19's major impact on proliferation, virulence, and clinics. With the emergence of the variants of concern, the spike protein has been identified as a possible therapeutic target due to its critical role in binding to human cells and pathogenesis. These mutations could be linked to functional heterogeneity and use a different infection strategy. For example, the Omicron variant's multiple mutations should be carefully examined, as they represent one of the most widely spread strains and hint to us that there may be more genetic changes in the virus. As a result, we applied a common protocol where we reconstructed SARS-CoV-2 variants of concern and performed molecular dynamics simulations to study the stability of the ACE2-RBD complex in each variant. We also carried out free energy calculations to compare the binding and biophysical properties of the different SARS-CoV-2 variants when they interact with ACE2. Therefore, we were able to obtain consistent results and uncover new crucial residues that were essential for preserving a balance between maintaining a high affinity for ACE2 and the capacity to evade RBD-targeted antibodies. Our detailed structural analysis showed that SARS-CoV-2 variants of concern show a higher affinity for ACE2 compared to the Wuhan strain. Additionally, residues K417N and E484K/A might play a crucial role in antibody evasion, whereas Q498R and N501Y are specifically mutated to strengthen RBD affinity to ACE2 and, thereby, increase the viral effect of the COVID-19 virus.
Collapse
Affiliation(s)
- Mariem Ghoula
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Audrey Deyawe Kongmeneck
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Rita Eid
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Anne-Claude Camproux
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Gautier Moroy
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| |
Collapse
|
52
|
Jones RP, Ponomarenko A. COVID-19-Related Age Profiles for SARS-CoV-2 Variants in England and Wales and States of the USA (2020 to 2022): Impact on All-Cause Mortality. Infect Dis Rep 2023; 15:600-634. [PMID: 37888139 PMCID: PMC10606787 DOI: 10.3390/idr15050058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 10/28/2023] Open
Abstract
Since 2020, COVID-19 has caused serious mortality around the world. Given the ambiguity in establishing COVID-19 as the direct cause of death, we first investigate the effects of age and sex on all-cause mortality during 2020 and 2021 in England and Wales. Since infectious agents have their own unique age profile for death, we use a 9-year time series and several different methods to adjust single-year-of-age deaths in England and Wales during 2019 (the pre-COVID-19 base year) to a pathogen-neutral single-year-of-age baseline. This adjusted base year is then used to confirm the widely reported higher deaths in males for most ages above 43 in both 2020 and 2021. During 2020 (+COVID-19 but no vaccination), both male and female population-adjusted deaths significantly increased above age 35. A significant reduction in all-cause mortality among both males and females aged 75+ could be demonstrated in 2021 during the widespread COVID-19 vaccination period; however, deaths below age 75 progressively increased. This finding arises from a mix of vaccination coverage and year-of-age profiles of deaths for the different SARS-CoV-2 variants. In addition, specific effects of age around puberty were demonstrated, where females had higher deaths than males. There is evidence that year-of-birth cohorts may also be involved, indicating that immune priming to specific pathogen outbreaks in the past may have led to lower deaths for some birth cohorts. To specifically identify the age profile for the COVID-19 variants from 2020 to 2023, we employ the proportion of total deaths at each age that are potentially due to or 'with' COVID-19. The original Wuhan strain and the Alpha variant show somewhat limited divergence in the age profile, with the Alpha variant shifting to a moderately higher proportion of deaths below age 84. The Delta variant specifically targeted individuals below age 65. The Omicron variants showed a significantly lower proportion of overall mortality, with a markedly higher relative proportion of deaths above age 65, steeply increasing with age to a maximum around 100 years of age. A similar age profile for the variants can be seen in the age-banded deaths in US states, although they are slightly obscured by using age bands rather than single years of age. However, the US data shows that higher male deaths are greatly dependent on age and the COVID variant. Deaths assessed to be 'due to' COVID-19 (as opposed to 'involving' COVID-19) in England and Wales were especially overestimated in 2021 relative to the change in all-cause mortality. This arose as a by-product of an increase in COVID-19 testing capacity in late 2020. Potential structure-function mechanisms for the age-specificity of SARS-CoV-2 variants are discussed, along with potential roles for small noncoding RNAs (miRNAs). Using data from England, it is possible to show that the unvaccinated do indeed have a unique age profile for death from each variant and that vaccination alters the shape of the age profile in a manner dependent on age, sex, and the variant. The question is posed as to whether vaccines based on different variants carry a specific age profile.
Collapse
Affiliation(s)
| | - Andrey Ponomarenko
- Department of Biophysics, Informatics and Medical Instrumentation, Odessa National Medical University, Valikhovsky Lane 2, 65082 Odessa, Ukraine
| |
Collapse
|
53
|
Rucker G, Qin H, Zhang L. Structure, dynamics and free energy studies on the effect of point mutations on SARS-CoV-2 spike protein binding with ACE2 receptor. PLoS One 2023; 18:e0289432. [PMID: 37796794 PMCID: PMC10553274 DOI: 10.1371/journal.pone.0289432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
The ongoing COVID-19 pandemic continues to infect people worldwide, and the virus continues to evolve in significant ways which can pose challenges to the efficiency of available vaccines and therapeutic drugs and cause future pandemic. Therefore, it is important to investigate the binding and interaction of ACE2 with different RBD variants. A comparative study using all-atom MD simulations was conducted on ACE2 binding with 8 different RBD variants, including N501Y, E484K, P479S, T478I, S477N, N439K, K417N and N501Y-E484K-K417N on RBD. Based on the RMSD, RMSF, and DSSP results, overall the binding of RBD variants with ACE2 is stable, and the secondary structure of RBD and ACE2 are consistent after the point mutation. Besides that, a similar buried surface area, a consistent binding interface and a similar amount of hydrogen bonds formed between RBD and ACE2 although the exact residue pairs on the binding interface were modified. The change of binding free energy from point mutation was predicted using the free energy perturbation (FEP) method. It is found that N501Y, N439K, and K417N can strengthen the binding of RBD with ACE2, while E484K and P479S weaken the binding, and S477N and T478I have negligible effect on the binding. Point mutations modified the dynamic correlation of residues in RBD based on the dihedral angle covariance matrix calculation. Doing dynamic network analysis, a common intrinsic network community extending from the tail of RBD to central, then to the binding interface region was found, which could communicate the dynamics in the binding interface region to the tail thus to the other sections of S protein. The result can supply unique methodology and molecular insight on studying the molecular structure and dynamics of possible future pandemics and design novel drugs.
Collapse
Affiliation(s)
- George Rucker
- Chemical Engineering Department, Tennessee Technological University, Cookeville, TN, United States of America
| | - Hong Qin
- Computer Science Department, University of Tennessee Chattanooga, Chattanooga, TN, United States of America
| | - Liqun Zhang
- Chemical Engineering Department, University of Rhode Island, Kingston, RI, United States of America
| |
Collapse
|
54
|
Mykytyn AZ, Fouchier RA, Haagmans BL. Antigenic evolution of SARS coronavirus 2. Curr Opin Virol 2023; 62:101349. [PMID: 37647851 DOI: 10.1016/j.coviro.2023.101349] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023]
Abstract
SARS coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, emerged in China in December 2019. Vaccines developed were very effective initially, however, the virus has shown remarkable evolution with multiple variants spreading globally over the last three years. Nowadays, newly emerging Omicron lineages are gaining substitutions at a fast rate, resulting in escape from neutralization by antibodies that target the Spike protein. Tools to map the impact of substitutions on the further antigenic evolution of SARS-CoV-2, such as antigenic cartography, may be helpful to update SARS-CoV-2 vaccines. In this review, we focus on the antigenic evolution of SARS-CoV-2, highlighting the impact of Spike protein substitutions individually and in combination on immune escape.
Collapse
Affiliation(s)
- Anna Z Mykytyn
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ron Am Fouchier
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Bart L Haagmans
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
55
|
Andre M, Lau LS, Pokharel MD, Ramelow J, Owens F, Souchak J, Akkaoui J, Ales E, Brown H, Shil R, Nazaire V, Manevski M, Paul NP, Esteban-Lopez M, Ceyhan Y, El-Hage N. From Alpha to Omicron: How Different Variants of Concern of the SARS-Coronavirus-2 Impacted the World. BIOLOGY 2023; 12:1267. [PMID: 37759666 PMCID: PMC10525159 DOI: 10.3390/biology12091267] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/07/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
SARS-CoV-2, the virus that causes COVID-19, is prone to mutations and the generation of genetic variants. Since its first outbreak in 2019, SARS-CoV-2 has continually evolved, resulting in the emergence of several lineages and variants of concern (VOC) that have gained more efficient transmission, severity, and immune evasion properties. The World Health Organization has given these variants names according to the letters of the Greek Alphabet, starting with the Alpha (B.1.1.7) variant, which emerged in 2020, followed by the Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) variants. This review explores the genetic variation among different VOCs of SARS-CoV-2 and how the emergence of variants made a global impact on the pandemic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Nazira El-Hage
- Herbert Wertheim College of Medicine, Biomedical Sciences Program Florida International University, Miami, FL 33199, USA; (M.A.); (L.-S.L.); (M.D.P.); (J.R.); (F.O.); (J.S.); (J.A.); (E.A.); (H.B.); (R.S.); (V.N.); (M.M.); (N.P.P.); (M.E.-L.); (Y.C.)
| |
Collapse
|
56
|
Xiao Y, Zheng B, Ding X, Zheng P. Probing nanomechanical interactions of SARS-CoV-2 variants Omicron and XBB with common surfaces. Chem Commun (Camb) 2023; 59:11268-11271. [PMID: 37664897 DOI: 10.1039/d3cc02721j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The emergence of SARS-CoV-2 variants has further raised concerns about viral transmission. A fundamental understanding of the intermolecular interactions between the coronavirus and different surfaces is needed to address the transmission of SARS-CoV-2 through respiratory droplet-contaminated surfaces or fomites. The receptor-binding domain (RBD) of the spike protein is a key target for the adhesion of SARS-CoV-2 on the surface. To understand the effect of mutations on adhesion, atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) was used to quantify the interactions between wild-type, Omicron, and XBB with several surfaces. The measurement revealed that RBD exhibits relatively higher forces on paper and gold surfaces, with the average force being 1.5 times greater compared to that on plastic surface. In addition, the force elevation on paper and gold surfaces for the variants can reach ∼28% relative to the wild type. These findings enhance our understanding of the nanomechanical interactions of the virus on common surfaces.
Collapse
Affiliation(s)
- Yuelong Xiao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Centre (ChemBIC), Nanjing University, Nanjing, China.
| | - Bin Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Centre (ChemBIC), Nanjing University, Nanjing, China.
| | - Xuan Ding
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Centre (ChemBIC), Nanjing University, Nanjing, China.
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Centre (ChemBIC), Nanjing University, Nanjing, China.
| |
Collapse
|
57
|
Nguyen H, Nguyen HL, Lan PD, Thai NQ, Sikora M, Li MS. Interaction of SARS-CoV-2 with host cells and antibodies: experiment and simulation. Chem Soc Rev 2023; 52:6497-6553. [PMID: 37650302 DOI: 10.1039/d1cs01170g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the devastating global COVID-19 pandemic announced by WHO in March 2020. Through unprecedented scientific effort, several vaccines, drugs and antibodies have been developed, saving millions of lives, but the fight against COVID-19 continues as immune escape variants of concern such as Delta and Omicron emerge. To develop more effective treatments and to elucidate the side effects caused by vaccines and therapeutic agents, a deeper understanding of the molecular interactions of SARS-CoV-2 with them and human cells is required. With special interest in computational approaches, we will focus on the structure of SARS-CoV-2 and the interaction of its spike protein with human angiotensin-converting enzyme-2 (ACE2) as a prime entry point of the virus into host cells. In addition, other possible viral receptors will be considered. The fusion of viral and human membranes and the interaction of the spike protein with antibodies and nanobodies will be discussed, as well as the effect of SARS-CoV-2 on protein synthesis in host cells.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| | - Hoang Linh Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Pham Dang Lan
- Life Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, 729110 Ho Chi Minh City, Vietnam
- Faculty of Physics and Engineering Physics, VNUHCM-University of Science, 227, Nguyen Van Cu Street, District 5, 749000 Ho Chi Minh City, Vietnam
| | - Nguyen Quoc Thai
- Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Vietnam
| | - Mateusz Sikora
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
58
|
Zhang Q, Yang L, Wang K, Guo L, Ning H, Wang S, Gong Y. Terahertz waves regulate the mechanical unfolding of tau pre-mRNA hairpins. iScience 2023; 26:107572. [PMID: 37664616 PMCID: PMC10470126 DOI: 10.1016/j.isci.2023.107572] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/14/2023] [Accepted: 08/05/2023] [Indexed: 09/05/2023] Open
Abstract
Intermolecular interactions, including hydrogen bonds, dominate the pairing and unpairing of nucleic acid chains in the transfer process of genetic information. The energy of THz waves just matches with the weak interactions, so THz waves may interact with biomolecules. Here, the dynamic effects of THz electromagnetic (EM) waves on the mechanical unfolding process of RNA hairpins (WT-30nt and its mutants, rHP, SARS-CoV-2, and SRV-1 SF206) are investigated using steered molecular dynamics (SMD) simulations. The results show that THz waves can either promote the unfolding of the double helix of the RNA hairpin during the initial unfolding phase (4-21.8 THz) or significantly enhance (23.8 and 25.5 THz) or weaken (37.4 and 41.2 THz) its structural stability during unfolding. Our findings have important implications for applying THz waves to regulate dynamic deconvolution processes, such as gene replication, transcription, and translation.
Collapse
Affiliation(s)
- Qin Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Lixia Yang
- School of Physics, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Kaicheng Wang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Lianghao Guo
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Hui Ning
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Shaomeng Wang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Yubin Gong
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| |
Collapse
|
59
|
Manoussopoulos Y, Anastassopoulou C, Ioannidis JPA, Tsakris A. Paired associated SARS-CoV-2 spike variable positions: a network analysis approach to emerging variants. mSystems 2023; 8:e0044023. [PMID: 37432011 PMCID: PMC10469592 DOI: 10.1128/msystems.00440-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/01/2023] [Indexed: 07/12/2023] Open
Abstract
Amino acids in variable positions of proteins may be correlated, with potential structural and functional implications. Here, we apply exact tests of independence in R × C contingency tables to examine noise-free associations between variable positions of the SARS-CoV-2 spike protein, using as a paradigm sequences from Greece deposited in GISAID (N = 6,683/1,078 full length) for the period 29 February 2020 to 26 April 2021 that essentially covers the first three pandemic waves. We examine the fate and complexity of these associations by network analysis, using associated positions (exact P ≤ 0.001 and Average Product Correction ≥ 2) as links and the corresponding positions as nodes. We found a temporal linear increase of positional differences and a gradual expansion of the number of position associations over time, represented by a temporally evolving intricate web, resulting in a non-random complex network of 69 nodes and 252 links. Overconnected nodes corresponded to the most adapted variant positions in the population, suggesting a direct relation between network degree and position functional importance. Modular analysis revealed 25 k-cliques comprising 3 to 11 nodes. At different k-clique resolutions, one to four communities were formed, capturing epistatic associations of circulating variants (Alpha, Beta, B.1.1.318), but also Delta, which dominated the evolutionary landscape later in the pandemic. Cliques of aminoacidic positional associations tended to occur in single sequences, enabling the recognition of epistatic positions in real-world virus populations. Our findings provide a novel way of understanding epistatic relationships in viral proteins with potential applications in the design of virus control procedures. IMPORTANCE Paired positional associations of adapted amino acids in virus proteins may provide new insights for understanding virus evolution and variant formation. We investigated potential intramolecular relationships between variable SARS-CoV-2 spike positions by exact tests of independence in R × C contingency tables, having applied Average Product Correction (APC) to eliminate background noise. Associated positions (exact P ≤ 0.001 and APC ≥ 2) formed a non-random, epistatic network of 25 cliques and 1-4 communities at different clique resolutions, revealing evolutionary ties between variable positions of circulating variants and a predictive potential of previously unknown network positions. Cliques of different sizes represented theoretical combinations of changing residues in sequence space, allowing the identification of significant aminoacidic combinations in single sequences of real-world populations. Our analytic approach that links network structural aspects to mutational aminoacidic combinations in the spike sequence population offers a novel way to understand virus epidemiology and evolution.
Collapse
Affiliation(s)
- Yiannis Manoussopoulos
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- ELGO-Demeter, Plant Protection Division of Patras, Laboratory of Virology, Patras, Greece
| | - Cleo Anastassopoulou
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - John P. A. Ioannidis
- Department of Medicine, Stanford University, Stanford, California, USA
- Departments of Epidemiology and Population Health, Stanford University, Stanford, California, USA
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
- Department of Statistics, Stanford University, Stanford, California, USA
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
60
|
Huang W, Yin C, Briley KP, Dalzell WAB, Fallon JT. Dynamic Evolution of SARS-CoV-2 in a Patient on Chemotherapy. Viruses 2023; 15:1759. [PMID: 37632101 PMCID: PMC10458003 DOI: 10.3390/v15081759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved significantly during the pandemic and resulted in daunting numbers of genomic sequences. Tracking SARS-CoV-2 evolution during persistent cases could provide insight into the origins and dynamics of new variants. We report here a case of B-cell acute lymphocytic leukemia on chemotherapy with infection of SARS-CoV-2 for more than two months. Genomic surveillance of his serial SARS-CoV-2-positive specimens revealed two unprecedented large deletions, Δ15-26 and Δ138-145, in the viral spike protein N-terminal domain (NTD) and demonstrated their dynamic shifts in generating these new variants. Located at antigenic supersites, these large deletions are anticipated to dramatically change the spike protein NTD in three-dimensional protein structure prediction, which may lead to immune escape but reduce their viral transmissibility. In summary, we present here a new viral evolutionary trajectory in a patient on chemotherapy.
Collapse
Affiliation(s)
- Weihua Huang
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (C.Y.); (K.P.B.); (J.T.F.)
| | - Changhong Yin
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (C.Y.); (K.P.B.); (J.T.F.)
| | - Kimberly P. Briley
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (C.Y.); (K.P.B.); (J.T.F.)
| | - William A. B. Dalzell
- Department of Pediatrics, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - John T. Fallon
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (C.Y.); (K.P.B.); (J.T.F.)
| |
Collapse
|
61
|
Ramakrishnan J, Chinnamadhu A, Suresh S, Poomani K. Probing the binding nature and stability of highly transmissible mutated variant alpha to omicron of SARS-CoV-2 RBD with ACE2 via molecular dynamics simulation. J Cell Biochem 2023; 124:1115-1134. [PMID: 37435893 DOI: 10.1002/jcb.30432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 07/13/2023]
Abstract
Currently, no approved drug is available as a causative agent of coronavirus disease 2019 (COVID-19) except for some repurposed drugs. The first structure of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported in late 2019, based on that some vaccines and repurposed drugs were approved to prevent people from COVID-19 during the pandemic situation. Since then, new types of variants emerged and notably, the receptor binding domain (RBD) adopted different binding modes with angiotensin-converting enzyme 2 (ACE2); this made significant changes in the progression of COVID-19. Some of the new variants are highly infectious spreading fast and dangerous. The present study is focused on understanding the binding mode of the RBD of different mutated SARS-CoV-2 variants of concern (alpha to omicron) with the human ACE2 using molecular dynamics simulation. Notably, some variants adopted a new binding mode of RBD with ACE2 and formed different interactions, which is unlike the wild type; this was confirmed from the comparison of interaction between RBD-ACE2 of all variants with its wild-type structure. Binding energy values confirm that some mutated variants exhibit high binding affinity. These findings demonstrate that the variations in the sequence of SARS-CoV-2 S-protein altered the binding mode of RBD; this may be the reason that the virus has high transmissibility and causes new infections. This in-silico study on mutated variants of SARS-CoV-2 RBD with ACE2 insights into their binding mode, binding affinity, and stability. This information may help to understand the RBD-ACE2 binding domains, which allows for designing newer drugs and vaccines.
Collapse
Affiliation(s)
- Jaganathan Ramakrishnan
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, India
| | - Archana Chinnamadhu
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, India
| | - Suganya Suresh
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, India
| | - Kumaradhas Poomani
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, India
| |
Collapse
|
62
|
Yu B, Cao L, Li S, Klauser PC, Wang L. The proximity-enabled sulfur fluoride exchange reaction in the protein context. Chem Sci 2023; 14:7913-7921. [PMID: 37502323 PMCID: PMC10370592 DOI: 10.1039/d3sc01921g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023] Open
Abstract
The proximity-enabled sulfur(vi) fluoride exchange (SuFEx) reaction generates specific covalent linkages between proteins in cells and in vivo, which opens innovative avenues for studying elusive protein-protein interactions and developing potent covalent protein drugs. To exploit the power and expand the applications of covalent proteins, covalent linkage formation between proteins is the critical step, for which fundamental kinetic and essential properties remain unexplored. Herein, we systematically studied SuFEx kinetics in different proteins and conditions. In contrast to in small molecules, SuFEx in interacting proteins conformed with a two-step mechanism involving noncovalent binding, followed by covalent bond formation, exhibiting nonlinear rate dependence on protein concentration. The protein SuFEx rate consistently changed with protein binding affinity as well as chemical reactivity of the functional group and was impacted by target residue identity and solution pH. In addition, kinetic analyses of nanobody SR4 binding with SARS-CoV-2 spike protein revealed that viral target mutations did not abolish covalent binding but decreased the SuFEx rate with affinity decrease. Moreover, off-target cross-linking of a SuFEx-capable nanobody in human serum was not detected, and the SuFEx-generated protein linkage was stable at cellular acidic pHs, suggesting SuFEx suitability for in vivo usage. These results advanced our understanding of SuFEx reactivity and kinetics in proteins, which is invaluable for ongoing exploration of SuFEx-enabled covalent proteins for basic biological research and creative biotherapeutics.
Collapse
Affiliation(s)
- Bingchen Yu
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco 555 Mission Bay Blvd. South San Francisco California 94158 USA
| | - Li Cao
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco 555 Mission Bay Blvd. South San Francisco California 94158 USA
| | - Shanshan Li
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco 555 Mission Bay Blvd. South San Francisco California 94158 USA
| | - Paul C Klauser
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco 555 Mission Bay Blvd. South San Francisco California 94158 USA
| | - Lei Wang
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco 555 Mission Bay Blvd. South San Francisco California 94158 USA
| |
Collapse
|
63
|
Zheng B, Xiao Y, Tong B, Mao Y, Ge R, Tian F, Dong X, Zheng P. S373P Mutation Stabilizes the Receptor-Binding Domain of the Spike Protein in Omicron and Promotes Binding. JACS AU 2023; 3:1902-1910. [PMID: 37502147 PMCID: PMC10369413 DOI: 10.1021/jacsau.3c00142] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 07/29/2023]
Abstract
A cluster of several newly occurring mutations on Omicron is found at the β-core region of the spike protein's receptor-binding domain (RBD), where mutation rarely happened before. Notably, the binding of SARS-CoV-2 to human receptor ACE2 via RBD happens in a dynamic airway environment, where mechanical force caused by coughing or sneezing occurs. Thus, we used atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to measure the stability of RBDs and found that the mechanical stability of Omicron RBD increased by ∼20% compared with the wild type. Molecular dynamics (MD) simulations revealed that Omicron RBD showed more hydrogen bonds in the β-core region due to the closing of the α-helical motif caused primarily by the S373P mutation. In addition to a higher unfolding force, we showed a higher dissociation force between Omicron RBD and ACE2. This work reveals the mechanically stabilizing effect of the conserved mutation S373P for Omicron and the possible evolution trend of the β-core region of RBD.
Collapse
Affiliation(s)
- Bin Zheng
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yuelong Xiao
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Bei Tong
- Institute
of Botany, Jiangsu Province and Chinese
Academy of Sciences, Nanjing, Jiangsu 210014, China
| | - Yutong Mao
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Rui Ge
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Fang Tian
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xianchi Dong
- State
Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
- Engineering
Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, Jiangsu 210023, China
| | - Peng Zheng
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
64
|
Haycroft ER, Davis SK, Ramanathan P, Lopez E, Purcell RA, Tan LL, Pymm P, Wines BD, Hogarth PM, Wheatley AK, Juno JA, Redmond SJ, Gherardin NA, Godfrey DI, Tham WH, Selva KJ, Kent SJ, Chung AW. Antibody Fc-binding profiles and ACE2 affinity to SARS-CoV-2 RBD variants. Med Microbiol Immunol 2023:10.1007/s00430-023-00773-w. [PMID: 37477828 PMCID: PMC10372118 DOI: 10.1007/s00430-023-00773-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
Emerging SARS-CoV-2 variants, notably Omicron, continue to remain a formidable challenge to worldwide public health. The SARS-CoV-2 receptor-binding domain (RBD) is a hotspot for mutations, reflecting its critical role at the ACE2 interface during viral entry. Here, we comprehensively investigated the impact of RBD mutations, including 5 variants of concern (VOC) or interest-including Omicron (BA.2)-and 33 common point mutations, both on IgG recognition and ACE2-binding inhibition, as well as FcγRIIa- and FcγRIIIa-binding antibodies, in plasma from two-dose BNT162b2-vaccine recipients and mild-COVID-19 convalescent subjects obtained during the first wave using a custom-designed bead-based 39-plex array. IgG-recognition and FcγR-binding antibodies were decreased against the RBD of Beta and Omicron, as well as point mutation G446S, found in several Omicron sub-variants as compared to wild type. Notably, while there was a profound decrease in ACE2 inhibition against Omicron, FcγR-binding antibodies were less affected, suggesting that Fc functional antibody responses may be better retained against the RBD of Omicron in comparison to neutralization. Furthermore, while measurement of RBD-ACE2-binding affinity via biolayer interferometry showed that all VOC RBDs have enhanced affinity to human ACE2, we demonstrate that human ACE2 polymorphisms, E35K (rs1348114695) has reduced affinity to VOCs, while K26R (rs4646116) and S19P (rs73635825) have increased binding kinetics to the RBD of VOCs, potentially affecting virus-host interaction and, thereby, host susceptibility. Collectively, our findings provide in-depth coverage of the impact of RBD mutations on key facets of host-virus interactions.
Collapse
Affiliation(s)
- Ebene R Haycroft
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Samantha K Davis
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Pradhipa Ramanathan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Ester Lopez
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Ruth A Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Li Lynn Tan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
| | - Phillip Pymm
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Bruce D Wines
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - P Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Samuel J Redmond
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Nicholas A Gherardin
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Wai-Hong Tham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin John Selva
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia.
| | - Stephen J Kent
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia.
- Melbourne Sexual Health Centre, Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| | - Amy W Chung
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
65
|
Hamdy ME, El Deeb AH, Hagag NM, Shahein MA, Alaidi O, Hussein HA. Interspecies transmission of SARS CoV-2 with special emphasis on viral mutations and ACE-2 receptor homology roles. Int J Vet Sci Med 2023; 11:55-86. [PMID: 37441062 PMCID: PMC10334861 DOI: 10.1080/23144599.2023.2222981] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 07/15/2023] Open
Abstract
COVID-19 outbreak was first reported in 2019, Wuhan, China. The spillover of the disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), to a wide range of pet, zoo, wild, and farm animals has emphasized potential zoonotic and reverse zoonotic viral transmission. Furthermore, it has evoked inquiries about susceptibility of different animal species to SARS-CoV-2 infection and role of these animals as viral reservoirs. Therefore, studying susceptible and non-susceptible hosts for SARS-CoV-2 infection could give a better understanding for the virus and will help in preventing further outbreaks. Here, we review structural aspects of SARS-CoV-2 spike protein, the effect of the different mutations observed in the spike protein, and the impact of ACE2 receptor variations in different animal hosts on inter-species transmission. Moreover, the SARS-CoV-2 spillover chain was reviewed. Combination of SARS-CoV-2 high mutation rate and homology of cellular ACE2 receptors enable the virus to transcend species barriers and facilitate its transmission between humans and animals.
Collapse
Affiliation(s)
- Mervat E. Hamdy
- Genome Research Unit, Animal Health Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Ayman H. El Deeb
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Virology, Faculty of Veterinary Medicine, King Salman International University, South Sinai, Egypt
| | - Naglaa M. Hagag
- Genome Research Unit, Animal Health Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Momtaz A. Shahein
- Department of Virology, Animal Health Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Osama Alaidi
- Biocomplexity for Research and Consulting Co., Cairo, Egypt
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Hussein A. Hussein
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
66
|
Zhang J, Tang W, Gao H, Lavine CL, Shi W, Peng H, Zhu H, Anand K, Kosikova M, Kwon HJ, Tong P, Gautam A, Rits-Volloch S, Wang S, Mayer ML, Wesemann DR, Seaman MS, Lu J, Xiao T, Xie H, Chen B. Structural and functional characteristics of the SARS-CoV-2 Omicron subvariant BA.2 spike protein. Nat Struct Mol Biol 2023; 30:980-990. [PMID: 37430064 DOI: 10.1038/s41594-023-01023-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/17/2023] [Indexed: 07/12/2023]
Abstract
The Omicron subvariant BA.2 has become the dominant circulating strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in many countries. Here, we have characterized structural, functional and antigenic properties of the full-length BA.2 spike (S) protein and compared replication of the authentic virus in cell culture and an animal model with previously prevalent variants. BA.2 S can fuse membranes slightly more efficiently than Omicron BA.1, but still less efficiently than other previous variants. Both BA.1 and BA.2 viruses replicated substantially faster in animal lungs than the early G614 (B.1) strain in the absence of pre-existing immunity, possibly explaining the increased transmissibility despite their functionally compromised spikes. As in BA.1, mutations in the BA.2 S remodel its antigenic surfaces, leading to strong resistance to neutralizing antibodies. These results suggest that both immune evasion and replicative advantage may contribute to the heightened transmissibility of the Omicron subvariants.
Collapse
Affiliation(s)
- Jun Zhang
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Weichun Tang
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Hailong Gao
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Christy L Lavine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Wei Shi
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Hanqin Peng
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Haisun Zhu
- Institute for Protein Innovation, Harvard Institutes of Medicine, Boston, MA, USA
| | - Krishna Anand
- Institute for Protein Innovation, Harvard Institutes of Medicine, Boston, MA, USA
| | - Matina Kosikova
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Hyung Joon Kwon
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Pei Tong
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital; Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Avneesh Gautam
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital; Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | | | | | - Megan L Mayer
- The Harvard Cryo-EM Center for Structural Biology, Boston, MA, USA
| | - Duane R Wesemann
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital; Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jianming Lu
- Codex BioSolutions, Inc., Rockville, MD, USA
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | - Tianshu Xiao
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Hang Xie
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA.
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
67
|
Giron CC, Laaksonen A, Barroso da Silva FL. Differences between Omicron SARS-CoV-2 RBD and other variants in their ability to interact with cell receptors and monoclonal antibodies. J Biomol Struct Dyn 2023; 41:5707-5727. [PMID: 35815535 DOI: 10.1080/07391102.2022.2095305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/23/2022] [Indexed: 12/23/2022]
Abstract
SARS-CoV-2 remains a health threat with the continuous emergence of new variants. This work aims to expand the knowledge about the SARS-CoV-2 receptor-binding domain (RBD) interactions with cell receptors and monoclonal antibodies (mAbs). By using constant-pH Monte Carlo simulations, the free energy of interactions between the RBD from different variants and several partners (Angiotensin-Converting Enzyme-2 (ACE2) polymorphisms and various mAbs) were predicted. Computed RBD-ACE2-binding affinities were higher for two ACE2 polymorphisms (rs142984500 and rs4646116) typically found in Europeans which indicates a genetic susceptibility. This is amplified for Omicron (BA.1) and its sublineages BA.2 and BA.3. The antibody landscape was computationally investigated with the largest set of mAbs so far in the literature. From the 32 studied binders, groups of mAbs were identified from weak to strong binding affinities (e.g. S2K146). These mAbs with strong binding capacity and especially their combination are amenable to experimentation and clinical trials because of their high predicted binding affinities and possible neutralization potential for current known virus mutations and a universal coronavirus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Carolina Corrêa Giron
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Universidade Federal do Triângulo Mineiro, Hospital de Clínicas, Uberaba, MG, Brazil
| | - Aatto Laaksonen
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing, PR China
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
- Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, Luleå, Sweden
- Department of Chemical and Geological Sciences, University of Cagliari, Monserrato, Italy
| | - Fernando Luís Barroso da Silva
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
68
|
Miteva D, Kitanova M, Batselova H, Lazova S, Chervenkov L, Peshevska-Sekulovska M, Sekulovski M, Gulinac M, Vasilev GV, Tomov L, Velikova T. The End or a New Era of Development of SARS-CoV-2 Virus: Genetic Variants Responsible for Severe COVID-19 and Clinical Efficacy of the Most Commonly Used Vaccines in Clinical Practice. Vaccines (Basel) 2023; 11:1181. [PMID: 37514997 PMCID: PMC10385722 DOI: 10.3390/vaccines11071181] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Although the chief of the World Health Organization (WHO) has declared the end of the coronavirus disease 2019 (COVID-19) as a global health emergency, the disease is still a global threat. To be able to manage such pandemics in the future, it is necessary to develop proper strategies and opportunities to protect human life. The data on the SARS-CoV-2 virus must be continuously analyzed, and the possibilities of mutation and the emergence of new, more infectious variants must be anticipated, as well as the options of using different preventive and therapeutic techniques. This is because the fast development of severe acute coronavirus 2 syndrome (SARS-CoV-2) variants of concern have posed a significant problem for COVID-19 pandemic control using the presently available vaccinations. This review summarizes data on the SARS-CoV-2 variants that are responsible for severe COVID-19 and the clinical efficacy of the most commonly used vaccines in clinical practice. The consequences after the disease (long COVID or post-COVID conditions) continue to be the subject of studies and research, and affect social and economic life worldwide.
Collapse
Affiliation(s)
- Dimitrina Miteva
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov str., 1164 Sofia, Bulgaria; (D.M.); (M.K.)
| | - Meglena Kitanova
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov str., 1164 Sofia, Bulgaria; (D.M.); (M.K.)
| | - Hristiana Batselova
- Department of Epidemiology and Disaster Medicine, University Hospital “Saint George”, Medical University, 6000 Plovdiv, Bulgaria;
| | - Snezhina Lazova
- Pediatric Department, University Hospital “N. I. Pirogov,” 21 “General Eduard I. Totleben” Blvd, 1606 Sofia, Bulgaria;
- Department of Healthcare, Faculty of Public Health “Prof. Tsekomir Vodenicharov, MD, DSc”, Medical University of Sofia, Bialo More 8 str., 1527 Sofia, Bulgaria
| | - Lyubomir Chervenkov
- Department of Diagnostic Imaging, Medical University Plovdiv, Bul. Vasil Aprilov 15A, 4000 Plovdiv, Bulgaria;
| | - Monika Peshevska-Sekulovska
- Department of Gastroenterology, University Hospital Lozenetz, 1407 Sofia, Bulgaria;
- Medical Faculty, Sofia University St. Kliment Ohridski, 1407 Sofia, Bulgaria;
| | - Metodija Sekulovski
- Medical Faculty, Sofia University St. Kliment Ohridski, 1407 Sofia, Bulgaria;
- Department of Anesthesiology and Intensive Care, University Hospital Lozenetz, 1 Kozyak str., 1407 Sofia, Bulgaria
| | - Milena Gulinac
- Department of General and Clinical Pathology, Medical University of Plovdiv, Bul. Vasil Aprilov 15A, 4000 Plovdiv, Bulgaria;
| | - Georgi V. Vasilev
- Clinic of Endocrinology and Metabolic Disorders, UMHAT “Sv. Georgi”, 4000 Plovdiv, Bulgaria;
| | - Luchesar Tomov
- Department of Informatics, New Bulgarian University, Montevideo 21 str., 1618 Sofia, Bulgaria;
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1407 Sofia, Bulgaria;
| |
Collapse
|
69
|
Mani S, Kaur A, Jakhar K, Kumari G, Sonar S, Kumar A, Das S, Kumar S, Kumar V, Kundu R, Pandey AK, Singh UP, Majumdar T. Targeting DPP4-RBD interactions by sitagliptin and linagliptin delivers a potential host-directed therapy against pan-SARS-CoV-2 infections. Int J Biol Macromol 2023; 245:125444. [PMID: 37385308 PMCID: PMC10293653 DOI: 10.1016/j.ijbiomac.2023.125444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Highly mutated SARS-CoV-2 is known aetiological factor for COVID-19. Here, we have demonstrated that the receptor binding domain (RBD) of the spike protein can interact with human dipeptidyl peptidase 4 (DPP4) to facilitate virus entry, in addition to the usual route of ACE2-RBD binding. Significant number of residues of RBD makes hydrogen bonds and hydrophobic interactions with α/β-hydrolase domain of DPP4. With this observation, we created a strategy to combat COVID-19 by circumventing the catalytic activity of DPP4 using its inhibitors. Sitagliptin, linagliptin or in combination disavowed RBD to establish a heterodimer complex with both DPP4 and ACE2 which is requisite strategy for virus entry into the cells. Both gliptins not only impede DPP4 activity, but also prevent ACE2-RBD interaction, crucial for virus growth. Sitagliptin, and linagliptin alone or in combination have avidity to impede the growth of pan-SARS-CoV-2 variants including original SARS-CoV-2, alpha, beta, delta, and kappa in a dose dependent manner. However, these drugs were unable to alter enzymatic activity of PLpro and Mpro. We conclude that viruses hijack DPP4 for cell invasion via RBD binding. Impeding RBD interaction with both DPP4 and ACE2 selectively by sitagliptin and linagliptin is an potential strategy for efficiently preventing viral replication.
Collapse
Affiliation(s)
- Shailendra Mani
- Translational Health Science and Technology Institute, Faridabad, India
| | | | - Kamini Jakhar
- Translational Health Science and Technology Institute, Faridabad, India
| | | | - Sudipta Sonar
- Translational Health Science and Technology Institute, Faridabad, India
| | - Amit Kumar
- National Institute of Immunology, New Delhi, India
| | - Sudesna Das
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | - Vijay Kumar
- National Institute of Immunology, New Delhi, India
| | - Rakesh Kundu
- Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, India
| | - Anil Kumar Pandey
- Department of Physiology, ESIC Medical College & Hospital, Faridabad, India
| | | | | |
Collapse
|
70
|
Yu J, Zhang ZW, Yang HY, Liu CJ, Lu WC. Study of fusion peptide release for the spike protein of SARS-CoV-2. RSC Adv 2023; 13:16970-16983. [PMID: 37288377 PMCID: PMC10242618 DOI: 10.1039/d3ra01764h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023] Open
Abstract
The spike protein of SARS-CoV-2 can recognize the ACE2 membrane protein on the host cell and plays a key role in the membrane fusion process between the virus envelope and the host cell membrane. However, to date, the mechanism for the spike protein recognizing host cells and initiating membrane fusion remains unknown. In this study, based on the general assumption that all three S1/S2 junctions of the spike protein are cleaved, structures with different forms of S1 subunit stripping and S2' site cleavage were constructed. Then, the minimum requirement for the release of the fusion peptide was studied by all-atom structure-based MD simulations. The results from simulations showed that stripping an S1 subunit from the A-, B- or C-chain of the spike protein and cleaving the specific S2' site on the B-chain (C-chain or A-chain) may result in the release of the fusion peptide, suggesting that the requirement for the release of FP may be more relaxed than previously expected.
Collapse
Affiliation(s)
- Jie Yu
- College of Physics, Qingdao University Qingdao 266071 Shandong P. R. China
| | - Zhi-Wei Zhang
- College of Physics, Qingdao University Qingdao 266071 Shandong P. R. China
| | - Han-Yu Yang
- College of Physics, Qingdao University Qingdao 266071 Shandong P. R. China
| | - Chong-Jin Liu
- College of Physics, Qingdao University Qingdao 266071 Shandong P. R. China
| | - Wen-Cai Lu
- College of Physics, Qingdao University Qingdao 266071 Shandong P. R. China
| |
Collapse
|
71
|
Jalal D, Samir O, Elzayat MG, El-Shqanqery HE, Diab AA, ElKaialy L, Mohammed AM, Hamdy D, Matar IK, Amer K, Elnakib M, Hassan W, Mansour T, Soliman S, Hassan R, Al-Toukhy GM, Hammad M, Abdo I, Sayed AA. Genomic characterization of SARS-CoV-2 in Egypt: insights into spike protein thermodynamic stability. Front Microbiol 2023; 14:1190133. [PMID: 37333655 PMCID: PMC10273679 DOI: 10.3389/fmicb.2023.1190133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
The overall pattern of the SARS-CoV-2 pandemic so far has been a series of waves; surges in new cases followed by declines. The appearance of novel mutations and variants underlie the rises in infections, making surveillance of SARS-CoV-2 mutations and prediction of variant evolution of utmost importance. In this study, we sequenced 320 SARS-CoV-2 viral genomes isolated from patients from the outpatient COVID-19 clinic in the Children's Cancer Hospital Egypt 57357 (CCHE 57357) and the Egypt Center for Research and Regenerative Medicine (ECRRM). The samples were collected between March and December 2021, covering the third and fourth waves of the pandemic. The third wave was found to be dominated by Nextclade 20D in our samples, with a small number of alpha variants. The delta variant was found to dominate the fourth wave samples, with the appearance of omicron variants late in 2021. Phylogenetic analysis reveals that the omicron variants are closest genetically to early pandemic variants. Mutation analysis shows SNPs, stop codon mutation gain, and deletion/insertion mutations, with distinct patterns of mutations governed by Nextclade or WHO variant. Finally, we observed a large number of highly correlated mutations, and some negatively correlated mutations, and identified a general inclination toward mutations that lead to enhanced thermodynamic stability of the spike protein. Overall, this study contributes genetic and phylogenetic data, as well as provides insights into SARS-CoV-2 viral evolution that may eventually help in the prediction of evolving mutations for better vaccine development and drug targets.
Collapse
Affiliation(s)
- Deena Jalal
- Department of Basic Research, Genomics and Epigenomics Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Omar Samir
- Department of Basic Research, Genomics and Epigenomics Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Mariam G. Elzayat
- Department of Basic Research, Genomics and Epigenomics Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Hend E. El-Shqanqery
- Department of Basic Research, Genomics and Epigenomics Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Aya A. Diab
- Department of Basic Research, Genomics and Epigenomics Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Lamiaa ElKaialy
- Department of Basic Research, Genomics and Epigenomics Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Aya M. Mohammed
- Department of Basic Research, Genomics and Epigenomics Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Donia Hamdy
- Department of Basic Research, Genomics and Epigenomics Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Islam K. Matar
- Department of Basic Research, Genomics and Epigenomics Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
- Department of Chemistry, Saint Mary’s University, Halifax, NS, Canada
| | - Khaled Amer
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Mostafa Elnakib
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Wael Hassan
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Tarek Mansour
- Department of Virology and Immunology, National Cancer Institute, Cairo University, Cairo, Egypt
- Department of Clinical Pathology, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Sonia Soliman
- Department of Clinical Pathology, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Reem Hassan
- Department of Clinical and Chemical Pathology, Kasr Al-Aini School of Medicine, Cairo University, Cairo, Egypt
- Molecular Microbiology Unit, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Ghada M. Al-Toukhy
- Department of Virology and Immunology, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Mahmoud Hammad
- Department of Pediatric Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
- Department of Pediatric Oncology, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Ibrahim Abdo
- Department of Clinical Pharmacy, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Ahmed A. Sayed
- Department of Basic Research, Genomics and Epigenomics Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
- Faculty of Science, Department of Biochemistry, Ain Shams University, Cairo, Egypt
| |
Collapse
|
72
|
Yang Y, Zhou L, Mo C, Hu L, Zhou Z, Fan Y, Liu W, Li X, Zhou R, Tian X. Identification of conserved linear epitopes in the SARS-CoV-2 receptor-binding region using monoclonal antibodies. Heliyon 2023; 9:e16847. [PMID: 37292282 PMCID: PMC10238280 DOI: 10.1016/j.heliyon.2023.e16847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/10/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused millions of cases of infections, leading to a global health emergency. The SARS-CoV-2 spike (S) protein plays the most important role in viral infection, and S1 subunit and its receptor-binding domain (RBD) are widely considered the most attractive vaccine targets. The RBD is highly immunogenic and its linear epitopes are important for vaccine development and therapy, but linear epitopes on the RBD have rarely been reported. In this study, 151 mouse monoclonal antibodies (mAbs) against the SARS-CoV-2 S1 protein were characterized and used to identify epitopes. Fifty-one mAbs reacted with eukaryotic SARS-CoV-2 RBD. Sixty-nine mAbs reacted with the S proteins of Omicron variants B.1.1.529 and BA.5, indicating their potential as rapid diagnostic materials. Three novel linear epitopes of RBD, R6 (391CFTNVYADSFVIRGD405), R12 (463PFERDISTEIYQAGS477), and R16 (510VVVLSFELLHAPAT523), were identified; these were highly conserved in SARS-CoV-2 variants of concern and could be detected in the convalescent serum of COVID-19 patients. From pseudovirus neutralization assays, some mAbs including one detecting R12 were found to possess neutralizing activity. Together, from the reaction of mAbs with eukaryotic RBD (N501Y), RBD (E484K), and S1 (D614G), we found that a single amino acid mutation in the SARS-CoV-2 S protein may cause a structural alteration, exerting substantial impact on mAb recognition. Our results could, therefore, help us better understand the function of the SARS-CoV-2 S protein and develop diagnostic tools for COVID-19.
Collapse
Affiliation(s)
- Yujie Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Liling Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Chuncong Mo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Longbo Hu
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhichao Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Ye Fan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Wenkuan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Xiao Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| |
Collapse
|
73
|
Abduljalil JM, Elghareib AM, Samir A, Ezat AA, Elfiky AA. How helpful were molecular dynamics simulations in shaping our understanding of SARS-CoV-2 spike protein dynamics? Int J Biol Macromol 2023:125153. [PMID: 37268078 DOI: 10.1016/j.ijbiomac.2023.125153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023]
Abstract
The SARS-CoV-2 spike protein (S) represents an important viral component that is required for successful viral infection in humans owing to its essential role in recognition of and entry to host cells. The spike is also an appealing target for drug designers who develop vaccines and antivirals. This article is important as it summarizes how molecular simulations successfully shaped our understanding of spike conformational behavior and its role in viral infection. MD simulations found that the higher affinity of SARS-CoV-2-S to ACE2 is linked to its unique residues that add extra electrostatic and van der Waal interactions in comparison to the SARS-CoV S. This illustrates the spread potential of the pandemic SARS-CoV-2 relative to the epidemic SARS-CoV. Different mutations at the S-ACE2 interface, which is believed to increase the transmission of the new variants, affected the behavior and binding interactions in different simulations. The contributions of glycans to the opening of S were revealed via simulations. The immune evasion of S was linked to the spatial distribution of glycans. This help the virus to escape the immune system recognition. This article is important as it summarizes how molecular simulations successfully shaped our understanding of spike conformational behavior and its role in viral infection. This will pave the way to us preparing for the next pandemic as the computational tools are tailored to help fight new challenges.
Collapse
Affiliation(s)
- Jameel M Abduljalil
- Department of Biological Sciences, Faculty of Applied Sciences, Thamar University, Dhamar, Yemen; Department of Botany and Microbiology, College of Science, Cairo University, Giza, Egypt
| | - Ahmed M Elghareib
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed Samir
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed A Ezat
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Abdo A Elfiky
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
74
|
Mahalingam G, Arjunan P, Periyasami Y, Dhyani AK, Devaraju N, Rajendiran V, Christopher AC, Kt RD, Dhanasingh I, Thangavel S, Murugesan M, Moorthy M, Srivastava A, Marepally S. Correlating the differences in the receptor binding domain of SARS-CoV-2 spike variants on their interactions with human ACE2 receptor. Sci Rep 2023; 13:8743. [PMID: 37253762 DOI: 10.1038/s41598-023-35070-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/12/2023] [Indexed: 06/01/2023] Open
Abstract
Spike glycoprotein of SARS-CoV-2 variants plays a critical role in infection and transmission through its interaction with human angiotensin converting enzyme 2 (hACE2) receptors. Prior findings using molecular docking and biomolecular studies reported varied findings on the difference in the interactions among the spike variants with the hACE2 receptors. Hence, it is a prerequisite to understand these interactions in a more precise manner. To this end, firstly, we performed ELISA with trimeric spike glycoproteins of SARS-CoV-2 variants including Wuhan Hu-1(Wild), Delta, C.1.2 and Omicron. Further, to study the interactions in a more specific manner by mimicking the natural infection, we developed hACE2 receptors expressing HEK-293T cell line, evaluated their binding efficiencies and competitive binding of spike variants with D614G spike pseudotyped virus. In line with the existing findings, we observed that Omicron had higher binding efficiency compared to Delta in both ELISA and Cellular models. Intriguingly, we found that cellular models could differentiate the subtle differences between the closely related C.1.2 and Delta in their binding to hACE2 receptors. Our study using the cellular model provides a precise method to evaluate the binding interactions between spike sub-lineages to hACE2 receptors.
Collapse
Affiliation(s)
- Gokulnath Mahalingam
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India
| | - Porkizhi Arjunan
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India
| | - Yogapriya Periyasami
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India
| | - Ajay Kumar Dhyani
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India
| | - Nivedita Devaraju
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India
| | - Vignesh Rajendiran
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India
| | - Abisha Crystal Christopher
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India
| | - Ramya Devi Kt
- Department of Biotechnology, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Immanuel Dhanasingh
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India
| | - Mohankumar Murugesan
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India
| | - Mahesh Moorthy
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Alok Srivastava
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India
| | - Srujan Marepally
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India.
| |
Collapse
|
75
|
Rozak H, Nihonyanagi S, Myalitsin A, Roy S, Ahmed M, Tahara T, Rzeznicka II. Adsorption of SARS-CoV-2 Spike (N501Y) RBD to Human Angiotensin-Converting Enzyme 2 at a Lipid/Water Interface. J Phys Chem B 2023; 127:4406-4414. [PMID: 37171105 DOI: 10.1021/acs.jpcb.3c00832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The receptor binding domain (RBD) of spike proteins plays a crucial role in the process of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) attachment to the human angiotensin-converting enzyme 2 (ACE2). The N501Y mutation and later mutations introduced extra positive charges on the spike RBD and resulted in higher transmissibility, likely due to stronger binding with the highly negatively charged ACE2. Consequently, many studies have been devoted to understanding the molecular mechanism of spike protein binding with the ACE2 receptor. Most of the theoretical studies, however, have been done on isolated proteins. ACE2 is a transmembrane protein; thus, it is important to understand the interaction of spike proteins with ACE2 in a lipid matrix. In this study, the adsorption of ACE2 and spike (N501Y) RBD at a lipid/water interface was studied using the heterodyne-detected vibrational sum frequency generation (HD-VSFG) technique. The technique is a non-linear optical spectroscopy which measures vibrational spectra of molecules at an interface and provides information on their structure and orientation. It is found that ACE2 is effectively adsorbed at the positively charged 1,2-dipalmitoyl-3-trimethylammonium-propane (DPTAP) lipid monolayer via electrostatic interactions. The adsorption of ACE2 at the DPTAP monolayer causes a reorganization of interfacial water (D2O) from the D-down to the D-up orientation, indicating that the originally positively charged DPTAP interface becomes negatively charged due to ACE2 adsorption. The negatively charged interface (DPTAP/ACE2) allows further adsorption of positively charged spike RBD. HD-VSFG spectra in the amide I region show differences for spike (N501Y) RBD adsorbed at D2O, DPTAP, and DPTAP/ACE2 interfaces. A red shift observed for the spectra of spike RBD/DPTAP suggests that spike RBD oligomers are formed upon contact with DPTAP lipids.
Collapse
Affiliation(s)
- Harison Rozak
- College of Engineering, Shibaura Institute of Technology, Saitama City, Saitama 337-8570, Japan
| | - Satoshi Nihonyanagi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Anton Myalitsin
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- ANVOS Analytics Co., 4-168 Motomachi, Naka-ku, Yokohama, Kanagawa 231-0861, Japan
| | - Subhadip Roy
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mohammed Ahmed
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Izabela I Rzeznicka
- College of Engineering, Shibaura Institute of Technology, Saitama City, Saitama 337-8570, Japan
| |
Collapse
|
76
|
Wang X, Zhu X, Lin Y, He L, Yang J, Wang C, Zhu W. Tracking the first SARS-CoV-2 Omicron BA.5.1.3 outbreak in China. Front Microbiol 2023; 14:1183633. [PMID: 37275159 PMCID: PMC10232789 DOI: 10.3389/fmicb.2023.1183633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/28/2023] [Indexed: 06/07/2023] Open
Abstract
The SARS-CoV-2 is still undergoing rapid evolution, resulting in the emergence of several variants of concern, especially the Omicron variants (B.1.1.529), which are surging worldwide. In this study, we tracked Omicron subvariant BA.5.1.3 as the causative agent in the Hainan Province wave in China, which started on 1 August 2022. This was China's first case of Omicron subvariant BA.5.1.3 and led to an indefinite total lockdown in Hainan with more than 8,500 confirmed cases. We obtained 391 whole genomes from positive nasopharyngeal swab samples in the city of Sanya in Hainan Province, which was the center of this outbreak. More than half of the infected cases were female (58%, 227/391) with a median age of 37.0 years (IQR 23.0-53.0). Median Ct values were 24.9 (IQR 22.6-27.3) and 25.2 (IQR 22.9-27.6) for ORF1ab and N genes, respectively. The total single-nucleotide polymorphism (SNP) numbers of Omicron BA.5.1.3 sampled in Sanya (median 69.0, IQR = 69.0-70.0) compared to those worldwide (median 63.0, IQR = 61.0-64.0) showed a significant difference (p < 0.05). Unique core mutations, including three non-synonymous mutations in ORF1ab (Y1064N, S2844G, and R3574K) and one synonymous mutation in ORF3a (S74S), were found. Phylogenetic analysis showed that virus from Sanya formed an independent sub-clade within the BA.5.1.3 subvariant, and could be divided into 15 haplotypes based on the S gene. The most recent common ancestor for the virus from Sanya was estimated as appearing on 5 July 2022, with 95% HPD ranging from 15 May to 20 September 2022. Thanks to our results, we were also able to delineate the mutational profile of this outbreak and highlight the importance of global genomic surveillance and data sharing.
Collapse
Affiliation(s)
- Xiaoxia Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- Central and Clinical Laboratory of Sanya People's Hospital, Sanya, Hainan, China
| | - Xiong Zhu
- Central and Clinical Laboratory of Sanya People's Hospital, Sanya, Hainan, China
| | - Yujin Lin
- Central and Clinical Laboratory of Sanya People's Hospital, Sanya, Hainan, China
| | - Lvfen He
- Central and Clinical Laboratory of Sanya People's Hospital, Sanya, Hainan, China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wentao Zhu
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
77
|
Beaudoin CA, Petsolari E, Hamaia SW, Hala S, Alofi FS, Pandurangan AP, Blundell TL, Chaitanya Vedithi S, Huang CLH, Jackson AP. SARS-CoV-2 Omicron subvariant spike N405 unlikely to rapidly deamidate. Biochem Biophys Res Commun 2023; 666:61-67. [PMID: 37178506 PMCID: PMC10152834 DOI: 10.1016/j.bbrc.2023.04.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
The RGD motif on the SARS-CoV-2 spike protein has been suggested to interact with RGD-binding integrins αVβ3 and α5β1 to enhance viral cell entry and alter downstream signaling cascades. The D405N mutation on the Omicron subvariant spike proteins, resulting in an RGN motif, has recently been shown to inhibit binding to integrin αVβ3. Deamidation of asparagines in protein ligand RGN motifs has been demonstrated to generate RGD and RGisoD motifs that permit binding to RGD-binding integrins. Two asparagines, N481 and N501, on the Wild-type spike receptor-binding domain have been previously shown to have deamidation half-lives of 16.5 and 123 days, respectively, which may occur during the viral life cycle. Deamidation of Omicron subvariant N405 may recover the ability to interact with RGD-binding integrins. Thus, herein, all-atom molecular dynamics simulations of the Wild-type and Omicron subvariant spike protein receptor-binding domains were conducted to investigate the potential for asparagines, the Omicron subvariant N405 in particular, to assume the optimized geometry for deamidation to occur. In summary, the Omicron subvariant N405 was primarily found to be stabilized in a state unfavourable for deamidation after hydrogen bonding with downstream E406. Nevertheless, a small number of RGD or RGisoD motifs on the Omicron subvariant spike proteins may restore the ability to interact with RGD-binding integrins. The simulations also provided structural clarification regarding the deamidation rates of Wild-type N481 and N501 and highlighted the utility of tertiary structure dynamics information in predicting asparagine deamidation. Further work is needed to characterize the effects of deamidation on spike-integrin interactions.
Collapse
Affiliation(s)
- Christopher A Beaudoin
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom.
| | - Emmanouela Petsolari
- Department of Biochemistry, Sanger Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Samir W Hamaia
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom
| | - Sharif Hala
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia; King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Fadwa S Alofi
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Arun P Pandurangan
- Heart and Lung Research Institute, University of Cambridge, Papworth Road, Cambridge, CB2 0BB, United Kingdom
| | - Tom L Blundell
- Heart and Lung Research Institute, University of Cambridge, Papworth Road, Cambridge, CB2 0BB, United Kingdom
| | - Sundeep Chaitanya Vedithi
- Heart and Lung Research Institute, University of Cambridge, Papworth Road, Cambridge, CB2 0BB, United Kingdom
| | - Christopher L-H Huang
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom; Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Antony P Jackson
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom.
| |
Collapse
|
78
|
Ren W, Zhang Y, Rao J, Wang Z, Lan J, Liu K, Zhang X, Hu X, Yang C, Zhong G, Zhang R, Wang X, Shan C, Ding Q. Evolution of Immune Evasion and Host Range Expansion by the SARS-CoV-2 B.1.1.529 (Omicron) Variant. mBio 2023; 14:e0041623. [PMID: 37010428 PMCID: PMC10127688 DOI: 10.1128/mbio.00416-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 04/04/2023] Open
Abstract
Recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant B.1.1.529 (Omicron) has rapidly become the dominant strain, with an unprecedented number of mutations within its spike gene. However, it remains unknown whether these variants have alterations in their entry efficiency, host tropism, and sensitivity to neutralizing antibodies and entry inhibitors. In this study, we found that Omicron spike has evolved to escape neutralization by three-dose inactivated-vaccine-elicited immunity but remains sensitive to an angiotensin-converting enzyme 2 (ACE2) decoy receptor. Moreover, Omicron spike could use human ACE2 with a slightly increased efficiency while gaining a significantly increased binding affinity for a mouse ACE2 ortholog, which exhibits limited binding with wild-type (WT) spike. Furthermore, Omicron could infect wild-type C57BL/6 mice and cause histopathological changes in the lungs. Collectively, our results reveal that evasion of neutralization by vaccine-elicited antibodies and enhanced human and mouse ACE2 receptor engagement may contribute to the expanded host range and rapid spread of the Omicron variant. IMPORTANCE The recently emerged SARS-CoV-2 Omicron variant with numerous mutations in the spike protein has rapidly become the dominant strain, thereby raising concerns about the effectiveness of vaccines. Here, we found that the Omicron variant exhibits a reduced sensitivity to serum neutralizing activity induced by a three-dose inactivated vaccine but remains sensitive to entry inhibitors or an ACE2-Ig decoy receptor. Compared with the ancestor strain isolated in early 2020, the spike protein of Omicron utilizes the human ACE2 receptor with enhanced efficiency while gaining the ability to utilize mouse ACE2 for cell entry. Moreover, Omicron could infect wild-type mice and cause pathological changes in the lungs. These results reveal that antibody evasion, enhanced human ACE2 utilization, and an expanded host range may contribute to its rapid spread.
Collapse
Affiliation(s)
- Wenlin Ren
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Yu Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Juhong Rao
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziyi Wang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jun Lan
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Kunpeng Liu
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuekai Zhang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue Hu
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Chen Yang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Guocai Zhong
- Shenzhen Bay Laboratory, Shenzhen, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Rong Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Fudan University, Shanghai, China
| | - Xinquan Wang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Chao Shan
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qiang Ding
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
79
|
Li B, Zhao Y, Wu X, Wu H, Tang W, Yu X, Mou J, Tan W, Jin M, Li W, Zhang Q, Liu M. Abiotic Synthetic Antibody Inhibitor with Broad-Spectrum Neutralization and Antiviral Efficacy against Escaping SARS-CoV-2 Variants. ACS NANO 2023; 17:7017-7034. [PMID: 36971310 PMCID: PMC10074723 DOI: 10.1021/acsnano.3c02050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
The rapid emergence and spread of vaccine/antibody-escaping variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed serious challenges to our efforts in combating corona virus disease 2019 (COVID-19) pandemic. A potent and broad-spectrum neutralizing reagent against these escaping mutants is extremely important for the development of strategies for the prevention and treatment of SARS-CoV-2 infection. We herein report an abiotic synthetic antibody inhibitor as a potential anti-SARS-CoV-2 therapeutic agent. The inhibitor, Aphe-NP14, was selected from a synthetic hydrogel polymer nanoparticle library created by incorporating monomers with functionalities complementary to key residues of the SARS-CoV-2 spike glycoprotein receptor binding domain (RBD) involved in human angiotensin-converting enzyme 2 (ACE2) binding. It has high capacity, fast adsorption kinetics, strong affinity, and broad specificity in biologically relevant conditions to both the wild type and the current variants of concern, including Beta, Delta, and Omicron spike RBD. The Aphe-NP14 uptake of spike RBD results in strong blockage of spike RBD-ACE2 interaction and thus potent neutralization efficacy against these escaping spike protein variant pseudotyped viruses. It also inhibits live SARS-CoV-2 virus recognition, entry, replication, and infection in vitro and in vivo. The Aphe-NP14 intranasal administration is found to be safe due to its low in vitro and in vivo toxicity. These results establish a potential application of abiotic synthetic antibody inhibitors in the prevention and treatment of the infection of emerging or possibly future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Bingxue Li
- Key Laboratory of Arable Land Conservation (Middle and
Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key
Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection
Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment,
Huazhong Agricultural University, Wuhan 430070,
China
| | - Ya Zhao
- National Key Laboratory of Agricultural Microbiology,
Huazhong Agricultural University, Wuhan 430070,
China
| | - Xuefan Wu
- State Key Laboratory of Virology, Wuhan
Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of
Sciences, Wuhan 430071, China
- University of Chinese Academy of
Sciences, Beijing 100049, China
| | - Haiyan Wu
- Key Laboratory of Arable Land Conservation (Middle and
Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key
Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection
Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment,
Huazhong Agricultural University, Wuhan 430070,
China
| | - Weicheng Tang
- Key Laboratory of Arable Land Conservation (Middle and
Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key
Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection
Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment,
Huazhong Agricultural University, Wuhan 430070,
China
| | - Xiaoyang Yu
- Key Laboratory of Arable Land Conservation (Middle and
Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key
Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection
Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment,
Huazhong Agricultural University, Wuhan 430070,
China
| | - Jianqiong Mou
- Key Laboratory of Arable Land Conservation (Middle and
Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key
Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection
Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment,
Huazhong Agricultural University, Wuhan 430070,
China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and
Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key
Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection
Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment,
Huazhong Agricultural University, Wuhan 430070,
China
| | - Meilin Jin
- National Key Laboratory of Agricultural Microbiology,
Huazhong Agricultural University, Wuhan 430070,
China
- College of Veterinary Medicine, Huazhong
Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic
Products, Ministry of Agriculture, Wuhan 430070,
China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan
Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of
Sciences, Wuhan 430071, China
| | - Qiang Zhang
- National Key Laboratory of Agricultural Microbiology,
Huazhong Agricultural University, Wuhan 430070,
China
- College of Biomedicine and Health,
Huazhong Agricultural University, Wuhan 430070,
China
- Hubei Jiangxia Laboratory,
Wuhan 430200, China
| | - Mingming Liu
- Key Laboratory of Arable Land Conservation (Middle and
Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key
Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection
Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment,
Huazhong Agricultural University, Wuhan 430070,
China
| |
Collapse
|
80
|
Peka M, Balatsky V. The impact of mutation sets in receptor-binding domain of SARS-CoV-2 variants on the stability of RBD–ACE2 complex. Future Virol 2023. [PMID: 37064325 PMCID: PMC10089296 DOI: 10.2217/fvl-2022-0152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/01/2023] [Indexed: 04/08/2023]
Abstract
Aim: Bioinformatic analysis of mutation sets in receptor-binding domain (RBD) of currently and previously circulating SARS-CoV-2 variants of concern (VOCs) and interest (VOIs) to assess their ability to bind the ACE2 receptor. Methods: In silico sequence and structure-oriented approaches were used to evaluate the impact of single and multiple mutations. Results: Mutations detected in VOCs and VOIs led to the reduction of binding free energy of the RBD–ACE2 complex, forming additional chemical bonds with ACE2, and to an increase of RBD–ACE2 complex stability. Conclusion: Mutation sets characteristic of SARS-CoV-2 variants have complex effects on the ACE2 receptor-binding affinity associated with amino acid interactions at mutation sites, as well as on the acquisition of other viral adaptive advantages.
Collapse
Affiliation(s)
- Mykyta Peka
- V. N. Karazin Kharkiv National University, Kharkiv, 61022, Ukraine
- Institute of Pig Breeding & Agroindustrial Production, National Academy of Agrarian Sciences of Ukraine, Poltava, 36013, Ukraine
| | - Viktor Balatsky
- V. N. Karazin Kharkiv National University, Kharkiv, 61022, Ukraine
- Institute of Pig Breeding & Agroindustrial Production, National Academy of Agrarian Sciences of Ukraine, Poltava, 36013, Ukraine
| |
Collapse
|
81
|
Xiao H, Hu J, Huang C, Feng W, Liu Y, Kumblathan T, Tao J, Xu J, Le XC, Zhang H. CRISPR techniques and potential for the detection and discrimination of SARS-CoV-2 variants of concern. Trends Analyt Chem 2023; 161:117000. [PMID: 36937152 PMCID: PMC9977466 DOI: 10.1016/j.trac.2023.117000] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
The continuing evolution of the SARS-CoV-2 virus has led to the emergence of many variants, including variants of concern (VOCs). CRISPR-Cas systems have been used to develop techniques for the detection of variants. These techniques have focused on the detection of variant-specific mutations in the spike protein gene of SARS-CoV-2. These sequences mostly carry single-nucleotide mutations and are difficult to differentiate using a single CRISPR-based assay. Here we discuss the specificity of the Cas9, Cas12, and Cas13 systems, important considerations of mutation sites, design of guide RNA, and recent progress in CRISPR-based assays for SARS-CoV-2 variants. Strategies for discriminating single-nucleotide mutations include optimizing the position of mismatches, modifying nucleotides in the guide RNA, and using two guide RNAs to recognize the specific mutation sequence and a conservative sequence. Further research is needed to confront challenges in the detection and differentiation of variants and sublineages of SARS-CoV-2 in clinical diagnostic and point-of-care applications.
Collapse
Affiliation(s)
- Huyan Xiao
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Jianyu Hu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Camille Huang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Wei Feng
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Yanming Liu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Teresa Kumblathan
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Jeffrey Tao
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Jingyang Xu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Hongquan Zhang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| |
Collapse
|
82
|
Haque S, Mathkor DM, Alkhanani MF, Bantun F, Momenah AM, Faidah H, Jalal NA, Kumar V. Comprehensive deep mutational scanning reveals the pH induced stability and binding differences between SARS-CoV-2 spike RBD and human ACE2. J Biomol Struct Dyn 2023; 41:15207-15218. [PMID: 36995177 DOI: 10.1080/07391102.2023.2194007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/25/2023] [Indexed: 03/31/2023]
Abstract
The SARS-CoV-2 spike (S) glycoprotein with its mobile receptor-binding domain (RBD), binds to the human ACE2 receptor and thus facilitates virus entry through low-pH-endosomal pathways. The high degree of SARS-CoV-2 mutability has raised concern among scientists and medical professionals because it created doubt about the effectiveness of drugs and vaccinations designed specifically for COVID-19. In this study, we used computational saturation mutagenesis approach, including structure-based free energy calculations to analyse the effects of the missense mutations on the SARS-CoV-2 S-RBD stability and the S-RBD binding affinity with ACE2 at three different pH (pH 4.5, pH 6.5, and pH 7.4). A total of 3705 mutations in the S-RBD protein were analyzed, and we discovered that most of these mutations destabilize the RBD protein. Specifically, residues G404, G431, G447, A475, and G526 were important for RBD protein stability. In addition, RBD residues Y449, Y489, Y495, Q498, and N487 were critical for the RBD-ACE2 interaction. Next, we found that the distribution of the mean stability changes and mean binding energy changes of RBD due to mutations at both serological and endosomal pH correlated well, indicating the similar effects of mutations. Overall, this computational analysis is useful for understanding the effects of missense mutations in SARS-CoV-2 pathogenesis at different pH.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia
| | - Mustfa Faisal Alkhanani
- Biology Department, College of Sciences, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Aiman M Momenah
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hani Faidah
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naif A Jalal
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
83
|
Paz M, Moreno P, Moratorio G. Perspective Chapter: Real-Time Genomic Surveillance for SARS-CoV-2 on Center Stage. Infect Dis (Lond) 2023. [DOI: 10.5772/intechopen.107842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
The course of the COVID-19 pandemic depends not only on how the SARS-CoV-2 virus mutates but on the actions taken to respond to it. Important public health decisions can only be taken if we know viral dynamics, viral variants distribution, and whether new variants are emerging that may be more transmissible or/and more virulent, displaying evasion to vaccines or antiviral treatments. This situation has put the use of different approaches, such as molecular techniques and real-time genomic sequencing, to support public health decision-making on center stage. To achieve this, robust programs based on: (i) diagnostic capacity; (ii) high-throughput sequencing technologies; and (iii) high-performance bioinformatic resources, need to be established. This chapter focuses on how SARS-CoV-2 evolved since its discovery and it summarizes the scientific efforts to obtain genomic data as the virus spread throughout the globe.
Collapse
|
84
|
Harne R, Williams B, Abdelaal HFM, Baldwin SL, Coler RN. SARS-CoV-2 infection and immune responses. AIMS Microbiol 2023; 9:245-276. [PMID: 37091818 PMCID: PMC10113164 DOI: 10.3934/microbiol.2023015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
The recent pandemic caused by the SARS-CoV-2 virus continues to be an enormous global challenge faced by the healthcare sector. Availability of new vaccines and drugs targeting SARS-CoV-2 and sequelae of COVID-19 has given the world hope in ending the pandemic. However, the emergence of mutations in the SARS-CoV-2 viral genome every couple of months in different parts of world is a persistent danger to public health. Currently there is no single treatment to eradicate the risk of COVID-19. The widespread transmission of SARS-CoV-2 due to the Omicron variant necessitates continued work on the development and implementation of effective vaccines. Moreover, there is evidence that mutations in the receptor domain of the SARS-CoV-2 spike glycoprotein led to the decrease in current vaccine efficacy by escaping antibody recognition. Therefore, it is essential to actively identify the mechanisms by which SARS-CoV-2 evades the host immune system, study the long-lasting effects of COVID-19 and develop therapeutics targeting SARS-CoV-2 infections in humans and preclinical models. In this review, we describe the pathogenic mechanisms of SARS-CoV-2 infection as well as the innate and adaptive host immune responses to infection. We address the ongoing need to develop effective vaccines that provide protection against different variants of SARS-CoV-2, as well as validated endpoint assays to evaluate the immunogenicity of vaccines in the pipeline, medications, anti-viral drug therapies and public health measures, that will be required to successfully end the COVID-19 pandemic.
Collapse
Affiliation(s)
- Rakhi Harne
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle Children's Hospital, Seattle, Washington, USA
| | - Brittany Williams
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle Children's Hospital, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Hazem F. M. Abdelaal
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle Children's Hospital, Seattle, Washington, USA
| | - Susan L. Baldwin
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle Children's Hospital, Seattle, Washington, USA
| | - Rhea N. Coler
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle Children's Hospital, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
85
|
Alnaji N, Wasfi A, Awwad F. The design of a point of care FET biosensor to detect and screen COVID-19. Sci Rep 2023; 13:4485. [PMID: 36934198 PMCID: PMC10024292 DOI: 10.1038/s41598-023-31679-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Graphene field effect transistor (FET) biosensors have attracted huge attention in the point-of-care and accurate detection. With the recent spread of the new emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the need for rapid, and accurate detection & screening tools is arising. Employing these easy-to-handle sensors can offer cheap, rapid, and accurate detection. Herein, we propose the design of a reduced graphene oxide (rGO) FET biosensor for the detection of SARS-CoV-2. The main objective of this work is to detect the SARS-CoV-2 spike protein antigen on spot selectively and rapidly. The sensor consists of rGO channel, a pair of golden electrodes, and a gate underneath the channel. The channel is functionalized with COVID-19 spike protein antibodies to achieve selectivity, and with metal nanoparticles (MNPs) such as copper and silver to enhance the bio-sensing performance. The designed sensor successfully detects the SARS-CoV-2 spike protein and shows singular electrical behavior for detection. The semi-empirical modeling approach combined with none-equilibrium Green's function were used to study the electronic transport properties of the rGO-FET biosensor before and after the addition of the target molecules. The sensor's selectivity is also tested against other viruses. This study provides a promising guide for future practical fabrication.
Collapse
Affiliation(s)
- Nisreen Alnaji
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Asma Wasfi
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Falah Awwad
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates.
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
86
|
Remesh SG, Merz GE, Brilot AF, Chio US, Rizo AN, Pospiech TH, Lui I, Laurie MT, Glasgow J, Le CQ, Zhang Y, Diwanji D, Hernandez E, Lopez J, Mehmood H, Pawar KI, Pourmal S, Smith AM, Zhou F, DeRisi J, Kortemme T, Rosenberg OS, Glasgow A, Leung KK, Wells JA, Verba KA. Computational pipeline provides mechanistic understanding of Omicron variant of concern neutralizing engineered ACE2 receptor traps. Structure 2023; 31:253-264.e6. [PMID: 36805129 PMCID: PMC9936628 DOI: 10.1016/j.str.2023.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/23/2022] [Accepted: 01/25/2023] [Indexed: 02/19/2023]
Abstract
The SARS-CoV-2 Omicron variant, with 15 mutations in Spike receptor-binding domain (Spike-RBD), renders virtually all clinical monoclonal antibodies against WT SARS-CoV-2 ineffective. We recently engineered the SARS-CoV-2 host entry receptor, ACE2, to tightly bind WT-RBD and prevent viral entry into host cells ("receptor traps"). Here we determine cryo-EM structures of our receptor traps in complex with stabilized Spike ectodomain. We develop a multi-model pipeline combining Rosetta protein modeling software and cryo-EM to allow interface energy calculations even at limited resolution and identify interface side chains that allow for high-affinity interactions between our ACE2 receptor traps and Spike-RBD. Our structural analysis provides a mechanistic rationale for the high-affinity (0.53-4.2 nM) binding of our ACE2 receptor traps to Omicron-RBD confirmed with biolayer interferometry measurements. Finally, we show that ACE2 receptor traps potently neutralize Omicron and Delta pseudotyped viruses, providing alternative therapeutic routes to combat this evolving virus.
Collapse
Affiliation(s)
- Soumya G Remesh
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gregory E Merz
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Axel F Brilot
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Un Seng Chio
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alexandrea N Rizo
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Thomas H Pospiech
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Irene Lui
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mathew T Laurie
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeff Glasgow
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chau Q Le
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yun Zhang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Devan Diwanji
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Evelyn Hernandez
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jocelyne Lopez
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hevatib Mehmood
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Komal Ishwar Pawar
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sergei Pourmal
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Amber M Smith
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Fengbo Zhou
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Tanja Kortemme
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; QBI, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; The University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Oren S Rosenberg
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anum Glasgow
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| | - Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Kliment A Verba
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA; QBI, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
87
|
Wang Z, Wang M, Zhao Z, Zheng P. Quantification of carboxylate-bridged di-zinc site stability in protein due ferri by single-molecule force spectroscopy. Protein Sci 2023; 32:e4583. [PMID: 36718829 PMCID: PMC9926469 DOI: 10.1002/pro.4583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
Carboxylate-bridged diiron proteins belong to a protein family involved in different physiological processes. These proteins share the conservative EXXH motif, which provides the carboxylate bridge and is critical for metal binding. Here, we choose de novo-designed single-chain due ferri protein (DFsc), a four-helical protein with two EXXH motifs as a model protein, to study the stability of the carboxylate-bridged di-metal binding site. The mechanical and kinetic properties of the di-Zn site in DFsc were obtained by atomic force microscopy-based single-molecule force spectroscopy. Zn-DFsc showed a considerable rupture force of ~200 pN, while the apo-protein is mechanically labile. In addition, multiple rupture pathways were observed with different probabilities, indicating the importance of the EXXH-based carboxylate-bridged metal site. These results demonstrate carboxylate-bridged di-metal site is mechanically stable and improve our understanding of this important type of metalloprotein.
Collapse
Affiliation(s)
- Zhiyi Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople's Republic of China
| | - Mengdie Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople's Republic of China
| | - Zhongxin Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople's Republic of China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople's Republic of China
| |
Collapse
|
88
|
Hamad M, AlKhamach DMH, Alsayadi LM, Sarhan SA, Saeed BQ, Sokovic M, Ben Hadda T, Soliman SSM. Alpha to Omicron (Variants of Concern): Mutation Journey, Vaccines, and Therapy. Viral Immunol 2023; 36:83-100. [PMID: 36695729 DOI: 10.1089/vim.2022.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) initially emerged in December 2019 and has subsequently expanded globally, leading to the ongoing pandemic. The extensive spread of various SARS-CoV-2 variants possesses a serious public health threat. An extensive literature search along with deep analysis was performed to describe and evaluate the characteristics of SARS-CoV-2 variants of concern in relation to the effectiveness of the current vaccines and therapeutics. The obtained results showed that several significant mutations have evolved during the COVID-19 pandemic. The developed variants and their various structural mutations can compromise the effectiveness of several vaccines, escape the neutralizing antibodies, and limit the efficiency of available therapeutics. Furthermore, deep analysis of the available data enables the prediction of the future impact of virus mutations on the ongoing pandemic along with the selection of appropriate vaccines and therapeutics.
Collapse
Affiliation(s)
- Mohamad Hamad
- College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Dana M H AlKhamach
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | | | | | | | - Marina Sokovic
- Institute for Biological Research "Siniša Stanković," National Institute of the Republic of Serbia, University of Belgrade, Beograd, Serbia
| | - Taibi Ben Hadda
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco
| | - Sameh S M Soliman
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
89
|
McQuaid C, Solorzano A, Dickerson I, Deane R. Uptake of severe acute respiratory syndrome coronavirus 2 spike protein mediated by angiotensin converting enzyme 2 and ganglioside in human cerebrovascular cells. Front Neurosci 2023; 17:1117845. [PMID: 36875642 PMCID: PMC9980911 DOI: 10.3389/fnins.2023.1117845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction There is clinical evidence of neurological manifestations in coronavirus disease-19 (COVID-19). However, it is unclear whether differences in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/spike protein (SP) uptake by cells of the cerebrovasculature contribute to significant viral uptake to cause these symptoms. Methods Since the initial step in viral invasion is binding/uptake, we used fluorescently labeled wild type and mutant SARS-CoV-2/SP to study this process. Three cerebrovascular cell types were used (endothelial cells, pericytes, and vascular smooth muscle cells), in vitro. Results There was differential SARS-CoV-2/SP uptake by these cell types. Endothelial cells had the least uptake, which may limit SARS-CoV-2 uptake into brain from blood. Uptake was time and concentration dependent, and mediated by angiotensin converting enzyme 2 receptor (ACE2), and ganglioside (mono-sialotetrahexasylganglioside, GM1) that is predominantly expressed in the central nervous system and the cerebrovasculature. SARS-CoV-2/SPs with mutation sites, N501Y, E484K, and D614G, as seen in variants of interest, were also differentially taken up by these cell types. There was greater uptake compared to that of the wild type SARS-CoV-2/SP, but neutralization with anti-ACE2 or anti-GM1 antibodies was less effective. Conclusion The data suggested that in addition to ACE2, gangliosides are also an important entry point of SARS-CoV-2/SP into these cells. Since SARS-CoV-2/SP binding/uptake is the initial step in the viral penetration into cells, a longer exposure and higher titer are required for significant uptake into the normal brain. Gangliosides, including GM1, could be an additional potential SARS-CoV-2 and therapeutic target at the cerebrovasculature.
Collapse
Affiliation(s)
| | | | | | - Rashid Deane
- Department of Neuroscience, Del Monte Institute Neuroscience, University of Rochester, University of Rochester Medical Center (URMC), Rochester, NY, United States
| |
Collapse
|
90
|
Philip AM, Ahmed WS, Biswas KH. Reversal of the unique Q493R mutation increases the affinity of Omicron S1-RBD for ACE2. Comput Struct Biotechnol J 2023; 21:1966-1977. [PMID: 36936816 PMCID: PMC10006685 DOI: 10.1016/j.csbj.2023.02.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/28/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The SARS-CoV-2 Omicron variant containing 15 mutations, including the unique Q493R, in the spike protein receptor binding domain (S1-RBD) is highly infectious. While comparison with previously reported mutations provide some insights, the mechanism underlying the increased infections and the impact of the reversal of the unique Q493R mutation seen in BA.4, BA.5, BA.2.75, BQ.1 and XBB lineages is not yet completely understood. Here, using structural modelling and molecular dynamics (MD) simulations, we show that the Omicron mutations increases the affinity of S1-RBD for ACE2, and a reversal of the unique Q493R mutation further increases the ACE2-S1-RBD affinity. Specifically, we performed all atom, explicit solvent MD simulations using a modelled structure of the Omicron S1-RBD-ACE2 and compared the trajectories with the WT complex revealing a substantial reduction in the Cα-atom fluctuation in the Omicron S1-RBD and increased hydrogen bond and other interactions. Residue level analysis revealed an alteration in the interaction between several residues including a switch in the interaction of ACE2 D38 from S1-RBD Y449 in the WT complex to the mutated R residue (Q493R) in Omicron complex. Importantly, simulations with Revertant (Omicron without the Q493R mutation) complex revealed further enhancement of the interaction between S1-RBD and ACE2. Thus, results presented here not only provide insights into the increased infectious potential of the Omicron variant but also a mechanistic basis for the reversal of the Q493R mutation seen in some Omicron lineages and will aid in understanding the impact of mutations in SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Angelin M. Philip
- Division of Genomics and Translational Biomedicine, College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Wesam S. Ahmed
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Kabir H. Biswas
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| |
Collapse
|
91
|
Characteristics, Outcomes, and Factors Affecting Mortality in Hospitalized Patients with CAP Due to Different Variants of SARS-CoV-2 and Non-COVID-19 CAP. J Clin Med 2023; 12:jcm12041388. [PMID: 36835923 PMCID: PMC9964315 DOI: 10.3390/jcm12041388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The study was conducted from October 2020 to March 2022 in a province in southern Thailand. The inpatients with community-acquired pneumonia (CAP) and more than 18 years old were enrolled. Of the 1511 inpatients with CAP, COVID-19 was the leading cause, accounting for 27%. Among the patients with COVID-19 CAP, mortalities, mechanical ventilators, ICU admissions, ICU stay, and hospital costs were significantly higher than of those with non-COVID-19 CAP. Household and workplace contact with COVID-19, co-morbidities, lymphocytopenia and peripheral infiltration in chest imaging were associated with CAP due to COVID-19. The delta variant yielded the most unfavorable clinical and non-clinical outcomes. While COVID-19 CAP due to B.1.113, Alpha and Omicron variants had relatively similar outcomes. Among those with CAP, COVID-19 infection as well as obesity, a higher Charlson comorbidity index (CCI) and APACHE II score were associated with in-hospital mortality. Among those with COVID-19 CAP, obesity, infection due to the Delta variant, a higher CCI and higher APACHE II score were associated with in-hospital mortality. COVID-19 had a great impact on the epidemiology and outcomes of CAP.
Collapse
|
92
|
Kim S, Liu Y, Ziarnik M, Seo S, Cao Y, Zhang XF, Im W. Binding of human ACE2 and RBD of Omicron enhanced by unique interaction patterns among SARS-CoV-2 variants of concern. J Comput Chem 2023; 44:594-601. [PMID: 36398990 PMCID: PMC9825653 DOI: 10.1002/jcc.27025] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/11/2022] [Accepted: 10/11/2022] [Indexed: 11/20/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing COVID-19, has continued to mutate and spread worldwide despite global vaccination efforts. In particular, the Omicron variant, first identified in South Africa in late November 2021, has become the dominant strain worldwide. Compared to the original strain identified in Wuhan, Omicron features 50 genetic mutations, with 15 mutations in the receptor-binding domain (RBD) of the spike protein, which binds to the human angiotensin-converting enzyme 2 (ACE2) receptor for viral entry. However, it is not completely understood how these mutations alter the interaction and binding strength between the Omicron RBD and ACE2. In this study, we used a combined steered molecular dynamics (SMD) simulation and experimental microscale thermophoresis (MST) approach to quantify the interaction between Omicron RBD and ACE2. We report that the Omicron brings an enhanced RBD-ACE2 interface through N501Y, Q498R, and T478K mutations; the changes further lead to unique interaction patterns, reminiscing the features of previously dominated variants, Alpha (N501Y) and Delta (L452R and T478K). Among the Q493K and Q493R, we report that Q493R shows stronger binding to ACE2 than Q493K due to increased interactions. Our MST data confirmed that the Omicron mutations in RBD are associated with a five-fold higher binding affinity to ACE2 compared to the RBD of the original strain. In conclusion, our results could help explain the Omicron variant's prevalence in human populations, as higher interaction forces or affinity for ACE2 likely promote greater viral binding and internalization, leading to increased infectivity.
Collapse
Affiliation(s)
- Seonghan Kim
- Department of Bioengineering, Daejeon 34141, Republic of Korea
| | - Yi Liu
- Department of Bioengineering, Daejeon 34141, Republic of Korea
| | - Matthew Ziarnik
- Department of Bioengineering, Daejeon 34141, Republic of Korea
| | - Sangjae Seo
- Korean Institute of Science and Technology Information, Daejeon 34141, Republic of Korea
| | - Yiwei Cao
- Departments of Biological Sciences, Chemistry, and Computer Science and Engineering, Lehigh University, 111 Research Dr, Bethlehem, PA 18015, USA
| | - X. Frank Zhang
- Department of Bioengineering, Daejeon 34141, Republic of Korea
- Current address: Department of Biomedical Engineering, University of Massachusetts Amherst, 240 Thatcher Road, Amherst, MA 01003, USA
| | - Wonpil Im
- Department of Bioengineering, Daejeon 34141, Republic of Korea
- Departments of Biological Sciences, Chemistry, and Computer Science and Engineering, Lehigh University, 111 Research Dr, Bethlehem, PA 18015, USA
| |
Collapse
|
93
|
Sun H, Wang J. Novel perspective for protein-drug interaction analysis: atomic force microscope. Analyst 2023; 148:454-474. [PMID: 36398684 DOI: 10.1039/d2an01591a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Proteins are major drug targets, and drug-target interaction identification and analysis are important factors for drug discovery. Atomic force microscopy (AFM) is a powerful tool making it possible to image proteins with nanometric resolution and probe intermolecular forces under physiological conditions. We review recent studies conducted in the field of target protein drug discovery using AFM-based analysis technology, including drug-driven changes in nanomechanical properties of protein morphology and interactions. Underlying mechanisms (including thermodynamic and kinetic parameters) of the drug-target interaction and drug-modulating protein-protein interaction (PPI) on the surfaces of models or living cells are discussed. Furthermore, challenges and the outlook for the field are likewise discussed. Overall, this insight into the mechanical properties of protein-drug interactions provides an unprecedented information framework for rational drug discovery in the pharmaceutical field.
Collapse
Affiliation(s)
- Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
94
|
Vergara NG, Gatchel M, Abrams CF. Entropic Overcompensation of the N501Y Mutation on SARS-CoV-2 S Binding to ACE2. J Chem Inf Model 2023; 63:633-642. [PMID: 36584335 PMCID: PMC9843633 DOI: 10.1021/acs.jcim.2c01246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Indexed: 12/31/2022]
Abstract
Recent experimental work has shown that the N501Y mutation in the SARS-CoV-2 S glycoprotein's receptor binding domain (RBD) increases binding affinity to the angiotensin-converting enzyme 2 (ACE2), primarily by overcompensating for a less favorable enthalpy of binding by greatly reducing the entropic penalty for complex formation, but the basis for this entropic overcompensation is not clear [Prévost et al. J. Biol. Chem.2021, 297, 101151]. We use all-atom molecular dynamics simulations and free-energy calculations to qualitatively assess the impact of the N501Y mutation on the enthalpy and entropy of binding of RBD to ACE2. Our calculations correctly predict that N501Y causes a less favorable enthalpy of binding to ACE2 relative to the original strain. Furthermore, we show that this is overcompensated for by a more entropically favorable increase in large-scale quaternary flexibility and intraprotein root mean square fluctuations of residue positions upon binding in both RBD and ACE2. The enhanced quaternary flexibility stems from N501Y's ability to remodel the inter-residue interactions between the two proteins away from interactions central to the epitope and toward more peripheral interactions. These findings suggest that an important factor in determining protein-protein binding affinity is the degree to which fluctuations are distributed throughout the complex and that residue mutations that may seem to result in weaker interactions than their wild-type counterparts may yet result in increased binding affinity thanks to their ability to suppress unfavorable entropy changes upon binding.
Collapse
Affiliation(s)
- Natasha Gupta Vergara
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Megan Gatchel
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Cameron F. Abrams
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
95
|
Cook KF, Beckett AH, Glaysher S, Goudarzi S, Fearn C, Loveson KF, Elliott S, Wyllie S, Lloyd A, Bicknell K, Lumley S, Chauhan AJ, Robson SC, The COVID-19 Genomics UK (COG-UK) consortium. Multiple pathways of SARS-CoV-2 nosocomial transmission uncovered by integrated genomic and epidemiological analyses during the second wave of the COVID-19 pandemic in the UK. Front Cell Infect Microbiol 2023; 12:1066390. [PMID: 36741977 PMCID: PMC9895378 DOI: 10.3389/fcimb.2022.1066390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/20/2022] [Indexed: 01/22/2023] Open
Abstract
Introduction Throughout the global COVID-19 pandemic, nosocomial transmission has represented a major concern for healthcare settings and has accounted for many infections diagnosed within hospitals. As restrictions ease and novel variants continue to spread, it is important to uncover the specific pathways by which nosocomial outbreaks occur to understand the most suitable transmission control strategies for the future. Methods In this investigation, SARS-CoV-2 genome sequences obtained from 694 healthcare workers and 1,181 patients were analyzed at a large acute NHS hospital in the UK between September 2020 and May 2021. These viral genomic data were combined with epidemiological data to uncover transmission routes within the hospital. We also investigated the effects of the introduction of the highly transmissible variant of concern (VOC), Alpha, over this period, as well as the effects of the national vaccination program on SARS-CoV-2 infection in the hospital. Results Our results show that infections of all variants within the hospital increased as community prevalence of Alpha increased, resulting in several outbreaks and super-spreader events. Nosocomial infections were enriched amongst older and more vulnerable patients more likely to be in hospital for longer periods but had no impact on disease severity. Infections appeared to be transmitted most regularly from patient to patient and from patients to HCWs. In contrast, infections from HCWs to patients appeared rare, highlighting the benefits of PPE in infection control. The introduction of the vaccine at this time also reduced infections amongst HCWs by over four-times. Discussion These analyses have highlighted the importance of control measures such as regular testing, rapid lateral flow testing alongside polymerase chain reaction (PCR) testing, isolation of positive patients in the emergency department (where possible), and physical distancing of patient beds on hospital wards to minimize nosocomial transmission of infectious diseases such as COVID-19.
Collapse
Affiliation(s)
- Kate F. Cook
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Angela H. Beckett
- School of Biological Science, University of Portsmouth, Portsmouth, United Kingdom
- Centre for Enzyme Innovation, University of Portsmouth, Portsmouth, United Kingdom
| | - Sharon Glaysher
- Portsmouth Hospitals University NHS Trust, Portsmouth, United Kingdom
| | - Salman Goudarzi
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Christopher Fearn
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Katie F. Loveson
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Scott Elliott
- Portsmouth Hospitals University NHS Trust, Portsmouth, United Kingdom
| | - Sarah Wyllie
- Portsmouth Hospitals University NHS Trust, Portsmouth, United Kingdom
| | - Allyson Lloyd
- Portsmouth Hospitals University NHS Trust, Portsmouth, United Kingdom
| | - Kelly Bicknell
- Portsmouth Hospitals University NHS Trust, Portsmouth, United Kingdom
| | - Sally Lumley
- Portsmouth Hospitals University NHS Trust, Portsmouth, United Kingdom
| | - Anoop J. Chauhan
- Portsmouth Hospitals University NHS Trust, Portsmouth, United Kingdom
| | - Samuel C. Robson
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, United Kingdom
- School of Biological Science, University of Portsmouth, Portsmouth, United Kingdom
- Centre for Enzyme Innovation, University of Portsmouth, Portsmouth, United Kingdom
| | | |
Collapse
|
96
|
Szpulak A, Garlak U, Ćwirko H, Witkowska B, Rombel-Bryzek A, Witkowska D. SARS-CoV-2 and its impact on the cardiovascular and digestive systems - The interplay between new virus variants and human cells. Comput Struct Biotechnol J 2023; 21:1022-1029. [PMID: 36694807 PMCID: PMC9850860 DOI: 10.1016/j.csbj.2023.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Since infection with the novel coronavirus SARS-CoV-2 first emerged in Wuhan, China, in December 2019, the world has been battling the pandemic COVID-19. Patients of all ages and genders are now becoming infected with the new coronavirus variant (Omicron) worldwide, and its subvariants continue to pose a threat to health and life. This article provides a literature review of cardiovascular and gastrointestinal complications resulting from SARS-CoV-2 infection. COVID-19 primarily caused respiratory symptoms, but complications can affect many vital organs. SARS-CoV-2 binds to a human cell receptor (angiotensin-converting enzyme 2 - ACE2) that is predominantly expressed primarily in the heart and gastrointestinal tract, which is why we focused on complications in these organs. Since the high transmissibility of Omicron and its ability to evade the immune system have raised worldwide concern, we have tried to summarise the current knowledge about its development from a structural point of view and to highlight the differences in its binding to human receptors and proteases compared to previous VOC.
Collapse
Affiliation(s)
- Angelika Szpulak
- Faculty of Medicine, Wroclaw Medical University, Wybrzeże L. Pasteura 1, 50-367 Wrocław, Poland
| | - Urszula Garlak
- Faculty of Medicine, Wroclaw Medical University, Wybrzeże L. Pasteura 1, 50-367 Wrocław, Poland
| | - Hanna Ćwirko
- Faculty of Medicine, Wroclaw Medical University, Wybrzeże L. Pasteura 1, 50-367 Wrocław, Poland
| | - Bogusława Witkowska
- Institute of Health Sciences, University of Opole, Katowicka 68, 45-060 Opole, Poland
| | | | - Danuta Witkowska
- Institute of Health Sciences, University of Opole, Katowicka 68, 45-060 Opole, Poland
| |
Collapse
|
97
|
Wu J, Zhang HX, Zhang J. Investigation on the interaction mechanism of different SARS-CoV-2 spike variants with hACE2: insights from molecular dynamics simulations. Phys Chem Chem Phys 2023; 25:2304-2319. [PMID: 36597957 DOI: 10.1039/d2cp04349a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Since the COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), SARS-CoV-2 has evolved by acquiring genomic mutations, resulting in the recent emergence of several SARS-CoV-2 variants with improved transmissibility and infectivity relative to the original strain. An underlying mechanism may be the increased ability of the mutants to bind the receptor proteins and infect the host cell. In this work, we implemented all-atom molecular dynamics (MD) simulations to study the binding and interaction of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein singly (D614G), doubly (D614G + L452R and D614G + N501Y), triply (D614G + N501Y + E484K), and quadruply (D614G + N501Y + E484K + K417T) mutated variants with the human angiotensin-converting enzyme 2 (hACE2) receptor protein in the host cell. A combination of multiple analysis approaches elucidated the effects of mutations and the extent of molecular divergence from multiple perspectives, including the dynamic correlated motions, interaction patterns, dominant motions, free energy landscape, and charge distribution on the electrostatic potential surface between the hACE2 and all RBD variants. Moreover, free energy calculations using the MM/PBSA method evaluated the binding affinity between these RBD variants and hACE2. The results showed that the D614G + N501Y + E484K variant possessed the lowest free energy value (highest affinity) compared to the D614G + N501Y + E484K + K417T, D614G + L452R, D614G + N501Y, and D614G mutants. The residue-based energy decomposition also indicated that the energy contribution of residues at the mutation site to the total binding energy was highly variable. The interaction mechanisms between the different RBD variants and hACE2 elucidated in this study will provide some insights into the development of drugs targeting the new SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Jianhua Wu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, Jilin, People's Republic of China.
| | - Hong-Xing Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, Jilin, People's Republic of China.
| | - Jilong Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, Jilin, People's Republic of China.
| |
Collapse
|
98
|
Wong MTJ, Dhaliwal SS, Balakrishnan V, Nordin F, Norazmi MN, Tye GJ. Effectiveness of Booster Vaccinations on the Control of COVID-19 during the Spread of Omicron Variant in Malaysia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1647. [PMID: 36674401 PMCID: PMC9861773 DOI: 10.3390/ijerph20021647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/02/2023] [Accepted: 01/13/2023] [Indexed: 05/14/2023]
Abstract
(1) Background: The assessment of vaccine effectiveness against the Omicron variant is vital in the fight against COVID-19, but research on booster vaccine efficacy using nationwide data was lacking at the time of writing. This study investigates the effectiveness of booster doses on the Omicron wave in Malaysia against COVID-19 infections and deaths; (2) Methods: This study uses nationally representative data on COVID-19 from 1 January to 31 March 2022, when the Omicron variant was predominant in Malaysia. Daily new infections, deaths, ICU utilization and Rt values were compared. A screening method was used to predict the vaccine effectiveness against COVID-19 infections, whereas logistic regression was used to estimate vaccine effectiveness against COVID-19-related deaths, with efficacy comparison between AZD1222, BNT162b2 and CoronaVac; (3) Results: Malaysia's Omicron wave started at the end of January 2022, peaking on 5 March 2022. At the time of writing, statistics for daily new deaths, ICU utilization, and effective reproductive values (Rt) were showing a downtrend. Boosted vaccination is 95.4% (95% CI: 95.4, 95.4) effective in curbing COVID-19 infection, compared to non-boosted vaccination, which is 87.2% (95% CI: 87.2, 87.2). For symptomatic infection, boosted vaccination is 97.4% (95% CI: 97.4, 97.4) effective, and a non-boosted vaccination is 90.9% (95% CI: 90.9, 90.9). Against COVID-19-related death, boosted vaccination yields a vaccine effectiveness (VE) of 91.7 (95% CI: 90.6, 92.7) and full vaccination yields a VE of 65.7% (95% CI: 61.9, 69.1). Looking into the different vaccines as boosters, AZD1222 is 95.2% (CI 95%: 92.7, 96.8) effective, BNT162b2 is 91.8% (CI 95%: 90.7, 92.8) effective and CoronaVac is 88.8% (CI 95%: 84.9, 91.7) effective against COVID-19 deaths. (4) Conclusions: Boosters are effective in increasing protection against COVID-19, including the Omicron variant. Given that the VE observed was lower, CoronaVac recipients are encouraged to take boosters due to its lower VE.
Collapse
Affiliation(s)
- Matthew Tze Jian Wong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden 11800, Malaysia
| | - Satvinder Singh Dhaliwal
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden 11800, Malaysia
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth 6102, Australia
- Duke-NUS Medical School, National University of Singapore, Singapore 119077, Singapore
- Office of the Provost, Singapore University of Social Sciences, Singapore 599494, Singapore
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden 11800, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
- Malaysian Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Kajang 43000, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden 11800, Malaysia
| |
Collapse
|
99
|
Qin R, An C, Chen W. Physical-Chemical Regulation of Membrane Receptors Dynamics in Viral Invasion and Immune Defense. J Mol Biol 2023; 435:167800. [PMID: 36007627 PMCID: PMC9394170 DOI: 10.1016/j.jmb.2022.167800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 02/04/2023]
Abstract
Mechanical cues dynamically regulate membrane receptors functions to trigger various physiological and pathological processes from viral invasion to immune defense. These cues mainly include various types of dynamic mechanical forces and the spatial confinement of plasma membrane. However, the molecular mechanisms of how they couple with biochemical cues in regulating membrane receptors functions still remain mysterious. Here, we review recent advances in methodologies of single-molecule biomechanical techniques and in novel biomechanical regulatory mechanisms of critical ligand recognition of viral and immune receptors including SARS-CoV-2 spike protein, T cell receptor (TCR) and other co-stimulatory immune receptors. Furthermore, we provide our perspectives of the general principle of how force-dependent kinetics determine the dynamic functions of membrane receptors and of biomechanical-mechanism-driven SARS-CoV-2 neutralizing antibody design and TCR engineering for T-cell-based therapies.
Collapse
Affiliation(s)
- Rui Qin
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Chenyi An
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China; School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Wei Chen
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory for Modern Optical Instrumentation Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
100
|
Widyasari K, Kim J. A Review of the Currently Available Antibody Therapy for the Treatment of Coronavirus Disease 2019 (COVID-19). Antibodies (Basel) 2023; 12:5. [PMID: 36648889 PMCID: PMC9887598 DOI: 10.3390/antib12010005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Monoclonal antibodies are a promising treatment for COVID-19. However, the emergence of SARS-CoV-2 variants raised concerns about these therapies' efficacy and long-term viability. Studies reported several antibodies, that received authorization for COVID-19 treatment, are not effective against new variants or subvariants of SARS-CoV-2, hence their distribution has to be paused. Here, the authors reviewed the status of the currently available monoclonal antibodies for COVID-19 treatment, their potential as a therapeutic agent, and the challenges ahead. To address these issues, the authors presented general information on SARS-CoV-2 and how monoclonal antibodies work against SARS-CoV-2. The authors then focus on the antibodies that have been deployed for COVID-19 treatment and their current status, as well as the evidence supporting their potential as an early intervention against COVID-19. Lastly, the authors discussed some leading obstacles that hinder the development and administration of monoclonal antibodies for the treatment of COVID-19.
Collapse
Affiliation(s)
- Kristin Widyasari
- Gyeongsang Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jinnam Kim
- Major of Food Science & Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|