51
|
Bakan S, Gezmen Karadağ M. The Effect of Meal Frequency on Body Composition, Biochemical Parameters and Diet Quality in Overweight/Obese Individuals. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2025; 44:245-255. [PMID: 39499665 DOI: 10.1080/27697061.2024.2422476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/29/2024] [Accepted: 10/23/2024] [Indexed: 11/07/2024]
Abstract
OBJECTIVES There is no consensus on the ideal frequency of meals for the prevention and treatment of obesity. While some studies have reported that increasing meal frequency might be beneficial in the treatment of obesity due to its positive effects on glycemic regulation, appetite and diet quality, other studies have reported negative effects. In this study, it was aimed to examine the effect of meal frequency on body composition, anthropometric measurements, some of the biochemical parameters and diet quality in overweight/obese adults. METHODS A total of 91 individuals, all overweight/obese, between the ages of 18-64, including 46 consuming 2 main meals (2MMG) and 45 consuming 3 main meals (3MMG) participated in the study. General characteristics and dietary habits of the individuals were obtained with a questionnaire. A 3-day food consumption record was taken to determine their daily energy and nutrient intake and to evaluate their diet quality with the "Healthy Eating Index 2015". Anthropometric measurements of the individuals were performed, body compositions were analyzed and some blood parameters were evaluated. RESULTS The median values of body weight, lean body mass (kg), total body water, basal metabolic rate and hip circumference of men in the 3MMG were found to be higher than men in the 2MMG (p < 0.05). The anthropometric measurements and body composition components of women were similar between the two groups (p > 0.05). The renal urea nitrogen and total cholesterol values of women in 2MMG were higher than those of women in the 3MMG. In the regression analysis, a 1-unit increase in the number of main meals was determined to lead to a 9.3 points increase in the total score of HEI 2015. CONCLUSIONS Regular consumption of main meals may have positive effects on diet quality, some of the biochemical parameters, basal metabolic rate and body composition in overweight/obese adults. In this group, which is known to have incorrect food preferences in general, it is important to plan the number of meals and the content of these meals correctly.
Collapse
Affiliation(s)
- Sevinç Bakan
- Health Science Faculty, Department of Nutrition and Dietetics, Çankırı Karatekin University, Çankırı, Turkey
| | - Makbule Gezmen Karadağ
- Health Science Faculty, Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey
| |
Collapse
|
52
|
Bhowmick DC, Ahn M, Bhattacharya S, Aslamy A, Thurmond DC. DOC2b enrichment mitigates proinflammatory cytokine-induced CXCL10 expression by attenuating IKKβ and STAT-1 signaling in human islets. Metabolism 2025; 164:156132. [PMID: 39805534 PMCID: PMC11798586 DOI: 10.1016/j.metabol.2025.156132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/22/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
INTRODUCTION Type 1 diabetic human islet β-cells are deficient in double C 2 like domain beta (DOC2b) protein. Further, DOC2b protects against cytokine-induced pancreatic islet β-cell stress and apoptosis. However, the mechanisms underpinning the protective effects of DOC2b remain unknown. METHODS Biochemical studies, qPCR, proteomics, and immuno-confocal microscopy were conducted to determine the underlying protective mechanisms of DOC2b in β-cells. DOC2b-enriched or -depleted primary islets (human and mouse) and β-cell lines challenged with or without proinflammatory cytokines, global DOC2b heterozygous knockout mice subjected to multiple-low-dose-streptozotocin (MLD-STZ), were used for these studies. RESULTS A significant elevation of stress-induced CXCL10 mRNA was observed in DOC2b-depleted β-cells and primary mouse islets. Further, DOC2b enrichment markedly attenuated cytokine-induced CXCL10 levels in primary non-diabetic human islets and β-cells. DOC2b enrichment also reduced total-NF-κB p65 protein levels in human islets challenged with T1D mimicking proinflammatory cytokines. IKKβ, NF-κB p65, and STAT-1 are capable of associating with DOC2b in cytokine-challenged β-cells. DOC2b enrichment in cytokine-stressed human islets and β-cells corresponded with a significant reduction in activated and total IKKβ protein levels. Total IκBβ protein was increased in DOC2b-enriched human islets subjected to acute cytokine challenge. Cytokine-induced activated and total STAT-1 protein and mRNA levels were markedly reduced in DOC2b-enriched human islets. Intriguingly, DOC2b also prevents ER-stress-IKKβ and STAT-1 crosstalk in the rat INS1-832/13 β-cell line. CONCLUSION The mechanisms underpinning the protective effects of DOC2b involve attenuation of IKKβ-NF-κB p65 and STAT-1 signaling, and reduced CXCL10 expression.
Collapse
Affiliation(s)
- Diti Chatterjee Bhowmick
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| | - Miwon Ahn
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Supriyo Bhattacharya
- Shared Resources-Integrative Genomics, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Arianne Aslamy
- Department of Medicine, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| | - Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
53
|
Zaini A, Morgan PK, Cardwell B, Vlassopoulos E, Sgro M, Li CN, Salberg S, Mellett NA, Christensen J, Meikle PJ, Murphy AJ, Marsland BJ, Mychasiuk R, Yamakawa GR. Time restricted feeding alters the behavioural and physiological outcomes to repeated mild traumatic brain injury in male and female rats. Exp Neurol 2025; 385:115108. [PMID: 39662793 DOI: 10.1016/j.expneurol.2024.115108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/24/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Mild traumatic brain injury (mTBI) research has had limited success translating treatments from preclinical models to clinical application for concussion. One major factor that has been overlooked is the near 24-hour availability of food, both for experimental nocturnal rodents and patients suffering from mTBI. Here, we characterised the impact of food restriction limited to either the inactive (day) or the active phase (night), on repetitive mTBI (RmTBI) - induced outcomes in male and female rats. We found that active phase fed rats consumed more food, had increased body weight, and reduced brain weights. Behaviourally, active phase feeding increased motor coordination deficits and caused changes to thermal nociceptive processing following RmTBI. Hypothalamic transcriptomic analysis revealed minor changes in response to RmTBI, and genes associated with oxytocin-vasopressin regulation in response to inactive phase, but not active phase feeding. These transcript changes were absent in females, where the overall effect of RmTBI was minor. Prefrontal cortex lipidomics revealed an increase in sphingomyelin synthesis following injury and marked sex differences in response to feeding. Of the lipids that changed and overlapped between the prefrontal cortex and serum, dihydroceramides, sphingomyelins, and hexosylceramides, were higher in the serum but lower in the prefrontal cortex. Together, these results demonstrate that feeding time alters outcomes to RmTBI, independent of the hypothalamic transcriptome, and injury-specific lipids may serve as useful biomarkers in RmTBI diagnosis.
Collapse
Affiliation(s)
- A Zaini
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia
| | - P K Morgan
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - B Cardwell
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia
| | - E Vlassopoulos
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - M Sgro
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - C N Li
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - S Salberg
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - N A Mellett
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - J Christensen
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - P J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, Victoria, Australia
| | - A J Murphy
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - B J Marsland
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia
| | - R Mychasiuk
- Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia; Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - G R Yamakawa
- Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia; Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
54
|
Feng N, Li Y, Zhao Y, Tao J, Jiang H, Wang S, Huang X, Ma J, Tang BZ. Customized AIEgen-Based Molecular Signaling Tags Combined Microfluidic Chip for Point-of-Care Testing Viable E. coli O157:H7. ACS Sens 2025; 10:785-794. [PMID: 39943626 DOI: 10.1021/acssensors.4c02301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Pathogenic bacterial infections pose a significant threat to human life, health, and socioeconomic development, with those arising from Escherichia coli (E. coli) O157:H7 being particularly concerning. Herein, customized aggregation-induced emission luminogens (AIEgen)-based signaling tags (TPA-galactose) were combined with a microfluidic chip for the determination of E. coli O157:H7. TPA-galactose undergoes hydrolysis by the β-galactosidase, resulting in the formation of highly fluorescent TPA-OH with AIE characteristics. Phages covalently bound to the surface of magnetic beads specifically capture and lyse E. coli O157:H7, releasing endogenous β-galactosidase, and the fluorescence intensity of TPA-OH facilitates the determination of E. coli O157:H7. The microfluidic chip process achieves a sensitivity of 45 CFU/mL in 45 min, requiring no DNA extraction or amplification, utilizing minimal sample volume, and enabling accurate one-stop quantification of live E. coli O157:H7. This strategy enables the rapid on-site determination of E. coli O157:H7 in environmental, food, and clinical samples, significantly enhancing public health and safety.
Collapse
Affiliation(s)
- Niu Feng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yiqi Li
- College of Chemistry, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yongkun Zhao
- College of Engineering, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiacheng Tao
- College of Chemistry, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hong Jiang
- College of Chemistry, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shu Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100140, China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jimei Ma
- College of Chemistry, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
55
|
Albahri G, Badran A, Baki ZA, Alame M, Hijazi A, Daou A, Mesmar JE, Baydoun E. Mandragora autumnalis Distribution, Phytochemical Characteristics, and Pharmacological Bioactivities. Pharmaceuticals (Basel) 2025; 18:328. [PMID: 40143106 PMCID: PMC11944648 DOI: 10.3390/ph18030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
In the Mediterranean and Himalayan regions, the genus Mandragora (family Solanaceae), sometimes called mandrake, is widely utilized in herbal therapy and is well-known for its mythical associations. Objective: To compile up-to-date information on M. autumnalis's therapeutic properties. Its pharmacological properties and phytochemical composition are particularly covered in managing several illnesses, including diabetes, cancer, and heart disease. Methods: Articles on the review topic were found by searching major scientific literature databases, such as PubMed, Scopus, ScienceDirect, SciFinder, Chemical Abstracts, and Medicinal and Aromatic Plants Abstracts. Additionally, general online searches were conducted using Google Scholar and Google. The time frame for the search included items released from 1986 to 2023. Results:Mandragora has been shown to contain a variety of phytochemicals, including coumarins, withanolides, and alkaloids. The pharmacological characteristics of M. autumnalis, such as increasing macrophage anti-inflammatory activity, free radicals inhibition, bacterial and fungal growth inhibition, cytotoxic anticancer activities in vivo and in vitro against cancer cell lines, and enzyme-inhibitory properties, are attributed to these phytochemicals. Furthermore, M. autumnalis also inhibits cholinesterase, tyrosinase, α-amylase, α-glucosidase, and free radicals. On the other hand, metabolic risk factors, including the inhibition of diabetes-causing enzymes and obesity, have been treated using dried ripe berries. Conclusions: Investigations into the pharmacological and phytochemical characteristics of M. autumnalis have revealed that this plant is a rich reservoir of new bioactive substances. This review aims to provide insight into the botanical and ecological characteristics of Mandragora autumnalis, including a summary of its phytochemical components and antioxidant, antimicrobial, antidiabetic, anticancer, enzyme-inhibitory properties, as well as toxicological implications, where its low cytotoxic activity against the normal VERO cell line has been shown. More research on this plant is necessary to ensure its efficacy and safety. Still, it is also necessary to understand the molecular mechanism of action behind the observed effects to clarify its therapeutic potential.
Collapse
Affiliation(s)
- Ghosoon Albahri
- Doctoral School of Science and Technology-Platform of Research and Analysis in Environmental Sciences (EDST-PRASE), Beirut P.O. Box 657314, Lebanon; (G.A.); (M.A.); (A.H.)
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Riad El Solh, Beirut 1107, Lebanon;
| | - Adnan Badran
- Department of Nutrition, University of Petra Amman Jordan, Amman P.O. Box 961343, Jordan;
| | - Zaher Abdel Baki
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Mohamad Alame
- Doctoral School of Science and Technology-Platform of Research and Analysis in Environmental Sciences (EDST-PRASE), Beirut P.O. Box 657314, Lebanon; (G.A.); (M.A.); (A.H.)
| | - Akram Hijazi
- Doctoral School of Science and Technology-Platform of Research and Analysis in Environmental Sciences (EDST-PRASE), Beirut P.O. Box 657314, Lebanon; (G.A.); (M.A.); (A.H.)
- Faculty of Sciences, Kut University College, Wasit 52001, Iraq
| | - Anis Daou
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Joelle Edward Mesmar
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Riad El Solh, Beirut 1107, Lebanon;
| | - Elias Baydoun
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Riad El Solh, Beirut 1107, Lebanon;
| |
Collapse
|
56
|
Chen M, Li Y, Zhu JY, Mu WJ, Luo HY, Yan LJ, Li S, Li RY, Yin MT, Li X, Chen HM, Guo L. Exercise-induced adipokine Nrg4 alleviates MASLD by disrupting hepatic cGAS-STING signaling. Cell Rep 2025; 44:115251. [PMID: 39891907 DOI: 10.1016/j.celrep.2025.115251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/15/2024] [Accepted: 01/10/2025] [Indexed: 02/03/2025] Open
Abstract
Exercise is an effective non-pharmacological strategy for ameliorating metabolic dysfunction-associated steatotic liver disease (MASLD). Neuregulin-4 (Nrg4) is an adipokine with a potential role in metabolic homeostasis. Previous findings have shown that Nrg4 is upregulated by exercise and that Nrg4 reduces hepatic steatosis, but the underlying mechanism is not fully understood. Here, we show that adipose Nrg4 is transactivated by Pparγ in response to exercise in mice. Adeno-associated virus (AAV)-mediated knockdown of adipose Nrg4 as well as hepatocyte-specific knockout of Erbb4 (Nrg4 receptor) impair exercise-mediated alleviation of MASLD in mice. Conversely, AAV-mediated overexpression of adipose Nrg4 mitigates MASLD in mice in synergy with exercise. Mechanistically, Nrg4/Erbb4/AKT signaling promotes cyclic guanosine monophosphate-AMP synthase (cGAS) phosphorylation to blunt its enzyme activity, thereby inhibiting cGAS-STING pathway-mediated inflammation and steatosis in hepatocytes. Thus, Nrg4 functions as an exercise-induced adipokine that participates in adipose-liver tissue communication to counteract MASLD.
Collapse
Affiliation(s)
- Min Chen
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Yang Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Jie-Ying Zhu
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Wang-Jing Mu
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Hong-Yang Luo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Lin-Jing Yan
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Shan Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Ruo-Ying Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Meng-Ting Yin
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Xin Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Hu-Min Chen
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Liang Guo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
57
|
Okuyama T, Tsuno T, Inoue R, Fukushima S, Kyohara M, Matsumura A, Miyashita D, Nishiyama K, Takano Y, Togashi Y, Meguro-Horike M, Horike SI, Kin T, Shapiro AJ, Yanagisawa H, Terauchi Y, Shirakawa J. The matricellular protein Fibulin-5 regulates β-cell proliferation in an autocrine/paracrine manner. iScience 2025; 28:111856. [PMID: 39995864 PMCID: PMC11848788 DOI: 10.1016/j.isci.2025.111856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 11/20/2024] [Accepted: 01/17/2025] [Indexed: 02/26/2025] Open
Abstract
The matricellular protein Fibulin-5 (Fbln5) is a secreted protein that is essential for elastic fiber formation, and pancreatic islets are usually surrounded by the extracellular matrix (ECM), which includes elastic fibers. However, much uncertainty remains regarding the function of the ECM and its components in β-cells. Here, we describe the role of Fbln5 in β-cell replication. Fbln5 expression was increased upon glucose stimulation in β-cells of mouse and human islets. β-Cell-specific Fbln5-knockout (βFbln5KO) mice exhibit significantly reduced β-cell proliferation in vivo but not in vitro. Secreted extracellular Fbln5 enhances β-cell replication. Fbln5-deficient β-cells exhibit the downregulated expression of the gene encoding Polo-like kinase 1 (PLK1), which is accompanied by ERK-mediated FoxM1 nuclear export. These data suggest that Fbln5 is secreted from β-cells in response to glucose and plays important roles in the appropriate maintenance of β-cell functions in an autocrine or paracrine manner.
Collapse
Affiliation(s)
- Tomoko Okuyama
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takahiro Tsuno
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Ryota Inoue
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Setsuko Fukushima
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Mayu Kyohara
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Anzu Matsumura
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Daisuke Miyashita
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kuniyuki Nishiyama
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Yusuke Takano
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yu Togashi
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Makiko Meguro-Horike
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Shin-ichi Horike
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Tatsuya Kin
- Clinical Islet Laboratory and Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - A.M. James Shapiro
- Clinical Islet Laboratory and Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Jun Shirakawa
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| |
Collapse
|
58
|
Li Q, Shao C, Hu Y, Chen K, Zhang J. Feasibility Evaluation of Dried Whole Egg Powder Application in Tadpole ( Lithobates catesbeianus) Feed: Effects on Growth, Metamorphosis Rate, Lipid Metabolism and Intestinal Flora. Animals (Basel) 2025; 15:584. [PMID: 40003064 PMCID: PMC11851411 DOI: 10.3390/ani15040584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
At present, studies on tadpole nutrition and metabolism are scarce. This study aimed at comparing the influence of two protein sources, fishmeal (FM) and dried whole egg powder (DWEP), on tadpoles from the perspective of growth, the metamorphosis rate, lipid metabolism, antioxidant properties and the intestinal flora. In this experiment, the control diet was set to contain no FM or DWEP. Based on the control diet, 5% and 10% FM or DWEP were included, respectively. The results of the experiment indicated that FM or DWEP inclusion significantly enhanced the growth performance and metamorphosis rate (p < 0.05); activated hepatic lipid metabolism, as manifested by enhanced LPL and HL activity; upregulated lipid metabolism-related gene expression (fasn, acc, acadl and cpt1α) (p < 0.05); and distinctly elevated the activity of SOD, CAT and GPX (p < 0.05), suggesting improved antioxidant capabilities (p < 0.05). Moreover, the inclusion of FM or DWEP elevated the relative abundance of Actinobacteria and Actinomyces and reduced the relative abundance of Proteobacteria. Unexpectedly, no significant differences were observed between the FM and DWEP groups regarding the above detected indices. This indicates that using DWEP to replace FM is a viable option.
Collapse
Affiliation(s)
| | | | | | - Kaijian Chen
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Q.L.); (C.S.); (Y.H.)
| | - Junzhi Zhang
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Q.L.); (C.S.); (Y.H.)
| |
Collapse
|
59
|
Xia F, Santacruz A, Wu D, Bertho S, Fritz E, Morales-Sosa P, McKinney S, Nowotarski SH, Rohner N. Reproductive Adaptation of Astyanax mexicanus Under Nutrient Limitation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638191. [PMID: 40027826 PMCID: PMC11870393 DOI: 10.1101/2025.02.13.638191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Reproduction is a fundamental biological process for the survival and continuity of species. Examining changes in reproductive strategies offers valuable insights into how animals have adapted their life histories to different environments. Since reproduction is one of the most energy-intensive processes in female animals, nutrient scarcity is expected to interfere with the ability to invest in gametes. Lately, a new model to study adaptation to nutrient limitation has emerged; the Mexican tetra Astyanax mexicanus . This fish species exists as two different morphs, a surface river morph and a cave-dwelling morph. The cave-dwelling morph has adapted to the dark, biodiversity, and nutrient-limited cave environment and consequently evolved an impressive starvation resistance. However, how reproductive strategies have adapted to nutrient limitations in this species remains poorly understood. Here, we compared breeding activities and maternal contributions between laboratory-raised surface fish and cavefish. We found that cavefish produce different clutch sizes of eggs with larger yolk compared to surface fish, indicating a greater maternal nutrient deposition in cavefish embryos. To systematically characterize yolk compositions, we used untargeted proteomics and lipidomics approaches to analyze protein and lipid profiles in 2-cell stage embryos and found an increased proportion of sphingolipids in cavefish compared to surface fish. Additionally, we generated transcriptomic profiles of surface fish and cavefish ovaries using a combination of single cell and bulk RNA sequencing to examine differences in maternal contribution. We found that genes essential for hormone regulation were upregulated in cavefish follicular somatic cells compared to surface fish. To evaluate whether these differences contribute to their reproductive abilities under natural-occurring stress, we induced breeding in starved female fish. Remarkably, cavefish maintained their ability to breed under starvation, whereas surface fish largely lost this ability. We identified insulin-like growth factor 1a receptor ( igf1ra ) as a potential candidate gene mediating the downregulation of ovarian development genes, potentially contributing to the starvation-resistant fertility of cavefish. Taken together, we investigated the female reproductive strategies in Astyanax mexicanus , which will provide fundamental insights into the adaptations of animals to environments with extreme nutrient deficit.
Collapse
|
60
|
Lu Y, Li X, Ma S, Ding M, Yang F, Pang X, Sun J, Li X. Broccoli ( Brassica oleracea L. var. italica Planch) alleviates metabolic-associated fatty liver disease through regulating gut flora and lipid metabolism via the FXR/LXR signaling pathway. Food Funct 2025; 16:1218-1240. [PMID: 39903517 DOI: 10.1039/d4fo03731f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The increased consumption of dietary fats contributes to the development of MAFLD (metabolic fatty liver disease). The ability of broccoli to enhance lipid metabolism has attracted researchers' attention. Researchers fed C57BL/6 mice a 12-week HFD to ensure the induction of MAFLD. The findings indicated that broccoli floret juice could effectively relieve MAFLD. Broccoli is helpful for reducing weight, blood glucose levels, fat accumulation, and insulin resistance associated with MAFLD and reduces the concentrations of TC, TG, LDL-C, GOT, GPT, IL-1β, IL-6, CCL4, and MCP1. Broccoli can increase the concentration of HDL-C, CAT, GSH-Px, SOD, and T-AOC, relieve inflammation and hepatic and ileum damage, and improve the antioxidant capacity of the body. Also, broccoli can optimize the structure of intestinal flora, promote the growth of Allobaculum, Muribaculaceae, Akkermansia, Eubacterium, and Bacteroides, and reduce bile acid deposition. In addition, the FXR/LXRα signaling system is impacted by broccoli, which is capable of raising the average levels of expression of the Fxr, SHP, and Cyp7a1 genes and proteins and reducing those of the genes for Fasn, Lpin 1, Dgat 2, Scd1, LXRα, and SREBP-1c.
Collapse
Affiliation(s)
- Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Xin Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Shaotong Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Meng Ding
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Feiyu Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyi Pang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| |
Collapse
|
61
|
Jayaprakash J, Gowda SGB, Gowda D, Ikeda A, Bamai YA, Ketema RM, Kishi R, Chen Y, Chiba H, Hui SP. Plasma Lipidomics of Preadolescent Children: A Hokkaido Study. J Lipids 2025; 2025:3106145. [PMID: 40084067 PMCID: PMC11898111 DOI: 10.1155/jl/3106145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/05/2024] [Indexed: 03/16/2025] Open
Abstract
Lipids are the most abundant biomolecules of human plasma, and their balance plays a significant role in health and disease management. Despite the importance of lipids, the studies focused on the comprehensive determination of the plasma lipidome in children are limited. In this study, we investigated the sex, age, and weight-specific changes in the plasma lipidome of nonfasting preadolescent children aged 9-12 years (n = 342) using a nontargeted liquid chromatography-mass spectrometry technique. A total of 219 lipid species were characterized in the plasma samples. Multivariate analysis revealed that boys and girls have similar lipid profiles, but relatively higher levels of capric acid-composed triacylglycerols (TGs) were observed in plasma samples of boys. Saturated fatty acids are the most abundant fatty acyls followed by mono- and polyunsaturated fatty acids in the plasma of both boys and girls. Sphingolipids such as ceramides, hexosylceramides, sphingomyelin, and a phospholipid (phosphatidylinositol) were relatively higher in the plasma of a 10-year-old group than other age groups. Plasma levels of TG and phosphatidylserine were increased within age from 9 to 12 years. Furthermore, most of the TG molecular species were increased in the plasma of overweight children compared to the normal range groups. The receiver operating characteristic analysis results show that TG (10:0/10:0/18:1) could be a specific marker for childhood obesity (area under the curve (AUC) = 0.72). Overall, this study highlights the altered plasma lipidome in preadolescent children for sex, age, and percentage of overweight. Early detection of lipid markers for obesity would be a promising target for developing therapeutic strategies.
Collapse
Affiliation(s)
- Jayashankar Jayaprakash
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-Ku, Sapporo, Japan
| | - Siddabasave Gowda B. Gowda
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-Ku, Sapporo, Japan
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Japan
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Japan
| | - Atsuko Ikeda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Japan
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo, Japan
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo, Japan
| | - Rahel Mesfin Ketema
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Japan
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo, Japan
| | - Yifan Chen
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-2-1-15, Higashi-ku, Sapporo, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Japan
| |
Collapse
|
62
|
Fan Q, Gao Y, Zhou Y, Wu J, Wang H, Dong Y, Gai Z, Wu Y, Fang S, Gu S. Weizmannia coagulans BC99 Relieves Constipation Symptoms by Regulating Inflammatory, Neurotransmitter, and Lipid Metabolic Pathways: A Randomized, Double-Blind, Placebo-Controlled Trial. Foods 2025; 14:654. [PMID: 40002098 PMCID: PMC11854163 DOI: 10.3390/foods14040654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Probiotics have attracted increasing attention due to their benefits in terms of relieving gastrointestinal ailments, including constipation. This study evaluated the potential of Weizmannia coagulans BC99 for clinical remission of constipation in adults. In this randomized, double-blind, and placebo-controlled trial, 90 individuals with constipation were divided between a BC99 and a placebo group for an 8-week intervention duration. The spontaneous bowel movement (SBM) frequency, patient assessment of constipation symptoms (PAC-SYM), patient assessment of constipation quality of life (PAC-QOL), inflammatory cytokines, neurotransmitters, and serum metabolites were investigated before and after the intervention. The results showed that BC99 intervention significantly improved constipation symptoms and quality of life in adults with constipation, as evidenced by an increased SBM score and decreased PAC-SYM and PAC-QOL scores. Additionally, BC99 supplementation increased the levels of neurotransmitters (5-HT, MTL, AChE, and BDNF) associated with intestinal motility and alleviated inflammation in participants with constipation, as supported by higher levels of anti-inflammatory factors (IL-4, IL-10) and lower levels of pro-inflammatory factors (IL-6, IFN-γ) in the BC99 group. Furthermore, BC99 altered the abundance of 93 metabolites and affected biological pathways correlated with gastrointestinal motility, including sphingolipid metabolism, steroid hormone biosynthesis, and glycerophospholipid metabolism. This study demonstrates the effectiveness of the W. coagulans BC99 strain in relieving constipation in adults, and reveals its potential mechanism of action. These findings provide a scientific basis for BC99 as an effective and safe probiotic for constipation treatment.
Collapse
Affiliation(s)
- Qiuxia Fan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (Q.F.); (Y.G.); (Y.Z.); (J.W.); (H.W.); (Y.W.)
- Henan Engineering Research Center of Food Material, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Research Center of Food Microbiology, Luoyang 471000, China
| | - Yinyin Gao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (Q.F.); (Y.G.); (Y.Z.); (J.W.); (H.W.); (Y.W.)
| | - Yiqing Zhou
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (Q.F.); (Y.G.); (Y.Z.); (J.W.); (H.W.); (Y.W.)
| | - Jinghui Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (Q.F.); (Y.G.); (Y.Z.); (J.W.); (H.W.); (Y.W.)
| | - Haotian Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (Q.F.); (Y.G.); (Y.Z.); (J.W.); (H.W.); (Y.W.)
| | - Yao Dong
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou 215200, China; (Y.D.); (Z.G.); (S.F.)
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhonghui Gai
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou 215200, China; (Y.D.); (Z.G.); (S.F.)
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (Q.F.); (Y.G.); (Y.Z.); (J.W.); (H.W.); (Y.W.)
- Henan Engineering Research Center of Food Material, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Research Center of Food Microbiology, Luoyang 471000, China
| | - Shuguang Fang
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou 215200, China; (Y.D.); (Z.G.); (S.F.)
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (Q.F.); (Y.G.); (Y.Z.); (J.W.); (H.W.); (Y.W.)
- Henan Engineering Research Center of Food Material, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Research Center of Food Microbiology, Luoyang 471000, China
| |
Collapse
|
63
|
Aditi, Bhardwaj R, Yadav A, Swapnil P, Meena M. Characterization of microalgal β-carotene and astaxanthin: exploring their health-promoting properties under the effect of salinity and light intensity. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:18. [PMID: 39953577 PMCID: PMC11829443 DOI: 10.1186/s13068-025-02612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025]
Abstract
Microalgae are promising sources of valuable carotenoids like β-carotene and astaxanthin with numerous health benefits. This review summarizes recent studies on producing these carotenoids in microalgae under different salinity and light-intensity conditions, which are key factors influencing their biosynthesis. The carotenoid biosynthesis pathways in microalgae, involving the methylerythritol phosphate pathway in chloroplasts, are described in detail. The effects of high salinity and light stress on stimulating astaxanthin accumulation in species like Haematococcus pluvialis and Chromochloris zofingiensis and their synergistic impact are discussed. Similarly, the review covers how high light and salinity induce β-carotene production in Dunaliella salina and other microalgae. The diverse health-promoting properties of astaxanthin and β-carotene, such as their antioxidant, antiinflammatory, and anticancer activities, are highlighted. Strategies to improve carotenoid yields in microalgae through environmental stresses, two-stage cultivation, genetic engineering, and metabolic engineering approaches are evaluated. Overall, this review highlights advancements in β-carotene and astaxanthin production reporting the different microalgal capability to produce carotenoids under different stress level like 31.5% increase in β-carotene accumulation in Dunaliella salina and astaxanthin productivity reaching 18.1 mg/L/day in Haematococcus lacustris. It also explores novel biotechnological strategies, including CRISPR-Cas9, for enhancing carotenoid yield.
Collapse
Affiliation(s)
- Aditi
- School of Basic Sciences, Department of Botany, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Rupesh Bhardwaj
- School of Basic Sciences, Department of Botany, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Ankush Yadav
- School of Basic Sciences, Department of Botany, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Prashant Swapnil
- School of Basic Sciences, Department of Botany, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.
| |
Collapse
|
64
|
ElSheikh A, Driggers CM, Truong HH, Yang Z, Allen J, Henriksen N, Walczewska-Szewc K, Shyng SL. AI-Based Discovery and CryoEM Structural Elucidation of a K ATP Channel Pharmacochaperone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.05.611490. [PMID: 39282384 PMCID: PMC11398524 DOI: 10.1101/2024.09.05.611490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Pancreatic KATP channel trafficking defects underlie congenital hyperinsulinism (CHI) cases unresponsive to the KATP channel opener diazoxide, the mainstay medical therapy for CHI. Current clinically used KATP channel inhibitors have been shown to act as pharmacochaperones and restore surface expression of trafficking mutants; however, their therapeutic utility for KATP trafficking impaired CHI is hindered by high-affinity binding, which limits functional recovery of rescued channels. Recent structural studies of KATP channels employing cryo-electron microscopy (cryoEM) have revealed a promiscuous pocket where several known KATP pharmacochaperones bind. The structural knowledge provides a framework for discovering KATP channel pharmacochaperones with desired reversible inhibitory effects to permit functional recovery of rescued channels. Using an AI-based virtual screening technology AtomNet® followed by functional validation, we identified a novel compound, termed Aekatperone, which exhibits chaperoning effects on KATP channel trafficking mutations. Aekatperone reversibly inhibits KATP channel activity with a half-maximal inhibitory concentration (IC50) ~ 9 μM. Mutant channels rescued to the cell surface by Aekatperone showed functional recovery upon washout of the compound. CryoEM structure of KATP bound to Aekatperone revealed distinct binding features compared to known high affinity inhibitor pharmacochaperones. Our findings unveil a KATP pharmacochaperone enabling functional recovery of rescued channels as a promising therapeutic for CHI caused by KATP trafficking defects.
Collapse
Affiliation(s)
- Assmaa ElSheikh
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Medical Biochemistry, College of Medicine, Tanta University, Tanta, Egypt
| | - Camden M. Driggers
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ha H. Truong
- Atomwise Inc., 250 Sutter St., Suite 650, San Francisco, CA, USA
| | - Zhongying Yang
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - John Allen
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Niel Henriksen
- Atomwise Inc., 250 Sutter St., Suite 650, San Francisco, CA, USA
| | - Katarzyna Walczewska-Szewc
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, 87-100 Toruń, Poland
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
65
|
Xu J, Li Y, Feng Z, Chen H. Cigarette Smoke Contributes to the Progression of MASLD: From the Molecular Mechanisms to Therapy. Cells 2025; 14:221. [PMID: 39937012 PMCID: PMC11816580 DOI: 10.3390/cells14030221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Cigarette smoke (CS), an intricate blend comprising over 4000 compounds, induces abnormal cellular reactions that harm multiple tissues. Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disease (CLD), encompassing non-alcoholic fatty liver (NAFL), non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma (HCC). Recently, the term NAFLD has been changed to metabolic dysfunction-associated steatotic liver disease (MASLD), and NASH has been renamed metabolic dysfunction-associated steatohepatitis (MASH). A multitude of experiments have confirmed the association between CS and the incidence and progression of MASLD. However, the specific signaling pathways involved need to be updated with new scientific discoveries. CS exposure can disrupt lipid metabolism, induce inflammation and apoptosis, and stimulate liver fibrosis through multiple signaling pathways that promote the progression of MASLD. Currently, there is no officially approved efficacious pharmaceutical intervention in clinical practice. Therefore, lifestyle modifications have emerged as the primary therapeutic approach for managing MASLD. Smoking cessation and the application of a series of natural ingredients have been shown to ameliorate pathological changes in the liver induced by CS, potentially serving as an effective approach to decelerating MASLD development. This article aims to elucidate the specific signaling pathways through which smoking promotes MASLD, while summarizing the reversal factors identified in recent studies, thereby offering novel insights for future research on and the treatment of MASLD.
Collapse
Affiliation(s)
- Jiatong Xu
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China; (J.X.); (Y.L.); (Z.F.)
| | - Yifan Li
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China; (J.X.); (Y.L.); (Z.F.)
| | - Zixuan Feng
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China; (J.X.); (Y.L.); (Z.F.)
| | - Hongping Chen
- Department of Histology and Embryology, Jiangxi Medical College, Nanchang University, Nanchang 330019, China
| |
Collapse
|
66
|
Kubota N, Kubota T, Kadowaki T. Physiological and pathophysiological actions of insulin in the liver. Endocr J 2025; 72:149-159. [PMID: 39231651 PMCID: PMC11850106 DOI: 10.1507/endocrj.ej24-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/21/2024] [Indexed: 09/06/2024] Open
Abstract
The liver plays an important role in the control of glucose homeostasis. When insulin levels are low, such as in the fasting state, gluconeogenesis and glycogenolysis are stimulated to maintain the blood glucose levels. Conversely, in the presence of increased insulin levels, such as after a meal, synthesis of glycogen and lipid occurs to maintain the blood glucose levels within normal range. Insulin receptor signaling regulates glycogenesis, gluconeogenesis and lipogenesis through downstream pathways such as the insulin receptor substrate (IRS)-phosphoinositide 3 (PI3) kinase-Akt pathway. IRS-1 and IRS-2 are abundantly expressed in the liver and are thought to be responsible for transmitting the insulin signal from the insulin receptor to the intracellular effectors involved in the regulation of glucose and lipid homeostasis. Impaired insulin receptor signaling can cause hepatic insulin resistance and lead to type 2 diabetes. In the present study, we focus on a concept called "selective insulin resistance," which has received increasing attention recently: the frequent coexistence of hyperglycemia and hepatic steatosis in people with type 2 diabetes and obesity suggests that it is possible for the insulin signaling regulating gluconeogenesis to be impaired even while that regulating lipogenesis is preserved, suggestive of selective insulin resistance. In this review, we review the progress in research on the insulin actions and insulin signaling in the liver.
Collapse
Affiliation(s)
- Naoto Kubota
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Tetsuya Kubota
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Tokyo 103-0002, Japan
| | | |
Collapse
|
67
|
Sartorelli V, Ciuffoli V. Metabolic regulation in adult and aging skeletal muscle stem cells. Genes Dev 2025; 39:186-208. [PMID: 39662967 PMCID: PMC11789647 DOI: 10.1101/gad.352277.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Adult stem cells maintain homeostasis and enable regeneration of most tissues. Quiescence, proliferation, and differentiation of stem cells and their progenitors are tightly regulated processes governed by dynamic transcriptional, epigenetic, and metabolic programs. Previously thought to merely reflect a cell's energy state, metabolism is now recognized for its critical regulatory functions, controlling not only energy and biomass production but also the cell's transcriptome and epigenome. In this review, we explore how metabolic pathways, metabolites, and transcriptional and epigenetic regulators are functionally interlinked in adult and aging skeletal muscle stem cells.
Collapse
Affiliation(s)
- Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Veronica Ciuffoli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
68
|
Taniguchi A, Watanabe H, Kimura K, Hashiuchi E, Ohashi N, Sato H, Sakai M, Matsumoto M, Asahara SI, Inoue H, Inaba Y. Proline enhances the hepatic induction of lipogenic gene expression in male hepatic fasn reporter mice. Biochem Biophys Res Commun 2025; 747:151314. [PMID: 39799864 DOI: 10.1016/j.bbrc.2025.151314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Hepatic de novo lipogenesis (DNL) is increased by both carbohydrate intake and protein consumption. In hepatic fat synthesis, a key role is played by the induction of the hepatic expression of lipogenic genes, including Fasn, Scd1, and Srebf1. Regarding carbohydrate intake, increased blood glucose and insulin levels promote the expression of hepatic lipogenic genes. However, although amino acids serve as a carbon source for hepatic DNL during protein consumption, their effects on hepatic lipogenic gene expression remain unclear. We investigated the effects of amino acids on hepatic lipogenic gene induction using primary cultured mouse hepatocytes and hepatic Fasn reporter (l-FasnGLuc) mice. In primary cultured hepatocytes, lipogenic gene expression (Fasn, Scd1, Srebf1) was induced under postprandial-mimicking conditions (treatment with insulin and LXR agonist). When hepatocytes were stimulated with an amino acid mixture containing 20 amino acids, the induction of lipogenic gene expression was enhanced, but this effect disappeared when proline was removed from the mixture. Furthermore, when each amino acid was tested individually, only proline potentiated the induction of lipogenic gene expression in hepatocytes under postprandial-mimicking conditions. In mouse liver, continuous proline infusion via osmotic pump increased Fasn gene expression and showed a trend toward increased Srebf1 expression. In l-FasnGLuc mice, continuous proline infusion resulted in sustained enhancement of hepatic Fasn transcription, measured by secreted luciferase activity. These results demonstrate that proline enhances the induction of hepatic lipogenic gene expression both in vitro and in vivo.
Collapse
Affiliation(s)
- Akinori Taniguchi
- Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, 920-8640, Kanazawa, Ishikawa, Japan
| | - Hitoshi Watanabe
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, 920-8640, Kanazawa, Ishikawa, Japan
| | - Kumi Kimura
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, 920-8640, Kanazawa, Ishikawa, Japan
| | - Emi Hashiuchi
- Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, 920-8640, Kanazawa, Ishikawa, Japan; Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, 920-8640, Kanazawa, Ishikawa, Japan
| | - Nami Ohashi
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-2-1 Higashi-Tamagawagakuen, Machida, 194-8543, Tokyo, Japan
| | - Hirofumi Sato
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, 113-8602, Tokyo, Japan
| | - Mashito Sakai
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, 113-8602, Tokyo, Japan
| | - Michihiro Matsumoto
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjyuku-ku, 162-8655, Tokyo, Japan
| | - Shun-Ichiro Asahara
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Chuo-ku, 650-0017, Kobe, Hyogo, Japan
| | - Hiroshi Inoue
- Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, 920-8640, Kanazawa, Ishikawa, Japan; Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, 920-8640, Kanazawa, Ishikawa, Japan
| | - Yuka Inaba
- Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, 920-8640, Kanazawa, Ishikawa, Japan; Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, 920-8640, Kanazawa, Ishikawa, Japan.
| |
Collapse
|
69
|
Levi-D'Ancona E, Walker EM, Zhu J, Deng Y, Sidarala V, Stendahl AM, Reck EC, Henry-Kanarek BA, Lietzke AC, Pasmooij MB, Hubers DL, Basrur V, Ghosh S, Stiles L, Nesvizhskii AI, Shirihai OS, Soleimanpour SA. TRAF6 integrates innate immune signals to regulate glucose homeostasis via Parkin-dependent and -independent mitophagy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635900. [PMID: 39974969 PMCID: PMC11838480 DOI: 10.1101/2025.01.31.635900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Activation of innate immune signaling occurs during the progression of immunometabolic diseases, including type 2 diabetes (T2D), yet the impact of innate immune signaling on glucose homeostasis is controversial. Here, we report that the E3 ubiquitin ligase TRAF6 integrates innate immune signals following diet-induced obesity to promote glucose homeostasis through the induction of mitophagy. Whereas TRAF6 was dispensable for glucose homeostasis and pancreatic β-cell function under basal conditions, TRAF6 was pivotal for insulin secretion, mitochondrial respiration, and increases in mitophagy following metabolic stress in both mouse and human islets. Indeed, TRAF6 was critical for the recruitment and function of machinery within both the ubiquitin-mediated (Parkin-dependent) and receptor-mediated (Parkin-independent) mitophagy pathways upon metabolic stress. Intriguingly, the effect of TRAF6 deficiency on glucose homeostasis and mitophagy was fully reversed by concomitant Parkin deficiency. Thus, our results implicate a role for TRAF6 in the cross-regulation of both ubiquitin- and receptor- mediated mitophagy through the restriction of Parkin. Together, we illustrate that β-cells engage innate immune signaling to adaptively respond to a diabetogenic environment.
Collapse
|
70
|
Ducote MP, Cothern CR, Batdorf HM, Fontenot MS, Martin TM, Iftesum M, Gartia MR, Noland RC, Burk DH, Ghosh S, Burke SJ. Pancreatic expression of CPT1A is essential for whole body glucose homeostasis by supporting glucose-stimulated insulin secretion. J Biol Chem 2025; 301:108187. [PMID: 39814231 PMCID: PMC11849070 DOI: 10.1016/j.jbc.2025.108187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/27/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025] Open
Abstract
Pancreatic islet β-cells express the Cpt1a gene, which encodes the enzyme carnitine palmitoyltransferase 1A (CPT1A), an enzyme that facilitates entry of long-chain fatty acids into the mitochondria. Because fatty acids are required for glucose-stimulated insulin secretion, we tested the hypothesis that CPT1A is essential to support islet β-cell function and mass. In this study, we describe genetic deletion of Cpt1a in pancreatic tissue (Cpt1aPdx1-/-) using C57BL/6J mice. Islet morphology, β-cell transcription factor abundance, islet ATP levels, glucose transporter 2 abundance, and expression of the dedifferentiation marker ALDH1A3 were analyzed by immunofluorescent staining. Glucose and insulin tolerance were assessed to investigate the metabolic status of genetic reductions in Cpt1a. Glucose-stimulated insulin secretion was evaluated in vivo and in isolated islets ex vivo by perifusion. Pancreatic deletion of Cpt1a reduced glucose tolerance but did not alter insulin sensitivity. Glucose-stimulated insulin secretion was reduced both in vivo and in islets isolated from Cpt1aPdx1-/- mice relative to control islets. Pancreatic islets from Cpt1aPdx1-/- mice displayed elevations in ALDH1A3, a marker of dedifferentiation, but no reduction in nuclear abundance of the β-cell transcription factors MafA and Nkx6.1 or the GLUT2 glucose transporter. However, intracellular ATP abundance was markedly decreased in islets isolated from Cpt1aPdx1-/- relative to littermate control mice. We conclude that there is an important physiological role for pancreatic CPT1A to maintain whole body glucose homeostasis by supporting glucose-stimulated insulin secretion and maintaining intracellular ATP levels in male mice.
Collapse
Affiliation(s)
- Maggie P Ducote
- Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Caroline R Cothern
- Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Heidi M Batdorf
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA; Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Molly S Fontenot
- Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Thomas M Martin
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Maria Iftesum
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Manas R Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Robert C Noland
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - David H Burk
- Cell Biology and Bioimaging Core, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Sujoy Ghosh
- Laboratory of Computational Biology, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Susan J Burke
- Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA; Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA.
| |
Collapse
|
71
|
Hatori H, Udagawa N, Yoshinari N, Uenishi K, Sugino N, Taguchi A. Difference in Bone Density in Young Women With Normal Occlusion and Malocclusion. Cureus 2025; 17:e79731. [PMID: 40166504 PMCID: PMC11955781 DOI: 10.7759/cureus.79731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Introduction Acquisition of higher peak bone mass in young women may prevent postmenopausal osteoporosis. Many factors, including nutritional intake, influence peak bone mass. The masticatory ability associated with nutritional intake may be lower in young women with malocclusion than in those with normal occlusion. We investigated the difference in bone mineral density (BMD) and nutritional intake between younger women with normal occlusion and malocclusion. Methods This study involved 45 women (mean age, 20.8 years) with normal occlusion and 49 women (mean age, 21.3 years) with malocclusion. Calcaneal BMD was measured by quantitative ultrasound. All participants completed the Food Frequency Questionnaire (FFQ). Differences in BMD, body mass index (BMI), and FFQ-obtained nutrient values between the two groups were analyzed with an independent t-test. Multiple regression analysis was also conducted to assess the association between BMD and nutrient values in both participants with normal occlusion and malocclusion. Results Participants with malocclusion tended to have lower BMD than those with normal occlusion (p = 0.10). The former had significantly higher vitamin A intake and lower sunlight exposure time than the latter. In the malocclusion group, participants with normal BMI had significantly higher BMD than those with both higher and lower BMI (p = 0.009 and p = 0.004, respectively). High vitamin B12 intake was also associated with higher BMD in this group (p = 0.031). Conclusions Malocclusion in young women influenced calcaneal BMD through nutritional intake, sunlight exposure, and BMI. Orthodontic treatment in young women with malocclusion may contribute to obtaining higher peak bone mass.
Collapse
Affiliation(s)
- Haruka Hatori
- Department of Orthodontics, School of Dentistry, Matsumoto Dental University, Shiojiri, JPN
| | - Nobuyuki Udagawa
- Department of Biochemistry, School of Dentistry, Matsumoto Dental University, Shiojiri, JPN
| | - Nobuo Yoshinari
- Department of Operative Dentistry, Endodontology, and Periodontology, School of Dentistry, Matsumoto Dental University, Shiojiri, JPN
| | - Kazuhiro Uenishi
- Division of Nutritional Physiology, Kagawa Nutrition University, Sakado, JPN
| | - Noriyuki Sugino
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Matsumoto Dental University, Shiojiri, JPN
| | - Akira Taguchi
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Matsumoto Dental University, Shiojiri, JPN
| |
Collapse
|
72
|
Cui W, Ma Y, Zhang L, Zhang L, Yao Q, Zhang J, Cheng Y, Zeng W, Liu Q, Liu F, Liang C. Neuregulin 1 improved gastric motility and reduced gastric inflammation by activating the α7nAChR through the cholinergic anti-inflammatory pathway in diabetic rats. Toxicol Appl Pharmacol 2025; 495:117205. [PMID: 39689756 DOI: 10.1016/j.taap.2024.117205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
Diabetic gastroparesis (DGP), a prevalent complication of diabetes, is characterized by delayed gastric emptying and inflammation. The dorsal motor nucleus of the vagus (DMV) plays a crucial role in modulating gastric function via the vagus nerve. Neuregulin 1 (NRG1), which is present in the DMV and influences the autonomic nervous system, has an unclear role in DGP. This study aimed to investigate the expression of NRG1 in the DMV of Zucker diabetic fatty (ZDF) rats and to evaluate the impact of centrally administered NRG1 on gastric motility and inflammation, as well as the underlying mechanisms. Our findings revealed a decrease in NRG1 and choline acetyltransferase (ChAT) expression in the DMV of ZDF rats, corresponding to weakened gastric motility. Microinjection of AAV-NRG1 (overexpressed NRG1 by means of an adeno-associated viral vector delivery of NRG1) into the DMV enhanced gastric motility and increased vagal nerve discharge frequency. Moreover, AAV-NRG1 upregulated acetylcholine (Ach) and α7 nicotinic acetylcholine receptor (α7nAChR) expression in the gastric body, mitigating gastric inflammation. The beneficial effects of AAV-NRG1 were partially reversed by vagotomy or α7nAChR antagonism. These findings provide novel evidence that NRG1 in the DMV can stimulate Ach release and activate α7nAChRs, thereby reducing inflammation and restoring gastric motility via the vagus nerve. This implicates the NRG1 as a potential therapeutic target for DGP.
Collapse
Affiliation(s)
- Weigang Cui
- Department of Human Anatomy, Medical college of Jiaying University, Meizhou, China; Department of Human Anatomy and histoembryology, Xinxiang Medical University, Xinxiang, China; Institute of Neuroscience and Mental Health, Medical college of Jiaying University, Meizhou, China.
| | - Yuqi Ma
- Department of Human Anatomy and histoembryology, Xinxiang Medical University, Xinxiang, China; College of Pharmaceutical Sciences, Soochow University, Soochow, China
| | - Libin Zhang
- Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - Lei Zhang
- Institute of Neuroscience and Mental Health, Medical college of Jiaying University, Meizhou, China
| | - Qianyin Yao
- Department of Human Anatomy, Medical college of Jiaying University, Meizhou, China
| | - Jie Zhang
- Department of Human Anatomy, Medical college of Jiaying University, Meizhou, China
| | - Yatao Cheng
- Department of Human Anatomy, Medical college of Jiaying University, Meizhou, China
| | - Wenqin Zeng
- Department of Human Anatomy, Medical college of Jiaying University, Meizhou, China
| | - Qin Liu
- Department of Human Anatomy, Medical college of Jiaying University, Meizhou, China
| | - Fengyun Liu
- Department of Human Anatomy, Medical college of Jiaying University, Meizhou, China
| | | |
Collapse
|
73
|
Bariya S, Tao Y, Zhang R, Zhang M. Impact of sleep characteristics on IVF/ICSI outcomes: A prospective cohort study. Sleep Med 2025; 126:122-135. [PMID: 39672092 DOI: 10.1016/j.sleep.2024.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Infertility affects millions of individuals worldwide, imposing significant personal and societal burdens. Assisted reproductive technologies (ART), such as IVF and ICSI, provide hope for many, yet clinical pregnancy rate per embryo transfer remains around 35 %. Modifiable lifestyle factors, including sleep, may influence ART outcomes. However, the relationship between specific sleep characteristics and IVF/ICSI success is unclear. This study aims to explore the associations between sleep characteristics and various IVF/ICSI outcomes. Additionally, we investigated if perceived stress mediates these relationships. METHODS This prospective cohort study enrolled 174 women undergoing IVF/ICSI at Zhongnan Hospital of Wuhan University from December 2021 to December 2023. Prior to initial ART treatment, participants completed the Pittsburgh Sleep Quality Index (PSQI) and the Perceived Stress Scale (PSS-10). IVF/ICSI outcomes such as the number of retrieved oocytes, matured oocytes, number of fertilized oocytes, fertilization rate, good-quality embryos, blastocyst formation rate and early pregnancy outcome (implantation and clinical pregnancy) were obtained from medical records. We employed multivariate generalized linear models to assess the associations between sleep characteristics and IVF/ICSI outcomes. Dose-response relationships between napping duration and maturation rate were analyzed using generalized additive models. Mediation analysis was used to assess the role of stress in the relationship between sleep characteristics and IVF/ICSI outcomes. RESULTS Women reporting poor sleep quality had significantly fewer retrieved oocytes (-22.89 %, 95%CI: 37.82 %, -4.00 %) and matured oocytes (-22.01 %, 95%CI: 37.54 %, -2.62 %). Those sleeping ≥10 h per night had fewer retrieved oocytes (-30.68 %, 95%CI: 48.88 %, -6.00 %), matured oocytes (-27.17 %, 95%CI: 46.57 %, -0.73 %), and good-quality embryos (-45.64 %, 95%CI: 65.43 %, -14.51 %). Women experiencing difficulty falling asleep more than three times a week had a significant reduction in blastocyst rates (-64.40 %, 95 % CI: 85.55 %, -12.30 %). Those reporting difficulty falling asleep less than once a week had fewer retrieved oocytes (-28.89 %, 95%CI: 47.34 %, -3.98 %), and matured oocytes (-27.77 %, 95%CI: 46.90 %, -1.73 %). Napping exceeding 1 h daily was associated with a significantly lower oocyte maturation rate (-73.8 %, 95%CI: 88.91 %, -38.06 %). A significant non-linear dose-response relationship was observed between napping duration and maturation rate (p < 0.001), with maturation rates initially increasing slightly with short naps but declining significantly with longer naps, particularly beyond 1 h. This relationship was significant among women with good sleep quality (PSQI ≤5) (p < 0.001) and those with normal BMI (p = 0.0005). Perceived stress did not significantly mediate these associations. CONCLUSION Our findings suggest that sleep characteristics, particularly poor quality, difficulty falling asleep, long sleep durations, negatively impact various IVF/ICSI outcomes. Longer daytime napping is inversely associated with oocyte maturation rates, especially among women with good sleep quality and normal BMI. Perceived stress did not appear to influence the relationship between sleep and IVF outcome. While optimizing sleep patterns may hold promise for improving IVF/ICSI success rates, it is essential to approach lifestyle guidance with caution, given the current limitations in confirming causative roles. Further studies are needed to clarify the extent and nature of the relationship between sleep characteristics and IVF/ICSI outcomes.
Collapse
Affiliation(s)
- Shrijan Bariya
- Department of Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China; Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, China
| | - Yun Tao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China; Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, China
| | - Ruiqing Zhang
- Department of Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China; Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, China
| | - Ming Zhang
- Department of Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China; Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, China.
| |
Collapse
|
74
|
Chen J, Pei B, Shi S. Association between egg consumption and risk of obesity: A comprehensive review: EGG CONSUMPTION AND OBESITY. Poult Sci 2025; 104:104660. [PMID: 39721264 PMCID: PMC11731440 DOI: 10.1016/j.psj.2024.104660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Eggs serve as a vital source of high-quality protein and lipids in the human diet, contributing significantly to nutritional intake; however, the relation between egg intake and health risks has been controversial. This study aimed to assess the relationship between egg intake and obesity and the effects of the various nutrients in eggs on obesity were separately investigated. This review involved searching Scopus, PubMed, Google Scholar for relevant articles from 2002 to 2022. Studies suggested that moderate egg consumption exerts little effect on blood lipid levels, that due to the body regulates endogenous cholesterol production in response to the external cholesterol intake. Furthermore, certain studies also verified that the presence of other nutrients in eggs, such as lecithin, unsaturated fatty acids, and apolipoproteins, not only does not contribute to elevated blood lipids but also plays a role in regulating lipid metabolism to prevent obesity. Additionally, the study reveals that different cooking methods significantly impact the nutritional composition of eggs, with soft-boiled eggs generally being the most advantageous for human health. This article reveals that dietary cholesterol or moderate egg intake was not significantly associated with a higher risk of obesity in healthy adults. Nevertheless, cholesterol-sensitive individuals should ensure moderate cholesterol intake.
Collapse
Affiliation(s)
- Jinglong Chen
- Jiangsu Institute of Poultry Science, Yangzhou, 225125, China.
| | - Bixuan Pei
- Jiangsu Institute of Poultry Science, Yangzhou, 225125, China.
| | - Shourong Shi
- Jiangsu Institute of Poultry Science, Yangzhou, 225125, China.
| |
Collapse
|
75
|
Gul P, Khan J, Li Q, Liu K. Moringa oleifera in a modern time: A comprehensive review of its nutritional and bioactive composition as a natural solution for managing diabetes mellitus by reducing oxidative stress and inflammation. Food Res Int 2025; 201:115671. [PMID: 39849793 DOI: 10.1016/j.foodres.2025.115671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/25/2025]
Abstract
Globally, diabetes mellitus (DM) and its complications are considered among the most significant public health problems. According to numerous scientific studies, Plants and their bioactive compounds may reduce inflammation and oxidative stress (OS), leading to a reduction in the progression of DM. Moringa oleifera (MO), widely used in Ayurvedic and Unani medicine for centuries because of its health-promoting characteristics, particularly its ability to control DM and its related complications. MO is a multi-purpose plant that has an impressive range of nutritional components including proteins, amino acids (Essential and non-essential amino acids), carbs, fats, fiber, vitamins, and phenolic compounds. In the modern era, scientists have paid close attention to the anti-diabetic, anti-oxidative and anti-inflammatory attributes and other medicinal properties, of MO leaves and seeds. MO leaves and seeds have modulatory effects on DM that are likely influenced by multiple mechanisms. Some of these mechanisms include direct effects, but other mechanisms involve inhibition the production of inflammatory markers, modulation of the gut microbiome, reduction of OS, enhancement of glucose metabolism through hexokinase and glucose 6-phosphate dehydrogenase, improve insulin sensitivity and glucose uptake in the liver and muscles. Overall, these findings suggest that MO may play a role in lowering the risk of DM and its related outcomes. The purpose of this review is to provide a comprehensive overview of the nutritional and bioactive profiles of MO leaves and seeds, as well as to investigate their possible anti-diabetic effects by modulating oxidative stress and inflammation. Our results indicate that MO may be a beneficial natural resource for management of DM and related issues by lowering oxidative stress and inflammation. Furthermore, studies on MO has yielded promising findings in diabetic animal models, indicating antioxidant and anti-inflammatory properties. However, human trials have shown less solid results, most likely due to a lack of studies, different techniques, and dosages. More clinical research is needed to fully understand MO's anti-diabetic potential, notably in lowering oxidative stress and inflammation, both of which are critical in controlling diabetes complications.
Collapse
Affiliation(s)
- Palwasha Gul
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 China.
| | - Jabir Khan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 China.
| | - Qingyun Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 China.
| | - Kunlun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 China; School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001 China.
| |
Collapse
|
76
|
Zhao J, Zhong Y, Huang Q, Pan Z, Zheng Y, Miao D, Liu S, Chen P, Liu C, Liu M, Shen C. Cassia mimosoides L. decoction improves non-alcoholic fatty liver disease by modulating the pregnane X receptor. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119199. [PMID: 39631715 DOI: 10.1016/j.jep.2024.119199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cassia mimosoides L. (CML) is a traditional Chinese medicine (TCM), which is frequently used in the clinical practice of TCM in the Lingnan region of China for the treatment of obesity. However, it is not clear whether decoction of cassia seeds has beneficial effects on non-alcoholic fatty liver disease (NAFLD). OBJECTIVES This study investigates the effect of CML on NAFLD and its underlying mechanisms. MATERIALS AND METHODS The high-fat diet (HFD) was used to induce NAFLD mice, and 40 male C57BL/6J mice were divided into Control, HFD, and CML groups (CML-low 1.5 g/kg, CML-medium 2.25 g/kg, CML-high 4.5 g/kg). The mouse primary hepatocytes (MPHs) of wild type (WT) and PXR-/- mice were induced using OAPA and divided into Control, OAPA, and CML groups (10 mg/L, 100 mg/L). Glycolipid metabolism, inflammation, and oxidative stress levels were detected in vivo and in vitro. RESULTS Compared to the HFD group, the CML groups demonstrated reduced body weight, triglycerides, total cholesterol, blood glucose, and mRNA levels of the lipid metabolism genes Srebp-1c and ACC1 in mice (p < 0.05 or 0.01). The ELISA results indicated that CML inhibited the production of IL-1β, IL-6, and TNF-α (p < 0.05). Furthermore, CML increased the SOD level (p < 0.01) to improve oxidative stress. RNA-seq expression showed that CML suppressed the transcriptional level of pregnane X receptor (PXR)(p < 0.05). In vitro experiments, the protective effect of CML against OAPA-induced lipid accumulation and inflammation observed in WT MPHs disappeared in PXR-/- MPHs (IC50: 1.04 mg/mL). CONCLUSION CML decoction ameliorates NAFLD mainly by inhibiting the PXR signaling pathway, which provides a theoretical basis for the broad application of CML in clinical practice.
Collapse
Affiliation(s)
- Jian Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanhua Zhong
- Department of Acupuncture-Rehabilitation, Guangzhou-Liwan Hospital of Chinese Medicine, Guangzhou, China
| | - Qingyin Huang
- Department of Endocrinology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhisen Pan
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Zheng
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, China
| | - Deyu Miao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siqi Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Penglong Chen
- Pharmacy Department of the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changhui Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Liu
- Department of Endocrinology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuangpeng Shen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Endocrinology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; ShenShan Hospital, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Shanwei, 516600, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
77
|
Zhang T, Zhao S, Gu C. Role of PGC-1α in the proliferation and metastasis of malignant tumors. J Mol Histol 2025; 56:77. [PMID: 39881043 DOI: 10.1007/s10735-025-10360-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/19/2025] [Indexed: 01/31/2025]
Abstract
Malignant tumors are among the major diseases threatening human survival in the world, and advancements in medical technology have led to a steady increase in their detection rates worldwide. Despite unique clinical presentations across the spectrum of malignancies, treatment modalities generally adhere to common strategies, encompassing primarily surgical intervention, radiation therapy, chemotherapy, and targeted treatments. Uncovering the genetic elements contributing to cancer cell proliferation, metastasis, and drug resistance remains a pivotal pursuit in the development of novel targeted therapeutics. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A/PGC-1α) is a transcriptional coactivator that influences most cellular metabolic pathways. Its aberrant expression is associated with numerous chronic diseases, including diabetes, heart failure, neurodegenerative disorders, and cancer development. This study primarily discusses the structure, physiological functions, regulatory mechanisms, and research advancement concerning the role of PGC-1α in the proliferation and metastasis of malignant tumors. Targeting PGC-1α and its related regulatory pathways for therapeutic interventions holds promise in facilitating precise and individualized oncological treatments. This approach is expected to counteract drug resistance in patients with cancer and offer a novel direction for the treatment of malignant tumors.
Collapse
Affiliation(s)
- Tianyi Zhang
- Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
- Dalian Medical University, Dalian, 116011, China
| | - Shilei Zhao
- Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
- Dalian Medical University, Dalian, 116011, China
| | - Chundong Gu
- Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
- Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
78
|
Blom SE, Behan-Bush RM, Ankrum JA, Yang L, Stephens SB. Proinflammatory cytokines mediate pancreatic β-cell specific alterations to Golgi morphology via iNOS-dependent mitochondrial inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635550. [PMID: 39975379 PMCID: PMC11838340 DOI: 10.1101/2025.01.29.635550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Type 1 diabetes (T1D) is caused by the selective autoimmune ablation of pancreatic β-cells. Emerging evidence reveals β-cell secretory dysfunction arises early in T1D development and may contribute to diseases etiology; however, the underlying mechanisms are not well understood. Our data reveal that proinflammatory cytokines elicit a complex change in the β-cell's Golgi structure and function. The structural modifications include Golgi compaction and loss of the inter-connecting ribbon resulting in Golgi fragmentation. Our data demonstrate that iNOS generated nitric oxide (NO) is necessary and sufficient for β-cell Golgi re-structuring. Moreover, the unique sensitivity of the β-cell to NO-dependent mitochondrial inhibition results in β-cell specific Golgi alterations that are absent in other cell types, including α-cells. Collectively, our studies provide critical clues as to how β-cell secretory functions are specifically impacted by cytokines and NO that may contribute to the development of β-cell autoantigens relevant to T1D.
Collapse
|
79
|
Wang Z, Gurlo T, Satin LS, Fraser SE, Butler PC. Subcellular Compartmentalization of Glucose Mediated Insulin Secretion. Cells 2025; 14:198. [PMID: 39936989 PMCID: PMC11817236 DOI: 10.3390/cells14030198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 02/13/2025] Open
Abstract
Regulation of blood glucose levels depends on the property of beta cells to couple glucose sensing with insulin secretion. This is accomplished by the concentration-dependent flux of glucose through glycolysis and oxidative phosphorylation, generating ATP. The resulting rise in cytosolic ATP/ADP inhibits KATP channels, inducing membrane depolarization and Ca2+ influx, which prompts insulin secretion. Evidence suggests that this coupling of glucose sensing with insulin secretion may be compartmentalized in the submembrane regions of the beta cell. We investigated the subcellular responses of key components involved in this coupling and found mitochondria in the submembrane zone, some tethered to the cytoskeleton near capillaries. Using Fluorescent Lifetime Imaging Microscopy (FLIM), we observed that submembrane mitochondria were the fastest to respond to glucose. In the most glucose-responsive beta cells, glucose triggers rapid, localized submembrane increases in ATP and Ca2+ as synchronized ~4-min oscillations, consistent with pulsatile insulin release after meals. These findings are consistent with the hypothesis that glucose sensing is coupled with insulin secretion in the submembrane zone of beta cells. This zonal adaptation would enhance both the speed and energy efficiency of beta cell responses to glucose, as only a subset of the most accessible mitochondria would be required to trigger insulin secretion.
Collapse
Affiliation(s)
- Zhongying Wang
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (Z.W.); (S.E.F.)
- Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Tatyana Gurlo
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90089, USA;
| | - Leslie S. Satin
- Brehm Diabetes Center, Caswell Diabetes Institute, Department of Pharmacology, University of Michigan, Ann Arbor, MI 38105, USA;
| | - Scott E. Fraser
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (Z.W.); (S.E.F.)
- Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Peter C. Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90089, USA;
| |
Collapse
|
80
|
Chen J, Wu Y, Hao W, You J, Wu L. Non-canonical hepatic androgen receptor mediates glucagon sensitivity in female mice through the PGC1α/ERRα/mitochondria axis. Cell Rep 2025; 44:115188. [PMID: 39792556 DOI: 10.1016/j.celrep.2024.115188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/27/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Glucagon has recently been found to modulate liver fat content, in addition to its role in regulating gluconeogenesis. However, the precise mechanisms by which glucagon signaling synchronizes glucose and lipid metabolism in the liver remain poorly understood. By employing chemical and genetic approaches, we demonstrate that inhibiting the androgen receptor (AR) impairs the ability of glucagon to stimulate gluconeogenesis and lipid catabolism in primary hepatocytes and female mice. Notably, AR expression in the liver of female mice is up to three times higher than that in their male littermates, accounting for the more pronounced response to glucagon in females. Mechanistically, hepatic AR promotes energy metabolism and enhances lipid breakdown for liver glucose production in response to glucagon treatment through the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α)/estrogen-related receptor alpha (ERRα)-mitochondria axis. Overall, our findings highlight the crucial role of hepatic AR in mediating glucagon signaling and the sexual dimorphism in hepatic glucagon sensitivity.
Collapse
Affiliation(s)
- Jie Chen
- Fudan University, Shanghai, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yuanyuan Wu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Wenyuan Secondary School Affiliated to Xuejun High School, Hangzhou, Zhejiang, China
| | - Wanyu Hao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Pharmaceuticals, Hangzhou, Zhejiang, China
| | - Jia You
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China.
| | - Lianfeng Wu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
81
|
Peng Y, Zhang Y, Liu Y, Ma L. Characterization of Argonaute Nuclease from Mesophilic Bacterium Chroococcidiopsis. Int J Mol Sci 2025; 26:1085. [PMID: 39940853 PMCID: PMC11817465 DOI: 10.3390/ijms26031085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/20/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Mesophilic microbial sources of prokaryotic Argonaute (pAgo) programmable nucleases have garnered considerable attention for their potential applications in genome editing and molecular diagnostics. In this study, we characterized a novel pAgo from the mesophilic bacterium Chroococcidiopsis sp. (ChAgo), which can cleave single-stranded DNA (ssDNA) using both 5'-phosphorylated guide DNA (5'P-gDNA) and 5'-hydroxylated guide DNA (5'OH-gDNA). Efficient cleavage occurs using 14-25 nt 5'P-gDNA and 13-20 nt 5'OH-gDNA in the presence of Mn2+ ions at temperatures ranging from 25 to 75 °C, with optimal activity at 55 °C. ChAgo demonstrates low tolerance for single-base mismatches, similar to other pAgo proteins. The cleavage efficiency varies based on the guide/target pair, with mismatches at specific positions significantly reducing activity. For instance, mismatches at positions 4, 5, or 12 in T-gDNA/target pairs and at positions 5 or 8-10 in g38NT-gDNA/target pairs notably decrease efficiency. ChAgo's sensitivity to mismatches makes it a promising tool for nucleic acid manipulation and detection, requiring initial screening for high cleavage efficiency sites and subsequent identification of mismatch positions.
Collapse
Affiliation(s)
| | | | - Yang Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China; (Y.P.); (Y.Z.)
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China; (Y.P.); (Y.Z.)
| |
Collapse
|
82
|
Tang R, Xie C, Zhang X. NOD1: a metabolic modulator. Front Endocrinol (Lausanne) 2025; 15:1484829. [PMID: 39906040 PMCID: PMC11790428 DOI: 10.3389/fendo.2024.1484829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/30/2024] [Indexed: 02/06/2025] Open
Abstract
Nucleotide-binding oligomerization domain 1 (NOD1) is an intracellular pattern recognition receptor that detects injury signals and initiates inflammatory responses and host defense. Furthermore, NOD1 serves as a metabolic mediator by influencing the metabolism of various tissues, including adipose tissue, liver, cardiovascular tissue, pancreatic β cells, adrenal glands, and bones through diverse mechanisms. It has been discovered that activated NOD1 is associated with the pathological mechanisms of certain metabolic diseases. This review presents a comprehensive summary of the impact of NOD1 on tissue-specific metabolism.
Collapse
Affiliation(s)
- Ruobing Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiyu Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
83
|
Tang T, Chen B, Hu J, Fan H, Zhang Z, Zhai T, Li C, Wang D, Xue W, Pei L, Chen F, Mi B, Zhao Y. The Association Between Egg and Egg-Derived Cholesterol Consumption, and Their Change Trajectories, with Obesity Among Chinese Adults: Results from the China Health and Nutrition Survey. Nutrients 2025; 17:333. [PMID: 39861463 PMCID: PMC11767974 DOI: 10.3390/nu17020333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/02/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: As a widely consumed, nutritious, and affordable food, eggs and their derivatives' impacts on obesity remain inconclusive. In this study, we aimed to determine the association between egg and egg-derived cholesterol consumption, and their change trajectories, with obesity among Chinese adults. Methods: Longitudinal data collected by the China Health and Nutrition Survey from 1997 to 2015 were analyzed. The latent growth mixture model was used to identify eggs and egg-derived cholesterol consumption trajectories. Cox proportional hazard models with shared frailty were used to analyze the association between egg and egg-derived cholesterol consumption, and their change trajectories, with obesity. Results: Data from 10,971 and 9483 participants aged ≥18 years old were used for the analyses of general obesity and central obesity, respectively. Compared to participants with an average egg intake of 0.1-50.0 g/d during the follow-up period, adults who never consumed eggs or those with an average egg intake of 50.1-100.0 g/d and >100.0 g/d had a higher risk of general obesity, with hazard ratios (HRs) and 95% confidence intervals (CIs) of 1.31 (1.08, 1.58), 1.30 (1.07, 1.60), and 1.98 (1.17, 3.35), respectively, and had a higher risk of central obesity, with HRs (95% CIs) of 1.17 (1.04, 1.31), 1.31 (1.14, 1.50), and 1.64 (1.15, 2.36), respectively. Participants with a "Baseline Low-Significant Rising Pattern" or a "Baseline High-Rising then Falling Pattern" of egg consumption trajectories during the follow-up period had a higher risk of general obesity, with HRs (95% CIs) of 1.56 (1.25, 1.93) and 1.38 (1.13, 1.69), respectively, and central obesity, with HRs (95% CIs) of 1.47 (1.29, 1.68) and 1.52 (1.34, 1.72), respectively. Compared to the second quartile (Q2) group of the average egg-derived cholesterol intake during the follow-up period, Q1, Q3, and Q4 groups had a higher risk of general obesity, with HRs (95% CIs) of 1.28 (1.06,1.54), 1.21 (1.02, 1.44), and 1.43 (1.19, 1.71), respectively, and a higher risk of central obesity, with HRs (95% CIs) of 1.20 (1.08, 1.33), 1.11 (1.01, 1.23), and 1.32 (1.19, 1.46), respectively. Participants with a "Baseline Low-Significant Rising Pattern" or with a "Baseline High-Rising then Falling Pattern" of egg-derived cholesterol consumption during the follow-up period had a higher risk of general obesity, with HRs (95% CIs) of 1.54 (1.25, 1.92) and 1.37 (1.15, 1.64), respectively, and a higher risk of central obesity, with HRs (95% CIs) of 1.46 (1.28, 1.68) and 1.47 (1.32, 1.64), respectively. Conclusions: Both the insufficient and excessive intake of eggs and egg-derived cholesterol tended to be associated with a higher risk of general and central obesity. Suddenly increasing or consistently high levels of egg and egg-derived cholesterol intake seemed to be associated with a higher risk of obesity. To prevent obesity, people should consume a moderate amount of eggs and egg-derived cholesterol.
Collapse
Affiliation(s)
- Tianhui Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, No. 76, Yanta West Road, Xi’an 710061, China
| | - Binghua Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, No. 76, Yanta West Road, Xi’an 710061, China
| | - Jiahao Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, No. 76, Yanta West Road, Xi’an 710061, China
| | - Hangzhao Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, No. 76, Yanta West Road, Xi’an 710061, China
| | - Zilan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, No. 76, Yanta West Road, Xi’an 710061, China
| | - Tianyang Zhai
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, No. 76, Yanta West Road, Xi’an 710061, China
| | - Chunxiao Li
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Duolao Wang
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Wanli Xue
- Department of Nutrition and Food Safety, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Leilei Pei
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, No. 76, Yanta West Road, Xi’an 710061, China
| | - Fangyao Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, No. 76, Yanta West Road, Xi’an 710061, China
| | - Baibing Mi
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, No. 76, Yanta West Road, Xi’an 710061, China
| | - Yaling Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, No. 76, Yanta West Road, Xi’an 710061, China
| |
Collapse
|
84
|
Zhao Q, Samuels C, Timmins P, Massri N, Chemerinski A, Wu T, Loia R, Cheung EK, Zhang X, Arora R, Babwah AV, Douglas NC. Signaling via retinoic acid receptors mediates decidual angiogenesis in mice and human stromal cell decidualization. FASEB J 2025; 39:e70291. [PMID: 39777800 PMCID: PMC11706222 DOI: 10.1096/fj.202400766r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 12/05/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
At the maternal-fetal interface, tightly regulated levels of retinoic acid (RA), the physiologically active metabolite of vitamin A, are required for embryo implantation and pregnancy success. Herein, we utilize mouse models, primary human cells, and pharmacological tools to demonstrate how depletion of RA signaling via RA receptor (RAR) disrupts implantation and progression of early pregnancy. To inhibit RAR signaling during early pregnancy, BMS493, an inverse pan-RAR agonist that prevents RA-induced differentiation, was administered to pregnant mice during the peri-implantation period. Attenuation of RA/RAR signaling prior to embryo implantation results in implantation failure, whereas attenuation of RA/RAR signaling after embryo implantation disrupts the post-implantation decidual vasculature and results in pregnancy failure by mid-gestation. To inhibit RAR signaling during human endometrial stromal cell (HESC) decidualization, primary HESCs and decidualized primary HESCs were transfected with silencing RNA specific for human RARA. Inhibition of RA/RARA signaling prevents initiation of HESC decidualization, but not maintenance of the decidualized HESC phenotype. These data show that RA/RAR signaling is required for maintenance of the decidual vasculature that supports early pregnancy in mice, and distinct RAR signaling is required for initiation, but not maintenance of primary HESC decidualization in vitro.
Collapse
Affiliation(s)
- Qingshi Zhao
- Department of Obstetrics, Gynecology and Reproductive HealthRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| | - Cherie‐Ann Samuels
- Department of Obstetrics, Gynecology and Reproductive HealthRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| | - Patrick Timmins
- Department of Obstetrics, Gynecology and Reproductive HealthRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| | - Noura Massri
- Department of Obstetrics, Gynecology and Reproductive BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Anat Chemerinski
- Department of Obstetrics, Gynecology and Reproductive HealthRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| | - Tracy Wu
- Department of Obstetrics, Gynecology and Reproductive HealthRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| | - Rachel Loia
- Department of Obstetrics, Gynecology and Reproductive HealthRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| | - Emma K. Cheung
- Department of Obstetrics, Gynecology and Reproductive HealthRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| | - Xusheng Zhang
- Epigenomics/Computational Genomics CoreAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Ripla Arora
- Department of Obstetrics, Gynecology and Reproductive BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Andy V. Babwah
- Department of PediatricsRobert Wood Johnson Medical School, Rutgers Biomedical and Health SciencesNew BrunswickNew JerseyUSA
| | - Nataki C. Douglas
- Department of Obstetrics, Gynecology and Reproductive HealthRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
- Center for Immunity and InflammationRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| |
Collapse
|
85
|
Chen K, Dou X, Lin Y, Bai D, Luo Y, Zhou L. Pachymic acid promotes brown/beige adipocyte differentiation and lipid metabolism in preadipocytes 3T3-L1 MBX. Zhejiang Da Xue Xue Bao Yi Xue Ban 2025:1-9. [PMID: 39807020 DOI: 10.3724/zdxbyxb-2024-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
OBJECTIVES To investigate the effect of pachymic acid on brown/beige adipocyte differentiation and lipid metabolism in preadipocytes 3T3-L1 MBX. METHODS The brown cocktail method was employed to induce 3T3-L1 MBX cells to differentiate into beige adipocytes. The impact of pachymic acid on the viability of 3T3-L1 MBX preadipocytes was evaluated using the CCK-8 assay. The formation of lipid droplets following treatment with pachymic acid was observed through oil red O staining, and the content of lipids in differentiated cells was determined. The expression levels of key browning genes, including uncoupling protein (Ucp) 1, the peroxisome proliferation-activating receptor gamma coactivator (Pgc)-1α, and the transcription factor containing PR domain 16 (Prdm16) were detected by quantitative reverse transcription polymerase chain reaction. The expression of sterol regulatory element binding protein (Srebp) 1c, acetyl-CoA carboxylase (Acc), fatty acid synthetase (Fas), and steroid-sensitive lipase (Hsl), fatty triglyceride hydrolase (Atgl), and carnitine palmitoyl transferase (Cpt) 1 of lipolysis-related genes were also examined. RESULTS The 3T3-L1 MBX was induced in vitro to form beige adipocytes with high expression of key browning genes, including Ucp1, Pgc-1α, Prdm16, and beige adipose-marker genes, including Cd137, Tbx1, and Tmem26. The concentration range of 0-80 μM pachymic acid was non-cytotoxic to 3T3-L1 MBX. Pachymic acid treatment significantly inhibited the differentiation of 3T3-L1 MBX, resulting in a notable decrease in lipid accumulation content (P<0.01). Additionally, there was a marked increase in the expression of key browning genes and their proteins, such as Ucp1, Pgc-1α, and Prdm16, while the expressions of fat synthesis-related genes Srebp1c, Acc and Fas were significantly decreased (all P<0.05). The expressions of lipolysis-related genes, including Hsl, Atgl, and Cpt1, were significantly increased (all P<0.05). Besides, treating with 20 μmol/L pachymic acid showed the most pronounced effect. CONCLUSIONS Pachymic acid can inhibit fat synthesis and promote lipid decomposition by regulating the brown formation and lipid differentiation of 3T3-L1 MBX preadipocytes.
Collapse
Affiliation(s)
- Kunling Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yiyou Lin
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Danyao Bai
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yangzhou Luo
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liping Zhou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
86
|
Guo R, Song X, Li X, Zeng C, Chen Y, Li C, Yang J, Ou D. Effects of Red Clover Isoflavones on Growth Performance, Immune Function, and Cecal Microflora of Mice. Animals (Basel) 2025; 15:150. [PMID: 39858150 PMCID: PMC11758327 DOI: 10.3390/ani15020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/25/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Isoflavone components extracted from red clover have anti-inflammatory, antioxidant and immune boosting effects. We hypothesize that red clover isoflavones (RCIs) achieve health-promoting effects via altering the gut microbiota. A total of 48 mice (20 ± 2 g) were randomly divided into a control group, low-dose group (0.05% RCIs in feed), middle-dose group (0.1% RCIs in feed), and high-dose group (0.2% RCIs in feed) with 12 mice per group. The feeding period was 20 d. The results showed that RCIs can increase the daily gain and decrease the ratio of feed to gain in mice. The organ indexes and blood biochemical indexes of the mice in each RCI group were in the normal range, indicating that RCIs do not damage liver or kidney function. RCI supplementation increased serum immunity and altered the microbial community structure in the cecum of the mice. RCIs can increase the diversity of beneficial bacteria such as Bacteroidaceae, Muribaculaceae, and Akkermansiaceae, and reduced the pathogenic Staphylococcaceae. Therefore, supplementing the diet with RCIs results in improved growth performance and notable alterations in the cecal microbiota in mice, and has potential applications as a feed additive to improve livestock production.
Collapse
Affiliation(s)
- Rongrong Guo
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; (R.G.); (X.S.); (X.L.); (C.Z.); (Y.C.)
| | - Xuqin Song
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; (R.G.); (X.S.); (X.L.); (C.Z.); (Y.C.)
| | - Xiaodie Li
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; (R.G.); (X.S.); (X.L.); (C.Z.); (Y.C.)
| | - Cheng Zeng
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; (R.G.); (X.S.); (X.L.); (C.Z.); (Y.C.)
| | - Ying Chen
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; (R.G.); (X.S.); (X.L.); (C.Z.); (Y.C.)
| | - Chunjie Li
- Laboratory of Pulmonary and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu 610000, China;
| | - Jian Yang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; (R.G.); (X.S.); (X.L.); (C.Z.); (Y.C.)
| | - Deyuan Ou
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; (R.G.); (X.S.); (X.L.); (C.Z.); (Y.C.)
| |
Collapse
|
87
|
Geirnaert F, Kerkhove L, Montay-Gruel P, Gevaert T, Dufait I, De Ridder M. Exploring the Metabolic Impact of FLASH Radiotherapy. Cancers (Basel) 2025; 17:133. [PMID: 39796760 PMCID: PMC11720285 DOI: 10.3390/cancers17010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
FLASH radiotherapy (FLASH RT) is an innovative modality in cancer treatment that delivers ultrahigh dose rates (UHDRs), distinguishing it from conventional radiotherapy (CRT). FLASH RT has demonstrated the potential to enhance the therapeutic window by reducing radiation-induced damage to normal tissues while maintaining tumor control, a phenomenon termed the FLASH effect. Despite promising outcomes, the precise mechanisms underlying the FLASH effect remain elusive and are a focal point of current research. This review explores the metabolic and cellular responses to FLASH RT compared to CRT, with particular focus on the differential impacts on normal and tumor tissues. Key findings suggest that FLASH RT may mitigate damage in healthy tissues via altered reactive oxygen species (ROS) dynamics, which attenuate downstream oxidative damage. Studies indicate the FLASH RT influences iron metabolism and lipid peroxidation pathways differently than CRT. Additionally, various studies indicate that FLASH RT promotes the preservation of mitochondrial integrity and function, which helps maintain apoptotic pathways in normal tissues, attenuating damage. Current knowledge of the metabolic influences following FLASH RT highlights its potential to minimize toxicity in normal tissues, while also emphasizing the need for further studies in biologically relevant, complex systems to better understand its clinical potential. By targeting distinct metabolic pathways, FLASH RT could represent a transformative advance in RT, ultimately improving the therapeutic window for cancer treatment.
Collapse
Affiliation(s)
- Febe Geirnaert
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (F.G.); (L.K.); (T.G.); (I.D.)
| | - Lisa Kerkhove
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (F.G.); (L.K.); (T.G.); (I.D.)
| | - Pierre Montay-Gruel
- Radiation Oncology Department, Iridium Netwerk, 2610 Antwerp, Belgium;
- Antwerp Research in Radiation Oncology (AreRO), Center for Oncological Research (CORE), University of Antwerp, 2020 Antwerp, Belgium
| | - Thierry Gevaert
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (F.G.); (L.K.); (T.G.); (I.D.)
| | - Inès Dufait
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (F.G.); (L.K.); (T.G.); (I.D.)
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (F.G.); (L.K.); (T.G.); (I.D.)
| |
Collapse
|
88
|
Zhou Y, Zhao J, Wen J, Wu Z, Dong Y, Chen Y. Unsupervised Learning-Assisted Acoustic-Driven Nano-Lens Holography for the Ultrasensitive and Amplification-Free Detection of Viable Bacteria. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406912. [PMID: 39575510 PMCID: PMC11727406 DOI: 10.1002/advs.202406912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/05/2024] [Indexed: 01/14/2025]
Abstract
Bacterial infection is a crucial factor resulting in public health issues worldwide, often triggering epidemics and even fatalities. The accurate, rapid, and convenient detection of viable bacteria is an effective method for reducing infections and illness outbreaks. Here, an unsupervised learning-assisted and surface acoustic wave-interdigital transducer-driven nano-lens holography biosensing platform is developed for the ultrasensitive and amplification-free detection of viable bacteria. The monitoring device integrated with the nano-lens effect can achieve the holographic imaging of polystyrene microsphere probes in an ultra-wide field of view (∽28.28 mm2), with a sensitivity limit of as low as 99 nm. A lightweight unsupervised learning hologram processing algorithm considerably reduces training time and computing hardware requirements, without requiring datasets with manual labels. By combining phage-mediated viable bacterial DNA extraction and enhanced CRISPR-Cas12a systems, this strategy successfully achieves the ultrasensitive detection of viable Salmonella in various real samples, demonstrating enhanced accuracy validated with the qPCR benchmark method. This approach has a low cost (∽$500) and is rapid (∽1 h) and highly sensitive (∽38 CFU mL-1), allowing for the amplification-free detection of viable bacteria and emerging as a powerful tool for food safety inspection and clinical diagnosis.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Marine Food Processing and Safety ControlDalian Polytechnic UniversityDalianLiaoning116034China
- Institute of Biopharmaceutical and Health EngineeringShenzhen International Graduate SchoolTsinghua UniversityShenzhenGuangdong518055China
- College of EngineeringHuazhong Agricultural UniversityWuhanHubei430070China
| | - Junpeng Zhao
- College of Food Science and TechnologyHuazhong Agricultural UniversityWuhanHubei430070China
| | - Junping Wen
- College of Food Science and TechnologyHuazhong Agricultural UniversityWuhanHubei430070China
| | - Ziyan Wu
- College of Food Science and TechnologyHuazhong Agricultural UniversityWuhanHubei430070China
| | - Yongzhen Dong
- State Key Laboratory of Marine Food Processing and Safety ControlDalian Polytechnic UniversityDalianLiaoning116034China
| | - Yiping Chen
- State Key Laboratory of Marine Food Processing and Safety ControlDalian Polytechnic UniversityDalianLiaoning116034China
| |
Collapse
|
89
|
Szkudelski T, Szkudelska K. The relevance of the heme oxygenase system in alleviating diabetes-related hormonal and metabolic disorders. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167552. [PMID: 39490940 DOI: 10.1016/j.bbadis.2024.167552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Heme oxygenase (HO) is an enzyme that catalyzes heme degradation. HO dysfunction is linked to various pathological conditions, including diabetes. Results of animal studies indicate that HO expression and activity are downregulated in experimentally induced diabetes. This is associated with severe hormonal and metabolic disturbances. However, these pathological changes have been shown to be reversed by therapy with HO activators. In animals with experimentally induced diabetes, HO was upregulated by genetic manipulation or by pharmacological activators such as hemin and cobalt protoporphyrin. Induction of HO alleviated elevated blood glucose levels and improved insulin action, among other effects. This effect resulted from beneficial changes in the main insulin-sensitive tissues, i.e., the skeletal muscle, the liver, and the adipose tissue. The action of HO activators was due to positive alterations in pivotal signaling molecules and regulatory enzymes. Furthermore, diabetes-related oxidative and inflammatory stress was reduced due to HO induction. HO upregulation was effective in various animal models of type 1 and type 2 diabetes. These data suggest the possibility of testing HO activators as a potential tool for alleviating hormonal and metabolic disorders in people with diabetes.
Collapse
Affiliation(s)
- Tomasz Szkudelski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland.
| | - Katarzyna Szkudelska
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland.
| |
Collapse
|
90
|
Das A, Shahriar TG, Zehravi M, Sweilam SH, Alshehri MA, Ahmad I, Nafady MH, Emran TB. Clinical management of eye diseases: carotenoids and their nanoformulations as choice of therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:329-349. [PMID: 39167170 DOI: 10.1007/s00210-024-03376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Eye diseases, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR), impose a substantial health cost on a worldwide scale. Carotenoids have emerged as intriguing candidates for pharmacological treatment of various disorders. Their therapeutic effectiveness, however, is hindered by poor solubility and vulnerability to degradation. Nanocarriers, such as nanoparticles, liposomes, and micelles, provide a transformational way to overcome these limits. This review explores the pharmacological potential of carotenoids, namely lutein, zeaxanthin, and astaxanthin, to treat several ocular disorders. The main emphasis is on their anti-inflammatory and antioxidant actions, which help to counteract inflammation and oxidative stress, crucial factors in the development of AMD and DR. The review evaluates the significant benefits of nano-formulated carotenoids, such as improved bioavailability, higher cellular absorption, precise administration to particular ocular tissues, and greater biostability, which make them superior to conventional carotenoids. Some clinical studies on the beneficial properties of carotenoids in eye diseases are discussed. Furthermore, safety and regulatory concerns are also taken into account. Ultimately, carotenoids, especially when created in their nano form, have significant potential for safeguarding eyesight and enhancing the overall well-being of several individuals afflicted with vision-endangering eye diseases.
Collapse
Affiliation(s)
- Amit Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | | | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohamed H Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, 12568, Egypt
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| |
Collapse
|
91
|
Luo X, Liu F, Zhu L, Liu C, Shen R, Ding X, Wang Y, Tang X, Peng Y, Zhang Z. Leupaxin promotes hepatic gluconeogenesis and glucose metabolism by coactivation with hepatic nuclear factor 4α. Mol Metab 2025; 91:102075. [PMID: 39603504 PMCID: PMC11647654 DOI: 10.1016/j.molmet.2024.102075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND As the primary source of glucose during fasting, hepatic gluconeogenesis is rigorously regulated to maintain euglycemia. Abnormal gluconeogenesis in the liver can lead to hyperglycemia, a key diagnostic marker and the primary pathological contributor to type 2 diabetes (T2D) and metabolic disorders. Hepatic nuclear factor-4 (HNF4α) is an important regulator of gluconeogenesis. In this study, we identify leupaxin (LPXN) as a novel coactivator for HNF4α. Although previous studies have shown that LPXN is highly correlated with cancer types such as B-cell differentiation and hepatocellular carcinoma progression, the role of LPXN in gluconeogenesis remains unknown. METHODS We initially used protein pull-down assays, mass spectrometry and luciferase assays to identify the coactivator that interacts with HNF4α in gluconeogenesis. We further leveraged cell cultures and mouse models to validate the functional importance of molecular pathway during gluconeogenesis by using adenovirus-mediated overexpression and adeno-associated virus shRNA-mediated knockdown both in vivo and ex vivo, such as in ob/db/DIO mice, HepG2 and primary hepatocytes. Following, we used CUT&Tag and chip qPCR to identify the LPXN-mediated mechanisms underlying the observed abnormal gluconeogenesis. Additionally, we assessed the translational relevance of our findings using human liver tissues from both healthy donors and patients with obesity/type 2 diabetes. RESULTS We found that LPXN interacts with HNF4α to participate in gluconeogenesis. Knockdown of LPXN expression in the liver effectively enhanced glucose metabolism, while its overexpression in the liver effectively inhibited it. Mechanistically, LPXN could translocate into the nucleus and was essential for regulating gluconeogenesis by binding to the PEPCK promoter, which controlled the expression of an enzyme involved in gluconeogenesis, mainly through the Gcg-cAMP-PKA pathway. Additionally, LPXN expression was found to be increased in the livers of patients with steatosis and diabetes, supporting a pathological role of LPXN. CONCLUSIONS Taken together, our study provides evidence that LPXN plays a critical role in modulating hepatic gluconeogenesis, thereby reinforcing the fact that targeting LPXN may be a potential approach for the treatment of diabetes and metabolic disorders.
Collapse
Affiliation(s)
- Xiaomin Luo
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Liu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lijun Zhu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caizhi Liu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ruhui Shen
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyin Ding
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufan Wang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofang Tang
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yongde Peng
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhijian Zhang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
92
|
Kaur A, Singh S, Mujwar S, Singh TG. Molecular Mechanisms Underlying the Therapeutic Potential of Plant-Based α-Amylase Inhibitors for Hyperglycemic Control in Diabetes. Curr Diabetes Rev 2025; 21:e020724231486. [PMID: 38956911 DOI: 10.2174/0115733998304373240611110224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Diabetes mellitus (DM), arising from pancreatic β-cell dysfunction and disrupted alpha-amylase secretion, manifests as hyperglycemia. Synthetic inhibitors of alphaamylase like acarbose manage glucose but pose adverse effects, prompting interest in plantderived alternatives rich in antioxidants and anti-inflammatory properties. OBJECTIVE The current review investigates plant-based alpha-amylase inhibitors, exploring their potential therapeutic roles in managing DM. Focusing on their ability to modulate postprandial hyperglycemia by regulating alpha-amylase secretion, it assesses their efficacy, health benefits, and implications for diabetes treatment. METHODS This review examines plant-derived alpha-amylase inhibitors as prospective diabetic mellitus treatments using PubMed, Google Scholar, and Scopus data. RESULTS Plant-derived inhibitors, including A. deliciosa, B. egyptiaca, and N. nucifera, exhibit anti-inflammatory and antioxidant properties, effectively reducing alpha-amylase levels in diabetic conditions. Such alpha-amylase inhibitors showed promising alternative treatment in managing diabetes with reduced adverse effects. CONCLUSION The current literature concludes that plant-derived alpha-amylase inhibitors present viable therapeutic avenues for diabetes management by modulating alpha-amylase secretion by regulating inflammatory, oxidative stress, and apoptotic mechanisms involved in the pathogenesis of diabetes. Further investigation into their formulations and clinical efficacy may reveal their more comprehensive diabetes therapeutic significance, emphasizing their potential impact on glucose regulation and overall health.
Collapse
Affiliation(s)
- Amritpal Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| |
Collapse
|
93
|
Zhang X, Wei G, Zhang X, Guo J, Zhao J, Li X, Zhao X, Shi J, Yang Y, Fan S, Wang H, Zhi K, Zhu K, Du J, Cao W. Association of Sleep Duration and Daytime Napping With Risk of Hyperuricemia: A Systematic Review and Meta-Analysis. Int J Rheum Dis 2025; 28:e70050. [PMID: 39844478 DOI: 10.1111/1756-185x.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025]
Abstract
BACKGROUND Hyperuricemia (HUA), marked by elevated serum urate levels, is increasingly prevalent worldwide. The relationship between lifestyle factors such as sleep duration, daytime napping, and HUA risk remains unclear. Although some studies suggest that sleep variables, including short or long sleep durations and napping, may influence serum uric acid levels, results are inconsistent. METHODS A systematic review and meta-analysis was performed according to the PRISMA guidelines. Databases such as PubMed, Embase, Web of Science, and Cochrane Library were searched until February 2024. The data were extracted, and the quality of the study was assessed independently by two reviewers. RESULTS Ten studies involving a total of 231 978 participants were included. Short sleep duration was related to higher risk of HUA (odds ratio (OR) 1.10, 95% confidence interval (CI): 1.03-1.18), while long sleep duration had no significant effect (OR 0.98, 95% CI: 0.89-1.07). The risk of HUA and daytime napping was statistically significant(OR 1.34, 95% CI: 1.12-1.61). CONCLUSIONS Short sleep duration and prolonged daytime napping are associated with an increased risk of HUA. These findings suggest that sleep patterns should be considered in lifestyle interventions for HUA prevention. Further research is required to establish causal relationships.
Collapse
Affiliation(s)
- Xinwen Zhang
- Beijing University of Chinese Medicine, Beijing, China
| | - Guangcheng Wei
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Xieyu Zhang
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Junyi Guo
- Robotics Movement Department, Amazon, Boston, Massachusetts, USA
| | - Jiahe Zhao
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Xiaoxu Li
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Xin Zhao
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Jinjie Shi
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Yue Yang
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Su Fan
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Hongli Wang
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Kai Zhi
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Ke Zhu
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Jieyang Du
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Wei Cao
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| |
Collapse
|
94
|
da Silva Pereira JA, de Souza GP, Virgilio-da-Silva JV, Prodonoff JS, de Castro G, Pimentel LF, Mousovich-Neto F, Davanzo GG, Aguiar CF, Breda CNS, Guereschi MG, Araújo RC, Mori MA, Câmara NOS, Souza DP, Basso AS, Moraes-Vieira PM. LXR regulation of adipose tissue inflammation during obesity is associated with dysregulated macrophage function. Obesity (Silver Spring) 2025; 33:78-90. [PMID: 39632389 DOI: 10.1002/oby.24158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE Liver X receptors (LXRs) play essential roles in cholesterol homeostasis and immune response. In obesity, elevated cholesterol levels trigger proinflammatory responses; however, the specific contributions of LXRs to adipose tissue (AT) macrophage (ATM) phenotype and metabolic programming are not fully understood. In this study, we determine the role of LXR isoforms in diet-induced obesity AT inflammation and insulin resistance. METHODS For in vivo studies, to evaluate the effects of LXR activation on AT inflammation, obese and insulin-resistant wild-type mice were treated with 10 mg/kg of the LXR modulator naringenin (NAR) for 4 weeks, and systemic insulin sensitivity and AT inflammation were assessed. To evaluate the effects of LXR deficiency on AT inflammation, we used LXRα, LXRβ, and LXRαβ knockout (KO) mice. For in vitro studies, to assess the role of LXRs specifically in macrophages, bone marrow-derived macrophages from wild-type, LXRαKO, LXRβKO, and LXRαβKO mice were treated with 0.5μM NAR 1 h prior to lipopolysaccharide (LPS) stimulation (100 ng/mL), and the effects on macrophage function and metabolism were evaluated 24 h after LPS stimulation. RESULTS We found that LXR deletion intensifies AT inflammation in an LXRβ-dependent manner. LXR deficiency in immune cells exacerbates obesity-induced AT inflammation, increasing the numbers of CD11c+, TNF-α+, and IL-1β+ ATMs. We also identified NAR as a novel LXR agonist in macrophages that reduces proinflammatory cytokine secretion by mitigating glycolysis and mitochondrial dysfunction in LPS - and LPS + IFNγ-activated macrophages. Furthermore, NAR-treated obese mice display reduced AT inflammation, characterized by decreased CD11c+, IL-1β+, and TNF-α+ ATM numbers and monocyte infiltration compared with vehicle-treated obese mice. CONCLUSIONS Our study highlights distinct roles for each LXR isoform in AT inflammation regulation, with LXRβ being crucial for maintaining the anti- and proinflammatory balance in ATMs. Thus, LXRβ holds therapeutic potential as a target to treat AT inflammation and insulin resistance.
Collapse
Affiliation(s)
- Jessica Aparecida da Silva Pereira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, State University of Campinas Institute of Biology, Campinas, Brazil
- Graduate Program in Immunology, University of São Paulo Institute of Biomedical Sciences, São Paulo, Brazil
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Gerson Profeta de Souza
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Aging Biology, Department of Biochemistry and Tissue Biology, State University of Campinas Institute of Biology, Campinas, Brazil
| | - João V Virgilio-da-Silva
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, State University of Campinas Institute of Biology, Campinas, Brazil
- Graduate Program in Immunology, University of São Paulo Institute of Biomedical Sciences, São Paulo, Brazil
| | - Juliana S Prodonoff
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, State University of Campinas Institute of Biology, Campinas, Brazil
| | - Gisele de Castro
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, State University of Campinas Institute of Biology, Campinas, Brazil
- Graduate Program in Immunology, University of São Paulo Institute of Biomedical Sciences, São Paulo, Brazil
| | - Leonardo F Pimentel
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, State University of Campinas Institute of Biology, Campinas, Brazil
| | - Felippe Mousovich-Neto
- Laboratory of Aging Biology, Department of Biochemistry and Tissue Biology, State University of Campinas Institute of Biology, Campinas, Brazil
| | - Gustavo G Davanzo
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, State University of Campinas Institute of Biology, Campinas, Brazil
| | - Cristhiane F Aguiar
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, State University of Campinas Institute of Biology, Campinas, Brazil
| | - Cristiane N S Breda
- Graduate Program in Immunology, University of São Paulo Institute of Biomedical Sciences, São Paulo, Brazil
- Laboratory of Transplant Immunobiology, State University of Campinas Institute of Biology, Campinas, Brazil
| | - Marcia G Guereschi
- Laboratory of Neuroimmunology, Department of Microbiology, Immunology and Parasitology, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
| | - Ronaldo C Araújo
- Laboratory of Exercise Genetics and Metabolism, Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Marcelo A Mori
- Laboratory of Aging Biology, Department of Biochemistry and Tissue Biology, State University of Campinas Institute of Biology, Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), State University of Campinas, Campinas, Brazil
| | - Niels O S Câmara
- Graduate Program in Immunology, University of São Paulo Institute of Biomedical Sciences, São Paulo, Brazil
- Laboratory of Transplant Immunobiology, State University of Campinas Institute of Biology, Campinas, Brazil
| | - Diorge P Souza
- Division of Cell Biology, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Alexandre S Basso
- Laboratory of Neuroimmunology, Department of Microbiology, Immunology and Parasitology, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
| | - Pedro M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, State University of Campinas Institute of Biology, Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), State University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), State University of Campinas, Campinas, Brazil
| |
Collapse
|
95
|
Govers LP, Grimm C. The Connection Between Cellular Metabolism and Retinal Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:267-271. [PMID: 39930207 DOI: 10.1007/978-3-031-76550-6_44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
The retina is one of the most metabolically active tissues in the human body and has its own complex metabolic environment as the different cell types in this tissue are interconnected to maintain a healthy retinal homeostasis. Any disturbances in the homeostatic balance may have a severe impact on retinal function affecting vision. About 341 genes are listed in the RetNet database as being causative for monogenic inherited retinal diseases. By intersecting this list with the Mammalian Metabolic Enzyme Database, we identified 28 metabolic genes that can result in diseases such as retinitis pigmentosa, Leber congenital amaurosis, or optic atrophy when mutated. Alongside inherited retinal diseases, metabolism also plays a prominent role in acquired retinal diseases. Metabolomics studies have been performed on patients with age-related macular degeneration, diabetic retinopathy, and glaucoma revealing dysregulated metabolic pathways, such as lipid, amino acid, and purine metabolism, in the onset of disease. Although there are distinct pathophysiological differences between inherited and acquired retinal disorders, diving deeper into the role of metabolism and how metabolic dysfunction may overlap with different pathologies, could give us indications on how to design approaches to normalize the homeostatic balance in the retina as treatment options to protect vision.
Collapse
Affiliation(s)
- Larissa P Govers
- Department of Ophthalmology, Laboratory for Retinal Cell Biology, University Hospital Zurich, University of Zurich, Schlieren, Switzerland
| | - Christian Grimm
- Department of Ophthalmology, Laboratory for Retinal Cell Biology, University Hospital Zurich, University of Zurich, Schlieren, Switzerland.
| |
Collapse
|
96
|
Zhou JX, Zheng ZY, Peng ZX, Yang YT, Ni HG. Predictive model in silicon and pathogenicity mechanism of metabolic syndrome: Impacts of heavy metal exposure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:124001. [PMID: 39746257 DOI: 10.1016/j.jenvman.2024.124001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/03/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Although the association between heavy metals in human and the development of metabolic syndrome (MetS) have been extensively studied, the pathogenic mechanism of MetS affected by metals is not clear to date. In this study, a predictive model was developed with machine learning base on the large-scale dataset. These proposed models were evaluated via comparatively analysis of their accuracy and robustness. With the optimal model, two metals significantly correlated with MetS were screened and were employed to infer the pathogenicity mechanism of MetS via molecular docking. Significant associations between heavy metals and MetS were found. Molecular docking provided insights into the interactions between metal ions and key protein receptors involved in metabolic regulation, suggesting a mechanism by which heavy metals interfere with metabolic functions. Specifically, Ba and Cd affect the development of MetS thru their interactions with insulin and estrogen receptors. This study attempted to explore heavy metals' potential roles in MetS at the molecular level. These findings emphasize the importance of addressing environmental exposures in the prevention and treatment of MetS.
Collapse
Affiliation(s)
- Jing-Xuan Zhou
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zi-Yi Zheng
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhao-Xing Peng
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yu-Ting Yang
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Hong-Gang Ni
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
97
|
Deguchi K, Ushiroda C, Kamei Y, Kondo K, Tsuchida H, Seino Y, Yabe D, Suzuki A, Nagao S, Iizuka K. Glucose and Insulin Differently Regulate Gluconeogenic and Ureagenic Gene Expression. J Nutr Sci Vitaminol (Tokyo) 2025; 71:46-54. [PMID: 40024748 DOI: 10.3177/jnsv.71.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Glucose and insulin positively regulate glycolysis and lipogenesis through the activation of carbohydrate response element-binding protein (ChREBP) and sterol regulatory element-binding protein 1c (SREBP1c), but their respective roles in the regulation of gluconeogenic and ureagenic genes remain unclear. We compared the effects of the insulin antagonist S961 and Chrebp deletion on hepatic glycolytic, lipogenic, gluconeogenic, and ureagenic gene expression in mice. S961 markedly increased the plasma glucose, insulin, and 3-OH-butyrate concentrations and reduced the hepatic triglyceride content, but Chrebp deletion had no additive effect. We subsequently estimated the expression of genes involved in the pathways of glycolysis, gluconeogenesis, and lipogenesis. S961 potently decreased both Chrebp and Srebf1c, but Chrebp deletion weakly decreased Srebf1c mRNA expression. Both the S961 and Chrebp deletion caused decreases in glycolytic (Gck and Pklr) and lipogenic (Fasn, Scd1, Me1, Spot14, Elovl6) gene expression. S961 increased the expression of many gluconeogenic genes (G6pc, Fbp1, Aldob, Slc37a4, Pck), whereas Chrebp deletion reduced the expression of gluconeogenic genes other than Pck1. Finally, we checked the metabolites and gene expression in the ureagenesis pathway. S961 increased ureagenic gene (Arg1, Asl, Ass1, Cps1, Otc) expression, which was consistent with the metabolite data: there were reductions in the concentrations of glutamate and aspartate and increases in those of citrulline, ornithine, urea, and proline. However, Chrebp deletion had no additive effect on ureagenesis. In conclusion, insulin rather than glucose regulate ureagenic gene expression, whereas glucose and insulin regulate gluconegenic gene expression in opposite directions.
Collapse
Affiliation(s)
- Kanako Deguchi
- Department of Clinical Nutrition, Fujita Health University
| | | | - Yuka Kamei
- Advanced Medical Research Center for Animal Models of Human Diseases, Fujita Health University
| | | | - Hiromi Tsuchida
- Department of Diabetes, Endocrinology and Metabolism, Gifu University Graduate School of Medicine
| | - Yusuke Seino
- Department of Endocrinology, Diabetes and Metabolism, Fujita Health University
| | - Daisuke Yabe
- Department of Diabetes, Endocrinology and Metabolism, Gifu University Graduate School of Medicine
- Center for One Medicine Innovative Translational Research, Gifu University
| | - Atsushi Suzuki
- Department of Endocrinology, Diabetes and Metabolism, Fujita Health University
| | - Shizuko Nagao
- Advanced Medical Research Center for Animal Models of Human Diseases, Fujita Health University
| | - Katsumi Iizuka
- Department of Clinical Nutrition, Fujita Health University
- Food and Nutrition Service Department, Fujita Health University Hospital
| |
Collapse
|
98
|
van Allen KA, Gang N, Hoyeck MP, Perera I, Zhang D, Atlas E, Lynn FC, Bruin JE. Characterizing the effects of Dechlorane Plus on β-cells: a comparative study across models and species. Islets 2024; 16:2361996. [PMID: 38833523 PMCID: PMC11152096 DOI: 10.1080/19382014.2024.2361996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
Epidemiological studies consistently link environmental toxicant exposure with increased Type 2 diabetes risk. Our study investigated the diabetogenic effects of a widely used flame retardant, Dechlorane Plus (DP), on pancreatic β-cells using rodent and human model systems. We first examined pancreas tissues from male mice exposed daily to oral gavage of either vehicle (corn oil) or DP (10, 100, or 1000 μg/kg per day) and fed chow or high fat diet for 28-days in vivo. DP exposure did not affect islet size or endocrine cell composition in either diet group. Next, we assessed the effect of 48-hour exposure to vehicle (DMSO) or DP (1, 10, or 100 nM) in vitro using immortalized rat β-cells (INS-1 832/3), primary mouse and human islets, and human stem-cell derived islet-like cells (SC-islets). In INS-1 832/3 cells, DP did not impact glucose-stimulated insulin secretion (GSIS) but significantly decreased intracellular insulin content. DP had no effect on GSIS in mouse islets or SC-islets but had variable effects on GSIS in human islets depending on the donor. DP alone did not affect insulin content in mouse islets, human islets, or SC-islets, but mouse islets co-exposed to DP and glucolipotoxic (GLT) stress conditions (28.7 mM glucose + 0.5 mM palmitate) had reduced insulin content compared to control conditions. Co-exposure of mouse islets to DP + GLT amplified the upregulation of Slc30a8 compared to GLT alone. Our study highlights the importance and challenges of using different in vitro models for studying chemical toxicity.
Collapse
Affiliation(s)
- Kyle A. van Allen
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Noa Gang
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
- Diabetes Research Group, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Myriam P. Hoyeck
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Ineli Perera
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Dahai Zhang
- Diabetes Research Group, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Francis C. Lynn
- Diabetes Research Group, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Jennifer E Bruin
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
99
|
Navab F, Rezaei A, Rouhani MH, Shahdadian F, Alikord M. Vitamin D3 capsulation using maillard reaction complex of sodium caseinate and tragacanth gum. Food Chem X 2024; 24:101910. [PMID: 39553234 PMCID: PMC11564911 DOI: 10.1016/j.fochx.2024.101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
The encapsulation of vitamin D3 (VitD3) using the Maillard reaction complex of sodium caseinate-tragacanth gum (TG) to the production of water-soluble vitamins were studied. Spray drying was used to prepare the complex. Its physicochemical properties, stability, and release characteristics were evaluated. The results showed that containing sodium caseinate- Tragacanth gum (TG) 1 % (w/v) and VitD3 1 % (w/v) had the highest encapsulation efficiency (71 %). The resulting microcapsules showed suitable particle size, strong negative zeta potential, and good stability with spherical morphology. Thermal and spectroscopic analyses showed proper interaction between wall and core components. In vitro, release and simulated digestion studies demonstrated the ability of microcapsules to protect VitD3 under gastric conditions and provide controlled release in the intestine. This encapsulation system shows potential for enriching food with VitD3 and increasing its stability and bioavailability.
Collapse
Affiliation(s)
- Fatemeh Navab
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefe Rezaei
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Food Science & Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Rouhani
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farnaz Shahdadian
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Alikord
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Food Science & Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
100
|
Xiong B, Zhang X, Sangji D, Ni L, Fan M, Fan B. Mechanisms of breast cancer treatment using Gentiana robusta: evidence from comprehensive bioinformatics investigation. Sci Rep 2024; 14:31567. [PMID: 39738201 PMCID: PMC11686125 DOI: 10.1038/s41598-024-76063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/10/2024] [Indexed: 01/01/2025] Open
Abstract
This study investigates the potential treatment of breast cancer utilizing Gentiana robusta King ex Hook. f. (QJ) through an integrated approach involving network pharmacology, molecular docking, and molecular dynamics simulation. Building upon prior research on QJ's chemical constituents, we conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis using the DAVID database. Network interactions and core genes were identified using Cytoscape 3.9.1. Key target genes, including Interleukin-6 (IL-6), tumour suppressor gene P53 (TP53), and epidermal growth factor receptor (EGFR), were selected for molecular docking with QJ's active components, 2'-O-β-D-glucopyranosyl-gentiopicroside and macrophylloside D, employing Schrodinger Maestro 13.5. Molecular dynamics (MD) simulations were performed using the Desmond program. A total of 270 intersection targets of active ingredients and diseases were identified, with three core targets determined through network topology screening. Enrichment analysis highlighted the involvement of QJ in breast cancer treatment, primarily through the hsa05200 cancer signaling pathway and the hsa04066 HIF-1 signaling pathway. Molecular docking and dynamics simulations demonstrated the close interaction of 2'-O-β-D-glucopyranosyl-gentiopicroside (QJ17) and macrophylloside D (QJ25) with IL6, TP53, and EGFR, and other target genes, showcasing a stabilizing effect. In conclusion, this study unveils the effective components and potential mechanisms of 2'-O-β-D-glucopyranosyl-gentiopicroside and macrophylloside D in breast cancer prevention and treatment. The identified components act on target genes such as IL6, TP53, and EGFR, regulating crucial pathways including the cancer signaling and Hypoxia-inducible factor 1 (HIF-1) signaling pathways. These findings provide valuable insights into the therapeutic potential of QJ in breast cancer management. However, further experimental research are needed to validate the computational findings of QJ.
Collapse
Affiliation(s)
- Bo Xiong
- Department of Clinical Pharmacy, Baoshan Hospital Affiliated to, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinxin Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongzhi Sangji
- Tibetan Medical Hospital of Xizang Autonomous Region, Lhasa, China
| | - Lianghong Ni
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingjie Fan
- Department of Pharmacy, Shanghai Fourth Rehabilitation Hospital, Shanghai, China.
| | - Beibei Fan
- Department of Clinical Pharmacy, Baoshan Hospital Affiliated to, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|