951
|
Russell JB, Houlihan AJ. Ionophore resistance of ruminal bacteria and its potential impact on human health. FEMS Microbiol Rev 2003; 27:65-74. [PMID: 12697342 DOI: 10.1016/s0168-6445(03)00019-6] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In recent years, there has been a debate concerning the causes of antibiotic resistance and the steps that should be taken. Beef cattle in feedlots are routinely fed a class of antibiotics known as ionophores, and these compounds increase feed efficiency by as much as 10%. Some groups have argued that ionophore resistance poses the same public health threat as conventional antibiotics, but humans are not given ionophores to combat bacterial infection. Many ruminal bacteria are ionophore-resistant, but until recently the mechanism of this resistance was not well defined. Ionophores are highly lipophilic polyethers that accumulate in cell membranes and catalyze rapid ion movement. When sensitive bacteria counteract futile ion flux with membrane ATPases and transporters, they are eventually de-energized. Aerobic bacteria and mammalian enzymes can degrade ionophores, but these pathways are oxygen-dependent and not functional in anaerobic environments like the rumen or lower GI tract. Gram-positive ruminal bacteria are in many cases more sensitive to ionophores than Gram-negative species, but this model of resistance is not always clear-cut. Some Gram-negative ruminal bacteria are initially ionophore-sensitive, and even Gram-positive bacteria can adapt. Ionophore resistance appears to be mediated by extracellular polysaccharides (glycocalyx) that exclude ionophores from the cell membrane. Because cattle not receiving ionophores have large populations of resistant bacteria, it appears that this trait is due to a physiological selection rather than a mutation per se. Genes responsible for ionophore resistance in ruminal bacteria have not been identified, but there is little evidence that ionophore resistance can be spread from one bacterium to another. Given these observations, use of ionophores in animal feed is not likely to have a significant impact on the transfer of antibiotic resistance from animals to man.
Collapse
Affiliation(s)
- James B Russell
- Agricultural Research Service, USDA, and Department of Microbiology, Cornell University, Wing Hall, Ithaca, NY 14853, USA.
| | | |
Collapse
|
952
|
Nurizzo D, Shewry SC, Perlin MH, Brown SA, Dholakia JN, Fuchs RL, Deva T, Baker EN, Smith CA. The crystal structure of aminoglycoside-3'-phosphotransferase-IIa, an enzyme responsible for antibiotic resistance. J Mol Biol 2003; 327:491-506. [PMID: 12628253 DOI: 10.1016/s0022-2836(03)00121-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A major factor in the emergence of antibiotic resistance is the existence of enzymes that chemically modify common antibiotics. The genes for these enzymes are commonly carried on mobile genetic elements, facilitating their spread. One such class of enzymes is the aminoglycoside phosphotransferase (APH) family, which uses ATP-mediated phosphate transfer to chemically modify and inactivate aminoglycoside antibiotics such as streptomycin and kanamycin. As part of a program to define the molecular basis for aminoglycoside recognition and inactivation by such enzymes, we have determined the high resolution (2.1A) crystal structure of aminoglycoside-3'-phosphotransferase-IIa (APH(3')-IIa) in complex with kanamycin. The structure was solved by molecular replacement using multiple models derived from the related aminoglycoside-3'-phosphotransferase-III enzyme (APH(3')-III), and refined to an R factor of 0.206 (R(free) 0.238). The bound kanamycin molecule is very well defined and occupies a highly negatively charged cleft formed by the C-terminal domain of the enzyme. Adjacent to this is the binding site for ATP, which can be modeled on the basis of nucleotide complexes of APH(3')-III; only one change is apparent with a loop, residues 28-34, in a position where it could fold over an incoming nucleotide. The three rings of the kanamycin occupy distinct sub-pockets in which a highly acidic loop, residues 151-166, and the C-terminal residues 260-264 play important parts in recognition. The A ring, the site of phosphoryl transfer, is adjacent to the catalytic base Asp190. These results give new information on the basis of aminoglycoside recognition, and on the relationship between this phosphotransferase family and the protein kinases.
Collapse
Affiliation(s)
- Didier Nurizzo
- School of Biological Sciences, University of Auckland, Thomas Buildings, 3A Symonds St., Private Bag 92019, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
953
|
Burk DL, Ghuman N, Wybenga-Groot LE, Berghuis AM. X-ray structure of the AAC(6')-Ii antibiotic resistance enzyme at 1.8 A resolution; examination of oligomeric arrangements in GNAT superfamily members. Protein Sci 2003; 12:426-37. [PMID: 12592013 PMCID: PMC2312454 DOI: 10.1110/ps.0233503] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The rise of antibiotic resistance as a public health concern has led to increased interest in studying the ways in which bacteria avoid the effects of antibiotics. Enzymatic inactivation by several families of enzymes has been observed to be the predominant mechanism of resistance to aminoglycoside antibiotics such as kanamycin and gentamicin. Despite the importance of acetyltransferases in bacterial resistance to aminoglycoside antibiotics, relatively little is known about their structure and mechanism. Here we report the three-dimensional atomic structure of the aminoglycoside acetyltransferase AAC(6')-Ii in complex with coenzyme A (CoA). This structure unambiguously identifies the physiologically relevant AAC(6')-Ii dimer species, and reveals that the enzyme structure is similar in the AcCoA and CoA bound forms. AAC(6')-Ii is a member of the GCN5-related N-acetyltransferase (GNAT) superfamily of acetyltransferases, a diverse group of enzymes that possess a conserved structural motif, despite low sequence homology. AAC(6')-Ii is also a member of a subset of enzymes in the GNAT superfamily that form multimeric complexes. The dimer arrangements within the multimeric GNAT superfamily members are compared, revealing that AAC(6')-Ii forms a dimer assembly that is different from that observed in the other multimeric GNAT superfamily members. This different assembly may provide insight into the evolutionary processes governing dimer formation.
Collapse
Affiliation(s)
- David L Burk
- Departments of Biochemistry and Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | |
Collapse
|
954
|
Vila-Perelló M, Sánchez-Vallet A, García-Olmedo F, Molina A, Andreu D. Synthetic and structural studies on Pyrularia pubera thionin: a single-residue mutation enhances activity against Gram-negative bacteria. FEBS Lett 2003; 536:215-9. [PMID: 12586366 DOI: 10.1016/s0014-5793(03)00053-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The thionin from Pyrularia pubera (Pp-TH), a 47-residue peptide with four internal disulfide bonds, was efficiently produced by chemical synthesis. Its antimicrobial activity in vitro against several representative pathogens (EC(50)=0.3-3.0 microM) was identical to that of natural Pp-TH. This peptide has a unique Asp(32) instead of the consensus Arg found in other thionins of the same family. In order to evaluate the effect of this mutation, the Arg(32) analogue (Pp-TH(D32R)) was also synthesized and showed a significant increase in antibiotic activity against several Gram-negative bacteria, whereas it retained the same activity against other pathogens. The overall structure of Pp-TH(D32R) was maintained, though a slight decrease in the helical content of the peptide was observed.
Collapse
Affiliation(s)
- Miquel Vila-Perelló
- Department of Experimental and Health Sciences, Pompeu Fabra University, Dr. Aiguader 80, E-08003 Barcelona, Spain
| | | | | | | | | |
Collapse
|
955
|
Díaz N, Sordo TL, Merz KM, Suárez D. Insights into the acylation mechanism of class A beta-lactamases from molecular dynamics simulations of the TEM-1 enzyme complexed with benzylpenicillin. J Am Chem Soc 2003; 125:672-84. [PMID: 12526667 DOI: 10.1021/ja027704o] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we present results from molecular dynamics MD simulations ( approximately 1 ns) of the TEM-1 beta-lactamase in aqueous solution. Both the free form of the enzyme and its complex with benzylpenicillin were studied. During the simulation of the free enzyme, the conformation of the Omega loop and the interresidue contacts defining the complex H-bond network in the active site were quite stable. Most interestingly, the water molecule connecting Glu166 and Ser70 does not exchange with bulk solvent, emphasizing its structural and catalytic relevance. In the presence of the substrate, Ser130, Ser235, and Arg244 directly interact with the beta-lactam carboxylate via H-bonds, whereas the Lys234 ammonium group has only an electrostatic influence. These interactions together with other specific contacts result in a very short distance ( approximately 3 A) between the attacking hydroxyl group of Ser70 and the beta-lactam ring carbonyl group, which is a favorable orientation for nucleophilic attack. Our simulations also gave insight into the possible pathways for proton abstraction from the Ser70 hydroxyl group. We propose that either the Glu166 carboxylate-Wat1 or the substrate carboxylate-Ser130 moieties could abstract a proton from the nucleophilic Ser70.
Collapse
Affiliation(s)
- Natalia Díaz
- Departamento de Química Física y Analítica, Universidad de Oviedo, C/ Julián Clavería 8, Spain
| | | | | | | |
Collapse
|
956
|
Xing B, Yu CW, Chow KH, Ho PL, Fu D, Xu B. Hydrophobic interaction and hydrogen bonding cooperatively confer a vancomycin hydrogel: a potential candidate for biomaterials. J Am Chem Soc 2002; 124:14846-7. [PMID: 12475316 DOI: 10.1021/ja028539f] [Citation(s) in RCA: 304] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibiotic hydrogels based on a vancomycin (Van) derivative, formed by self-assembling Van-pyrene (1) in water, using the pi-pi interaction of pyrene moieties and hydrogen bonding of Vans, promise a new way to make novel biomaterials.
Collapse
Affiliation(s)
- Bengang Xing
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, ROC
| | | | | | | | | | | |
Collapse
|
957
|
Confronting S. aureus muscle. Nat Rev Drug Discov 2002. [DOI: 10.1038/nrd979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
958
|
Abstract
It has been known for more than 30 years that Lipid II is an intermediate in peptidoglycan synthesis. Recently, it has become apparent that it is also an important target of numerous antibiotics, including the glycopeptides, the lantibiotics and ramoplanin. It is also utilized by sortases in the construction of Gram-positive cell walls. Recent progress has been made in the synthesis of peptidoglycan intermediates that can be used to study enzymes which make peptidoglycan. These intermediates also enable studies to probe the mechanism of action of a variety of substrate-binding antibiotics.
Collapse
Affiliation(s)
- Kristi Lazar
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
| | | |
Collapse
|
959
|
Regueiro-Ren A, Ueda Y. Mild method for cleavage of dehydroalanine units: highly efficient conversion of nocathiacin I to nocathiacin IV. J Org Chem 2002; 67:8699-702. [PMID: 12444665 DOI: 10.1021/jo0261698] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thiazolyl peptide antibacterial nocathiacin I (1) was converted to nocathiacin IV (4) in high yield using iodomethane and hydriodic acid in THF at 45 degrees C. Several simplified dehydroalanine-containing systems undergo dehydroalanine cleavage under the same conditions, although in these cases iodomethane is not needed for efficient conversion. The mild reaction conditions are in contrast with other methods described in the literature.
Collapse
Affiliation(s)
- Alicia Regueiro-Ren
- The Bristol-Myers Squibb Pharmaceutical Research Institute, 5 Research Parkway, Wallingford, Connecticut 06492, USA.
| | | |
Collapse
|
960
|
Miller MT, Bachmann BO, Townsend CA, Rosenzweig AC. The catalytic cycle of beta -lactam synthetase observed by x-ray crystallographic snapshots. Proc Natl Acad Sci U S A 2002; 99:14752-7. [PMID: 12409610 PMCID: PMC137491 DOI: 10.1073/pnas.232361199] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2002] [Indexed: 11/18/2022] Open
Abstract
The catalytic cycle of the ATP/Mg(2+)-dependent enzyme beta-lactam synthetase (beta-LS) from Streptomyces clavuligerus has been observed through a series of x-ray crystallographic snapshots. Chemistry is initiated by the ordered binding of ATP/Mg(2+) and N(2)-(carboxyethyl)-l-arginine (CEA) to the apoenzyme. The apo and ATP/Mg(2+) structures described here, along with the previously described CEA.alpha,beta-methyleneadenosine 5'-triphosphate (CEA.AMP-CPP)/Mg(2+) structure, illuminate changes in active site geometry that favor adenylation. In addition, an acyladenylate intermediate has been trapped. The substrate analog N(2)-(carboxymethyl)-l-arginine (CMA) was adenylated by ATP in the crystal and represents a close structural analog of the previously proposed CEA-adenylate intermediate. Finally, the structure of the ternary product complex deoxyguanidinoproclavaminic acid (DGPC).AMP/PP(i)/Mg(2+) has been determined. The CMA-AMP/PP(i)/Mg(2+) and DGPC.AMP/PP(i)/Mg(2+) structures reveal interactions in the active site that facilitate beta-lactam formation. All of the ATP-bound structures differ from the previously described CEA.AMP-CPP/Mg(2+) structure in that two Mg(2+) ions are found in the active sites. These Mg(2+) ions play critical roles in both the adenylation and beta-lactamization reactions.
Collapse
Affiliation(s)
- Matthew T Miller
- Department of Biochemistry, Northwestern University, Evanston, IL 60208, USA
| | | | | | | |
Collapse
|
961
|
Abstract
Modern dentistry emphasizes the importance of dental plaque control to improve oral health. The use of oral care formulations with antiplaque biocides plays a crucial role in patient-directed approaches for plaque control. The antiplaque efficacies of these formulations have been extensively studied in many long-term clinical studies designed in accordance with well-accepted guidelines. The results from these studies conclusively demonstrate that long-term use of oral care formulations with well-known antiplaque biocides such as chlorhexidine and triclosan reduce supragingival plaque and gingivitis. This review summarizes microbiological results from clinical studies conducted with oral care formulations containing antiplaque biocides. Results from a number of long-term clinical studies conducted under real-life use conditions indicate no adverse alterations in the bacteria found in dental plaque or emergent microbial resistance. Additionally, microbial sampling of dental plaque subsequent to extended use of antiplaque biocides reveals no increase in resistant microflora. Large numbers of common oral bacteria isolated from patients using chlorhexidine indicate no increase in microbial resistance to chlorhexidine or to commonly used antibiotics. The effects of antiplaque biocides containing oral care formulations on dental plaque that exists naturally as a biofilm are examined. These formulations contain biocide, surfactants, polymers and other components that are effective against the biofilm. In summary, the results of studies on the real-life use of oral care formulations with antiplaque biocides show no emergence of resistant microflora or alterations of the oral microbiota, while such formulations have been found to provide the benefits of reducing plaque and gingivitis.
Collapse
|
962
|
Coates A, Hu Y, Bax R, Page C. The future challenges facing the development of new antimicrobial drugs. Nat Rev Drug Discov 2002; 1:895-910. [PMID: 12415249 DOI: 10.1038/nrd940] [Citation(s) in RCA: 419] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The emergence of resistance to antibacterial agents is a pressing concern for human health. New drugs to combat this problem are therefore in great demand, but as past experience indicates, the time for resistance to new drugs to develop is often short. Conventionally, antibacterial drugs have been developed on the basis of their ability to inhibit bacterial multiplication, and this remains at the core of most approaches to discover new antibacterial drugs. Here, we focus primarily on an alternative novel strategy for antibacterial drug development that could potentially alleviate the current situation of drug resistance--targeting non-multiplying latent bacteria, which prolong the duration of antimicrobial chemotherapy and so might increase the rate of development of resistance.
Collapse
Affiliation(s)
- Anthony Coates
- Department of Medical Microbiology, St George's Hospital Medical School, Cranmer Terrace, London SW17 ORE, UK.
| | | | | | | |
Collapse
|
963
|
Lapan KA, Chapple JP, Galcheva-Gargova Z, Yang M, Tao J. Peptide ligands in antibacterial drug discovery: use as inhibitors in target validation and target-based screening. Expert Opin Ther Targets 2002; 6:507-16. [PMID: 12223065 DOI: 10.1517/14728222.6.4.507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
There is an urgent need to develop novel classes of antibiotics to counter the inexorable rise of resistant bacterial pathogens. Modern antibacterial drug discovery is focused on the identification and validation of novel protein targets that may have a suitable therapeutic index. In combination with assays for function, the advent of microbial genomics has been invaluable in identifying novel antibacterial drug targets. The major challenge in this field is the implementation of methods that validate protein targets leading to the discovery of new chemical entities. Ligand-directed drug discovery has the distinct advantage of having a concurrent analysis of both the importance of a target in the disease process and its amenability to functional modulation by small molecules. VITA is a process that enables a target-based paradigm by using peptide ligands for direct in vitro and in vivo validation of antibacterial targets and the implementation of high-throughput assays to identify novel inhibitory molecules. This process can establish sufficient levels of confidence indicating that the target is relevant to the disease process and inhibition of the target will lead to effective disease treatment.
Collapse
Affiliation(s)
- Kirsty A Lapan
- Cubist Pharmaceuticals, Inc., 65 Hayden Avenue, Lexington, MA 02421, USA
| | | | | | | | | |
Collapse
|
964
|
Nestorovich EM, Danelon C, Winterhalter M, Bezrukov SM. Designed to penetrate: time-resolved interaction of single antibiotic molecules with bacterial pores. Proc Natl Acad Sci U S A 2002; 99:9789-94. [PMID: 12119404 PMCID: PMC125017 DOI: 10.1073/pnas.152206799] [Citation(s) in RCA: 233] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Membrane permeability barriers are among the factors contributing to the intrinsic resistance of bacteria to antibiotics. We have been able to resolve single ampicillin molecules moving through a channel of the general bacterial porin, OmpF (outer membrane protein F), believed to be the principal pathway for the beta-lactam antibiotics. With ion channel reconstitution and high-resolution conductance recording, we find that ampicillin and several other efficient penicillins and cephalosporins strongly interact with the residues of the constriction zone of the OmpF channel. Therefore, we hypothesize that, in analogy to substrate-specific channels that evolved to bind certain metabolite molecules, antibiotics have "evolved" to be channel-specific. Molecular modeling suggests that the charge distribution of the ampicillin molecule complements the charge distribution at the narrowest part of the bacterial porin. Interaction of these charges creates a region of attraction inside the channel that facilitates drug translocation through the constriction zone and results in higher permeability rates.
Collapse
Affiliation(s)
- Ekaterina M Nestorovich
- Laboratory of Physical and Structural Biology, National Institute of Child Health and Human Development, National Institutes of Health, Building 9, Room 1E-122, Bethesda, MD 20892-0924, USA
| | | | | | | |
Collapse
|
965
|
Siemann S, Brewer D, Clarke AJ, Dmitrienko GI, Lajoie G, Viswanatha T. IMP-1 metallo-beta-lactamase: effect of chelators and assessment of metal requirement by electrospray mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1571:190-200. [PMID: 12090933 DOI: 10.1016/s0304-4165(02)00258-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Metallo-beta-lactamases have attracted considerable attention due to their role in microbial resistance to beta-lactam antibiotics. IMP-1, the binuclear Zn-dependent beta-lactamase produced by Pseudomonas aeruginosa and other microorganisms, is of particular interest in view of its increasing prevalence. An examination of the susceptibility of IMP-1 to inactivation by six different divalent metal ion chelators has revealed that all except Zincon cause inhibition by forming a complex with the holoenzyme. Exposure of the enzyme to dipicolinic acid (DPA), the most potent inhibitor, results in the production of the mononuclear Zn form of the protein as determined by electrospray ionization mass spectrometry (ESI-MS) under nondenaturing conditions. This mononuclear Zn species was found to be catalytically competent. Studies with the chromophoric chelator 4-(2-pyridylazo)resorcinol (PAR) show that the two zinc centers in IMP-1 differ in their accessibility, a feature that could be overcome in the presence of guanidine hydrochloride (GdnHCl, 1.5 M).
Collapse
Affiliation(s)
- Stefan Siemann
- Department of Chemistry, University of Waterloo, 200 University Ave. W, Waterloo, ON, Canada N2L 3G1
| | | | | | | | | | | |
Collapse
|
966
|
Sitaram N, Sai KP, Singh S, Sankaran K, Nagaraj R. Structure-function relationship studies on the frog skin antimicrobial peptide tigerinin 1: design of analogs with improved activity and their action on clinical bacterial isolates. Antimicrob Agents Chemother 2002; 46:2279-83. [PMID: 12069990 PMCID: PMC127301 DOI: 10.1128/aac.46.7.2279-2283.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Structure-function relationships in antimicrobial peptides have been extensively investigated in order to obtain improved analogs. Most of these studies have targeted either alpha-helical peptides or beta-sheet peptides with multiple disulfide bridges. Tigerinins are short, nonhelical antimicrobial peptides with a single disulfide bridge. In this study, we have synthesized several analogs of tigerinin 1 with an aim to understand the structural basis of activity as well as improve its activity. The studies demonstrate that the loop structure of tigerinin 1 is essential for its optimal activity. However, linearization with increased cationic charges can compensate for loss of loop structure to some extent. Morphology of the cells after treatment with the active analogs shows extensive leakage of cytoplasmic contents. Tigerinin 1 and two of its analogs exhibit impressive activity against a variety of clinical bacterial isolates.
Collapse
|
967
|
Abstract
The application of combinatorial chemistry to the synthesis of carbohydrate-based compound collections has received increased attention in recent years. New strategies for the solution-phase synthesis of oligosaccharide libraries have been reported, and the use of monosaccharides as scaffolds in the generation of combinatorial libraries has been described. Novel approaches to the assembly of carbohydrate-based antibiotics, such as aminoglycoside analogs and vancomycin derivatives, have also been disclosed.
Collapse
Affiliation(s)
- Lisa A Marcaurelle
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
968
|
Vicens Q, Westhof E. Crystal structure of a complex between the aminoglycoside tobramycin and an oligonucleotide containing the ribosomal decoding a site. CHEMISTRY & BIOLOGY 2002; 9:747-55. [PMID: 12079787 DOI: 10.1016/s1074-5521(02)00153-9] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Aminoglycoside antibiotics target the decoding aminoacyl site (A site) on the 16S ribosomal RNA and induce miscoding during translation. Here, we present the crystal structure, at 2.54 A resolution, of an RNA oligonucleotide containing the A site sequence complexed to the 4,6-disubstituted 2-deoxystreptamine aminoglycoside tobramycin. The three aminosugar rings making up tobramycin interact with the deep-groove atoms directly or via water molecules and stabilize a fully bulged-out conformation of adenines A(1492) and A(1493). The comparison between this structure and the one previously solved in the presence of paromomycin confirms the importance of the functional groups on the common neamine part of these two antibiotics for binding to RNA. Furthermore, the analysis of the present structure provides a molecular explanation to some of the resistance mechanisms that have spread among bacteria and rendered aminoglycoside antibiotics inefficient.
Collapse
Affiliation(s)
- Quentin Vicens
- Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, Modélisation et Simulations des Acides Nucléiques, UPR 9002, Université Louis Pasteur, 15 Rue René Descartes, 67084 Strasbourg Cedex, France
| | | |
Collapse
|
969
|
Fong DH, Berghuis AM. Substrate promiscuity of an aminoglycoside antibiotic resistance enzyme via target mimicry. EMBO J 2002; 21:2323-31. [PMID: 12006485 PMCID: PMC126009 DOI: 10.1093/emboj/21.10.2323] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The misuse of antibiotics has selected for bacteria that have evolved mechanisms for evading the effects of these drugs. For aminoglycosides, a group of clinically important bactericidal antibiotics that target the A-site of the 16S ribosomal RNA, the most common mode of resistance is enzyme-catalyzed chemical modification of the drug. While aminoglycosides are structurally diverse, a single enzyme can confer resistance to many of these antibiotics. For example, the aminoglycoside kinase APH(3')-IIIa, produced by pathogenic Gram-positive bacteria such as enterococci and staphylococci, is capable of detoxifying at least 10 distinct aminoglycosides. Here we describe the crystal structures of APH(3')-IIIa in complex with ADP and kanamycin A or neomycin B. These structures reveal that the basis for this enzyme's substrate promiscuity is the presence of two alternative subsites in the antibiotic binding pocket. Furthermore, comparison between the A-site of the bacterial ribosome and APH(3')-IIIa shows that mimicry is the second major factor in dictating the substrate spectrum of APH(3')-IIIa. These results suggest a potential strategy for drug design aimed at circumventing antibiotic resistance.
Collapse
Affiliation(s)
- Desiree H. Fong
- Departments of
Biochemistry and Microbiology and Immunology, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada Corresponding author e-mail:
| | - Albert M. Berghuis
- Departments of
Biochemistry and Microbiology and Immunology, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada Corresponding author e-mail:
| |
Collapse
|
970
|
Grail BM, Payne JW. Conformational analysis of bacterial cell wall peptides indicates how particular conformations have influenced the evolution of penicillin-binding proteins, beta-lactam antibiotics and antibiotic resistance mechanisms. J Mol Recognit 2002; 15:113-25. [PMID: 12203837 DOI: 10.1002/jmr.566] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our aim was to use a conformational analysis technique developed for peptides to identify structural relationships between bacterial cell wall peptides and beta-lactam antibiotics that might help to explain their different actions as substrates and inhibitors of penicillin binding proteins (PBPs). The conformational forms of the model cell wall peptide Ac-L-Lys(Ac)-D-Ala-D-Ala are described by just a few backbone torsion combinations: three C-terminal carboxylate regions, with Tor8 (psi(i+1)) ranges of D3 region (50 degrees to 70 degrees ), D6 region (140 degrees to 170 degrees ) and D9 region (-50 degrees to -70 degrees ) are combined with either of two Tor6 (phi(i))-Tor4 (psi(i)) combinations, C4 region (-50 degrees to -80 degrees ) with B8 region (-40 degrees to -70 degrees ) or C11 region (30 degrees to 50 degrees ) with B2 region (30 degrees to 70 degrees ). From these results, and comparisons with conformational analyses of various beta-lactams and Ac-L-Lys(Ac)-D-Ala-D-Lac, it is concluded that molecular recognition of cell wall peptide substrates by PBPs requires conformers with backbone torsion angles of D3C4B8. beta-Lactam antibiotics are constrained compounds with fewer conformational forms; these match well the backbone torsions of cell wall peptides at D3C4, allowing their recognition and acylation by PBPs, whereas their unique Tor4 produces differently orientated CO and N atoms that appear to prevent subsequent deacylation, leading to their action as suicide substrates. The results are also related to the selective pressures involved in evolution of beta-lactamases from PBPs. From analysis of conformers of Ac-L-Lys(Ac)-D-Ala-D-Ala and the vancomycin-resistant analogue Ac-L-Lys(Ac)-D-Ala-D-Lac, it is concluded that vancomycin may recognise D6C11B2 conformers, giving it complementary substrate specificity to PBPs. This approach could have applications in the rational design of antibiotics targeted against PBPs and their substrates.
Collapse
Affiliation(s)
- Barry M Grail
- School of Biological Sciences, University of Wales Bangor, Bangor, Gwynedd LL57 2UW, UK
| | | |
Collapse
|
971
|
Qian X, Metallo SJ, Choi IS, Wu H, Liang MN, Whitesides GM. Arrays of self-assembled monolayers for studying inhibition of bacterial adhesion. Anal Chem 2002; 74:1805-10. [PMID: 11985311 DOI: 10.1021/ac011042o] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper describes a simple and convenient method for the rapid screening of potential inhibitors of bacterial adhesion and for the quantitative evaluation of the efficacy of the inhibitors using arrays of self-assembled monolayers (SAMs) of alkanethiolates on gold that are presented on a 96-well microtiter plate. The SAMs present mixtures of alpha-D-mannopyranoside (a ligand that promotes the adhesion of uropathogenic Escherichia coli by binding to the FimH proteins on the tip of type 1 pili), and tri(ethylene glycol) moieties (organic groups that resist nonspecific adsorption of proteins and cells). The SAMs provide surfaces for studies of adhesion of uropathogenic E. coli to specific ligands; they also provide excellent resistance to nonspecific adhesion. Using arrays of mannoside-presenting SAMs, inhibitors of bacterial adhesion were easily screened by observing the number of bacteria that adhered to the surface of the SAMs in the presence of inhibitor. The potency of the inhibitor was quantified by measuring the percentage of inhibition as a function of the concentration of the inhibitor. The properties of SAMs, when combined with the convenience and standardization of a microtiter plate, make arrays of SAMs a versatile tool that can be applied to high-throughput screening of inhibitors of bacterial, viral, and mammalian cell adhesion and of strongly binding ligands for proteins.
Collapse
Affiliation(s)
- Xiangping Qian
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | |
Collapse
|
972
|
Abstract
The emergence and spread of hospital acquired multi drug resistant bacteria present a need for new antibiotics with innovative mode of action. Advances in molecular microbiology and genomics have led to the identification of numerous bacterial genes coding for proteins that could potentially serve as targets for antibacterial compounds. Histidine kinase promoted two-component systems are extremely common in bacteria and play an important role in essential signal transduction for adapting to bacterial stress. Since signal transduction in mammals occurs by a different mechanism, inhibition of histidine kinases could be a potential target for antimicrobial agents. This review will summarize our current knowledge of the structure and function of histidine kinase and the development of antibiotics with a new mode of action: targeting histidine kinase promoted signal transduction and its subsequent regulation of gene expression system.
Collapse
Affiliation(s)
- Masayuki Matsushita
- The Scripps Research Institute, Department of Chemistry BCC-582, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
973
|
Dyatkina NB, Roberts CD, Keicher JD, Dai Y, Nadherny JP, Zhang W, Schmitz U, Kongpachith A, Fung K, Novikov AA, Lou L, Velligan M, Khorlin AA, Chen MS. Minor groove DNA binders as antimicrobial agents. 1. Pyrrole tetraamides are potent antibacterials against vancomycin resistant Enterococci [corrected] and methicillin resistant Staphylococcus aureus. J Med Chem 2002; 45:805-17. [PMID: 11831893 DOI: 10.1021/jm010375a] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new series of short pyrrole tetraamides are described whose submicromolar DNA binding affinity is an essential component for their strong antibacterial activity. This class of compounds is related to the linked bis-netropsins and bis-distamycins, but here, only one amino-pyrrole-carboxamide unit and an amidine tail is connected to either side of a central dicarboxylic acid linker. The highest degree of DNA binding, measured by compound-induced changes in UV melting temperatures of an AT-rich DNA oligomer, was observed for flat, aromatic linkers with no inherent bent, i.e., terephthalic acid or 1,4-pyridine-dicarboxylic acid. However, the antibacterial activity is critically linked to the size of the N-alkyl substiutent of the pyrrole unit. None of the tetraamides with the commonly used methyl-pyrrole showed antibacterial activity. Isoamyl- or cyclopropylmethylene-substituted dipyrrole derivatives have the minimum inhibitory concentrations in the submicromolar range. In vitro toxicity against human T-cells was studied for all compounds. The degree to which compounds inhibited cell growth was neither directly correlated to DNA binding affinity nor directly correlated to antibacterial activity but seemed to depend strongly on the nature of the N-alkyl pyrrole substituents.
Collapse
Affiliation(s)
- Natalia B Dyatkina
- Genelabs Technologies, 505 Penobscot Drive, Redwood City, California 94063, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
974
|
Shepard BD, Gilmore MS. Antibiotic-resistant enterococci: the mechanisms and dynamics of drug introduction and resistance. Microbes Infect 2002; 4:215-24. [PMID: 11880055 DOI: 10.1016/s1286-4579(01)01530-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Enterococci possess a vast array of mechanisms to resist the lethal effects of most antimicrobial drugs currently approved for therapeutic use in humans, thus presenting a considerable therapeutic challenge. This review summarizes current concepts regarding the mechanisms of resistance, as well as the emergence, proliferation, and epidemiology of resistant enterococci.
Collapse
Affiliation(s)
- Brett D Shepard
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 975 NE 10th St., BRC 356, Oklahoma City, Oklahoma, USA
| | | |
Collapse
|
975
|
Eubank TD, Biswas R, Jovanovic M, Litovchick A, Lapidot A, Gopalan V. Inhibition of bacterial RNase P by aminoglycoside-arginine conjugates. FEBS Lett 2002; 511:107-12. [PMID: 11821058 DOI: 10.1016/s0014-5793(01)03322-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The potential of RNAs and RNA-protein (RNP) complexes as drug targets is currently being explored in various investigations. For example, a hexa-arginine derivative of neomycin (NeoR) and a tri-arginine derivative of gentamicin (R3G) were recently shown to disrupt essential RNP interactions between the trans-activator protein (Tat) and the Tat-responsive RNA (trans-activating region) in the human immunodeficiency virus (HIV) and also inhibit HIV replication in cell culture. Based on certain structural similarities, we postulated that NeoR and R3G might also be effective in disrupting RNP interactions and thereby inhibiting bacterial RNase P, an essential RNP complex involved in tRNA maturation. Our results indicate that indeed both NeoR and R3G inhibit RNase P activity from evolutionarily divergent pathogenic bacteria and do so more effectively than they inhibit partially purified human RNase P activity.
Collapse
Affiliation(s)
- Timothy D Eubank
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
976
|
Jank B, Rath J. Antibiotic-resistance management on the farm. Trends Microbiol 2002; 10:11-2. [PMID: 11755078 DOI: 10.1016/s0966-842x(01)02273-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
977
|
Sun B, Chen Z, Eggert US, Shaw SJ, LaTour JV, Kahne D. Hybrid glycopeptide antibiotics. J Am Chem Soc 2001; 123:12722-3. [PMID: 11741455 DOI: 10.1021/ja0166693] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- B Sun
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | | | | | |
Collapse
|
978
|
Golemi D, Maveyraud L, Vakulenko S, Samama JP, Mobashery S. Critical involvement of a carbamylated lysine in catalytic function of class D beta-lactamases. Proc Natl Acad Sci U S A 2001; 98:14280-5. [PMID: 11724923 PMCID: PMC64673 DOI: 10.1073/pnas.241442898] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
beta-Lactamases are the resistance enzymes for beta-lactam antibiotics, of which four classes are known. beta-lactamases hydrolyze the beta-lactam moieties of these antibiotics, rendering them inactive. It is shown herein that the class D OXA-10 beta-lactamase depends critically on an unusual carbamylated lysine as the basic residue for both the enzyme acylation and deacylation steps of catalysis. The formation of carbamylated lysine is reversible. Evidence is presented that this enzyme is dimeric and carbamylated in living bacteria. High-resolution x-ray structures for the native enzyme were determined at pH values of 6.0, 6.5, 7.5, and 8.5. Two dimers are present per asymmetric unit. One monomer in each dimer was carbamylated at pH 6.0, whereas all four monomers were fully carbamylated at pH 8.5. At the intermediate pH values, one monomer of each dimer was carbamylated, and the other showed a mixture of carbamylated and non-carbamylated lysines. It would appear that, as the pH increased for the sample, additional lysines were "titrated" by carbamylation. A handful of carbamylated lysines are known from protein crystallographic data, all of which have been attributed roles in structural stabilization (mostly as metal ligands) of the proteins. This paper reports a previously unrecognized role for a noncoordinated carbamylate lysine as a basic residue involved in mechanistic reactions of an enzyme, which indicates another means for expansion of the catalytic capabilities of the amino acids in nature beyond the 20 common amino acids in development of biological catalysts.
Collapse
Affiliation(s)
- D Golemi
- Groupe de Cristallographie Biologique, Institut de Pharmacologie et de Biologie Structurale du Centre National de la Recherche Scientifique, 205 Route de Narbonne, 31077-Toulouse Cedex, France
| | | | | | | | | |
Collapse
|
979
|
Svensson A, Larsson A, Emtenäs H, Hedenström M, Fex T, Hultgren SJ, Pinkner JS, Almqvist F, Kihlberg J. Design and evaluation of pilicides: potential novel antibacterial agents directed against uropathogenic Escherichia coli. Chembiochem 2001; 2:915-8. [PMID: 11948880 DOI: 10.1002/1439-7633(20011203)2:12<915::aid-cbic915>3.0.co;2-m] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- A Svensson
- Organic Chemistry 2, Center for Chemistry and Chemical Engineering, Lund Institute of Technology, Lund University P.O. Box 124, SE-221 00 Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
980
|
Pathak AK, Pathak V, Maddry JA, Suling WJ, Gurcha SS, Besra GS, Reynolds RC. Studies on alpha(1-->5) linked octyl arabinofuranosyl disaccharides for mycobacterial arabinosyl transferase activity. Bioorg Med Chem 2001; 9:3145-51. [PMID: 11711289 DOI: 10.1016/s0968-0896(01)00180-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The appearance multi-drug resistant Mycobacterium tuberculosis (MTB) throughout the world has prompted a search for new, safer and more active agents against tuberculosis. Based on studies of the biosynthesis of mycobacterial cell wall polysaccharides, octyl 5-O-(alpha-D-arabinofuranosyl)-alpha-D-arabinofuranoside analogues were synthesized and evaluated as inhibitors for M. tuberculosis and Mycobacterium avium. A cell free assay system has been used for the evaluation of these disaccharides as substrates for mycobacterial arabinosyltransferase activity.
Collapse
Affiliation(s)
- A K Pathak
- Department of Organic Chemistry, Southern Research Institute, PO Box 55305, Birmingham, AL 35255, USA
| | | | | | | | | | | | | |
Collapse
|
981
|
Dessen A, Mouz N, Gordon E, Hopkins J, Dideberg O. Crystal structure of PBP2x from a highly penicillin-resistant Streptococcus pneumoniae clinical isolate: a mosaic framework containing 83 mutations. J Biol Chem 2001; 276:45106-12. [PMID: 11553637 DOI: 10.1074/jbc.m107608200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Penicillin-binding proteins (PBPs) are the main targets for beta-lactam antibiotics, such as penicillins and cephalosporins, in a wide range of bacterial species. In some Gram-positive strains, the surge of resistance to treatment with beta-lactams is primarily the result of the proliferation of mosaic PBP-encoding genes, which encode novel proteins by recombination. PBP2x is a primary resistance determinant in Streptococcus pneumoniae, and its modification is an essential step in the development of high level beta-lactam resistance. To understand such a resistance mechanism at an atomic level, we have solved the x-ray crystal structure of PBP2x from a highly penicillin-resistant clinical isolate of S. pneumoniae, Sp328, which harbors 83 mutations in the soluble region. In the proximity of the Sp328 PBP2x* active site, the Thr(338) --> Ala mutation weakens the local hydrogen bonding network, thus abrogating the stabilization of a crucial buried water molecule. In addition, the Ser(389) --> Leu and Asn(514) --> His mutations produce a destabilizing effect that generates an "open" active site. It has been suggested that peptidoglycan substrates for beta-lactam-resistant PBPs contain a large amount of abnormal, branched peptides, whereas sensitive strains tend to catalyze cross-linking of linear forms. Thus, in vivo, an "open" active site could facilitate the recognition of distinct, branched physiological substrates.
Collapse
Affiliation(s)
- A Dessen
- Laboratoire de Cristallographie Macromoléculaire, Institut de Biologie Structurale Jean-Pierre Ebel (CNRS/Commissariat à l'Energie Atomique), 41, rue Jules Horowitz, 38027 Grenoble, France.
| | | | | | | | | |
Collapse
|
982
|
Díaz N, Suárez D, Sordo TL, Merz KM. Acylation of Class A β-lactamases by Penicillins: A Theoretical Examination of the Role of Serine 130 and the β-lactam Carboxylate Group. J Phys Chem B 2001. [DOI: 10.1021/jp012881h] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Natalia Díaz
- Departamento de Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo. Asturias. Spain, and Department of Chemistry, Eberly College of Sciences, The Pennsylvania State University, 152 Davey Laboratory, University Park, Pennsylvania 16802-6300
| | - Dimas Suárez
- Departamento de Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo. Asturias. Spain, and Department of Chemistry, Eberly College of Sciences, The Pennsylvania State University, 152 Davey Laboratory, University Park, Pennsylvania 16802-6300
| | - Tomás L. Sordo
- Departamento de Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo. Asturias. Spain, and Department of Chemistry, Eberly College of Sciences, The Pennsylvania State University, 152 Davey Laboratory, University Park, Pennsylvania 16802-6300
| | - Kenneth M. Merz
- Departamento de Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo. Asturias. Spain, and Department of Chemistry, Eberly College of Sciences, The Pennsylvania State University, 152 Davey Laboratory, University Park, Pennsylvania 16802-6300
| |
Collapse
|
983
|
|
984
|
|
985
|
|
986
|
Kariv I, Cao H, Marvil PD, Bobkova EV, Bukhtiyarov YE, Yan YP, Patel U, Coudurier L, Chung TD, Oldenburg KR. Identification of inhibitors of bacterial transcription/translation machinery utilizing a miniaturized 1536-well format screen. JOURNAL OF BIOMOLECULAR SCREENING 2001; 6:233-43. [PMID: 11689123 DOI: 10.1177/108705710100600405] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This report presents the miniaturization of a HTS screen to identify inhibitors of prokaryotic transcription-translation in a 1536-well format. The in vitro assay design utilized the bacterial expression machinery to drive expression of a firefly luciferase reporter gene, which was read as an endpoint luminesence measurement. This multicomponent system permits identification of inhibitors at different steps in this pathway. Successful miniaturization required integration of homogeneous assay formats, robust liquid-handling workstations, and second-generation imaging systems. Comparison of data from a triplicate 1536-well screen of a subset of a target library that had been previously validated and followed up for hit confirmation in a 384-well plate format confirmed that triplicate screening yields data of higher confidence and quality, eliminates the time-consuming and potentially error-prone step of cherry-picking, and reduces the number of false positives and negatives. The substantial savings of reagents and reduction of the numbers of plates to process obtained in a 1536-well format as compared to a 384-well format allowed a full triplicate evaluation of the entire library of 183,000 compounds at lower cost and in less time. The triplicate-screen statistics are consistent with a highly reliable data set with a coefficient of variation of 14.8% and Z' and Z values of 0.57 and 0.25, respectively. This screen resulted in the identification of 1,149 hits (0.63% hit rate), representing a compound population at 2.5 standard deviations from the mean cutoff. Furthermore, the data demonstrate good agreement between IC(50) values derived for this assay in a 1536-well format and 384-well format.
Collapse
Affiliation(s)
- I Kariv
- Leads Discovery Department, Dupont Pharmaceuticals Company, Wilmington, DE 19880, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
987
|
Abstract
Bacteria that adhere to implanted medical devices or damaged tissue can encase themselves in a hydrated matrix of polysaccharide and protein, and form a slimy layer known as a biofilm. Antibiotic resistance of bacteria in the biofilm mode of growth contributes to the chronicity of infections such as those associated with implanted medical devices. The mechanisms of resistance in biofilms are different from the now familiar plasmids, transposons, and mutations that confer innate resistance to individual bacterial cells. In biofilms, resistance seems to depend on multicellular strategies. We summarise the features of biofilm infections, review emerging mechanisms of resistance, and discuss potential therapies.
Collapse
Affiliation(s)
- P S Stewart
- Center for Biofilm Engineering and Department of Chemical Engineering, Montana State University, Bozeman, MT 59717-3980, USA.
| | | |
Collapse
|
988
|
McKinney J, Guerrier-Takada C, Wesolowski D, Altman S. Inhibition of Escherichia coli viability by external guide sequences complementary to two essential genes. Proc Natl Acad Sci U S A 2001; 98:6605-10. [PMID: 11381134 PMCID: PMC34400 DOI: 10.1073/pnas.121180398] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Narrow spectrum antimicrobial activity has been designed to reduce the expression of two essential genes, one coding for the protein subunit of RNase P (C5 protein) and one for gyrase (gyrase A). In both cases, external guide sequences (EGS) have been designed to complex with either mRNA. Using the EGS technology, the level of microbial viability is reduced to less than 10% of the wild-type strain. The EGSs are additive when used together and depend on the number of nucleotides paired when attacking gyrase A mRNA. In the case of gyrase A, three nucleotides unpaired out of a 15-mer EGS still favor complete inhibition by the EGS but five unpaired nucleotides do not.
Collapse
Affiliation(s)
- J McKinney
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
989
|
Neumüller AM, Konz D, Marahiel MA. The two-component regulatory system BacRS is associated with bacitracin 'self-resistance' of Bacillus licheniformis ATCC 10716. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3180-9. [PMID: 11389719 DOI: 10.1046/j.1432-1327.2001.02203.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacitracin is a peptide antibiotic produced by several Bacillus licheniformis strains that is most active against other Gram-positive microorganisms, but not against the producer strain itself. Recently, heterologous expression of the bacitracin resistance mediating BcrABC transporter in Bacillus subtilis and Escherichia coli was described. In this study we could determine that the transporter encoding bcrABC genes are localized about 3 kb downstream of the 44-kb bacitracin biosynthetic operon bacABC. Between the bac operon and the bcrABC genes two orfs, designated bacR and bacS, were identified. They code for proteins with high homology to regulator and sensor proteins of two-component systems. A disruption mutant of the bacRS genes was constructed. While the mutant displayed no effects on the bacitracin production it exhibited highly increased bacitracin sensitivity compared to the wild-type strain. Western blot analysis of the expression of BcrA, the ATP-binding cassette of the transporter, showed in the wild-type a moderate BcrA induction in late stationary cells that accumulate bacitracin, whereas in the bacRS mutant cells the BcrA expression was constitutive. A comparison of bacitracin stressed and nonstressed wild-type cells in Western blot analysis revealed increasing amounts of BcrA and a decrease in BacR in the stressed cells. From these findings we infer that BacR acts as a negative regulator for controlling the expression of the bcrABC transporter genes.
Collapse
Affiliation(s)
- A M Neumüller
- Philipps Universität Marburg, FB Chemie/Biochemie, Germany
| | | | | |
Collapse
|
990
|
Nicolaou KC, Roecker AJ, Barluenga S, Pfefferkorn JA, Cao GQ. Discovery of novel antibacterial agents active against methicillin-resistant Staphylococcus aureus from combinatorial benzopyran libraries. Chembiochem 2001; 2:460-5. [PMID: 11828478 DOI: 10.1002/1439-7633(20010601)2:6<460::aid-cbic460>3.0.co;2-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- K C Nicolaou
- Department of Chemistry, The Skaggs Institute for Chemical Biology, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
991
|
Pioletti M, Schlünzen F, Harms J, Zarivach R, Glühmann M, Avila H, Bashan A, Bartels H, Auerbach T, Jacobi C, Hartsch T, Yonath A, Franceschi F. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J 2001; 20:1829-39. [PMID: 11296217 PMCID: PMC125237 DOI: 10.1093/emboj/20.8.1829] [Citation(s) in RCA: 362] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The small ribosomal subunit is responsible for the decoding of genetic information and plays a key role in the initiation of protein synthesis. We analyzed by X-ray crystallography the structures of three different complexes of the small ribosomal subunit of Thermus thermophilus with the A-site inhibitor tetracycline, the universal initiation inhibitor edeine and the C-terminal domain of the translation initiation factor IF3. The crystal structure analysis of the complex with tetracycline revealed the functionally important site responsible for the blockage of the A-site. Five additional tetracycline sites resolve most of the controversial biochemical data on the location of tetracycline. The interaction of edeine with the small subunit indicates its role in inhibiting initiation and shows its involvement with P-site tRNA. The location of the C-terminal domain of IF3, at the solvent side of the platform, sheds light on the formation of the initiation complex, and implies that the anti-association activity of IF3 is due to its influence on the conformational dynamics of the small ribosomal subunit.
Collapse
Affiliation(s)
- Marta Pioletti
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, 14195 Berlin, FB Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Max-Planck-Research Unit for Ribosomal Structure, Notkestrasse 85, 22603 Hamburg, Göttingen Genomics Laboratory, Georg-August Universität, Griesebacherstrasse 8, 37077 Göttingen, Germany, Department of Structural Biology, Weizmann Institute, 76100 Rehovot, Israel and Centro de Investigaciones Biomédicas, Universidad de Carabobo, Las Delicias, Maracay, Venezuela Corresponding author e-mail:
M.Pioletti, F.Schlünzen and J.Harms contributed equally to this work
| | - Frank Schlünzen
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, 14195 Berlin, FB Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Max-Planck-Research Unit for Ribosomal Structure, Notkestrasse 85, 22603 Hamburg, Göttingen Genomics Laboratory, Georg-August Universität, Griesebacherstrasse 8, 37077 Göttingen, Germany, Department of Structural Biology, Weizmann Institute, 76100 Rehovot, Israel and Centro de Investigaciones Biomédicas, Universidad de Carabobo, Las Delicias, Maracay, Venezuela Corresponding author e-mail:
M.Pioletti, F.Schlünzen and J.Harms contributed equally to this work
| | - Jörg Harms
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, 14195 Berlin, FB Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Max-Planck-Research Unit for Ribosomal Structure, Notkestrasse 85, 22603 Hamburg, Göttingen Genomics Laboratory, Georg-August Universität, Griesebacherstrasse 8, 37077 Göttingen, Germany, Department of Structural Biology, Weizmann Institute, 76100 Rehovot, Israel and Centro de Investigaciones Biomédicas, Universidad de Carabobo, Las Delicias, Maracay, Venezuela Corresponding author e-mail:
M.Pioletti, F.Schlünzen and J.Harms contributed equally to this work
| | - Raz Zarivach
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, 14195 Berlin, FB Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Max-Planck-Research Unit for Ribosomal Structure, Notkestrasse 85, 22603 Hamburg, Göttingen Genomics Laboratory, Georg-August Universität, Griesebacherstrasse 8, 37077 Göttingen, Germany, Department of Structural Biology, Weizmann Institute, 76100 Rehovot, Israel and Centro de Investigaciones Biomédicas, Universidad de Carabobo, Las Delicias, Maracay, Venezuela Corresponding author e-mail:
M.Pioletti, F.Schlünzen and J.Harms contributed equally to this work
| | - Marco Glühmann
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, 14195 Berlin, FB Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Max-Planck-Research Unit for Ribosomal Structure, Notkestrasse 85, 22603 Hamburg, Göttingen Genomics Laboratory, Georg-August Universität, Griesebacherstrasse 8, 37077 Göttingen, Germany, Department of Structural Biology, Weizmann Institute, 76100 Rehovot, Israel and Centro de Investigaciones Biomédicas, Universidad de Carabobo, Las Delicias, Maracay, Venezuela Corresponding author e-mail:
M.Pioletti, F.Schlünzen and J.Harms contributed equally to this work
| | - Horacio Avila
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, 14195 Berlin, FB Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Max-Planck-Research Unit for Ribosomal Structure, Notkestrasse 85, 22603 Hamburg, Göttingen Genomics Laboratory, Georg-August Universität, Griesebacherstrasse 8, 37077 Göttingen, Germany, Department of Structural Biology, Weizmann Institute, 76100 Rehovot, Israel and Centro de Investigaciones Biomédicas, Universidad de Carabobo, Las Delicias, Maracay, Venezuela Corresponding author e-mail:
M.Pioletti, F.Schlünzen and J.Harms contributed equally to this work
| | - Anat Bashan
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, 14195 Berlin, FB Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Max-Planck-Research Unit for Ribosomal Structure, Notkestrasse 85, 22603 Hamburg, Göttingen Genomics Laboratory, Georg-August Universität, Griesebacherstrasse 8, 37077 Göttingen, Germany, Department of Structural Biology, Weizmann Institute, 76100 Rehovot, Israel and Centro de Investigaciones Biomédicas, Universidad de Carabobo, Las Delicias, Maracay, Venezuela Corresponding author e-mail:
M.Pioletti, F.Schlünzen and J.Harms contributed equally to this work
| | - Heike Bartels
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, 14195 Berlin, FB Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Max-Planck-Research Unit for Ribosomal Structure, Notkestrasse 85, 22603 Hamburg, Göttingen Genomics Laboratory, Georg-August Universität, Griesebacherstrasse 8, 37077 Göttingen, Germany, Department of Structural Biology, Weizmann Institute, 76100 Rehovot, Israel and Centro de Investigaciones Biomédicas, Universidad de Carabobo, Las Delicias, Maracay, Venezuela Corresponding author e-mail:
M.Pioletti, F.Schlünzen and J.Harms contributed equally to this work
| | - Tamar Auerbach
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, 14195 Berlin, FB Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Max-Planck-Research Unit for Ribosomal Structure, Notkestrasse 85, 22603 Hamburg, Göttingen Genomics Laboratory, Georg-August Universität, Griesebacherstrasse 8, 37077 Göttingen, Germany, Department of Structural Biology, Weizmann Institute, 76100 Rehovot, Israel and Centro de Investigaciones Biomédicas, Universidad de Carabobo, Las Delicias, Maracay, Venezuela Corresponding author e-mail:
M.Pioletti, F.Schlünzen and J.Harms contributed equally to this work
| | - Carsten Jacobi
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, 14195 Berlin, FB Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Max-Planck-Research Unit for Ribosomal Structure, Notkestrasse 85, 22603 Hamburg, Göttingen Genomics Laboratory, Georg-August Universität, Griesebacherstrasse 8, 37077 Göttingen, Germany, Department of Structural Biology, Weizmann Institute, 76100 Rehovot, Israel and Centro de Investigaciones Biomédicas, Universidad de Carabobo, Las Delicias, Maracay, Venezuela Corresponding author e-mail:
M.Pioletti, F.Schlünzen and J.Harms contributed equally to this work
| | - Thomas Hartsch
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, 14195 Berlin, FB Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Max-Planck-Research Unit for Ribosomal Structure, Notkestrasse 85, 22603 Hamburg, Göttingen Genomics Laboratory, Georg-August Universität, Griesebacherstrasse 8, 37077 Göttingen, Germany, Department of Structural Biology, Weizmann Institute, 76100 Rehovot, Israel and Centro de Investigaciones Biomédicas, Universidad de Carabobo, Las Delicias, Maracay, Venezuela Corresponding author e-mail:
M.Pioletti, F.Schlünzen and J.Harms contributed equally to this work
| | - Ada Yonath
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, 14195 Berlin, FB Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Max-Planck-Research Unit for Ribosomal Structure, Notkestrasse 85, 22603 Hamburg, Göttingen Genomics Laboratory, Georg-August Universität, Griesebacherstrasse 8, 37077 Göttingen, Germany, Department of Structural Biology, Weizmann Institute, 76100 Rehovot, Israel and Centro de Investigaciones Biomédicas, Universidad de Carabobo, Las Delicias, Maracay, Venezuela Corresponding author e-mail:
M.Pioletti, F.Schlünzen and J.Harms contributed equally to this work
| | - François Franceschi
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, 14195 Berlin, FB Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Max-Planck-Research Unit for Ribosomal Structure, Notkestrasse 85, 22603 Hamburg, Göttingen Genomics Laboratory, Georg-August Universität, Griesebacherstrasse 8, 37077 Göttingen, Germany, Department of Structural Biology, Weizmann Institute, 76100 Rehovot, Israel and Centro de Investigaciones Biomédicas, Universidad de Carabobo, Las Delicias, Maracay, Venezuela Corresponding author e-mail:
M.Pioletti, F.Schlünzen and J.Harms contributed equally to this work
| |
Collapse
|
992
|
Shea JE, Santangelo JD, Feldman RG. Combating Gram-positive pathogens: emerging techniques to identify relevant virulence targets. Expert Opin Ther Targets 2001; 5:155-64. [PMID: 15992173 DOI: 10.1517/14728222.5.2.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Recent progress in microbial genome sequencing, along with functional genomics technologies based on gene expression, proteomics and genetics have facilitated the identification of significant numbers of Gram-positive virulence genes. These genes represent a novel and heterogeneous class of targets for antimicrobial drug development. This review will concentrate of the contribution of two functional genomics technologies, in vivo expression technology (IVET) based on gene expression and signature-tagged mutagenesis (STM), a genetics based technology to the identification of virulence genes in Gram-positive pathogens.
Collapse
Affiliation(s)
- J E Shea
- Microscience Ltd., 545 Eskdale Road, Winnersh Triangle, Wokingham, Berkshire, RG41 5TU, UK.
| | | | | |
Collapse
|
993
|
Abstract
The comparative analysis of homologous characters is a staple of evolutionary developmental biology and often involves extrapolating from experimental data in model organisms to infer developmental events in non-model organisms. In order to determine the general importance of data obtained in model organisms, it is critical to know how often and to what degree similar phenotypes expressed in different taxa are formed by divergent developmental processes. Both comparative studies of distantly related species and genetic analysis of closely related species indicate that many characters known to be homologous between taxa have diverged in their morphogenetic or gene regulatory underpinnings. This process, which we call "developmental system drift" (DSD), is apparently ubiquitous and has significant implications for the flexibility of developmental evolution of both conserved and evolving characters. Current data on the population genetics and molecular mechanisms of DSD illustrate how the details of developmental processes are constantly changing within evolutionary lineages, indicating that developmental systems may possess a great deal of plasticity in their responses to natural selection.
Collapse
Affiliation(s)
- J R True
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, University of Wisconsin, Madison 53706, USA.
| | | |
Collapse
|
994
|
Rico A. Chemo-defence system. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 2001; 324:97-106. [PMID: 11280050 DOI: 10.1016/s0764-4469(00)01281-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
By analogy with the immune defence system, the existence is suggested of a chemo-defence system protecting living organisms against toxic substances, whether natural or man-made, that are present in the environment. This paper deals first with the various facets of such a system: mechanisms involving, among others, lipophilic compounds, hydrophilic compounds, oxidants, acidosis, genotoxics and metals; second, with the biological characteristics of the system and a comparison with the immune defence system: partial immaturity of the young, inducibility, non-specificity and specificity, and saturability; we will show that the two systems share many common features; third, with the evolution of the system, which demonstrates that the system is very old and suggesting that it came into existence before the immune defence system; and fourth, with some of its consequences: estimation of the 'toxic effects' of low doses, hormesis, impact of a vegetable diet on health. Finally, it could be emphasised that life is well protected against chemicals by its chemo-defence system, which appeared very early with the first living organisms on the earth.
Collapse
|