951
|
Lin CY, Barry-Holson KQ, Allison KH. Breast cancer stem cells: are we ready to go from bench to bedside? Histopathology 2015; 68:119-37. [DOI: 10.1111/his.12868] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chieh-Yu Lin
- Department of Pathology; Stanford University; Stanford CA USA
| | | | | |
Collapse
|
952
|
Sreekumar A, Roarty K, Rosen JM. The mammary stem cell hierarchy: a looking glass into heterogeneous breast cancer landscapes. Endocr Relat Cancer 2015; 22. [PMID: 26206777 PMCID: PMC4618079 DOI: 10.1530/erc-15-0263] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mammary gland is a dynamic organ that undergoes extensive morphogenesis during the different stages of embryonic development, puberty, estrus, pregnancy, lactation and involution. Systemic and local cues underlie this constant tissue remodeling and act by eliciting an intricate pattern of responses in the mammary epithelial and stromal cells. Decades of studies utilizing methods such as transplantation and lineage-tracing have identified a complex hierarchy of mammary stem cells, progenitors and differentiated epithelial cells that fuel mammary epithelial development. Importantly, these studies have extended our understanding of the molecular crosstalk between cell types and the signaling pathways maintaining normal homeostasis that often are deregulated during tumorigenesis. While several questions remain, this research has many implications for breast cancer. Fundamental among these are the identification of the cells of origin for the multiple subtypes of breast cancer and the understanding of tumor heterogeneity. A deeper understanding of these critical questions will unveil novel breast cancer drug targets and treatment paradigms. In this review, we provide a current overview of normal mammary development and tumorigenesis from a stem cell perspective.
Collapse
Affiliation(s)
- Amulya Sreekumar
- Department of Molecular and Cellular BiologyBaylor College of Medicine, One Baylor Plaza, DeBakey Building M638, Houston, Texas 77030, USA
| | - Kevin Roarty
- Department of Molecular and Cellular BiologyBaylor College of Medicine, One Baylor Plaza, DeBakey Building M638, Houston, Texas 77030, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular BiologyBaylor College of Medicine, One Baylor Plaza, DeBakey Building M638, Houston, Texas 77030, USA
| |
Collapse
|
953
|
Strand DW, Goldstein AS. The many ways to make a luminal cell and a prostate cancer cell. Endocr Relat Cancer 2015; 22:T187-97. [PMID: 26307022 PMCID: PMC4893788 DOI: 10.1530/erc-15-0195] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2015] [Indexed: 12/16/2022]
Abstract
Research in the area of stem/progenitor cells has led to the identification of multiple stem-like cell populations implicated in prostate homeostasis and cancer initiation. Given that there are multiple cells that can regenerate prostatic tissue and give rise to prostate cancer, our focus should shift to defining the signaling mechanisms that drive differentiation and progenitor self-renewal. In this article, we will review the literature, present the evidence and raise important unanswered questions that will help guide the field forward in dissecting critical mechanisms regulating stem-cell differentiation and tumor initiation.
Collapse
Affiliation(s)
- Douglas W Strand
- Department of UrologyUniversity of Texas Southwestern, Dallas, Texas, USADepartment of Molecular and Medical PharmacologyDepartment of Urology, David Geffen School of Medicine, Broad Stem Cell Research Center, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| | - Andrew S Goldstein
- Department of UrologyUniversity of Texas Southwestern, Dallas, Texas, USADepartment of Molecular and Medical PharmacologyDepartment of Urology, David Geffen School of Medicine, Broad Stem Cell Research Center, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| |
Collapse
|
954
|
Sperber H, Mathieu J, Wang Y, Ferreccio A, Hesson J, Xu Z, Fischer KA, Devi A, Detraux D, Gu H, Battle SL, Showalter M, Valensisi C, Bielas JH, Ericson NG, Margaretha L, Robitaille AM, Margineantu D, Fiehn O, Hockenbery D, Blau CA, Raftery D, Margolin A, Hawkins RD, Moon RT, Ware CB, Ruohola-Baker H. The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat Cell Biol 2015; 17:1523-35. [PMID: 26571212 PMCID: PMC4662931 DOI: 10.1038/ncb3264] [Citation(s) in RCA: 310] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/01/2015] [Indexed: 02/07/2023]
Abstract
For nearly a century developmental biologists have recognized that cells from embryos can differ in their potential to differentiate into distinct cell types. Recently, it has been recognized that embryonic stem cells derived from both mice and humans exhibit two stable yet epigenetically distinct states of pluripotency: naive and primed. We now show that nicotinamide N-methyltransferase (NNMT) and the metabolic state regulate pluripotency in human embryonic stem cells (hESCs). Specifically, in naive hESCs, NNMT and its enzymatic product 1-methylnicotinamide are highly upregulated, and NNMT is required for low S-adenosyl methionine (SAM) levels and the H3K27me3 repressive state. NNMT consumes SAM in naive cells, making it unavailable for histone methylation that represses Wnt and activates the HIF pathway in primed hESCs. These data support the hypothesis that the metabolome regulates the epigenetic landscape of the earliest steps in human development.
Collapse
Affiliation(s)
- Henrik Sperber
- Department of Biochemistry, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
- Department of Chemistry, University of Washington, Seattle, WA
| | - Julie Mathieu
- Department of Biochemistry, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
| | - Yuliang Wang
- Sage Bionetworks, Seattle, WA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR
| | - Amy Ferreccio
- Department of Biochemistry, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
| | - Jennifer Hesson
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
| | - Zhuojin Xu
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
| | - Karin A. Fischer
- Department of Biochemistry, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
| | - Arikketh Devi
- Department of Biochemistry, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
- Department of Genetic Engineering, SRM University, Kattankulathur, India
| | - Damien Detraux
- Department of Biochemistry, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
| | - Haiwei Gu
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, CA
| | - Stephanie L. Battle
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
- Department of Medicine, Division of Medical Genetics and Department of Genome Sciences, University of Washington, CA
| | | | - Cristina Valensisi
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
- Department of Medicine, Division of Medical Genetics and Department of Genome Sciences, University of Washington, CA
| | - Jason H. Bielas
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | | | | | | | | | - Oliver Fiehn
- University of California Davis Genome Center, CA
| | | | - C. Anthony Blau
- Department of Biochemistry, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
| | - Daniel Raftery
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, CA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Adam Margolin
- Sage Bionetworks, Seattle, WA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR
| | - R. David Hawkins
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
- Department of Medicine, Division of Medical Genetics and Department of Genome Sciences, University of Washington, CA
| | - Randall T. Moon
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
| | - Carol B. Ware
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
| |
Collapse
|
955
|
Yimlamai D, Fowl BH, Camargo FD. Emerging evidence on the role of the Hippo/YAP pathway in liver physiology and cancer. J Hepatol 2015; 63:1491-501. [PMID: 26226451 PMCID: PMC4654680 DOI: 10.1016/j.jhep.2015.07.008] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/30/2015] [Accepted: 07/08/2015] [Indexed: 01/11/2023]
Abstract
The Hippo pathway and its regulatory target, YAP, has recently emerged as an important biochemical signaling pathway that tightly governs epithelial tissue growth. Initially defined in Drosophilia, this pathway has shown remarkable conservation in vertebrate systems with many components of the Hippo/YAP pathway showing biochemical and functional conservation. The liver is particularly sensitive to changes in Hippo/YAP signaling with rapid increases in liver size becoming manifest on the order of days to weeks after perturbation. The first identified direct targets of Hippo/YAP signaling were pro-proliferative and anti-apoptotic gene programs, but recent work has now implicated this pathway in cell fate choice, stem cell maintenance/renewal, epithelial to mesenchymal transition, and oncogenesis. The mechanisms by which Hippo/YAP signaling is changed endogenously are beginning to come to light as well as how this pathway interacts with other signaling pathways, and important details for designing new therapeutic interventions. This review focuses on the known roles for Hippo/YAP signaling in the liver and promising avenues for future study.
Collapse
Affiliation(s)
- Dean Yimlamai
- The Stem Cell Program, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, United States; Division of Gastroenterology and Nutrition, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, United States.
| | - Brendan H Fowl
- The Stem Cell Program, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, United States; Division of Gastroenterology and Nutrition, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, United States
| | - Fernando D Camargo
- The Stem Cell Program, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, United States; Harvard Stem Cell Institute, Cambridge, MA 02138, United States; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, United States.
| |
Collapse
|
956
|
Abstract
One of the key promises of regenerative medicine is providing a cure for diabetes. Cell-based therapies are proving their safety and efficiency, but donor beta cell shortages and immunological issues remain major hurdles. Reprogramming of human pancreatic exocrine cells towards beta cells would offer a major advantage by providing an abundant and autologous source of beta cells. Over the past decade our understanding of transdifferentiation processes greatly increased allowing us to design reprogramming protocols that fairly aim for clinical trials.
Collapse
Affiliation(s)
- Willem Staels
- Diabetes Research Center, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Department of Pediatrics, Division of Pediatric Endocrinology, Ghent University Hospital, and Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - Yves Heremans
- Diabetes Research Center, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Harry Heimberg
- Diabetes Research Center, Vrije Universiteit Brussel, 1090 Brussels, Belgium.
| |
Collapse
|
957
|
Rocha AS, Vidal V, Mertz M, Kendall TJ, Charlet A, Okamoto H, Schedl A. The Angiocrine Factor Rspondin3 Is a Key Determinant of Liver Zonation. Cell Rep 2015; 13:1757-64. [PMID: 26655896 DOI: 10.1016/j.celrep.2015.10.049] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/09/2015] [Accepted: 10/14/2015] [Indexed: 01/09/2023] Open
Abstract
Liver zonation, the spatial separation of different metabolic pathways along the liver sinusoids, is fundamental for proper functioning of this organ, and its disruption can lead to the development of metabolic disorders such as hyperammonemia. Metabolic zonation involves the induction of β-catenin signaling around the central veins, but how this patterned activity is established and maintained is unclear. Here, we show that the signaling molecule Rspondin3 is specifically expressed within the endothelial compartment of the central vein. Conditional deletion of Rspo3 in mice disrupts activation of central fate, demonstrating its crucial role in determining and maintaining β-catenin-dependent zonation. Moreover, ectopic expression of Rspo1, a close family member of Rspo3, induces the expression of pericentral markers, demonstrating Rspondins to be sufficient to imprint a more central fate. Thus, Rspo3 is a key angiocrine factor that controls metabolic zonation of liver hepatocytes.
Collapse
Affiliation(s)
- Ana Sofia Rocha
- Institute of Biology Valrose, Université de Nice-Sophia, 06108 Nice, France; Inserm, UMR1091, 06108 Nice, France; CNRS, UMR7277, 06108 Nice, France.
| | - Valerie Vidal
- Institute of Biology Valrose, Université de Nice-Sophia, 06108 Nice, France; Inserm, UMR1091, 06108 Nice, France; CNRS, UMR7277, 06108 Nice, France
| | - Marjolijn Mertz
- Institute of Biology Valrose, Université de Nice-Sophia, 06108 Nice, France; Inserm, UMR1091, 06108 Nice, France; Plateforme PRISM, Institute of Biology Valrose, Université de Nice-Sophia, 06108 Nice, France
| | - Timothy J Kendall
- MRC Human Genetics Unit, Western General Hospital Campus, Edinburgh, EH4 2XU Scotland, UK
| | - Aurelie Charlet
- Institute of Biology Valrose, Université de Nice-Sophia, 06108 Nice, France; Inserm, UMR1091, 06108 Nice, France; CNRS, UMR7277, 06108 Nice, France
| | | | - Andreas Schedl
- Institute of Biology Valrose, Université de Nice-Sophia, 06108 Nice, France; Inserm, UMR1091, 06108 Nice, France; CNRS, UMR7277, 06108 Nice, France.
| |
Collapse
|
958
|
Janeczek AA, Tare RS, Scarpa E, Moreno-Jimenez I, Rowland CA, Jenner D, Newman TA, Oreffo ROC, Evans ND. Transient Canonical Wnt Stimulation Enriches Human Bone Marrow Mononuclear Cell Isolates for Osteoprogenitors. Stem Cells 2015; 34:418-30. [PMID: 26573091 PMCID: PMC4981914 DOI: 10.1002/stem.2241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/01/2015] [Indexed: 12/27/2022]
Abstract
Activation of the canonical Wnt signaling pathway is an attractive anabolic therapeutic strategy for bone. Emerging data suggest that activation of the Wnt signaling pathway promotes bone mineral accrual in osteoporotic patients. The effect of Wnt stimulation in fracture healing is less clear as Wnt signaling has both stimulatory and inhibitory effects on osteogenesis. Here, we tested the hypothesis that transient Wnt stimulation promotes the expansion and osteogenesis of a Wnt‐responsive stem cell population present in human bone marrow. Bone marrow mononuclear cells (BMMNCs) were isolated from patients undergoing hip arthroplasty and exposed to Wnt3A protein. The effect of Wnt pathway stimulation was determined by measuring the frequency of stem cells within the BMMNC populations by fluorescence‐activated cell sorting and colony forming unit fibroblast (CFU‐F) assays, before determining their osteogenic capacity in in vitro differentiation experiments. We found that putative skeletal stem cells in BMMNC isolates exhibited elevated Wnt pathway activity compared with the population as whole. Wnt stimulation resulted in an increase in the frequency of skeletal stem cells marked by the STRO‐1bright/Glycophorin A− phenotype. Osteogenesis was elevated in stromal cell populations arising from BMMNCs transiently stimulated by Wnt3A protein, but sustained stimulation inhibited osteogenesis in a concentration‐dependent manner. These results demonstrate that Wnt stimulation could be used as a therapeutic approach by transient targeting of stem cell populations during early fracture healing, but that inappropriate stimulation may prevent osteogenesis. Stem Cells2016;34:418–430
Collapse
Affiliation(s)
- Agnieszka A Janeczek
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, United Kingdom
- Bone and Joint Research Group, Human Development and Health Academic Unit, Institute for Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Rahul S Tare
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, United Kingdom
- Bone and Joint Research Group, Human Development and Health Academic Unit, Institute for Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Edoardo Scarpa
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, United Kingdom
- Bone and Joint Research Group, Human Development and Health Academic Unit, Institute for Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Ines Moreno-Jimenez
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, United Kingdom
- Bone and Joint Research Group, Human Development and Health Academic Unit, Institute for Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Caroline A Rowland
- Microbiology group, Chemical, Biological and Radiological Division, Salisbury, United Kingdom
| | - Dominic Jenner
- Microbiology group, Chemical, Biological and Radiological Division, Salisbury, United Kingdom
| | - Tracey A Newman
- Clinical and Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Richard O C Oreffo
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, United Kingdom
- Bone and Joint Research Group, Human Development and Health Academic Unit, Institute for Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Nicholas D Evans
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, United Kingdom
- Bone and Joint Research Group, Human Development and Health Academic Unit, Institute for Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
959
|
The bone-sparing effects of estrogen and WNT16 are independent of each other. Proc Natl Acad Sci U S A 2015; 112:14972-7. [PMID: 26627248 DOI: 10.1073/pnas.1520408112] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Wingless-type MMTV integration site family (WNT)16 is a key regulator of bone mass with high expression in cortical bone, and Wnt16(-/-) mice have reduced cortical bone mass. As Wnt16 expression is enhanced by estradiol treatment, we hypothesized that the bone-sparing effect of estrogen in females is WNT16-dependent. This hypothesis was tested in mechanistic studies using two genetically modified mouse models with either constantly high osteoblastic Wnt16 expression or no Wnt16 expression. We developed a mouse model with osteoblast-specific Wnt16 overexpression (Obl-Wnt16). These mice had several-fold elevated Wnt16 expression in both trabecular and cortical bone compared with wild type (WT) mice. Obl-Wnt16 mice displayed increased total body bone mineral density (BMD), surprisingly caused mainly by a substantial increase in trabecular bone mass, resulting in improved bone strength of vertebrae L3. Ovariectomy (ovx) reduced the total body BMD and the trabecular bone mass to the same degree in Obl-Wnt16 mice and WT mice, suggesting that the bone-sparing effect of estrogen is WNT16-independent. However, these bone parameters were similar in ovx Obl-Wnt16 mice and sham operated WT mice. The role of WNT16 for the bone-sparing effect of estrogen was also evaluated in Wnt16(-/-) mice. Treatment with estradiol increased the trabecular and cortical bone mass to a similar extent in both Wnt16(-/-) and WT mice. In conclusion, the bone-sparing effects of estrogen and WNT16 are independent of each other. Furthermore, loss of endogenous WNT16 results specifically in cortical bone loss, whereas overexpression of WNT16 surprisingly increases mainly trabecular bone mass. WNT16-targeted therapies might be useful for treatment of postmenopausal trabecular bone loss.
Collapse
|
960
|
Rashid M, Fischer A, Wilson CH, Tiffen J, Rust AG, Stevens P, Idziaszczyk S, Maynard J, Williams GT, Mustonen V, Sampson JR, Adams DJ. Adenoma development in familial adenomatous polyposis and MUTYH-associated polyposis: somatic landscape and driver genes. J Pathol 2015; 238:98-108. [PMID: 26414517 PMCID: PMC4832337 DOI: 10.1002/path.4643] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/03/2015] [Accepted: 09/21/2015] [Indexed: 12/12/2022]
Abstract
Familial adenomatous polyposis (FAP) and MUTYH‐associated polyposis (MAP) are inherited disorders associated with multiple colorectal adenomas that lead to a very high risk of colorectal cancer. The somatic mutations that drive adenoma development in these conditions have not been investigated comprehensively. In this study we performed analysis of paired colorectal adenoma and normal tissue DNA from individuals with FAP or MAP, sequencing 14 adenoma whole exomes (eight MAP, six FAP), 55 adenoma targeted exomes (33 MAP, 22 FAP) and germline DNA from each patient, and a further 63 adenomas by capillary sequencing (41 FAP, 22 MAP). With these data we examined the profile of mutated genes, the mutational signatures and the somatic mutation rates, observing significant diversity in the constellations of mutated driver genes in different adenomas, and loss‐of‐function mutations in WTX (9%; p < 9.99e‐06), a gene implicated in regulation of the WNT pathway and p53 acetylation. These data extend our understanding of the early events in colorectal tumourigenesis in the polyposis syndromes. © 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Mamunur Rashid
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Andrej Fischer
- Population Genomics of Adaptation, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Cathy H Wilson
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Jessamy Tiffen
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Alistair G Rust
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Philip Stevens
- The Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Shelley Idziaszczyk
- Institute of Medical Genetics, Cardiff University School of Medicine, UK.,Institute of Cancer and Genetics, Cardiff University School of Medicine, UK
| | - Julie Maynard
- Institute of Medical Genetics, Cardiff University School of Medicine, UK.,Institute of Cancer and Genetics, Cardiff University School of Medicine, UK
| | - Geraint T Williams
- Institute of Medical Genetics, Cardiff University School of Medicine, UK.,Institute of Cancer and Genetics, Cardiff University School of Medicine, UK
| | - Ville Mustonen
- Population Genomics of Adaptation, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Julian R Sampson
- Institute of Medical Genetics, Cardiff University School of Medicine, UK.,Institute of Cancer and Genetics, Cardiff University School of Medicine, UK
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| |
Collapse
|
961
|
Chiacchiera F, Rossi A, Jammula S, Piunti A, Scelfo A, Ordóñez-Morán P, Huelsken J, Koseki H, Pasini D. Polycomb Complex PRC1 Preserves Intestinal Stem Cell Identity by Sustaining Wnt/β-Catenin Transcriptional Activity. Cell Stem Cell 2015; 18:91-103. [PMID: 26526724 DOI: 10.1016/j.stem.2015.09.019] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 08/11/2015] [Accepted: 09/15/2015] [Indexed: 10/22/2022]
Abstract
Polycomb repressive complexes (PRCs) are among the most important gatekeepers of establishing and maintaining cell identity in metazoans. PRC1, which plays a dominant role in this context, executes its functions via multiple subcomplexes, which all contribute to H2AK119 mono-ubiquitination (H2Aubq). Despite our comprehensive knowledge of PRC1-dependent H2Aubq in embryonic stem cells and during early development, its role in adult stem cells still remains poorly characterized. Here we show that PRC1 activity is required for the integrity of the intestinal epithelium, regulating stem cell self-renewal via a cell-autonomous mechanism that is independent from Cdkn2a expression. By dissecting the PRC1-dependent transcription program in intestinal stem cells, we demonstrate that PRC1 represses a large number of non-lineage-specific transcription factors that directly affect β-catenin/Tcf transcriptional activity. Our data reveal that PRC1 preserves Wnt/β-catenin activity in adult stem cells to maintain intestinal homeostasis and supports tumor formation induced by the constitutive activation of this pathway.
Collapse
Affiliation(s)
- Fulvio Chiacchiera
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Alessandra Rossi
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - SriGanesh Jammula
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Andrea Piunti
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Andrea Scelfo
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Paloma Ordóñez-Morán
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC, Lausanne CH-1015, Switzerland
| | - Joerg Huelsken
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC, Lausanne CH-1015, Switzerland
| | - Haruhiko Koseki
- Developmental Genetics Group, RIKEN Research Centre for Allergy & Immunology (RCAI), 1-7-22 Suehiuro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Diego Pasini
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|
962
|
Sellerio AL, Ciusani E, Ben-Moshe NB, Coco S, Piccinini A, Myers CR, Sethna JP, Giampietro C, Zapperi S, La Porta CAM. Overshoot during phenotypic switching of cancer cell populations. Sci Rep 2015; 5:15464. [PMID: 26494317 PMCID: PMC4616026 DOI: 10.1038/srep15464] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/14/2015] [Indexed: 12/21/2022] Open
Abstract
The dynamics of tumor cell populations is hotly debated: do populations derive hierarchically from a subpopulation of cancer stem cells (CSCs), or are stochastic transitions that mutate differentiated cancer cells to CSCs important? Here we argue that regulation must also be important. We sort human melanoma cells using three distinct cancer stem cell (CSC) markers - CXCR6, CD271 and ABCG2 - and observe that the fraction of non-CSC-marked cells first overshoots to a higher level and then returns to the level of unsorted cells. This clearly indicates that the CSC population is homeostatically regulated. Combining experimental measurements with theoretical modeling and numerical simulations, we show that the population dynamics of cancer cells is associated with a complex miRNA network regulating the Wnt and PI3K pathways. Hence phenotypic switching is not stochastic, but is tightly regulated by the balance between positive and negative cells in the population. Reducing the fraction of CSCs below a threshold triggers massive phenotypic switching, suggesting that a therapeutic strategy based on CSC eradication is unlikely to succeed.
Collapse
Affiliation(s)
- Alessandro L Sellerio
- Center for Complexity and Biosystems, Department of Physics, University of Milano, via Celoria 16, 20133 Milano, Italy.,CNR - Consiglio Nazionale delle Ricerche, Istituto per l'Energetica e le Interfasi, Via R. Cozzi 53, 20125 Milano, Italy
| | | | - Noa Bossel Ben-Moshe
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Stefania Coco
- Dipartimento di Scienze Bomediche per la Salute, University of Milano, Milano, Italy
| | - Andrea Piccinini
- Dipartimento di Scienze Bomediche per la Salute, University of Milano, Milano, Italy
| | - Christopher R Myers
- Laboratory of Atomic and Solid State Physics, Physics Department, Cornell University, Ithaca, NY.,Institute of Biotechnology, Cornell University, Ithaca, NY
| | - James P Sethna
- Laboratory of Atomic and Solid State Physics, Physics Department, Cornell University, Ithaca, NY
| | - Costanza Giampietro
- Center for Complexity and Biosystems, Department of Bioscience, University of Milano, via Celoria 26, 20133 Milano, Italy
| | - Stefano Zapperi
- Center for Complexity and Biosystems, Department of Physics, University of Milano, via Celoria 16, 20133 Milano, Italy.,CNR - Consiglio Nazionale delle Ricerche, Istituto per l'Energetica e le Interfasi, Via R. Cozzi 53, 20125 Milano, Italy.,ISI Foundation, Via Alassio 11C, Torino, Italy.,Department of Applied Physics, Aalto University, P.O. Box 14100, FIN-00076, Aalto, Finland
| | - Caterina A M La Porta
- Center for Complexity and Biosystems, Department of Bioscience, University of Milano, via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
963
|
Wen Z, Feng S, Wei L, Wang Z, Hong D, Wang Q. Evodiamine, a novel inhibitor of the Wnt pathway, inhibits the self-renewal of gastric cancer stem cells. Int J Mol Med 2015; 36:1657-63. [PMID: 26497016 DOI: 10.3892/ijmm.2015.2383] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/08/2015] [Indexed: 11/06/2022] Open
Abstract
Gastric cancer stem cells (GCSCs) have an important role in metastasis and recurrence of gastric cancer, and novel treatment strategies that target GCSCs are urgently required. Although evodiamine (Evo), a derivative of the traditional herbal medicine Evodia rutaecarpa, has been reported to have various biological effects, its effect on GCSCs remains unknown. In order to determine the effect of Evo on apoptosis of GCSCs, an MTS assay, flow cytometry and western blot analysis were performed. The effect of Evo on self‑renewal in GCSCs was measured by alterations in the sphere formation ability, the expression of induced‑pluripotent stem cell factors, expression of epithelial-to-mesenchymal transition (EMT) factors and oxaliplatin resistance of gastric cancer cells (GCCs). Evo inhibited proliferation, promoted the Bax/B‑cell lymphoma 2 ratio and altered active caspase‑3 expression of GCSCs. In addition, Evo decreased the sphere formation ability, the expression of Sox2, KLF4, Bmi‑1 and Oct4, and oxaliplatin resistance in GCCs. Evo decreased the expression of Slug, Twist, Zeb1 and vimentin, suggesting an inhibitory effect on EMT. Furthermore, the expression of β‑catenin, c‑Myc and cyclin D1 was decreased in Evo‑treated spheroids from GCCs. In conclusion, Evo inhibited the Wnt/β‑catenin signaling pathway to inhibit proliferation and stem cell properties of GCSCs and repressed the EMT. The present findings highlight the prospect of Evo as a CSCs-targeted therapy in gastric cancer.
Collapse
Affiliation(s)
- Zhenzhen Wen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Shujiong Feng
- Department of Gastroenterology, Hangzhou Geriatric Hospital, The North Branch of Hangzhou First People's Hospital Group, Hangzhou, Zhejiang 310012, P.R. China
| | - Lijuan Wei
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Zhimin Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Defei Hong
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Qiang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
964
|
Lgr6 marks nail stem cells and is required for digit tip regeneration. Proc Natl Acad Sci U S A 2015; 112:13249-54. [PMID: 26460010 DOI: 10.1073/pnas.1518874112] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The tips of the digits of some mammals, including human infants and mice, are capable of complete regeneration after injury. This process is reliant on the presence of the overlaying nail organ and is mediated by a proliferative blastema. Epithelial Wnt/β-catenin signaling has been shown to be necessary for mouse digit tip regeneration. Here, we report on Lgr5 and Lgr6 (leucine-rich repeat-containing G protein-coupled receptor 5 and 6), two important agonists of the Wnt pathway that are known to be markers of several epithelial stem cell populations. We find that Lgr5 is expressed in a dermal population of cells adjacent to the specialized epithelia surrounding the keratinized nail plate. Moreover, Lgr5-expressing cells contribute to this dermis, but not the blastema, during digit tip regeneration. In contrast, we find that Lgr6 is expressed within cells of the nail matrix portion of the nail epithelium, as well as in a subset of cells in the bone and eccrine sweat glands. Genetic lineage analysis reveals that Lgr6-expressing cells give rise to the nail during homeostatic growth, demonstrating that Lgr6 is a marker of nail stem cells. Moreover, Lgr6-expressing cells contribute to the blastema, suggesting a potential direct role for Lgr6-expressing cells during digit tip regeneration. This role is confirmed by analysis of Lgr6-deficient mice, which have both a nail and bone regeneration defect.
Collapse
|
965
|
Shahbazi MN, Perez-Moreno M. Connections between cadherin-catenin proteins, spindle misorientation, and cancer. Tissue Barriers 2015; 3:e1045684. [PMID: 26451345 DOI: 10.1080/21688370.2015.1045684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/18/2015] [Accepted: 04/21/2015] [Indexed: 10/25/2022] Open
Abstract
Cadherin-catenin mediated adhesion is an important determinant of tissue architecture in multicellular organisms. Cancer progression and maintenance is frequently associated with loss of their expression or functional activity, which not only leads to decreased cell-cell adhesion, but also to enhanced tumor cell proliferation and loss of differentiated characteristics. This review is focused on the emerging implications of cadherin-catenin proteins in the regulation of polarized divisions through their connections with the centrosomes, cytoskeleton, tissue tension and signaling pathways; and illustrates how alterations in cadherin-catenin levels or functional activity may render cells susceptible to transformation through the loss of their proliferation-differentiation balance.
Collapse
Affiliation(s)
- Marta N Shahbazi
- Department of Physiology, Development, and Neuroscience; University of Cambridge ; Cambridge, UK
| | - Mirna Perez-Moreno
- Epithelial Cell Biology Group; Cancer Cell Biology Program; Spanish National Cancer Research Centre ; Madrid, Spain
| |
Collapse
|
966
|
Nantasanti S, Spee B, Kruitwagen HS, Chen C, Geijsen N, Oosterhoff LA, van Wolferen ME, Pelaez N, Fieten H, Wubbolts RW, Grinwis GC, Chan J, Huch M, Vries RRG, Clevers H, de Bruin A, Rothuizen J, Penning LC, Schotanus BA. Disease Modeling and Gene Therapy of Copper Storage Disease in Canine Hepatic Organoids. Stem Cell Reports 2015; 5:895-907. [PMID: 26455412 PMCID: PMC4649105 DOI: 10.1016/j.stemcr.2015.09.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 09/07/2015] [Accepted: 09/07/2015] [Indexed: 12/19/2022] Open
Abstract
The recent development of 3D-liver stem cell cultures (hepatic organoids) opens up new avenues for gene and/or stem cell therapy to treat liver disease. To test safety and efficacy, a relevant large animal model is essential but not yet established. Because of its shared pathologies and disease pathways, the dog is considered the best model for human liver disease. Here we report the establishment of a long-term canine hepatic organoid culture allowing undifferentiated expansion of progenitor cells that can be differentiated toward functional hepatocytes. We show that cultures can be initiated from fresh and frozen liver tissues using Tru-Cut or fine-needle biopsies. The use of Wnt agonists proved important for canine organoid proliferation and inhibition of differentiation. Finally, we demonstrate that successful gene supplementation in hepatic organoids of COMMD1-deficient dogs restores function and can be an effective means to cure copper storage disease.
Collapse
Affiliation(s)
- Sathidpak Nantasanti
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands
| | - Hedwig S Kruitwagen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands
| | - Chen Chen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands; Hubrecht Institute and University Medical Centre, Utrecht, 3584 CT, the Netherlands
| | - Niels Geijsen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands; Hubrecht Institute and University Medical Centre, Utrecht, 3584 CT, the Netherlands
| | - Loes A Oosterhoff
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands
| | - Monique E van Wolferen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands
| | - Nicolas Pelaez
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands
| | - Hille Fieten
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands
| | - Richard W Wubbolts
- Centre for Cellular Imaging (CCI), Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, the Netherlands
| | - Guy C Grinwis
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, the Netherlands
| | - Jefferson Chan
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA
| | - Meritxell Huch
- Hubrecht Institute and University Medical Centre, Utrecht, 3584 CT, the Netherlands
| | - Robert R G Vries
- Hubrecht Institute and University Medical Centre, Utrecht, 3584 CT, the Netherlands
| | - Hans Clevers
- Hubrecht Institute and University Medical Centre, Utrecht, 3584 CT, the Netherlands
| | - Alain de Bruin
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, the Netherlands; Department of Pediatrics, Division of Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, 9713 AV, the Netherlands
| | - Jan Rothuizen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands
| | - Louis C Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands
| | - Baukje A Schotanus
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands.
| |
Collapse
|
967
|
|
968
|
Wright KD, Mahoney Rogers AA, Zhang J, Shim K. Cooperative and independent functions of FGF and Wnt signaling during early inner ear development. BMC DEVELOPMENTAL BIOLOGY 2015; 15:33. [PMID: 26443994 PMCID: PMC4594887 DOI: 10.1186/s12861-015-0083-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 09/18/2015] [Indexed: 12/28/2022]
Abstract
Background In multiple vertebrate organisms, including chick, Xenopus, and zebrafish, Fibroblast Growth Factor (FGF) and Wnt signaling cooperate during formation of the otic placode. However, in the mouse, although FGF signaling induces Wnt8a expression during induction of the otic placode, it is unclear whether these two signaling pathways functionally cooperate. Sprouty (Spry) genes encode intracellular antagonists of receptor tyrosine kinase signaling, including FGF signaling. We previously demonstrated that the Sprouty1 (Spry1) and Sprouty2 (Spry2) genes antagonize FGF signaling during induction of the otic placode. Here, we investigate cross talk between FGF/SPRY and Wnt signaling during otic placode induction and assess whether these two signaling pathways functionally cooperate during early inner ear development in the mouse. Methods Embryos were generated carrying combinations of a Spry1 null allele, Spry2 null allele, β-catenin null allele, or a Wnt reporter transgene. Otic phenotypes were assessed by in situ hybridization, semi-quantitative reverse transcriptase PCR, immunohistochemistry, and morphometric analysis of sectioned tissue. Results Comparison of Spry1, Spry2, and Wnt reporter expression in pre-otic and otic placode cells indicates that FGF signaling precedes and is active in more cells than Wnt signaling. We provide in vivo evidence that FGF signaling activates the Wnt signaling pathway upstream of TCF/Lef transcriptional activation. FGF regulation of Wnt signaling is functional, since early inner ear defects in Spry1 and Spry2 compound mutant embryos can be genetically rescued by reducing the activity of the Wnt signaling pathway. Interestingly, we find that although the entire otic placode increases in size in Spry1 and Spry2 compound mutant embryos, the size of the Wnt-reporter-positive domain does not increase to the same extent as the Wnt-reporter-negative domain. Conclusions This study provides genetic evidence that FGF and Wnt signaling cooperate during early inner ear development in the mouse. Furthermore, our data suggest that although specification of the otic placode may be globally regulated by FGF signaling, otic specification of cells in which both FGF and Wnt signaling are active may be more tightly regulated. Electronic supplementary material The online version of this article (doi:10.1186/s12861-015-0083-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kevin D Wright
- Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Amanda A Mahoney Rogers
- Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Jian Zhang
- Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Katherine Shim
- Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
969
|
Shaffiey SA, Jia H, Keane T, Costello C, Wasserman D, Quidgley M, Dziki J, Badylak S, Sodhi CP, March JC, Hackam DJ. Intestinal stem cell growth and differentiation on a tubular scaffold with evaluation in small and large animals. Regen Med 2015; 11:45-61. [PMID: 26395928 DOI: 10.2217/rme.15.70] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIMS To investigate the growth and differentiation of intestinal stem cells on a novel tubular scaffold in vitro and in vivo. MATERIALS & METHODS Intestinal progenitor cells from mice or humans were cultured with myofibroblasts, macrophages and/or bacteria, and evaluated in mice via omental implantation. Mucosal regeneration was evaluated in dogs after rectal mucosectomy followed by scaffold implantation. RESULTS Intestinal progenitor cells differentiated into crypt-villi structures on the scaffold. Differentiation and scaffold coverage was enhanced by coculture with myofibroblasts, macrophages and probiotic bacteria, while the implanted scaffolds enhanced mucosal regeneration in the dog rectum. CONCLUSION Intestinal stem cell growth and differentiation on a novel tubular scaffold is enhanced through addition of cellular and microbial components, as validated in mice and dogs.
Collapse
Affiliation(s)
- Shahab A Shaffiey
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15217, USA
| | - Hongpeng Jia
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University, 600 N Wolfe Street, Baltimore, MD 21287, USA
| | - Timothy Keane
- McGowan Institute for Regenerative Medicine, 450 Technology Drive Suite 300, Pittsburgh, PA 15219, USA
| | - Cait Costello
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Deena Wasserman
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15217, USA
| | - Maria Quidgley
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15217, USA
| | - Jenna Dziki
- McGowan Institute for Regenerative Medicine, 450 Technology Drive Suite 300, Pittsburgh, PA 15219, USA
| | - Stephen Badylak
- McGowan Institute for Regenerative Medicine, 450 Technology Drive Suite 300, Pittsburgh, PA 15219, USA
| | - Chhinder P Sodhi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University, 600 N Wolfe Street, Baltimore, MD 21287, USA
| | - John C March
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, NY 14850, USA
| | - David J Hackam
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University, 600 N Wolfe Street, Baltimore, MD 21287, USA
| |
Collapse
|
970
|
Lhx2 regulates the timing of β-catenin-dependent cortical neurogenesis. Proc Natl Acad Sci U S A 2015; 112:12199-204. [PMID: 26371318 DOI: 10.1073/pnas.1507145112] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The timing of cortical neurogenesis has a major effect on the size and organization of the mature cortex. The deletion of the LIM-homeodomain transcription factor Lhx2 in cortical progenitors by Nestin-cre leads to a dramatically smaller cortex. Here we report that Lhx2 regulates the cortex size by maintaining the cortical progenitor proliferation and delaying the initiation of neurogenesis. The loss of Lhx2 in cortical progenitors results in precocious radial glia differentiation and a temporal shift of cortical neurogenesis. We further investigated the underlying mechanisms at play and demonstrated that in the absence of Lhx2, the Wnt/β-catenin pathway failed to maintain progenitor proliferation. We developed and applied a mathematical model that reveals how precocious neurogenesis affected cortical surface and thickness. Thus, we concluded that Lhx2 is required for β-catenin function in maintaining cortical progenitor proliferation and controls the timing of cortical neurogenesis.
Collapse
|
971
|
Abstract
The mammalian ovary is covered by a single-layered epithelium that undergoes rupture and remodelling following each ovulation. Although resident stem cells are presumed to be crucial for this cyclic regeneration, their identity and mode of action have been elusive. Surrogate stemness assays and in vivo fate-mapping studies using recently discovered stem cell markers have identified stem cell pools in the ovary and fimbria that ensure epithelial homeostasis. Recent findings provide insights into intrinsic mechanisms and local extrinsic cues that govern the function of ovarian and fimbrial stem cells. These discoveries have advanced our understanding of stem cell biology in the ovary and fimbria, and lay the foundations for evaluating the contribution of resident stem cells to the initiation and progression of human epithelial ovarian cancer.
Collapse
|
972
|
Asymmetric Wnt Pathway Signaling Facilitates Stem Cell-Like Divisions via the Nonreceptor Tyrosine Kinase FRK-1 in Caenorhabditis elegans. Genetics 2015; 201:1047-60. [PMID: 26358719 DOI: 10.1534/genetics.115.181412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/05/2015] [Indexed: 11/18/2022] Open
Abstract
Asymmetric cell division is critical during development, as it influences processes such as cell fate specification and cell migration. We have characterized FRK-1, a homolog of the mammalian Fer nonreceptor tyrosine kinase, and found it to be required for differentiation and maintenance of epithelial cell types, including the stem cell-like seam cells of the hypodermis. A genomic knockout of frk-1, allele ok760, results in severely uncoordinated larvae that arrest at the L1 stage and have an excess number of lateral hypodermal cells that appear to have lost asymmetry in the stem cell-like divisions of the seam cell lineage. frk-1(ok760) mutants show that there are excess lateral hypodermal cells that are abnormally shaped and smaller in size compared to wild type, a defect that could be rescued only in a manner dependent on the kinase activity of FRK-1. Additionally, we observed a significant change in the expression of heterochronic regulators in frk-1(ok760) mutants. However, frk-1(ok760) mutants do not express late, nonseam hypodermal GFP markers, suggesting the seam cells do not precociously differentiate as adult-hyp7 cells. Finally, our data also demonstrate a clear role for FRK-1 in seam cell proliferation, as eliminating FRK-1 during the L3-L4 transition results in supernumerary seam cell nuclei that are dependent on asymmetric Wnt signaling. Specifically, we observe aberrant POP-1 and WRM-1 localization that is dependent on the presence of FRK-1 and APR-1. Overall, our data suggest a requirement for FRK-1 in maintaining the identity and proliferation of seam cells primarily through an interaction with the asymmetric Wnt pathway.
Collapse
|
973
|
|
974
|
Paik DT, Rai M, Ryzhov S, Sanders LN, Aisagbonhi O, Funke MJ, Feoktistov I, Hatzopoulos AK. Wnt10b Gain-of-Function Improves Cardiac Repair by Arteriole Formation and Attenuation of Fibrosis. Circ Res 2015; 117:804-16. [PMID: 26338900 DOI: 10.1161/circresaha.115.306886] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/03/2015] [Indexed: 01/10/2023]
Abstract
RATIONALE Myocardial infarction causes irreversible tissue damage, leading to heart failure. We recently discovered that canonical Wnt signaling and the Wnt10b ligand are strongly induced in mouse hearts after infarction. Wnt10b regulates cell fate in various organs, but its role in the heart is unknown. OBJECTIVE To investigate the effect of Wnt10b gain-of-function on cardiac repair mechanisms and to assess its potential to improve ventricular function after injury. METHODS AND RESULTS Histological and molecular analyses showed that Wnt10b is expressed in cardiomyocytes and localized in the intercalated discs of mouse and human hearts. After coronary artery ligation or cryoinjury in mice, Wnt10b is strongly and transiently induced in peri-infarct cardiomyocytes during granulation tissue formation. To determine the effect of Wnt10b on neovascularization and fibrosis, we generated a mouse line to increase endogenous Wnt10b levels in cardiomyocytes. We found that gain of Wnt10b function orchestrated a recovery phenotype characterized by robust neovascularization of the injury zone, less myofibroblasts, reduced scar size, and improved ventricular function compared with wild-type mice. Wnt10b stimulated expression of vascular endothelial growth factor receptor 2 in endothelial cells and angiopoietin-1 in vascular smooth muscle cells through nuclear factor-κB activation. These effects coordinated endothelial growth and smooth muscle cell recruitment, promoting robust formation of large, coronary-like blood vessels. CONCLUSION Wnt10b gain-of-function coordinates arterial formation and attenuates fibrosis in cardiac tissue after injury. Because generation of mature blood vessels is necessary for efficient perfusion, our findings could lead to novel strategies to optimize the inherent repair capacity of the heart and prevent the onset of heart failure.
Collapse
Affiliation(s)
- David T Paik
- From the Division of Cardiovascular Medicine, Department of Medicine (D.T.P., M.R., S.R., L.N.S., O.A., M.J.F., I.F., A.K.H.), Department of Cell and Developmental Biology (D.T.P., M.R., L.N.S., O.A., A.K.H.), and Department of Pharmacology, Vanderbilt University, Nashville, TN (I.F.); Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (S.R.); Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston (O.A.); and Golden Rule Medical, Cincinnati, OH (M.J.F.)
| | - Meena Rai
- From the Division of Cardiovascular Medicine, Department of Medicine (D.T.P., M.R., S.R., L.N.S., O.A., M.J.F., I.F., A.K.H.), Department of Cell and Developmental Biology (D.T.P., M.R., L.N.S., O.A., A.K.H.), and Department of Pharmacology, Vanderbilt University, Nashville, TN (I.F.); Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (S.R.); Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston (O.A.); and Golden Rule Medical, Cincinnati, OH (M.J.F.)
| | - Sergey Ryzhov
- From the Division of Cardiovascular Medicine, Department of Medicine (D.T.P., M.R., S.R., L.N.S., O.A., M.J.F., I.F., A.K.H.), Department of Cell and Developmental Biology (D.T.P., M.R., L.N.S., O.A., A.K.H.), and Department of Pharmacology, Vanderbilt University, Nashville, TN (I.F.); Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (S.R.); Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston (O.A.); and Golden Rule Medical, Cincinnati, OH (M.J.F.)
| | - Lehanna N Sanders
- From the Division of Cardiovascular Medicine, Department of Medicine (D.T.P., M.R., S.R., L.N.S., O.A., M.J.F., I.F., A.K.H.), Department of Cell and Developmental Biology (D.T.P., M.R., L.N.S., O.A., A.K.H.), and Department of Pharmacology, Vanderbilt University, Nashville, TN (I.F.); Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (S.R.); Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston (O.A.); and Golden Rule Medical, Cincinnati, OH (M.J.F.)
| | - Omonigho Aisagbonhi
- From the Division of Cardiovascular Medicine, Department of Medicine (D.T.P., M.R., S.R., L.N.S., O.A., M.J.F., I.F., A.K.H.), Department of Cell and Developmental Biology (D.T.P., M.R., L.N.S., O.A., A.K.H.), and Department of Pharmacology, Vanderbilt University, Nashville, TN (I.F.); Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (S.R.); Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston (O.A.); and Golden Rule Medical, Cincinnati, OH (M.J.F.)
| | - Mitchell J Funke
- From the Division of Cardiovascular Medicine, Department of Medicine (D.T.P., M.R., S.R., L.N.S., O.A., M.J.F., I.F., A.K.H.), Department of Cell and Developmental Biology (D.T.P., M.R., L.N.S., O.A., A.K.H.), and Department of Pharmacology, Vanderbilt University, Nashville, TN (I.F.); Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (S.R.); Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston (O.A.); and Golden Rule Medical, Cincinnati, OH (M.J.F.)
| | - Igor Feoktistov
- From the Division of Cardiovascular Medicine, Department of Medicine (D.T.P., M.R., S.R., L.N.S., O.A., M.J.F., I.F., A.K.H.), Department of Cell and Developmental Biology (D.T.P., M.R., L.N.S., O.A., A.K.H.), and Department of Pharmacology, Vanderbilt University, Nashville, TN (I.F.); Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (S.R.); Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston (O.A.); and Golden Rule Medical, Cincinnati, OH (M.J.F.)
| | - Antonis K Hatzopoulos
- From the Division of Cardiovascular Medicine, Department of Medicine (D.T.P., M.R., S.R., L.N.S., O.A., M.J.F., I.F., A.K.H.), Department of Cell and Developmental Biology (D.T.P., M.R., L.N.S., O.A., A.K.H.), and Department of Pharmacology, Vanderbilt University, Nashville, TN (I.F.); Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (S.R.); Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston (O.A.); and Golden Rule Medical, Cincinnati, OH (M.J.F.).
| |
Collapse
|
975
|
Muñoz-Descalzo S, Hadjantonakis AK, Arias AM. Wnt/ß-catenin signalling and the dynamics of fate decisions in early mouse embryos and embryonic stem (ES) cells. Semin Cell Dev Biol 2015; 47-48:101-9. [PMID: 26321498 DOI: 10.1016/j.semcdb.2015.08.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 12/22/2022]
Abstract
Wnt/ß-catenin signalling is a widespread cell signalling pathway with multiple roles during vertebrate development. In mouse embryonic stem (mES) cells, there is a dual role for ß-catenin: it promotes differentiation when activated as part of the Wnt/ß-catenin signalling pathway, and promotes stable pluripotency independently of signalling. Although mES cells resemble the preimplantation epiblast progenitors, the first requirement for Wnt/ß-catenin signalling during mouse development has been reported at implantation [1,2]. The relationship between ß-catenin and pluripotency and that of mES cells with epiblast progenitors suggests that ß-catenin might have a functional role during preimplantation development. Here we summarize the expression and function of Wnt/ß-catenin signalling elements during the early stages of mouse development and consider the reasons why the requirement in ES cells do not reflect the embryo.
Collapse
Affiliation(s)
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
976
|
Evans J, Essex A, Xin H, Amitai N, Brinton L, Griner E. Registered report: Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. eLife 2015; 4. [PMID: 26287525 PMCID: PMC4541490 DOI: 10.7554/elife.07301] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/01/2015] [Indexed: 12/25/2022] Open
Abstract
The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by replicating selected results from a substantial number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012, were selected on the basis of citations and Altmetric scores (Errington et al., 2014). This Registered report describes the proposed replication plan of key experiments from ‘Wnt activity defines colon cancer stem cells and is regulated by the microenvironment’ by Vermeulen and colleagues, published in Nature Cell Biology in 2010 (Vermeulen et al., 2010). The key experiments that will be replicated are those reported in Figures 2F, 6D, and 7E. In these experiments, Vermeulen and colleagues utilize a reporter for Wnt activity and show that colon cancer cells with high levels of Wnt activity also express cancer stem cell markers (Figure 2F; Vermeulen et al., 2010). Additionally, treatment either with conditioned medium derived from myofibroblasts or with hepatocyte growth factor restored clonogenic potential in low Wnt activity colon cancer cells in vitro (Figure 6D; Vermeulen et al., 2010) and in vivo (Figure 7E; Vermeulen et al., 2010). The Reproducibility Project: Cancer Biology is a collaboration between the Center for Open Science and Science Exchange and the results of the replications will be published in eLife. DOI:http://dx.doi.org/10.7554/eLife.07301.001
Collapse
Affiliation(s)
- James Evans
- PhenoVista Biosciences, San Diego, California
| | | | - Hong Xin
- Explora BioLabs, San Diego, California
| | | | | | - Erin Griner
- University of Virginia, Charlottesville, Virginia
| | | | | |
Collapse
|
977
|
The Interplay between Wnt Mediated Expansion and Negative Regulation of Growth Promotes Robust Intestinal Crypt Structure and Homeostasis. PLoS Comput Biol 2015; 11:e1004285. [PMID: 26288152 PMCID: PMC4543550 DOI: 10.1371/journal.pcbi.1004285] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/31/2015] [Indexed: 12/22/2022] Open
Abstract
The epithelium of the small intestinal crypt, which has a vital role in protecting the underlying tissue from the harsh intestinal environment, is completely renewed every 4–5 days by a small pool of stem cells at the base of each crypt. How is this renewal controlled and homeostasis maintained, particularly given the rapid nature of this process? Here, based on the recent observations from in vitro “mini gut” studies, we use a hybrid stochastic model of the crypt to investigate how exogenous niche signaling (from Wnt and BMP) combines with auto-regulation to promote homeostasis. This model builds on the sub-cellular element method to account for the three-dimensional structure of the crypt, external regulation by Wnt and BMP, internal regulation by Notch signaling, as well as regulation by internally generated diffusible signals. Results show that Paneth cell derived Wnt signals, which have been observed experimentally to sustain crypts in cultured organs, have a dramatically different influence on niche dynamics than does mesenchyme derived Wnt. While this signaling can indeed act as a redundant backup to the exogenous gradient, it introduces a positive feedback that destabilizes the niche and causes its uncontrolled expansion. We find that in this setting, BMP has a critical role in constraining this expansion, consistent with observations that its removal leads to crypt fission. Further results also point to a new hypothesis for the role of Ephrin mediated motility of Paneth cells, specifically that it is required to constrain niche expansion and maintain the crypt’s spatial structure. Combined, these provide an alternative view of crypt homeostasis where the niche is in a constant state of expansion and the spatial structure of the crypt arises as a balance between this expansion and the action of various sources of negative regulation that hold it in check. The small intestinal epithelium, like our skin, is constantly being renewed. In the intestine however, this epithelium is exposed to the harsh digestive environment, necessitating much more rapid renewal. Remarkably, the entire epithelium is renewed every 4–5 days. This raises the question, how can the size and structure of this tissue be maintained given this pace. Motivated by recent experimental observations, we construct a three-dimensional, hybrid stochastic model to investigate the mechanisms responsible for homeostasis of this tissue. We find that there are redundant signals created by both the epithelium itself and surrounding tissues that act in parallel to maintain epithelial structure. This redundancy comes at a price however: it introduces the possibility of explosive stem cell population growth. Additional results suggest that other signals along with choreographed motion of cells are responsible for repressing this expansion. Taken together, our results provide a novel hypothesis for how robust but fast renewal of the crypt is achieved: as a balance between expansion, which drives fast renewal and repression, which holds that expansion in check to maintain the crypt’s structure.
Collapse
|
978
|
Current Status on Stem Cells and Cancers of the Gastric Epithelium. Int J Mol Sci 2015; 16:19153-69. [PMID: 26287172 PMCID: PMC4581291 DOI: 10.3390/ijms160819153] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 07/28/2015] [Accepted: 08/06/2015] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer is still a leading cause of cancer-related mortality worldwide in spite of declining incidence. Gastric cancers are, essentially, adenocarcinomas and one of the strongest risk factors is still infection with Helicobacter pylori. Within the last years, it became clear that gastric self-renewal and carcinogenesis are intimately linked, particularly during chronic inflammatory conditions. Generally, gastric cancer is now regarded as a disease resulting from dysregulated differentiation of stem and progenitor cells, mainly due to an inflammatory environment. However, the situation in the stomach is rather complex, consisting of two types of gastric units which show bidirectional self-renewal from an unexpectedly large variety of progenitor/stem cell populations. As in many other tumors, cancer stem cells have also been characterized for gastric cancer. This review focuses on the various gastric epithelial stem cells, how they contribute to self-renewal and which routes are known to gastric adenocarcinomas, including their stem cells.
Collapse
|
979
|
Raj D, Aicher A, Heeschen C. Concise Review: Stem Cells in Pancreatic Cancer: From Concept to Translation. Stem Cells 2015. [PMID: 26202953 DOI: 10.1002/stem.2114] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer stem cells (CSCs) have been first described in 2007 and since then have emerged as an intriguing entity of cancer cells with distinct functional features including self-renewal and exclusive in vivo tumorigenicity. The heterogeneous pancreatic CSC pool has been implicated in tumor propagation as well as metastatic spread. Clinically, the most important feature of CSCs is their strong resistance to standard chemotherapy, which results in fast disease relapse, even with today's more advanced chemotherapeutic regimens. Therefore, novel therapeutic strategies to most efficiently target pancreatic CSCs are being developed and their careful clinical translation should provide new avenues to eradicate this deadly disease.
Collapse
Affiliation(s)
- Deepak Raj
- Centre for Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Alexandra Aicher
- Centre for Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Christopher Heeschen
- Centre for Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
980
|
Wang B, Zhao L, Fish M, Logan CY, Nusse R. Self-renewing diploid Axin2(+) cells fuel homeostatic renewal of the liver. Nature 2015; 524:180-5. [PMID: 26245375 PMCID: PMC4589224 DOI: 10.1038/nature14863] [Citation(s) in RCA: 533] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 06/29/2015] [Indexed: 02/06/2023]
Abstract
The source of new hepatocytes in the uninjured liver has remained an open question. By lineage tracing using the Wnt-responsive gene Axin2 in mice, we identify a population of proliferating and self-renewing cells adjacent to the central vein in the liver lobule. These pericentral cells express the early liver progenitor marker Tbx3, are diploid, and thereby differ from mature hepatocytes, which are mostly polyploid. The descendants of pericentral cells differentiate into Tbx3-negative, polyploid hepatocytes, and can replace all hepatocytes along the liver lobule during homeostatic renewal. Adjacent central vein endothelial cells provide Wnt signals that maintain the pericentral cells, thereby constituting the niche. Thus, we identify a cell population in the liver that subserves homeostatic hepatocyte renewal, characterize its anatomical niche, and identify molecular signals that regulate its activity.
Collapse
Affiliation(s)
- Bruce Wang
- 1] Department of Developmental Biology, Howard Hughes Medical Institute, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA [2] Department of Medicine and Liver Center, University of California San Francisco, San Francisco, California 94143, USA
| | - Ludan Zhao
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Matt Fish
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Catriona Y Logan
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Roel Nusse
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
981
|
Li C, Bellusci S, Borok Z, Minoo P. Non-canonical WNT signalling in the lung. J Biochem 2015; 158:355-65. [PMID: 26261051 DOI: 10.1093/jb/mvv081] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/26/2015] [Indexed: 12/23/2022] Open
Abstract
The role of WNT signalling in metazoan organogenesis has been a topic of widespread interest. In the lung, while the role of canonical WNT signalling has been examined in some detail by multiple studies, the non-canonical WNT signalling has received limited attention. Reliable evidence shows that this important signalling mechanism constitutes a major regulatory pathway in lung development. In addition, accumulating evidence has also shown that the non-canonical WNT pathway is critical for maintaining lung homeostasis and that aberrant activation of this pathway may underlie several debilitating lung diseases. Functional analyses have further revealed that the non-canonical WNT pathway regulates multiple cellular activities in the lung that are dependent on the specific cellular context. In most cell types, non-canonical WNT signalling regulates canonical WNT activity, which is also critical for many aspects of lung biology. This review will summarize what is currently known about the role of non-canonical WNT signalling in lung development, homeostasis and pathogenesis of disease.
Collapse
Affiliation(s)
- Changgong Li
- Department of Pediatrics, Division of Newborn Medicine, Los Angeles County+University of Southern California Medical Center and Children's Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, CA 90033, USA;
| | - Saverio Bellusci
- Excellence Cluster Cardio-Pulmonary System (ECCPS), D-35392 Giessen, Hessen, Germany; Member of the German Center for Lung Research, Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), D-35390 Giessen, Hessen, Germany; Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Childrens Hospital Los Angeles and University of Southern California, Los Angeles, CA 90027, USA; and
| | - Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Will Rogers Institute Pulmonary Research Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Parviz Minoo
- Department of Pediatrics, Division of Newborn Medicine, Los Angeles County+University of Southern California Medical Center and Children's Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| |
Collapse
|
982
|
Xie J, Zhang C. Ex vivo expansion of hematopoietic stem cells. SCIENCE CHINA-LIFE SCIENCES 2015; 58:839-53. [PMID: 26246379 DOI: 10.1007/s11427-015-4895-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 06/03/2015] [Indexed: 02/03/2023]
Abstract
Ex vivo expansion of hematopoietic stem cells (HSCs) would benefit clinical applications in several aspects, to improve patient survival, utilize cord blood stem cells for adult applications, and selectively propagate stem cell populations after genetic manipulation. In this review we summarize and discuss recent advances in the culture systems of mouse and human HSCs, which include stroma/HSC co-culture, continuous perfusion and fed-batch cultures, and those supplemented with extrinsic ligands, membrane transportable transcription factors, complement components, protein modification enzymes, metabolites, or small molecule chemicals. Some of the expansion systems have been tested in clinical trials. The optimal condition for ex vivo expansion of the primitive and functional human HSCs is still under development. An improved understanding of the mechanisms for HSC cell fate determination and the HSC culture characteristics will guide development of new strategies to overcome difficulties. In the future, development of a combination treatment regimen with agents that enhance self-renewal, block differentiation, and improve homing will be critical. Methods to enhance yields and lower cost during collection and processing should be employed. The employment of an efficient system for ex vivo expansion of HSCs will facilitate the further development of novel strategies for cell and gene therapies including genome editing.
Collapse
Affiliation(s)
- JingJing Xie
- Taishan Scholar Immunology Program, Binzhou Medical University, Yantai, 264003, China
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | - ChengCheng Zhang
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, 75390, USA.
| |
Collapse
|
983
|
Abstract
UNLABELLED Our understanding of cancer is being transformed by exploring clonal diversity, drug resistance, and causation within an evolutionary framework. The therapeutic resilience of advanced cancer is a consequence of its character as a complex, dynamic, and adaptive ecosystem engendering robustness, underpinned by genetic diversity and epigenetic plasticity. The risk of mutation-driven escape by self-renewing cells is intrinsic to multicellularity but is countered by multiple restraints, facilitating increasing complexity and longevity of species. But our own species has disrupted this historical narrative by rapidly escalating intrinsic risk. Evolutionary principles illuminate these challenges and provide new avenues to explore for more effective control. SIGNIFICANCE Lifetime risk of cancer now approximates to 50% in Western societies. And, despite many advances, the outcome for patients with disseminated disease remains poor, with drug resistance the norm. An evolutionary perspective may provide a clearer understanding of how cancer clones develop robustness and why, for us as a species, risk is now off the scale. And, perhaps, of what we might best do to achieve more effective control.
Collapse
Affiliation(s)
- Mel Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
984
|
Wang Z, Wang Y, Wang Z, Zhao J, Gutkind JS, Srivatsan A, Zhang G, Liao HS, Fu X, Jin A, Tong X, Niu G, Chen X. Polymeric Nanovehicle Regulated Spatiotemporal Real-Time Imaging of the Differentiation Dynamics of Transplanted Neural Stem Cells after Traumatic Brain Injury. ACS NANO 2015; 9:6683-95. [PMID: 26020550 PMCID: PMC5238514 DOI: 10.1021/acsnano.5b00690] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Recent advances in neural stem cell (NSC) transplantation have led to an inspiring progress in alleviating central nervous system (CNS) damages and restoring brain functions from diseases or injuries. One challenge of NSC transplantation is directed differentiation of transplanted NSCs into desired neuronal subtypes, such as neurons, to compensate the adverse impact of brain injury; another challenge lies in the lack of tools to noninvasively monitor the dynamics of NSC differentiation after transplantation in vivo. In this study, we developed a polymer nanovehicle for morphogen sustained release to overcome the drawbacks of conventional methods to realize the long-term directed NSC differentiation in vivo. Moreover, we constructed a bicistronic vector with a unique neuron specific gene tubb3 promoter to drive reporter gene expression for real-time imaging of NSC differentiation and migration. The developed uniform nanovehicle showed efficient NSC uptake and achieved a controlled release of morphogen in cytosol to consistently stimulate NSC differentiation into neurons at a sustainably effective concentration. The spatiotemporal imaging results showed a multiplexed migration, proliferation, differentiation, and apoptosis orchestra of transplanted NSCs regulated by nanovehicles in TBI mice. The imaging results also uncovered the peak time of NSC differentiation in vivo. Although we observed only a handful of NSCs ultimately migrated to the TBI area and differentiated into neurons, those neurons were functional, ameliorating the detrimental impact of TBI. The imaging findings enabled by the nanovehicle and the neuron specific bicistronic vector provide additional understanding of the in vivo behaviors of transplanted NSCs in neuronal regenerative medicine.
Collapse
Affiliation(s)
- Zhe Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yu Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhiyong Wang
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jun Zhao
- Unit on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - J. Silvio Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Avinash Srivatsan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Guofeng Zhang
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hsien-Shun Liao
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Xiao Fu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Albert Jin
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Xiao Tong
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
- Address correspondence to,
| |
Collapse
|
985
|
Abstract
UNLABELLED Our understanding of cancer is being transformed by exploring clonal diversity, drug resistance, and causation within an evolutionary framework. The therapeutic resilience of advanced cancer is a consequence of its character as a complex, dynamic, and adaptive ecosystem engendering robustness, underpinned by genetic diversity and epigenetic plasticity. The risk of mutation-driven escape by self-renewing cells is intrinsic to multicellularity but is countered by multiple restraints, facilitating increasing complexity and longevity of species. But our own species has disrupted this historical narrative by rapidly escalating intrinsic risk. Evolutionary principles illuminate these challenges and provide new avenues to explore for more effective control. SIGNIFICANCE Lifetime risk of cancer now approximates to 50% in Western societies. And, despite many advances, the outcome for patients with disseminated disease remains poor, with drug resistance the norm. An evolutionary perspective may provide a clearer understanding of how cancer clones develop robustness and why, for us as a species, risk is now off the scale. And, perhaps, of what we might best do to achieve more effective control.
Collapse
Affiliation(s)
- Mel Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
986
|
Yang L, Tang H, Kong Y, Xie X, Chen J, Song C, Liu X, Ye F, Li N, Wang N, Xie X. LGR5 Promotes Breast Cancer Progression and Maintains Stem-Like Cells Through Activation of Wnt/β-Catenin Signaling. Stem Cells 2015; 33:2913-24. [PMID: 26086949 DOI: 10.1002/stem.2083] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 12/22/2022]
Abstract
The cancer stem cell (CSC) hypothesis suggests that a subset of cancer cells possesses stem cell properties and is crucial in tumor initiation, metastasis, and drug resistance. To determine the mechanism of CSCs in breast cancer, we focused on LGR5, a marker of adult stem cells that potentially serves as a functional factor in CSCs. LGR5 overexpression was detected in breast cancer and significantly associated with breast cancer recurrence and poor outcome. LGR5 promoted cell mobility, tumor formation, and epithelial-mesenchymal transition in breast cancer cells by activating Wnt/β-catenin signaling. In addition, LGR5 was more highly expressed in tumorspheres and increased the stemness of breast cancer cells. Compared with LGR5 low-expression (LGR5(low) ) cells, LGR5(high) cells exhibited CSC/tumor-initiating cell-like properties, including the formation of self-renewing spheres and high tumorigenicity. Importantly, our studies indicate that LGR5 activation of Wnt/β-catenin signaling is a possible mechanism to regulate breast CSC/tumor-initiating cell renewal. These findings indicate that LGR5 not only participates in carcinogenesis but also maintained stemness by activating Wnt/β-catenin signaling in breast cancer.
Collapse
Affiliation(s)
- Lu Yang
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Hailin Tang
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Yanan Kong
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Xinhua Xie
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Cailu Song
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoping Liu
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Feng Ye
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Ning Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Neng Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Xiaoming Xie
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
987
|
Chang TH, Hsieh FL, Zebisch M, Harlos K, Elegheert J, Jones EY. Structure and functional properties of Norrin mimic Wnt for signalling with Frizzled4, Lrp5/6, and proteoglycan. eLife 2015; 4:e06554. [PMID: 26158506 PMCID: PMC4497409 DOI: 10.7554/elife.06554] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 06/18/2015] [Indexed: 11/24/2022] Open
Abstract
Wnt signalling regulates multiple processes including angiogenesis, inflammation, and tumorigenesis. Norrin (Norrie Disease Protein) is a cystine-knot like growth factor. Although unrelated to Wnt, Norrin activates the Wnt/β-catenin pathway. Signal complex formation involves Frizzled4 (Fz4), low-density lipoprotein receptor related protein 5/6 (Lrp5/6), Tetraspanin-12 and glycosaminoglycans (GAGs). Here, we report crystallographic and small-angle X-ray scattering analyses of Norrin in complex with Fz4 cysteine-rich domain (Fz4CRD), of this complex bound with GAG analogues, and of unliganded Norrin and Fz4CRD. Our structural, biophysical and cellular data, map Fz4 and putative Lrp5/6 binding sites to distinct patches on Norrin, and reveal a GAG binding site spanning Norrin and Fz4CRD. These results explain numerous disease-associated mutations. Comparison with the Xenopus Wnt8-mouse Fz8CRD complex reveals Norrin mimics Wnt for Frizzled recognition. The production and characterization of wild-type and mutant Norrins reported here open new avenues for the development of therapeutics to combat abnormal Norrin/Wnt signalling.
Collapse
Affiliation(s)
- Tao-Hsin Chang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Fu-Lien Hsieh
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Matthias Zebisch
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Karl Harlos
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jonathan Elegheert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
988
|
Molecular interactions between chondroitin-dermatan sulfate and growth factors/receptors/matrix proteins. Curr Opin Struct Biol 2015; 34:35-42. [PMID: 26164146 DOI: 10.1016/j.sbi.2015.06.004] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/12/2015] [Accepted: 06/19/2015] [Indexed: 02/08/2023]
Abstract
Recent functional studies on chondroitin sulfate-dermatan sulfate (CS-DS) demonstrated its indispensable roles in various biological events including brain development and cancer. CS-DS proteoglycans exert their physiological activity through interactions with specific proteins including growth factors, cell surface receptors, and matrix proteins. The characterization of these interactions is essential for regulating the biological functions of CS-DS proteoglycans. Although amino acid sequences on the bioactive proteins required for these interactions have already been elucidated, the specific saccharide sequences involved in the binding of CS-DS to target proteins have not yet been sufficiently identified. In this review, recent findings are described on the interaction between CS-DS and some proteins which are especially involved in the central nervous system and cancer development/metastasis.
Collapse
|
989
|
Hansen CG, Moroishi T, Guan KL. YAP and TAZ: a nexus for Hippo signaling and beyond. Trends Cell Biol 2015; 25:499-513. [PMID: 26045258 DOI: 10.1016/j.tcb.2015.05.002] [Citation(s) in RCA: 443] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 05/02/2015] [Accepted: 05/05/2015] [Indexed: 02/06/2023]
Abstract
The Hippo pathway is a potent regulator of cellular proliferation, differentiation, and tissue homeostasis. Here we review the regulatory mechanisms of the Hippo pathway and discuss the function of Yes-associated protein (YAP)/transcriptional coactivator with a PDZ-binding domain (TAZ), the prime mediators of the Hippo pathway, in stem cell biology and tissue regeneration. We highlight their activities in both the nucleus and the cytoplasm and discuss their role as a signaling nexus and integrator of several other prominent signaling pathways such as the Wnt, G protein-coupled receptor (GPCR), epidermal growth factor (EGF), bone morphogenetic protein (BMP)/transforming growth factor beta (TGFβ), and Notch pathways.
Collapse
Affiliation(s)
- Carsten Gram Hansen
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.,Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Toshiro Moroishi
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.,Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kun-Liang Guan
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.,Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
990
|
Wu D, Shi M, Fan XD. Mechanism of miR-21 via Wnt/β-catenin signaling pathway in human A549 lung cancer cells and Lewis lung carcinoma in mice. ASIAN PAC J TROP MED 2015. [DOI: 10.1016/j.apjtm.2015.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
991
|
Huang Y, Hamana T, Liu J, Wang C, An L, You P, Chang JYF, Xu J, Jin C, Zhang Z, McKeehan WL, Wang F. Type 2 Fibroblast Growth Factor Receptor Signaling Preserves Stemness and Prevents Differentiation of Prostate Stem Cells from the Basal Compartment. J Biol Chem 2015; 290:17753-17761. [PMID: 26032417 DOI: 10.1074/jbc.m115.661066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Indexed: 12/11/2022] Open
Abstract
Prostate stem cells (P-SCs) are capable of giving rise to all three lineages of prostate epithelial cells, which include basal, luminal, and neuroendocrine cells. Two types of P-SCs have been identified in both human and mouse adult prostates based on prostasphere or organoid cultures, cell lineage tracing, renal capsule implantation, and expression of luminal- and basal-specific proteins. The sphere-forming P-SCs are from the basal cell compartment that express P63, and are therefore designated as basal P-SCs (P-bSCs). Luminal P-SCs (P-lSCs) express luminal cytokeratins and Nkx3.1. Herein, we report that the type 2 FGF receptor (FGFR2) signaling axis is crucial for preserving stemness and preventing differentiation of P-bSCs. FGFR2 signaling mediated by FGFR substrate 2α (FRS2α) is indispensable for formation and maintenance of prostaspheres derived from P63(+) P-bSCs. Ablation of Fgfr2 in P63(+) cells in vitro causes the disintegration of prostaspheres. Ablation of Fgfr2 in vivo reduces the number of P63-expressing basal cells and enriches luminal cells. This suggests a basal stem cell-to-luminal cell differentiation. In addition, ablation of Fgfr2 in P63(+) cells causes defective postnatal development of the prostate. Therefore, the data indicate that FGFR2 signaling is critical for preserving stemness and preventing differentiation of P-bSCs.
Collapse
Affiliation(s)
- Yanqing Huang
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030
| | - Tomoaki Hamana
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030
| | - Junchen Liu
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030
| | - Cong Wang
- Wenzhou Medical College, Wenzhou, 325030 Zhejiang, China
| | - Lei An
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030
| | - Pan You
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030; Xiamen Zhongshan Hospital, Xiamen, 361004 Fujian, China
| | - Julia Y F Chang
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030
| | - Jianming Xu
- Baylor College of Medicine, Houston, Texas 77030
| | - Chengliu Jin
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030
| | | | - Wallace L McKeehan
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030
| | - Fen Wang
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030; Wenzhou Medical College, Wenzhou, 325030 Zhejiang, China; Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, Texas 77807.
| |
Collapse
|
992
|
Charles R. Overview of Genetically Engineered Mouse Models of Papillary and Anaplastic Thyroid Cancers: Enabling Translational Biology for Patient Care Improvement. ACTA ACUST UNITED AC 2015; 69:14.33.1-14.33.14. [DOI: 10.1002/0471141755.ph1433s69] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
993
|
Hsiao CH, Ji ATQ, Chang CC, Cheng CJ, Lee LM, Ho JHC. Local injection of mesenchymal stem cells protects testicular torsion-induced germ cell injury. Stem Cell Res Ther 2015; 6:113. [PMID: 26025454 PMCID: PMC4449584 DOI: 10.1186/s13287-015-0079-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 12/22/2014] [Accepted: 04/10/2015] [Indexed: 11/30/2022] Open
Abstract
Introduction Testicular torsion is a urological emergency and infertility is a common complication due to ischemic injury. Surgical reduction and orchiopexy is indicated, but to date there is no effective method for restoration of spermatogenesis. The effects of mesenchymal stem cells (MSCs) on acute tissue injury have been demonstrated, and the abilities of paracrine support, differentiation and immune-modulation may benefit to testicular torsion-induced infertility. We investigate the therapeutic efficacy and the mechanisms of MSCs in testicular torsion-induced germ cell injury when injected locally. Methods Six to eight-week-old Sprague–Dawley rats received surgical 720 degree torsion for 3 hours, followed by detorsion on the left testis. 20 μl of phosphate-buffered saline (PBS) without or with 3 x 104 MSCs from human orbital fat tissues (OFSCs) were given for 10 rats, respectively, via local injection into the left testis 30 minutes before detorsion. 20 μl of PBS injection for 6 rats with surgical exposure without torsion served as sham control. Histopathology with Johnsen’s score analysis, Western blot analysis for superoxide dismutase 2, Bax, Caspase-3, human insulin growth factor-1 and human stem cell factor, malondialdehyde (MDA) assay in testis and plasma, hormones level including testosterone, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) by ELISA Kits, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and fluorescence staining for P450, Sox-9 and VASA were performed. Results Animals were sacrificed and bilateral orchiectomy was performed 7 days after torsion-detorsion. Local injections of OFSCs prevented torsion-induced infertility judging from Johnsen's score. TUNEL assay and Western blot analysis on caspase 3 and Bax demonstrated that OFSCs prevented ischemic/reperfusion induced intrinsic apoptosis. MDA assay revealed that OFSCs significantly reduced the oxidative stress in the damaged testicular tissues. After the OFSC injection, serum testosterone secretion was increased, while the elevation of FSH triggered by testicular injury was balanced. OFSCs also produced stem cell factor in the damaged testis. Immunofluorescence staining revealed that most transplanted cells surrounded the Leydig cells. Some of transplanted cells differentiated into p450 expressing cells within 7 days. Conclusions Local injection of allogenic MSCs before surgical detorsion is a simple, clinical friendly procedure to rescue torsion-induced infertility.
Collapse
Affiliation(s)
- Chi-Hao Hsiao
- Department of Urology, Wan Fang Hospital, Taipei Medical University, #111, Section 3, Hsing-Long Road, Taipei, 116, Taiwan. .,Graduate Institute of Clinical Medicine, Taipei Medical University, #250 Wu-Hsing Street, Taipei, 110, Taiwan.
| | - Andrea Tung-Qian Ji
- Center for Stem Cell Research, Wan Fang Hospital, Taipei Medical University, #111, Section 3, Hsing-Long Road, Taipei, 116, Taiwan.
| | - Chih-Cheng Chang
- Graduate Institute of Clinical Medicine, Taipei Medical University, #250 Wu-Hsing Street, Taipei, 110, Taiwan. .,Department of Pulmonary Medicine, Shuang Ho Hospital, Taipei Medical University, #291, Zhongzheng Road, Zhonghe District, New Taipei, 235, Taiwan.
| | - Chien-Jui Cheng
- Department of Pathology, College of Medicine, Taipei Medical University, #250, Wu-Hsing Street, Taipei, Taiwan. .,Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, #250, Wu-Hsing Street, Taipei, 110, Taiwan.
| | - Liang-Ming Lee
- Department of Urology, Wan Fang Hospital, Taipei Medical University, #111, Section 3, Hsing-Long Road, Taipei, 116, Taiwan.
| | - Jennifer Hui-Chun Ho
- Graduate Institute of Clinical Medicine, Taipei Medical University, #250 Wu-Hsing Street, Taipei, 110, Taiwan. .,Center for Stem Cell Research, Wan Fang Hospital, Taipei Medical University, #111, Section 3, Hsing-Long Road, Taipei, 116, Taiwan.
| |
Collapse
|
994
|
Das S, Yu S, Sakamori R, Vedula P, Feng Q, Flores J, Hoffman A, Fu J, Stypulkowski E, Rodriguez A, Dobrowolski R, Harada A, Hsu W, Bonder EM, Verzi MP, Gao N. Rab8a vesicles regulate Wnt ligand delivery and Paneth cell maturation at the intestinal stem cell niche. Development 2015; 142:2147-62. [PMID: 26015543 PMCID: PMC4483769 DOI: 10.1242/dev.121046] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/16/2015] [Indexed: 12/11/2022]
Abstract
Communication between stem and niche supporting cells maintains the homeostasis of adult tissues. Wnt signaling is a crucial regulator of the stem cell niche, but the mechanism that governs Wnt ligand delivery in this compartment has not been fully investigated. We identified that Wnt secretion is partly dependent on Rab8a-mediated anterograde transport of Gpr177 (wntless), a Wnt-specific transmembrane transporter. Gpr177 binds to Rab8a, depletion of which compromises Gpr177 traffic, thereby weakening the secretion of multiple Wnts. Analyses of generic Wnt/β-catenin targets in Rab8a knockout mouse intestinal crypts indicate reduced signaling activities; maturation of Paneth cells – a Wnt-dependent cell type – is severely affected. Rab8a knockout crypts show an expansion of Lgr5+ and Hopx+ cells in vivo. However, in vitro, the knockout enteroids exhibit significantly weakened growth that can be partly restored by exogenous Wnts or Gsk3β inhibitors. Immunogold labeling and surface protein isolation identified decreased plasma membrane localization of Gpr177 in Rab8a knockout Paneth cells and fibroblasts. Upon stimulation by exogenous Wnts, Rab8a-deficient cells show ligand-induced Lrp6 phosphorylation and transcriptional reporter activation. Rab8a thus controls Wnt delivery in producing cells and is crucial for Paneth cell maturation. Our data highlight the profound tissue plasticity that occurs in response to stress induced by depletion of a stem cell niche signal. Summary: In maturing mouse Paneth cells, Wnt secretion is partly dependent on a Rab8a-mediated anterograde transport of Gpr177. Rab8a is required for Paneth cell maturation.
Collapse
Affiliation(s)
- Soumyashree Das
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Shiyan Yu
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Ryotaro Sakamori
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Pavan Vedula
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Qiang Feng
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Juan Flores
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Andrew Hoffman
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Jiang Fu
- Department of Biomedical Genetics, Center for Oral Biology, James P. Wilmot Cancer Center, Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ewa Stypulkowski
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Alexis Rodriguez
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Radek Dobrowolski
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Wei Hsu
- Department of Biomedical Genetics, Center for Oral Biology, James P. Wilmot Cancer Center, Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Edward M Bonder
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
995
|
Feng Q, Gao N. Keeping Wnt signalosome in check by vesicular traffic. J Cell Physiol 2015; 230:1170-80. [PMID: 25336320 DOI: 10.1002/jcp.24853] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/17/2014] [Indexed: 01/01/2023]
Abstract
Wg/Wnts are paracrine and autocrine ligands that activate distinct signaling pathways while being internalized through surface receptors. Converging and contrasting views are shaping our understanding of whether, where, and how endocytosis may modulate Wnt signaling. We gather considerable amount of evidences to elaborate the point that signal-receiving cells utilize distinct, flexible, and sophisticated vesicular trafficking mechanisms to keep Wnt signaling activity in check. Same molecules in a highly context-dependent fashion serve as regulatory hub for various signaling purposes: amplification, maintenance, inhibition, and termination. Updates are provided for the regulatory mechanisms related to the three critical cell surface complexes, Wnt-Fzd-LRP6, Dkk1-Kremen-LRP6, and R-spondin-LGR5-RNF43, which potently influence Wnt signaling. We pay particular attentions to how cells achieve sustained and delicate control of Wnt signaling strength by employing comprehensive aspects of vesicular trafficking.
Collapse
Affiliation(s)
- Qiang Feng
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | | |
Collapse
|
996
|
Dionne LK, Wang XJ, Prekeris R. Midbody: from cellular junk to regulator of cell polarity and cell fate. Curr Opin Cell Biol 2015; 35:51-8. [PMID: 25950842 DOI: 10.1016/j.ceb.2015.04.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 01/02/2023]
Abstract
At late mitosis, the mother cell divides by the formation of a cleavage furrow, leaving two daughter cells connected by a thin intercellular bridge. During ingression of the cleavage furrow, the central spindle microtubules are compacted to form the structure known as the midbody (MB). The MB is situated within the intercellular bridge, with the abscission site sometimes occurring on one side of the MB. As a result of this one-sided (asymmetric) abscission, only one daughter cell can inherit the post-mitotic MB. Interestingly, recent studies have identified post-mitotic MBs as novel signaling platforms regulating stem cell fate and proliferation. Additionally, MBs were proposed to serve a role of polarity cues during the neurite outgrowth and apical lumen formation. Thus, abscission and MB inheritance is clearly a highly regulated cellular event that can affect development and various other cellular functions. In this review we discuss the latest findings regarding post-mitotic MB functions, as well as the machinery regulating MB inheritance and accumulation.
Collapse
Affiliation(s)
- Lai Kuan Dionne
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
997
|
Hairy math: addition of Wnt-3a to multiply bulge cells. J Invest Dermatol 2015; 135:1481-1483. [PMID: 25964269 PMCID: PMC4430324 DOI: 10.1038/jid.2014.545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Canonical Wnt signals are important for activation of epithelial skin stem cells, but the role of individual Wnt ligands remains uncertain. Ouji et al. demonstrate a key role for Wnt-3a in partial maintenance and long-term expansion of epithelial skin stem cells in vitro. They also report a method for expanding these cells in vitro without feeder cells.
Collapse
|
998
|
Tiwari SK, Agarwal S, Tripathi A, Chaturvedi RK. Bisphenol-A Mediated Inhibition of Hippocampal Neurogenesis Attenuated by Curcumin via Canonical Wnt Pathway. Mol Neurobiol 2015; 53:3010-3029. [PMID: 25963729 DOI: 10.1007/s12035-015-9197-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/22/2015] [Indexed: 12/20/2022]
Abstract
Bisphenol A (BPA) is an environmental xenoestrogenic endocrine disruptor, utilized for production of consumer products, and exerts adverse effects on the developing nervous system. Recently, we found that BPA impairs the finely tuned dynamic processes of neurogenesis (generation of new neurons) in the hippocampus of the developing rat brain. Curcumin is a natural polyphenolic compound, which provides neuroprotection against various environmental neurotoxicants and in the cellular and animal models of neurodegenerative disorders. Here, we have assessed the neuroprotective efficacy of curcumin against BPA-mediated reduced neurogenesis and the underlying cellular and molecular mechanism(s). Both in vitro and in vivo studies showed that curcumin protects against BPA-induced hippocampal neurotoxicity. Curcumin protects against BPA-mediated reduced neural stem cells (NSC) proliferation and neuronal differentiation and enhanced neurodegeneration. Curcumin also enhances the expression/levels of neurogenic and the Wnt pathway genes/proteins, which were reduced due to BPA exposure in the hippocampus. Curcumin-mediated neuroprotection against BPA-induced neurotoxicity involved activation of the Wnt/β-catenin signaling pathway, which was confirmed by the use of Wnt specific activators (LiCl and GSK-3β siRNA) and inhibitor (Dkk-1). BPA-mediated increased β-catenin phosphorylation, decreased GSK-3β levels, and β-catenin nuclear translocation were significantly reversed by curcumin, leading to enhanced neurogenesis. Curcumin-induced protective effects on neurogenesis were blocked by Dkk-1 in NSC culture treated with BPA. Curcumin-mediated enhanced neurogenesis was correlated well with improved learning and memory in BPA-treated rats. Overall, our results conclude that curcumin provides neuroprotection against BPA-mediated impaired neurogenesis via activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Shashi Kant Tiwari
- Developmental Toxicology Division, Systems Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Swati Agarwal
- Developmental Toxicology Division, Systems Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Anurag Tripathi
- Food, Drugs and Chemical Toxicology Group, CSIR-IITR, 80 MG Marg, Lucknow, 226001, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Division, Systems Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| |
Collapse
|
999
|
Wabik A, Jones PH. Switching roles: the functional plasticity of adult tissue stem cells. EMBO J 2015; 34:1164-79. [PMID: 25812989 PMCID: PMC4426478 DOI: 10.15252/embj.201490386] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/09/2015] [Accepted: 02/11/2015] [Indexed: 12/15/2022] Open
Abstract
Adult organisms have to adapt to survive, and the same is true for their tissues. Rates and types of cell production must be rapidly and reversibly adjusted to meet tissue demands in response to both local and systemic challenges. Recent work reveals how stem cell (SC) populations meet these requirements by switching between functional states tuned to homoeostasis or regeneration. This plasticity extends to differentiating cells, which are capable of reverting to SCs after injury. The concept of the niche, the micro-environment that sustains and regulates stem cells, is broadening, with a new appreciation of the role of physical factors and hormonal signals. Here, we review different functions of SCs, the cellular mechanisms that underlie them and the signals that bias the fate of SCs as they switch between roles.
Collapse
Affiliation(s)
- Agnieszka Wabik
- MRC Cancer Unit, University of Cambridge Hutchison/MRC Research Centre Cambridge Biomedical Campus, Cambridge, UK
| | - Philip H Jones
- MRC Cancer Unit, University of Cambridge Hutchison/MRC Research Centre Cambridge Biomedical Campus, Cambridge, UK Wellcome Trust Sanger Institute, Hinxton, UK
| |
Collapse
|
1000
|
Chabowska-Kita A, Trabczynska A, Korytko A, Kaczmarek MM, Kozak LP. Low ambient temperature during early postnatal development fails to cause a permanent induction of brown adipocytes. FASEB J 2015; 29:3238-52. [PMID: 25896784 PMCID: PMC4511198 DOI: 10.1096/fj.15-271395] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/31/2015] [Indexed: 01/24/2023]
Abstract
The brown adipocyte phenotype (BAP) in white adipose tissue (WAT) is transiently induced in adult mammals in response to reduced ambient temperature. Since it is unknown whether a cold challenge can permanently induce brown adipocytes (BAs), we reared C57BL/6J (B6) and AxB8/PgJ (AxB8) mice at 17 or 29°C from birth to weaning, to assess the BAP in young and adult mice. Energy balance measurements showed that 17°C reduced fat mass in the preweaning mice by increasing energy expenditure and suppressed diet-induced obesity in adults. Microarray analysis of global gene expression of inguinal fat (ING) from 10-day-old (D) mice indicates that expression at 17°C vs. 29°C was not different. Between 10 and 21 days of age, the BAP was induced coincident with morphologic remodeling of ING and marked changes in expression of neural development genes (e.g., Akap 12 and Ngfr). Analyses of Ucp1 mRNA and protein showed that 17°C transiently increased the BAP in ING from 21D mice; however, BAs were unexpectedly present in mice reared at 29°C. The involution of the BAP in WAT occurred after weaning in mice reared at 23°C. Therefore, the capacity to stimulate thermogenically competent BAs in WAT is set by a temperature-independent, genetically controlled program between birth and weaning.—Chabowska-Kita, A., Trabczynska, A., Korytko, A., Kaczmarek, M. M., Kozak, L. P. Low ambient temperature during early postnatal development fails to cause a permanent induction of brown adipocytes.
Collapse
Affiliation(s)
| | - Anna Trabczynska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Agnieszka Korytko
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Monika M Kaczmarek
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Leslie P Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|