1001
|
Liu M, Gray JM, Griffiths MW. Occurrence of proteolytic activity and N-acyl-homoserine lactone signals in the spoilage of aerobically chill-stored proteinaceous raw foods. J Food Prot 2006; 69:2729-37. [PMID: 17133818 DOI: 10.4315/0362-028x-69.11.2729] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Proteolytic pseudomonads dominate the spoilage flora of aerobically chill-stored proteinaceous raw foods. Proteolysis during spoilage of these food systems affects both food quality and the dynamics of the bacterial community because it increases the availability of nutrients to the community as a whole. Quorum sensing, or cell-cell signaling, is associated closely with ecological interactions among bacteria in mixed communities. The potential role of quorum sensing in proteolytic food spoilage was examined, based on the evaluation of N-acyl-homoserine lactone (AHL) signal molecules. The occurrence of proteolytic activity and AHL signals was studied during spoilage of aerobically chill-stored ground beef, fish, chicken, and raw milk. Pseudomonads dominated the psychrotrophic flora, followed distantly by members of the Enterobacteriaceae. The growth of pseudomonads was correlated with the occurrence of proteolytic activity in all food systems. AHL concentration began increasing significantly only after the onset of proteolytic activity. Widely divergent AHL profiles were revealed by thin-layer chromatography analysis of the different food samples, and these profiles were likely determined by the undefined bacterial flora in these systems and by the characterized pseudomonads and Enterobacteriaceae. Although Hafnia alvei was a major component of the Enterobacteriaceae flora in all foods tested and a strong AHL producer, the signal molecules produced by H. alvei strain EB1 did not influence protease production by Pseudomonas fluorescens strain 395 in vitro. These results do not indicate any clear correlation between the overall detectable AHL signal molecules accumulated in the food samples and proteolytic activity.
Collapse
Affiliation(s)
- M Liu
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
1002
|
Li X, Fekete A, Englmann M, Götz C, Rothballer M, Frommberger M, Buddrus K, Fekete J, Cai C, Schröder P, Hartmann A, Chen G, Schmitt-Kopplin P. Development and application of a method for the analysis of N-acylhomoserine lactones by solid-phase extraction and ultra high pressure liquid chromatography. J Chromatogr A 2006; 1134:186-93. [PMID: 17049538 DOI: 10.1016/j.chroma.2006.09.047] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 08/09/2006] [Accepted: 09/04/2006] [Indexed: 10/24/2022]
Abstract
A robust method based on solid-phase extraction (SPE) followed by ultra high pressure liquid chromatography (with trade name of Ultra Performance Liquid Chromatography: UPLC; Waters, Milford, MA, USA) is proposed for the determination of five derivatives of N-acylhomoserine lactones (AHLs) that play a biological role as signal molecules of several gram-negative bacteria. Different commercial SPE cartridges were tested for sample extraction, clean-up and preconcentration. Since the sample matrix was a complex growth media, careful optimization of the SPE with respect to washing procedure, elution solvent and sample solvent was necessary. No sample loss was observed when up to 100 mL spiked full media was added onto the cartridge. Applying UPLC for the determination of AHLs, the performance characteristics of the method showed good separation efficiency and high speed. In order to demonstrate the applicability of the method, supernatants with the known AHL producer Burkholderia cepacia LA3 grown in different media were investigated. Additionally, the method was successfully used for the degradation/uptake study of AHLs from a liquid matrix in which barley was grown under controlled condition.
Collapse
Affiliation(s)
- Xiaojing Li
- Ministry of Education Key Laboratory of Analysis and Detection Technology for Food Safety, and Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350002, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1003
|
Moons P, Van Houdt R, Aertsen A, Vanoirbeek K, Engelborghs Y, Michiels CW. Role of quorum sensing and antimicrobial component production by Serratia plymuthica in formation of biofilms, including mixed biofilms with Escherichia coli. Appl Environ Microbiol 2006; 72:7294-300. [PMID: 16997989 PMCID: PMC1636202 DOI: 10.1128/aem.01708-06] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously characterized the N-acyl-l-homoserine lactone-based quorum-sensing system of the biofilm isolate Serratia plymuthica RVH1. Here we investigated the role of quorum sensing and of quorum-sensing-dependent production of an antimicrobial compound (AC) on biofilm formation by RVH1 and on the cocultivation of RVH1 and Escherichia coli in planktonic cultures or in biofilms. Biofilm formation of S. plymuthica was not affected by the knockout of splI or splR, the S. plymuthica homologs of the luxI or luxR quorum-sensing gene, respectively, or by the knockout of AC production. E. coli grew well in mixed broth culture with RVH1 until the latter reached 8.5 to 9.5 log CFU/ml, after which the E. coli colony counts steeply declined. In comparison, only a very small decline occurred in cocultures with the S. plymuthica AC-deficient and splI mutants. Complementation with exogenous N-hexanoyl-l-homoserine lactone rescued the wild-type phenotype of the splI mutant. The splR knockout mutant also induced a steep decline of E. coli, consistent with its proposed function as a repressor of quorum-sensing-regulated genes. The numbers of E. coli in 3-day-old mixed biofilms followed a similar pattern, being higher with S. plymuthica deficient in SplI or AC production than with wild-type S. plymuthica, the splR mutant, or the splI mutant in the presence of N-hexanoyl-l-homoserine lactone. Confocal laser scanning microscopic analysis of mixed biofilms established with strains producing different fluorescent proteins showed that E. coli microcolonies were less developed in the presence of RVH1 than in the presence of the AC-deficient mutant.
Collapse
Affiliation(s)
- Pieter Moons
- Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
1004
|
Karamanoli K, Lindow SE. Disruption of N-acyl homoserine lactone-mediated cell signaling and iron acquisition in epiphytic bacteria by leaf surface compounds. Appl Environ Microbiol 2006; 72:7678-86. [PMID: 16997987 PMCID: PMC1694201 DOI: 10.1128/aem.01260-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Since N-acyl homoserine lactones (AHLs) are key mediators of cell density-dependent regulation of traits involved in virulence and epiphytic fitness in gram-negative bacteria such as Pseudomonas syringae, a variety of plant species were examined to determine their production of leaf surface compounds that could interact with these signaling systems. Leaf washings of 17 of 52 plant species tested stimulated or inhibited AHL-dependent traits in at least one of the bacterial reporter strains used. The active compounds from most plants could be distinguished from known AHLs due to different patterns of mobility during C8 and C18 reverse-phase thin-layer chromatography (TLC) and normal-phase TLC compared to the patterns for authentic bacterial AHLs. All plant extracts were also tested to determine their abilities to sequester iron and trigger bacterial siderophore synthesis on a medium containing abundant iron. Leaf washings from 16 of the 52 plant species, as well as tannic acid solutions, stimulated pyoverdine synthesis in P. syringae in a high-iron medium. These preparations also inhibited the growth of a P. syringae mutant unable to produce pyoverdine siderophores but not the growth of the wild-type bacterium. The stimulation of siderophore production and the growth inhibition by plant extracts and purified tannins were both reversed by addition of ferric chloride to culture media, indicating that iron was made unavailable by the compounds released onto the leaf surface.
Collapse
|
1005
|
Gomi K, Kikuchi T, Tokue Y, Fujimura S, Uehara A, Takada H, Watanabe A, Nukiwa T. Mouse and human cell activation by N-dodecanoyl-DL-homoserine lactone, a Chromobacterium violaceum autoinducer. Infect Immun 2006; 74:7029-31. [PMID: 16982829 PMCID: PMC1698062 DOI: 10.1128/iai.00038-06] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromobacterium violaceum produces autoinducers, including homoserine lactones (HSLs), for genetic regulation. Among the seven HSLs derived from C. violaceum we evaluated, only C(12)-HSL stimulated the production of inflammatory cytokines in mammalian monocytic cell lines through the activation of the NF-kappaB signaling pathway besides their quorum-sensing role, like 3-oxo-C(12)-HSL from Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Kazunori Gomi
- Department of Respiratory Oncology and Molecular Medicine, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-Ku, Sendai 980-8575, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
1006
|
Ortori CA, Atkinson S, Chhabra SR, Cámara M, Williams P, Barrett DA. Comprehensive profiling of N-acylhomoserine lactones produced by Yersinia pseudotuberculosis using liquid chromatography coupled to hybrid quadrupole–linear ion trap mass spectrometry. Anal Bioanal Chem 2006; 387:497-511. [PMID: 16967185 DOI: 10.1007/s00216-006-0710-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2006] [Revised: 07/24/2006] [Accepted: 07/25/2006] [Indexed: 10/24/2022]
Abstract
A method for the comprehensive profiling of the N-acylhomoserine lactone (AHL) family of bacterial quorum-sensing molecules is presented using liquid chromatography (LC) coupled to hybrid quadrupole-linear ion trap (QqQLIT) mass spectrometry. Information-dependent acquisition (IDA), using triggered combinations of triple-quadrupole and linear ion trap modes in the same LC-MS/MS run, was used to simultaneously screen, quantify and identify multiple AHLs in a single sample. This MS method uses common AHL fragment ions attributed to the homoserine moiety and the 3-oxo-, 3-hydroxy- or unsubstituted acyl side chains, to identify unknown AHLs in cell-free culture supernatants in an unbiased manner. This LC-MS technique was applied to determine the relative molar ratios of AHLs produced by Yersinia pseudotuberculosis and the consequences of inactivating by mutation either or both of the AHL synthase genes (ypsI and ytbI) on AHL profile and concentration. The Y. pseudotuberculosis wild type but not the ypsI ytbI double mutant produced at least 24 different AHLs with acyl chains ranging from C4 to C15 with or without 3-oxo or 3-hydroxy substituents. YtbI, in contrast to YpsI, could direct the synthesis of all of the AHLs identified. The most abundant and hence most biologically relevant Y. pseudotuberculosis AHLs were found to be the 3-oxo-substituted C6, C7 and C8 AHLs and the unsubstituted C6 and C8 compounds. The LC-QqQLIT methodology is broadly applicable to quorum-sensing signal molecule analysis and can provide comprehensive AHL profiles and concentrations from a single sample and simultaneously collect confirmatory spectra for each AHL identified.
Collapse
Affiliation(s)
- Catharine A Ortori
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | | | | | | | | |
Collapse
|
1007
|
Wei JR, Soo PC, Horng YT, Hsieh SC, Tsai YH, Swift S, Withers H, Williams P, Lai HC. Regulatory roles of spnT, a novel gene located within transposon TnTIR. Biochem Biophys Res Commun 2006; 348:1038-46. [PMID: 16899219 DOI: 10.1016/j.bbrc.2006.07.152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 07/25/2006] [Indexed: 10/24/2022]
Abstract
The transposon TnTIR contains spnIR quorum-sensing system regulating sliding motility and the production of nuclease, biosurfactant, and prodigiosin in Serratia marcescens. Within TnTIR, a gene named spnT is upstream of and co-transcribed with spnI. SpnT is a cytoplasmic protein and its level peaks during early stationary phase. spnT over-expression resulted in inhibition of sliding motility and synthesis of prodigiosin, and biosurfactant similar to spnR. spnT but not spnR over-expression induced cell elongation and aberrant DNA replication in S. marcescens and Escherichia coli strains. In comparison with wild-type E. coli strain, over-expression of spnT in an E. coli priA and dnaC double-mutant strain did not lead to the aberrant cell morphology phenotypes, suggesting SpnT may act through the recombination-dependent DNA replication system. As spnT over-expression inhibited swarming but not swimming motility, SpnT may indirectly function as a negative regulator of surface-dependent migration and secondary metabolite production.
Collapse
Affiliation(s)
- Jun-Rong Wei
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
1008
|
Buchholtz C, Nielsen KF, Milton DL, Larsen JL, Gram L. Profiling of acylated homoserine lactones of Vibrio anguillarum in vitro and in vivo: Influence of growth conditions and serotype. Syst Appl Microbiol 2006; 29:433-45. [PMID: 16413159 DOI: 10.1016/j.syapm.2005.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Indexed: 11/26/2022]
Abstract
Vibrio anguillarum produces several interlinked acylated homoserine lactone (AHL) signal molecules which may influence expression of its virulence factors such as exoprotease production and biofilm formation. Using both thin layer chromatography and HPLC-high resolution mass spectrometry (HPLC-HRMS), we demonstrate in this study that the same types of AHLs are produced by many serotypes of V. anguillarum and that altering in vitro growth conditions (salinity, temperature and iron concentration) has little influence on the AHL-profile. Most strains produced N-(3-oxodecanoyl)-l-homoserine lactone (3-oxo-C10-HSL) and N-(3-hydroxy-hexanoyl)-l-homoserine lactone (3-hydroxy-C6-HSL) as the dominant molecules. Also, two spots with AHL activity appeared on TLC plates, which could not be identified as AHL structures. Trace amounts of N-(3-hydroxy-octanoyl)-l-homoserine lactone, N-(3-hydroxy-decanoyl)-l-homoserine lactone and N-(3-hydroxy-dodecanoyl)-l-homoserine lactone (3-hydroxy-C8-HSL, 3-hydroxy-C10-HSL and 3-oxo-C12-HSL, respectively) were also detected by HPLC-HRMS analysis from in vitro cultures. Most studies of quorum sensing (QS) systems have been conducted in vitro, the purpose of our study was to determine if the same acylated homoserine lactones were produced in vivo during infection. Extracts from infected fish were purified using several solid phase extraction strategies to allow chromatographic detection and separation by both TLC and HLPC-HRMS. 3-oxo-C10-HSL and 3-hydroxy-C6-HSL were detected in organs from fish dying from vibriosis, however, compared to in vitro culturing where 3-oxo-C10-HSL is the dominant molecule, 3-hydroxy-C6-HSL was prominent in the infected fish tissues. Hence, the balance between the QS systems may be different during infection compared to in vitro cultures. For future studies of QS systems and the possible specific interference with expression of virulence factors, in vitro cultures should be optimised to reflect the in vivo situation.
Collapse
Affiliation(s)
- Christiane Buchholtz
- Department of Seafood Research, Danish Institute for Fisheries Research, Søltofts Plads, DTU bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | | | | | | | | |
Collapse
|
1009
|
Medina-Martínez MS, Uyttendaele M, Demolder V, Debevere J. Effect of temperature and glucose concentration on the N-butanoyl-l-homoserine lactone production by Aeromonas hydrophila. Food Microbiol 2006; 23:534-40. [PMID: 16943048 DOI: 10.1016/j.fm.2005.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 09/23/2005] [Accepted: 09/23/2005] [Indexed: 10/25/2022]
Abstract
N-butanoyl-L-homoserine lactone (C4-HSL) production by Aeromonas hydrophila 519 has been established. C4-HSL production at 22 and 30 degrees C was found after 20-24 h of incubation corresponding to a population density of ca. 10(8)-10(9) cfu/ml, respectively. Reduced C4-HSL production was noted after 72 h of incubation at 12 degrees C when the culture reached ca. 10(9) cfu/ml. No C4-HSL production was detected at 37 degrees C, although a dense population was obtained. In LB broth supplemented with 0.1% and 0.5% glucose, C4-HSL production was noted whereas with 1% glucose no C4-HSL was detected although a high colony count was obtained. In the latter culture residual levels of glucose (0.65%) were found after 43 h whereas in the 0.1% and 0.5% supplemented LB, glucose was quickly consumed which may have stimulated C4-HSL production. In conclusion, the present study shows an effect of environmental conditions (temperature, glucose concentration) on the C4-HSL production and warrants further investigation to elucidate the effect of external conditions on production of AHL signal molecules to reveal the relevance of quorum sensing in, e.g. foods.
Collapse
Affiliation(s)
- M S Medina-Martínez
- Laboratory of Food Microbiology and Food Preservation, Faculty of BioScience Engineering, Ghent University, UGent, Coupure Links, 653-9000 Ghent, Belgium
| | | | | | | |
Collapse
|
1010
|
Yoshida S, Kinkel LL, Shinohara H, Numajiri N, Hiradate S, Koitabashi M, Suyama K, Negishi H, Tsushima S. Production of quorum-sensing-related signal molecules by epiphytic bacteria inhabiting wheat heads. Can J Microbiol 2006; 52:411-8. [PMID: 16699565 DOI: 10.1139/w05-146] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The production of quorum-sensing-related signal molecules (QSRMs) among culturable bacteria comprising the community on wheat heads was investigated. The taxonomic position of 186 bacterial isolates obtained from ten heads was inferred based on 16S rRNA gene sequences, and their QSRM production was determined using two bioreporter strains of N-acylhomoserine lactones. Approximately 33% of isolates produced QSRMs, though the proportion of QSRM-producing isolates on a wheat head was significantly negatively correlated with population size. Most of the producing isolates were Pantoea species, most commonly Pantoea ananatis. Furthermore, the proportion of Pantoea ananatis that produced QSRMs was significantly negatively correlated with the number of bacterial genera (community richness) on each head. Finally, community richness was positively correlated with population size. Qualitative analysis using thin-layer-chromatography revealed that the QSRMs of Pantoea isolates were composed of at least two compounds. This is the first report indicating that Pantoea ananatis isolates inhabiting wheat heads are capable of producing QSRMs. QSRM production by Pantoea spp. may contribute to the predominance of this genus on wheat heads, particularly at relatively low population densities and community diversity.
Collapse
Affiliation(s)
- Shigenobu Yoshida
- National Institute for Agro-Environmental Sciences, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
1011
|
Coulthurst SJ, Williamson NR, Harris AKP, Spring DR, Salmond GPC. Metabolic and regulatory engineering of Serratia marcescens: mimicking phage-mediated horizontal acquisition of antibiotic biosynthesis and quorum-sensing capacities. MICROBIOLOGY-SGM 2006; 152:1899-1911. [PMID: 16804166 DOI: 10.1099/mic.0.28803-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Serratia marcescens is an important cause of opportunistic human infections. Many, but not all, strains produce prodigiosin, a secondary metabolic, red-pigment antibiotic, the biosynthesis of which is directed by the pig gene cluster. Quorum sensing (QS) involves the production and detection of chemical signal molecules as a means to regulate gene expression in response to population cell density. Several strains of S. marcescens have previously been shown to possess an N-acyl-L-homoserine lactone (aHSL) QS system. This study aimed to determine the impact of introducing, by phage-mediated horizontal gene transfer, a biosynthetic gene cluster (pig) and a regulatory locus (aHSL QS) into strains lacking the respective trait. The pig cluster from S. marcescens ATCC 274 (Sma 274) was transferred to the non-pigmented strain, S. marcescens strain 12 (Sma 12). In the engineered strain, pigment was expressed and brought under the control of the recipient's native regulatory systems (aHSL QS and luxS). Moreover, transfer of the aHSL locus from Sma 12 to the non-QS Sma 274 resulted in the imposition of aHSL control onto a variety of native traits, including pigment production. In addition, during this study, the QS regulon of the clinical strain, Sma 12, was characterized, and some novel QS-regulated traits in S. marcescens were identified. The results have implications for the evolution and dissemination of biosynthetic and QS loci, illustrating the genetic modularity and ease of acquisition of these traits and the capacity of phages to act as vectors for horizontal gene transfer.
Collapse
Affiliation(s)
- Sarah J Coulthurst
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Neil R Williamson
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Abigail K P Harris
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - George P C Salmond
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
1012
|
Azakami H, Teramura I, Matsunaga T, Akimichi H, Noiri Y, Ebisu S, Kato A. Characterization of autoinducer 2 signal in Eikenella corrodens and its role in biofilm formation. J Biosci Bioeng 2006; 102:110-7. [PMID: 17027872 DOI: 10.1263/jbb.102.110] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 05/16/2006] [Indexed: 11/17/2022]
Abstract
Quorum sensing (QS) is a process by which bacteria communicate using secreted chemical signaling molecules called autoinducers (AIs). By this process, many bacterial species modulate the expression of a wide variety of physiological functions in response to changes in population density. In this study, the periodontal pathogen Eikenella corrodens was observed to secrete type 2 signaling molecules. An ortholog of luxS, the gene required for AI-2 synthesis in Vibrio harveyi, was isolated from the E. corrodens genome. A V. harveyi bioassay showed luxS functionality in E. corrodens and the ability of luxS to complement the luxS-negative phenotype of Escherichia coli DH5alpha. AI activity was detected in the supernatant, and the maximum expression of AI-2 was observed during the late exponential phase. To determine the potential role of luxS in the colonization processes, an E. corrodens luxS mutant was constructed and tested for its capacity to form an in vitro biofilm on a polystyrene surface. The biofilm forming efficiency of the luxS mutant was approximately 1.3-fold greater than that of the wild type. These data suggest that a LuxS-dependent signal plays a role in the biofilm formation by E. corrodens.
Collapse
Affiliation(s)
- Hiroyuki Azakami
- Department of Biological Chemistry, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.
| | | | | | | | | | | | | |
Collapse
|
1013
|
Abstract
AIMS The purpose of this study was to search for a novel quorum sensing inhibitor and analyse its inhibitory activity. METHODS AND RESULTS Quorum sensing inhibition was monitored using the Tn-5 mutant, Chromobacterium violaceum CV026. Vanilla beans (Vanilla planifolia Andrews) were extracted using 75% (v/v) aqueous methanol and added to C. violaceum CV026 cultures. Inhibitory activity was measured by quantifying violacein production using a spectrophotometer. The results have revealed that vanilla extract significantly reduced violacein production in a concentration-dependent manner, indicating inhibition of quorum sensing. CONCLUSIONS Vanilla, a widely used spice and flavour, can inhibit bacterial quorum sensing. SIGNIFICANCE AND IMPACT OF THE STUDY The results suggest that the intake of vanilla-containing food materials might promote human health by inhibiting quorum sensing and preventing bacterial pathogenesis. Further studies are required to isolate specific substances from vanilla extract acting as quorum sensing inhibitors.
Collapse
Affiliation(s)
- J H Choo
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | | | | |
Collapse
|
1014
|
Veselova MA, Lipasova VA, Astaurova OB, Atamova EE, Protsenko MA, Buza NL, Metlitskaya AZ, Danilova NN, Chernin LS, Khmel IA. Quorum-sensing regulation in soil pseudomonads. Microbiology (Reading) 2006. [DOI: 10.1134/s0026261706040059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
1015
|
Medina-Martínez MS, Uyttendaele M, Demolder V, Debevere J. Influence of food system conditions on N-acyl-L-homoserine lactones production by Aeromonas spp. Int J Food Microbiol 2006; 112:244-52. [PMID: 16797762 DOI: 10.1016/j.ijfoodmicro.2006.04.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/23/2006] [Accepted: 04/22/2006] [Indexed: 11/20/2022]
Abstract
Eleven of 13 Aeromonas strains were shown to produce AHLs. Results of TLC showed that N-butanoyl-L-homoserine lactone (C4-HSL) was the main AHL produced in LB medium at 30 degrees C. The influence of different carbon sources, temperature, pH values and salt concentrations on AHL production was determined in eight A. hydrophila and one A. caviae strain. Additionally a quantitative study of C4-HSL production by A. hydrophila strain 519 under different conditions was performed. Positive results were found in the AHL induction assay for some Aeromonas strains in cultures in LB agar incubated at 12 degrees C after 72-96 h. The induction of the sensor strains by Aeromonas spp. occurred in LB medium supplemented with all carbon sources in a concentration of 0.5%. The production of C4-HSL by A. hydrophila 519 was found until 3.5% (w/v) of NaCl. For pHs close to the neutrality the C4-HSL production by A. hydrophila was evident after 24-48 h of incubation. A. hydrophila 519 produced C4-HSL under anaerobic conditions. Also, the AHL production by Aeromonas strains was studied in simulate agar of shrimp, fish and some vegetables. The production of AHLs was evident by almost all the test strains in shrimp simulated agar. In fish agar only for one of three fish species tested, positive results were found. Induction assay in vegetables simulated agar showed principally negative results, probably because of the presence of inhibitory compounds in these vegetables.
Collapse
Affiliation(s)
- M S Medina-Martínez
- Laboratory of Food Microbiology and Food Preservation, Ghent University - UGent, Coupure Links, 653, B-9000 Ghent, Belgium
| | | | | | | |
Collapse
|
1016
|
Zinger-Yosovich K, Sudakevitz D, Imberty A, Garber NC, Gilboa-Garber N. Production and properties of the native Chromobacterium violaceum fucose-binding lectin (CV-IIL) compared to homologous lectins of Pseudomonas aeruginosa (PA-IIL) and Ralstonia solanacearum (RS-IIL). MICROBIOLOGY-SGM 2006; 152:457-463. [PMID: 16436433 DOI: 10.1099/mic.0.28500-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chromobacterium violaceum is a versatile, violet pigment (violacein)-producing beta-proteobacterium, confined to tropical and subtropical regions, dwelling in soil and water, like Pseudomonas aeruginosa and Ralstonia solanacearum. These three bacteria are saprophytes that occasionally become aggressive opportunistic pathogens virulently attacking animals (the first two) and plants (the third). The recent availability of their genome sequences enabled identification in the C. violaceum genome of an ORF (locus no. 1744) that is similar to those of P. aeruginosa and R. solanacearum lectins, PA-IIL and RS-IIL, respectively. A recombinant protein, CV-IIL, encoded by that ORF exhibited fucose>mannose-specific lectin activity resembling PA-IIL. This paper describes production and properties of the native CV-IIL, which, like PA-IIL and RS-IIL, is probably also a quorum-sensing-driven secondary metabolite, appearing concomitantly with violacein. Its formation is repressed in the CV026 mutant of C. violaceum, which lacks endogenous N-acylhomoserine lactone. The upstream extragenic sequence of its ORF contains a 20 bp sequence (5'-101-120) with partial similarities to the luxI-box and the related P. aeruginosa and R. solanacearum promoter boxes of quorum-sensing-controlled genes. The lectin level is augmented by addition of trehalose to the medium. The subunit size of CV-IIL (around 11.86 kDa) is similar to those of PA-IIL (11.73 kDa) and RS-IIL (11.60 kDa). Like PA-IIL, in the tetrameric form CV-IIL preferentially agglutinates alpha1-2 fucosylated H-positive human erythrocytes (regardless of their A, B or O type), as opposed to the O(h) Bombay type, but differs from it in having no interaction with rabbit erythrocytes and in displaying stronger affinity to l-galactose than to l-fucose. The greater similarity of CV-IIL to PA-IIL than to RS-IIL might be related to the selective adaptation of both C. violaceum and P. aeruginosa to animal tissues versus the preferential homing of R. solanacearum to plants.
Collapse
Affiliation(s)
| | - Dvora Sudakevitz
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Anne Imberty
- CERMAV-CNRS (Joseph Fourier University), BP 53, 38041 Grenoble, Cedex 09, France
| | - Nachman C Garber
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | |
Collapse
|
1017
|
Sio CF, Otten LG, Cool RH, Diggle SP, Braun PG, Bos R, Daykin M, Cámara M, Williams P, Quax WJ. Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infect Immun 2006; 74:1673-82. [PMID: 16495538 PMCID: PMC1418629 DOI: 10.1128/iai.74.3.1673-1682.2006] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The virulence of the opportunistic human pathogen Pseudomonas aeruginosa PAO1 is controlled by an N-acyl-homoserine lactone (AHL)-dependent quorum-sensing system. During functional analysis of putative acylase genes in the P. aeruginosa PAO1 genome, the PA2385 gene was found to encode an acylase that removes the fatty acid side chain from the homoserine lactone (HSL) nucleus of AHL-dependent quorum-sensing signal molecules. Analysis showed that the posttranslational processing of the acylase and the hydrolysis reaction type are similar to those of the beta-lactam acylases, strongly suggesting that the PA2385 protein is a member of the N-terminal nucleophile hydrolase superfamily. In a bioassay, the purified acylase was shown to degrade AHLs with side chains ranging in length from 11 to 14 carbons at physiologically relevant low concentrations. The substituent at the 3' position of the side chain did not affect activity, indicating broad-range AHL quorum-quenching activity. Of the two main AHL signal molecules of P. aeruginosa PAO1, N-butanoyl-l-homoserine lactone (C4-HSL) and N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL), only 3-oxo-C12-HSL is degraded by the enzyme. Addition of the purified protein to P. aeruginosa PAO1 cultures completely inhibited accumulation of 3-oxo-C12-HSL and production of the signal molecule 2-heptyl-3-hydroxy-4(1H)-quinolone and reduced production of the virulence factors elastase and pyocyanin. Similar results were obtained when the PA2385 gene was overexpressed in P. aeruginosa. These results demonstrate that the protein has in situ quorum-quenching activity. The quorum-quenching AHL acylase may enable P. aeruginosa PAO1 to modulate its own quorum-sensing-dependent pathogenic potential and, moreover, offers possibilities for novel antipseudomonal therapies.
Collapse
Affiliation(s)
- Charles F Sio
- Pharmaceutical Biology, University Centre for Pharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1018
|
Solis R, Bertani I, Degrassi G, Devescovi G, Venturi V. Involvement of quorum sensing and RpoS in rice seedling blight caused byBurkholderia plantarii. FEMS Microbiol Lett 2006; 259:106-12. [PMID: 16684109 DOI: 10.1111/j.1574-6968.2006.00254.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Burkholderia plantarii is a plant pathogen responsible for causing rice seedling blight. The molecular mechanisms responsible for this pathogenicity are currently unknown. In this study, we report the identification and characterization of N-acyl homoserine lactone quorum sensing and the stationary phase RpoS sigma factor of B. plantarii. Both global regulatory systems are involved in causing rice seedling blight. This is the first report of gene regulators of B. plantarii implicated in the disease.
Collapse
Affiliation(s)
- Renando Solis
- Bacteriology Group, International Centre for Genetic Engineering & Biotechnology Area, Trieste, Italy
| | | | | | | | | |
Collapse
|
1019
|
NOVAK JS, FRATAMICO PM. Evaluation of Ascorbic Acid as a Quorum-sensing Analogue to Control Growth, Sporulation, and Enterotoxin Production in Clostridium perfringens. J Food Sci 2006. [DOI: 10.1111/j.1365-2621.2004.tb13374.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
1020
|
Barnard AM, Salmond GP. Quorum Sensing: The Complexities of Chemical Communication between Bacteria. ACTA ACUST UNITED AC 2006. [DOI: 10.1159/000089986] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
1021
|
Dubern JF, Lugtenberg BJJ, Bloemberg GV. The ppuI-rsaL-ppuR quorum-sensing system regulates biofilm formation of Pseudomonas putida PCL1445 by controlling biosynthesis of the cyclic lipopeptides putisolvins I and II. J Bacteriol 2006; 188:2898-906. [PMID: 16585751 PMCID: PMC1447005 DOI: 10.1128/jb.188.8.2898-2906.2006] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida strain PCL1445 produces two cyclic lipopeptides, putisolvin I and putisolvin II, which possess surface tension-reducing abilities and are able to inhibit biofilm formation and to break down existing biofilms of several Pseudomonas spp., including P. aeruginosa. Putisolvins are secreted in the culture medium during growth at late exponential phase, indicating that production is possibly regulated by quorum sensing. In the present study, we identified a quorum-sensing system in PCL1445 that is composed of ppuI, rsaL, and ppuR and shows very high similarity with gene clusters of P. putida strains IsoF and WCS358. Strains with mutations in ppuI and ppuR showed a severe reduction of putisolvin production. Expression analysis of the putisolvin biosynthetic gene in a ppuI background showed decreased expression, which could be complemented by the addition of synthetic 3-oxo-C(10)-N-acyl homoserine lactone (3-oxo-C(10)-AHL) or 3-oxo-C(12)-AHL to the medium. An rsaL mutant overproduces AHLs, and production of putisolvins is induced early during growth. Analysis of biofilm formation on polyvinylchloride showed that ppuI and ppuR mutants produce a denser biofilm than PCL1445, which correlates with decreased production of putisolvins, whereas an rsaL mutant shows a delay in biofilm production, which correlates with early production of putisolvins. The results demonstrate that quorum-sensing signals induce the production of cyclic lipopeptides putisolvin I and II and consequently control biofilm formation by Pseudomonas putida.
Collapse
Affiliation(s)
- Jean-Frédéric Dubern
- Leiden University, Institute of Biology, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | | | | |
Collapse
|
1022
|
Llamas I, del Moral A, Martínez-Checa F, Arco Y, Arias S, Quesada E. Halomonas maura is a physiologically versatile bacterium of both ecological and biotechnological interest. Antonie van Leeuwenhoek 2006; 89:395-403. [PMID: 16622791 DOI: 10.1007/s10482-005-9043-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/21/2005] [Indexed: 11/27/2022]
Abstract
Halomonas maura is a bacterium of great metabolic versatility. We summarise in this work some of the properties that make it a very interesting microorganism both from an ecological and biotechnological point of view. It plays an active role in the nitrogen cycle, is capable of anaerobic respiration in the presence of nitrate and has recently been identified as a diazotrophic bacterium. Of equal interest is mauran, the exopolysaccharide produced by H. maura, which contributes to the formation of biofilms and thus affords the bacterium advantages in the colonisation of its saline niches. Mauran is highly viscous, shows thixotropic and pseudoplastic behaviour, has the capacity to capture heavy metals and exerts a certain immunomodulator effect in medicine. All these attributes have prompted us to make further investigations into its molecular characteristics. To date we have described 15 open reading frames (ORF's) related to exopolysaccharide production, nitrogen fixation and nitrate reductase activity among others.
Collapse
Affiliation(s)
- Inmaculada Llamas
- Department of Microbiology, University of Granada, Campus Universitario de Cartuja s/n, 18071, Granada, Spain
| | | | | | | | | | | |
Collapse
|
1023
|
Singh MP, Greenstein M. A simple, rapid, sensitive method detecting homoserine lactone (HSL)-related compounds in microbial extracts. J Microbiol Methods 2006; 65:32-7. [PMID: 16019090 DOI: 10.1016/j.mimet.2005.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 06/03/2005] [Accepted: 06/16/2005] [Indexed: 11/19/2022]
Abstract
A simple, rapid, sensitive microtiter plate method detecting N-acyl homoserine lactone (HSL)-related compounds was established using an Agrobacterium tumefaciens strain harboring a traG::lacZ/traR reporter gene responsive to HSLs. This strain did not produce its own HSL, but the traG::lacZ reporter gene was induced only when its transcription activator TraR detected a cognate exogenous HSL. Therefore, the assay was expected to be highly specific for HSL-related compounds. Induction of the reporter gene, leading to production of beta-galactosidase enzyme, was measured by using two different beta-galactosidase substrates, X-gal and Galacton-Star, for colorimetric and chemiluminometric detection, respectively. The screen was validated in both the 96-well and 384-well plate formats, and extracts derived from 696 different microbial isolates, mostly unidentified actinomycetes isolated from diverse locations, were tested. Crude extracts of 81 (11.64%) cultures tested positive for HSL-related compounds, and an additional 34 (4.8%) crude extracts showed a moderate to weak signal for HSLs. Data from the fractionated samples, however, suggested a much higher prevalence of HSL signals in these extracts. Of 144 crude extracts fractionated into 10 individual samples at a 10x concentration, 72 (50%) cultures tested positive for HSLs. Six cultures were active only in the crude extract, 18 were active both in crude and one or more of their fractions, and an additional 48 were active in just one or more of their fractions. This finding may be the first to suggest such a high prevalence of HSL-signals found in nature, and a large number of actinomycetes in our collection appeared to produce HSL-related compounds.
Collapse
Affiliation(s)
- Maya Prakash Singh
- Natural Products, Chemical and Screening Sciences, Wyeth Research, Pearl River, NY 10965, USA.
| | | |
Collapse
|
1024
|
Wei JR, Tsai YH, Horng YT, Soo PC, Hsieh SC, Hsueh PR, Horng JT, Williams P, Lai HC. A mobile quorum-sensing system in Serratia marcescens. J Bacteriol 2006; 188:1518-25. [PMID: 16452435 PMCID: PMC1367221 DOI: 10.1128/jb.188.4.1518-1525.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quorum-sensing systems that have been widely identified in bacteria play important roles in the regulation of bacterial multicellular behavior by which bacteria sense population density to control various biological functions, including virulence. One characteristic of the luxIR quorum-sensing genes is their diverse and discontinuous distribution among proteobacteria. Here we report that the spnIR quorum-sensing system identified in the enterobacterium Serratia marcescens strain SS-1 is carried in a transposon, TnTIR, which has common characteristics of Tn3 family transposons and is mobile between chromosomes and plasmids of different enterobacterial hosts. SpnIR functions in the new host and was shown to negatively regulate the TnTIR transposition frequency. This finding may help reveal the horizontal transfer and evolutionary mechanism of quorum-sensing genes and alter the way that we perceive regulation of bacterial multicellular behavior.
Collapse
Affiliation(s)
- Jun-Rong Wei
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, No.1. Chang-Der Street, Taipei 100, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
1025
|
Scott RA, Weil J, Le PT, Williams P, Fray RG, von Bodman SB, Savka MA. Long- and short-chain plant-produced bacterial N-acyl-homoserine lactones become components of phyllosphere, rhizosphere, and soil. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:227-39. [PMID: 16570653 DOI: 10.1094/mpmi-19-0227] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Two N-acyl-homoserine lactone (acyl-HSL) synthase genes, lasI from Pseudomonas aeruginosa and yenI from Yersinia enterocolitica, were introduced into tobacco, individually and in combination. Liquid chromatograph-tandem mass spectrometry and thin-layer chromatography confirmed products of lasI and yenI activity in single and cotransformants. Cotransformants expressing plastid-localized LasI and YenI synthases produced the major acyl-HSLs for each synthase in all tissues tested. Total acyl-HSL signals accumulated in leaf tissue up to 3 pmol/mg of fresh weight, half as much in stem tissue, and approximately 10-fold less in root tissues. Acyl-HSLs were present in aqueous leaf washes from greenhouse-grown transgenic plants. Transgenic lines grown for 14 days under axenic conditions produced detectable levels of acyl-HSLs in root exudates. Ethyl acetate extractions of rhizosphere and nonrhizosphere soil from transgenically grown plants contained active acyl-HSLs, whereas plant-free soil or rhizosphere and nonrhizosphere soil from wild-type plants lacked detectable amounts of acyl-HSLs. This work shows that bioactive acyl-HSLs are exuded from leaves and roots and accumulate in the phytosphere of plants engineered to produce acyl-HSLs. These data further suggest that plants that are bioengineered to synthesize acyl-HSLs can foster beneficial plant-bacteria communications or deter deleterious interactions. Therefore, it is feasible to use bioengineered plants to supplement soils with specific acyl-HSLs to modulate bacterial phenotypes and plant-associated bacterial community structures.
Collapse
Affiliation(s)
- Russell A Scott
- Department of Biological Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA
| | | | | | | | | | | | | |
Collapse
|
1026
|
Khmel IA, Metlitskaya AZ. Quorum sensing regulation of gene expression: A promising target for drugs against bacterial pathogenicity. Mol Biol 2006. [DOI: 10.1134/s0026893306020014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
1027
|
Kirwan JP, Gould TA, Schweizer HP, Bearden SW, Murphy RC, Churchill MEA. Quorum-sensing signal synthesis by the Yersinia pestis acyl-homoserine lactone synthase YspI. J Bacteriol 2006; 188:784-8. [PMID: 16385067 PMCID: PMC1347278 DOI: 10.1128/jb.188.2.784-788.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The acyl-homoserine lactone molecular species (AHLs) produced by the Yersinia pestis AHL synthase YspI were identified by biochemical and physical/chemical techniques. Bioassays of extracts from culture supernatants of the recombinant YspI and wild-type Yersinia pestis showed similar profiles of AHLs. Analysis by liquid chromatography-mass spectrometry revealed that the predominant AHLs were N-3-oxooctanoyl-L-homoserine lactone and N-3-oxo-hexanoyl-L-homoserine lactone.
Collapse
Affiliation(s)
- J Paul Kirwan
- Department of Pharmacology, Program in Biomolecular Structure, The University of Colorado Health Sciences Center, P.O. Box 8511 MS8303, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
1028
|
Gould TA, Herman J, Krank J, Murphy RC, Churchill MEA. Specificity of acyl-homoserine lactone synthases examined by mass spectrometry. J Bacteriol 2006; 188:773-83. [PMID: 16385066 PMCID: PMC1347284 DOI: 10.1128/jb.188.2.773-783.2006] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Many gram-negative bacteria produce a specific set of N-acyl-L-homoserine-lactone (AHL) signaling molecules for the purpose of quorum sensing, which is a means of regulating coordinated gene expression in a cell-density-dependent manner. AHLs are produced from acylated acyl-carrier protein (acyl-ACP) and S-adenosyl-L-methionine by the AHL synthase enzyme. The appearance of specific AHLs is due in large part to the intrinsic specificity of the enzyme for subsets of acyl-ACP substrates. Structural studies of the Pantoea stewartii enzyme EsaI and AHL-sensitive bioassays revealed that threonine 140 in the acyl chain binding pocket directs the enzyme toward production of 3-oxo-homoserine lactones. Mass spectrometry was used to examine the range of AHL molecular species produced by AHL synthases under a variety of conditions. An AHL selective normal-phase chromatographic purification with addition of a deuterated AHL internal standard was followed by reverse-phase liquid chromatography-tandem mass spectrometry in order to obtain estimates of the relative amounts of different AHLs from biological samples. The AHLs produced by wild-type and engineered EsaI and LasI AHL synthases show that intrinsic specificity and different cellular conditions influence the production of AHLs. The threonine at position 140 in EsaI is important for the preference for 3-oxo-acyl-ACPs, but the role of the equivalent threonine in LasI is less clear. In addition, LasI expressed in Escherichia coli produces a high proportion of unusual AHLs with acyl chains consisting of an odd number of carbons. Furthermore, these studies offer additional methods that will be useful for surveying and quantitating AHLs from different sources.
Collapse
Affiliation(s)
- Ty A Gould
- Department of Pharmacology, Program in Biomolecular Structure, The University of Colorado Health Sciences Center, P.O. Box 8511 MS8303, Aurora CO 80045, USA
| | | | | | | | | |
Collapse
|
1029
|
Qazi S, Middleton B, Muharram SH, Cockayne A, Hill P, O'Shea P, Chhabra SR, Cámara M, Williams P. N-acylhomoserine lactones antagonize virulence gene expression and quorum sensing in Staphylococcus aureus. Infect Immun 2006; 74:910-9. [PMID: 16428734 PMCID: PMC1360299 DOI: 10.1128/iai.74.2.910-919.2006] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many gram-negative bacteria employ N-acylhomoserine lactone (AHL)-mediated quorum sensing to control virulence. To determine whether gram-positive bacteria such as Staphylococcus aureus respond to AHLs, we used a growth-dependent lux reporter fusion. Exposure of S. aureus to different AHLs revealed that 3-oxo-substituted AHLs with C10 to C14 acyl chains inhibited light output and growth in a concentration-dependent manner, while short-chain AHLs had no effect. N-(3-Oxododecanoyl)-L-homoserine lactone (3-oxo-C12-HSL) inhibited the production of exotoxins and cell wall fibronectin-binding proteins but enhanced protein A expression. Since these processes are reciprocally regulated via the S. aureus agr quorum-sensing system, which in turn, is regulated via sar, we examined the effect of AHLs on sarA and agr. At sub-growth-inhibitory concentrations of 3-oxo-C12-HSL, both sarA expression and agr expression were inhibited, indicating that the action of 3-oxo-C12-HSL is mediated at least in part through antagonism of quorum sensing in S. aureus. Spent culture supernatants from Pseudomonas aeruginosa, which produces both 3-oxo-C12-HSL and N-butanoyl-homoserine lactone (C4-HSL), also inhibited agr expression, although C4-HSL itself was inactive in this assay. Since quorum sensing in S. aureus depends on the activities of membrane-associated proteins, such as AgrB, AgrC, and AgrD, we investigated whether AHLs perturbed S. aureus membrane functionality by determining their influence on the membrane dipole potential. From the binding curves obtained, a dissociation constant of 7 muM was obtained for 3-oxo-C12-HSL, indicating the presence of a specific saturable receptor, whereas no binding was observed for C4-HSL. These data demonstrate that long-chain 3-oxo-substituted AHLs, such as 3-oxo-C12-HSL, are capable of interacting with the S. aureus cytoplasmic membrane in a saturable, specific manner and at sub-growth-inhibitory concentrations, down-regulating exotoxin production and both sarA and agr expression.
Collapse
Affiliation(s)
- Saara Qazi
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
1030
|
McLean RJC, Barnes MB, Windham MK, Merchant M, Forstner MRJ, Fuqua C. Cell-cell influences on bacterial community development in aquatic biofilms. Appl Environ Microbiol 2006; 71:8987-90. [PMID: 16332906 PMCID: PMC1317477 DOI: 10.1128/aem.71.12.8987-8990.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dialysis tubing containing spent culture media, when placed in a lake, was colonized by a low diversity of bacteria, whereas abiotic controls had considerable diversity. Changes were seen in the presence and absence of acylated homoserine lactones, suggesting that these molecules and other factors may influence adherent-population composition.
Collapse
Affiliation(s)
- Robert J C McLean
- Department of Biology, Texas State University-San Marcos, 601 University Drive, San Marcos, TX 78666, USA.
| | | | | | | | | | | |
Collapse
|
1031
|
Atkinson S, Chang CY, Sockett RE, Cámara M, Williams P. Quorum sensing in Yersinia enterocolitica controls swimming and swarming motility. J Bacteriol 2006; 188:1451-61. [PMID: 16452428 PMCID: PMC1367215 DOI: 10.1128/jb.188.4.1451-1461.2006] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 11/22/2005] [Indexed: 11/20/2022] Open
Abstract
The Yersinia enterocolitica LuxI homologue YenI directs the synthesis of N-3-(oxohexanoyl)homoserine lactone (3-oxo-C6-HSL) and N-hexanoylhomoserine lactone (C6-HSL). In a Y. enterocolitica yenI mutant, swimming motility is temporally delayed while swarming motility is abolished. Since both swimming and swarming are flagellum dependent, we purified the flagellin protein from the parent and yenI mutant. Electrophoresis revealed that in contrast to the parent strain, the yenI mutant grown for 17 h at 26 degrees C lacked the 45-kDa flagellin protein FleB. Reverse transcription-PCR indicated that while mutation of yenI had no effect on yenR, flhDC (the motility master regulator) or fliA (the flagellar sigma factor) expression, fleB (the flagellin structural gene) was down-regulated. Since 3-oxo-C6-HSL and C6-HSL did not restore swimming or swarming in the yenI mutant, we reexamined the N-acylhomoserine lactone (AHL) profile of Y. enterocolitica. Using AHL biosensors and mass spectrometry, we identified three additional AHLs synthesized via YenI: N-(3-oxodecanoyl)homoserine lactone, N-(3-oxododecanoyl)homoserine lactone (3-oxo-C12-HSL), and N-(3-oxotetradecanoyl)homoserine lactone. However, none of the long-chain AHLs either alone or in combination with the short-chain AHLs restored swarming or swimming in the yenI mutant. By investigating the transport of radiolabeled 3-oxo-C12-HSL and by introducing an AHL biosensor into the yenI mutant we demonstrate that the inability of exogenous AHLs to restore motility to the yenI mutant is not related to a lack of AHL uptake. However, both AHL synthesis and motility were restored by complementation of the yenI mutant with a plasmid-borne copy of yenI.
Collapse
Affiliation(s)
- Steve Atkinson
- Institute of Infections, Immunity and Inflammation, Centre for Biomolecular Science, University of Nottingham, Nottingham NG7 2RD, United Kingdom.
| | | | | | | | | |
Collapse
|
1032
|
Keshavan ND, Chowdhary PK, Haines DC, González JE. L-Canavanine made by Medicago sativa interferes with quorum sensing in Sinorhizobium meliloti. J Bacteriol 2006; 187:8427-36. [PMID: 16321947 PMCID: PMC1317012 DOI: 10.1128/jb.187.24.8427-8436.2005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sinorhizobium meliloti is a gram-negative soil bacterium, capable of establishing a nitrogen-fixing symbiosis with its legume host, alfalfa (Medicago sativa). Quorum sensing plays a crucial role in this symbiosis, where it influences the nodulation process and the synthesis of the symbiotically important exopolysaccharide II (EPS II). S. meliloti has three quorum-sensing systems (Sin, Tra, and Mel) that use N-acyl homoserine lactones as their quorum-sensing signal molecule. Increasing evidence indicates that certain eukaryotic hosts involved in symbiotic or pathogenic relationships with gram-negative bacteria produce quorum-sensing-interfering (QSI) compounds that can cross-communicate with the bacterial quorum-sensing system. Our studies of alfalfa seed exudates suggested the presence of multiple signal molecules capable of interfering with quorum-sensing-regulated gene expression in different bacterial strains. In this work, we choose one of these QSI molecules (SWI) for further characterization. SWI inhibited violacein production, a phenotype that is regulated by quorum sensing in Chromobacterium violaceum. In addition, this signal molecule also inhibits the expression of the S. meliloti exp genes, responsible for the production of EPS II, a quorum-sensing-regulated phenotype. We identified this molecule as l-canavanine, an arginine analog, produced in large quantities by alfalfa and other legumes.
Collapse
Affiliation(s)
- Neela D Keshavan
- Department of Molecular and Cell Biology, University of Texas at Dallas, FO 3.1, Richardson, TX 75083-0688, USA
| | | | | | | |
Collapse
|
1033
|
Dobretsov S, Dahms HU, Qian PY. Inhibition of biofouling by marine microorganisms and their metabolites. BIOFOULING 2006; 22:43-54. [PMID: 16551560 DOI: 10.1080/08927010500504784] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Development of microbial biofilms and the recruitment of propagules on the surfaces of man-made structures in the marine environment cause serious problems for the navies and for marine industries around the world. Current antifouling technology is based on the application of toxic substances that can be harmful to the natural environment. For this reason and the global ban of tributyl tin (TBT), there is a need for the development of "environmentally-friendly" antifoulants. Marine microbes are promising potential sources of non-toxic or less-toxic antifouling compounds as they can produce substances that inhibit not only the attachment and/or growth of microorganisms but also the settlement of invertebrate larvae and macroalgal spores. However, so far only few antilarval settlement compounds have been isolated and identified from bacteria. In this review knowledge about antifouling compounds produced by marine bacteria and diatoms are summarised and evaluated and future research directions are highlighted.
Collapse
Affiliation(s)
- Sergey Dobretsov
- Department of Biology/Coastal Marine Laboratory, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PR China
| | | | | |
Collapse
|
1034
|
Nieto Penalver CG, Morin D, Cantet F, Saurel O, Milon A, Vorholt JA. Methylobacterium extorquensAM1 produces a novel type of acyl-homoserine lactone with a double unsaturated side chain under methylotrophic growth conditions. FEBS Lett 2005; 580:561-7. [PMID: 16412429 DOI: 10.1016/j.febslet.2005.12.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 12/16/2005] [Accepted: 12/21/2005] [Indexed: 11/26/2022]
Abstract
Acyl-homoserine lactones (acyl-HSLs) have emerged as important regulatory molecules for many gram-negative bacteria. We have found that Methylobacterium extorquens AM1, a member of the pink-pigmented facultative methylotrophs commonly present on plant surfaces, produces several acyl-HSLs depending upon the carbon source. A novel HSL was discovered with a double unsaturated carbon chain (N-(tetradecenoyl)) (C14:2) and characterized by MS and proton NMR. This long-chain acyl-HSL is synthesized by MlaI that also directs synthesis of C14:1-HSL. The Alphaproteobacterium also produces N-hexanoyl-HSL (C6-HSL) and N-octanoyl-HSL (C8-HSL) via MsaI.
Collapse
Affiliation(s)
- Carlos G Nieto Penalver
- Laboratoire des Interaction Plantes Micro-organismes, INRA/CNRS, BP52627, 31326 Castanet-Tolosan, France
| | | | | | | | | | | |
Collapse
|
1035
|
Bruhn JB, Nielsen KF, Hjelm M, Hansen M, Bresciani J, Schulz S, Gram L. Ecology, inhibitory activity, and morphogenesis of a marine antagonistic bacterium belonging to the Roseobacter clade. Appl Environ Microbiol 2005; 71:7263-70. [PMID: 16269767 PMCID: PMC1287604 DOI: 10.1128/aem.71.11.7263-7270.2005] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Roseobacter strain 27-4 has been isolated from a turbot larval rearing unit and is capable of reducing mortality in turbot egg yolk sac larvae. Here, we demonstrate that the supernatant of Roseobacter 27-4 is lethal to the larval pathogens Vibrio anguillarum and Vibrio splendidus in a buffer system and inhibited their growth in marine broth. Liquid chromatography (LC) with both UV spectral detection and high-resolution mass spectrometry (HR-MS) identified the known antibacterial compound thiotropocin or its closely related precursor tropodithietic acid in the bioactive fractions. Antibacterial activity correlated with the appearance of a brownish pigment and was only formed in marine broth under static growth conditions. A thick biofilm of multicellular star-shaped aggregated cells formed at the air-liquid interface under static growth conditions. Here, the bioactive compound was the base peak in the LC-UV chromatograms of the extracts where it constituted 15% of the total peak area. Aerated conditions results in 10-fold-higher cell yield, however, cultures were nonpigmented, did not produce antibacterial activity, and grew as single cells. Production of antibacterial compounds may be quorum regulated, and we identified the acylated homoserine lactone (3-hydroxy-decanoyl homoserine lactone) from cultures of Roseobacter 27-4 using LC-HR-MS. The signal molecule was primarily detected in stagnant cultures. Roseobacter 27-4 grew between 10 and 30 degrees C but died rapidly at 37 degrees C. Also, the antibacterial compounds was sensitive to heat and was inactivated at 37 degrees C in less than 2 days and at 25 degrees C in 8 days. Using Roseobacter 27-4 as a probiotic culture will require that is be established in stagnant or adhered conditions and, due to the temperature sensitivity of the active compound, constant production must be ensured.
Collapse
Affiliation(s)
- Jesper Bartholin Bruhn
- Danish Institute for Fisheries Research, Department of Seafood Research, Søltofts Plads, DTU Bldg. 221, DK-2800 Kgs. Lyngby, Denmark.
| | | | | | | | | | | | | |
Collapse
|
1036
|
Williamson LL, Borlee BR, Schloss PD, Guan C, Allen HK, Handelsman J. Intracellular screen to identify metagenomic clones that induce or inhibit a quorum-sensing biosensor. Appl Environ Microbiol 2005; 71:6335-44. [PMID: 16204555 PMCID: PMC1265936 DOI: 10.1128/aem.71.10.6335-6344.2005] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The goal of this study was to design and evaluate a rapid screen to identify metagenomic clones that produce biologically active small molecules. We built metagenomic libraries with DNA from soil on the floodplain of the Tanana River in Alaska. We extracted DNA directly from the soil and cloned it into fosmid and bacterial artificial chromosome vectors, constructing eight metagenomic libraries that contain 53,000 clones with inserts ranging from 1 to 190 kb. To identify clones of interest, we designed a high throughput "intracellular" screen, designated METREX, in which metagenomic DNA is in a host cell containing a biosensor for compounds that induce bacterial quorum sensing. If the metagenomic clone produces a quorum-sensing inducer, the cell produces green fluorescent protein (GFP) and can be identified by fluorescence microscopy or captured by fluorescence-activated cell sorting. Our initial screen identified 11 clones that induce and two that inhibit expression of GFP. The intracellular screen detected quorum-sensing inducers among metagenomic clones that a traditional overlay screen would not. One inducing clone carries a LuxI homologue that directs the synthesis of an N-acyl homoserine lactone quorum-sensing signal molecule. The LuxI homologue has 62% amino acid sequence identity to its closest match in GenBank, AmfI from Pseudomonas fluorescens, and is on a 78-kb insert that contains 67 open reading frames. Another inducing clone carries a gene with homology to homocitrate synthase. Our results demonstrate the power of an intracellular screen to identify functionally active clones and biologically active small molecules in metagenomic libraries.
Collapse
Affiliation(s)
- Lynn L Williamson
- Department of Plant Pathology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
1037
|
Sha J, Pillai L, Fadl AA, Galindo CL, Erova TE, Chopra AK. The type III secretion system and cytotoxic enterotoxin alter the virulence of Aeromonas hydrophila. Infect Immun 2005; 73:6446-57. [PMID: 16177316 PMCID: PMC1230953 DOI: 10.1128/iai.73.10.6446-6457.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Many gram-negative bacteria use a type III secretion system (TTSS) to deliver effector proteins into host cells. Here we report the characterization of a TTSS chromosomal operon from the diarrheal isolate SSU of Aeromonas hydrophila. We deleted the gene encoding Aeromonas outer membrane protein B (AopB), which is predicted to be involved in the formation of the TTSS translocon, from wild-type (WT) A. hydrophila as well as from a previously characterized cytotoxic enterotoxin gene (act)-minus strain of A. hydrophila, thus generating aopB and act/aopB isogenic mutants. The act gene encodes a type II-secreted cytotoxic enterotoxin (Act) that has hemolytic, cytotoxic, and enterotoxic activities and induces lethality in a mouse model. These isogenic mutants (aopB, act, and act/aopB) were highly attenuated in their ability to induce cytotoxicity in RAW 264.7 murine macrophages and HT-29 human colonic epithelial cells. The act/aopB mutant demonstrated the greatest reduction in cytotoxicity to cultured cells after 4 h of infection, as measured by the release of lactate dehydrogenase enzyme, and was avirulent in mice, with a 90% survival rate compared to that of animals infected with Act and AopB mutants, which caused 50 to 60% of the animals to die at a dose of three 50% lethal doses. In contrast, WT A. hydrophila killed 100% of the mice within 48 h. The effects of these mutations on cytotoxicity could be complemented with the native genes. Our studies further revealed that the production of lactones, which are involved in quorum sensing (QS), was decreased in the act (32%) and aopB (64%) mutants and was minimal (only 8%) in the act/aopB mutant, compared to that of WT A. hydrophila SSU. The effects of act and aopB gene deletions on lactone production could also be complemented with the native genes, indicating specific effects of Act and the TTSS on lactone production. Although recent studies with other bacteria have indicated TTSS regulation by QS, this is the first report describing a correlation between the TTSS and Act of A. hydrophila and the production of lactones.
Collapse
Affiliation(s)
- Jian Sha
- Department of Microbiology and Immunology, The University of Texas Medical School Branch, Galveston, 77555-1070, USA
| | | | | | | | | | | |
Collapse
|
1038
|
Khan SR, Mavrodi DV, Jog GJ, Suga H, Thomashow LS, Farrand SK. Activation of the phz operon of Pseudomonas fluorescens 2-79 requires the LuxR homolog PhzR, N-(3-OH-Hexanoyl)-L-homoserine lactone produced by the LuxI homolog PhzI, and a cis-acting phz box. J Bacteriol 2005; 187:6517-27. [PMID: 16159785 PMCID: PMC1236630 DOI: 10.1128/jb.187.18.6517-6527.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phz operon of Pseudomonas fluorescens 2-79, which produces phenazine-1-carboxylate, is preceded by two genes, phzR and phzI, that are homologs of quorum-sensing gene pairs of the luxR-luxI family. Deleting phzR and phzI from strain 2-79 led to loss of production of the antibiotics, as well as a suite of six acyl-homoserine lactones (acyl-HSLs) that includes four 3-hydroxy- derivatives and two alkanoyl-HSLs. Strain 2-79 accumulates N-(3-hydroxy-hexanoyl)-L-HSL to levels 20 and 30 times those of N-(hexanoyl)-L-HSL and N-(3-hydroxy-octanoyl)-HSL, the next most abundant species produced by this isolate. Expression of a clone of phzI in Escherichia coli and P. fluorescens 1855 resulted in the synthesis of all six acyl-HSLs. Maximal activation of phzA and phzR fused to lacZ and uidA reporters, respectively, required PhzR and the acyl-HSL signals. PhzR-mediated expression of the phzA::lacZ fusion responded with highest sensitivity and greatest magnitude to pure N-(3-hydroxy-hexanoyl)-L-HSL. When exposed to organic extracts of culture supernatants containing the six acyl-HSLs at their normal levels, the reporter responded strongly to N-(3-hydroxy-hexanoyl)-L-HSL but did not respond to any of the other five acyl-HSLs. The transcriptional start sites for the divergently oriented phzA and phzR genes were mapped by primer extension analysis. An 18-bp almost perfect inverted repeat, the phz box, is located between the phzI and phzR promoters. Disrupting this repeat abolished PhzR-dependent activation of phzA and phzR. We conclude that PhzI of strain 2-79 synthesizes 3-OH acyl-HSLs and that P. fluorescens 2-79 uses N-(3-hydroxy-hexanoyl)-HSL as its quorum-sensing signal. We also conclude that PhzR, with its quormone, activates expression of phzA and phzR and that this activation requires an intact phz box sequence located in the divergent promoter region.
Collapse
Affiliation(s)
- Sharik R Khan
- Department of Microbiology, University of Illinois at Urbana-Champaign, B103 CLSL, 601 S. Goodwin Ave., Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
1039
|
Morgan-Sagastume F, Boon N, Dobbelaere S, Defoirdt T, Verstraete W. Production of acylated homoserine lactones byAeromonasandPseudomonasstrains isolated from municipal activated sludge. Can J Microbiol 2005; 51:924-33. [PMID: 16333331 DOI: 10.1139/w05-077] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Up to now, the production and role of N-acyl homoserine lactones (AHLs) in activated sludge have been poorly understood. In this study, cross-feeding assays with the reporter strains Agrobacterium tumefaciens NTL4 and Chromobacterium violaceum CV026 were used to investigate AHL signal production by municipal activated sludge samples. AHL signal production was consistently detected from municipal activated sludge when different samples were incubated on nutrient media. From one municipal activated sludge sample, 10 strains producing AHL-like auto inducers were isolated by an overlay technique. 16S rDNA-based phylogenetic analysis showed that eight of the isolates belonged to Aeromonas spp. and two to Pseudomonas spp. Box-PCR indicated that six of these Aeromonas isolates were different strains and the two Pseudomonas strains were identical. The production of AHL or AHL-like compounds by these strains was confirmed by thin layer chromatography and biosensor overlays. The six different Aeromonas strains were found to produce the same set of AHLs, including N-hexanoyl-L-homoserine lactone. These results may indicate the possible presence of AHLs in municipal activated sludge. The potential roles of AHL in this eco system are briefly discussed.Key words: municipal activated sludge, acylated homoserine lactones, Aeromonas spp., bioaggregates, Pseudomonas spp., AHL biosensors.
Collapse
MESH Headings
- 4-Butyrolactone/analogs & derivatives
- 4-Butyrolactone/biosynthesis
- 4-Butyrolactone/chemistry
- Aeromonas/classification
- Aeromonas/isolation & purification
- Aeromonas/metabolism
- Agrobacterium tumefaciens/growth & development
- Bacterial Typing Techniques/methods
- Chromatography, Thin Layer
- Chromobacterium/growth & development
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Molecular Sequence Data
- Phylogeny
- Polymerase Chain Reaction/methods
- Pseudomonas/classification
- Pseudomonas/isolation & purification
- Pseudomonas/metabolism
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Sewage/microbiology
- Waste Disposal, Fluid
Collapse
Affiliation(s)
- Fernando Morgan-Sagastume
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | | | | | | | | |
Collapse
|
1040
|
d'Angelo-Picard C, Faure D, Penot I, Dessaux Y. Diversity of N-acyl homoserine lactone-producing and -degrading bacteria in soil and tobacco rhizosphere. Environ Microbiol 2005; 7:1796-808. [PMID: 16232294 DOI: 10.1111/j.1462-2920.2005.00886.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In Gram-negative bacteria, quorum-sensing (QS) communication is mostly mediated by N-acyl homoserine lactones (N-AHSL). The diversity of bacterial populations that produce or inactivate the N-AHSL signal in soil and tobacco rhizosphere was investigated by restriction fragment length polymorphism (RFLP) analysis of amplified 16S DNA and DNA sequencing. Such analysis indicated the occurrence of N-AHSL-producing strains among the alpha-, beta- and gamma-proteobacteria, including genera known to produce N-AHSL (Rhizobium, Sinorhizobium and Pseudomonas) and novel genera with no previously identified N-AHSL-producing isolates (Variovorax, Sphingomonas and Massilia). The diversity of N-AHSL signals was also investigated in relation to the genetic diversity of the isolates. However, N-AHSL-degrading strains isolated from soil samples belonged to the Bacillus genus, while strains isolated from tobacco rhizospheres belonged to both the Bacillus genus and to the alpha subgroup of proteobacteria, suggesting that diversity of N-AHSL-degrading strains may be modulated by the presence of the tobacco plant. Among these rhizospheric isolates, novel N-AHSL-degrading genera have been identified (Sphingomonas and Bosea). As the first simultaneous analysis of both N-AHSL-degrading and -producing bacterial communities in a complex environment, this study revealed the coexistence of bacterial isolates, belonging to the same genus or species that may produce or degrade N-AHSL.
Collapse
Affiliation(s)
- Cathy d'Angelo-Picard
- Centre National de la Recherche Scientifique, Institut des Sciences du Végétal, F-91198, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
1041
|
Boşgelmez-Tinaz G, Ulusoy S, Aridoğan B, Eroğlu F, Kaya S. N-butanoyl-l-homoserine lactone (BHL) deficient Pseudomonas aeruginosa isolates from an intensive care unit. Microbiol Res 2005; 160:399-403. [PMID: 16255145 DOI: 10.1016/j.micres.2005.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Acylated homoserine lactones (AHLs) are self-generated diffusible signal molecules that mediate population density dependent gene expression (quorum sensing) in a variety of Gram-negative bacteria, and several virulence genes of human pathogens are known to be controlled by AHLs. In this study, strains of Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli and Klebsiella pneumoniae, isolated from intensive care patients, were screened for AHL production by using AHL responsive indicator strains of Chromobacterium violaceum CV026 and Agrobacterium tumefaciens NT1. Positive reactions were recorded for all 50 isolates of P. aeruginosa and 10 isolates of Acinetobacter baumannii with Agrobacterium tumefaciens NT1. Surprisingly, most P. aeruginosa isolates gave negative results with C. violaceum CV026 in contrast to previous reports. This suggests that the new isolates of P. aeruginosa either failed to make short chain AHLs or the level of the signal molecule is very low.
Collapse
|
1042
|
Dong W, Luo F, Du Y, Bai X, Li X. Production and properties of an inhibitor of the Pseudomonas autoinducer by Pseudomonas aeruginosa. Can J Microbiol 2005; 51:783-9. [PMID: 16391658 DOI: 10.1139/w05-066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An inhibitor was found in the culture fluid of Pseudomonas aeruginosa PAO1, which could inhibit the activity of the Pseudomonas autoinducer (PAI). The maximal inhibitory activity occurred in stationary phase culture sup ernatant. The PAI inhibitor did not influence the cell growth and the PAI production by P. aeruginosa PAO1 when the PAI inhibitor was added into culture medium. The induced expression of lacZ in the reporter strain Agrobacterium tumefaciens NT1 was suppressed by this PAI inhibitor, whereas inhibition could be relieved by increasing the auto inducer concentration. The quorum sensing of P. aeruginosa was inhibited presumably by inhibiting the inducing activity of Pseudomonas autoinducer but not by inhibiting the production of Pseudomonas autoinducer. It was demonstrated that the structure of the PAI inhibitor was different from that of acyl-homoserine lactones.Key words: quorum sensing, autoinducer, PAI inhibitor, Pseudomonas aeruginosa, N-acylhomoserine lactone.
Collapse
Affiliation(s)
- Wenxiu Dong
- Department of Bio & Food Engineering, Dalian College of Light Industry, P. R. China
| | | | | | | | | |
Collapse
|
1043
|
Rasch M, Andersen JB, Nielsen KF, Flodgaard LR, Christensen H, Givskov M, Gram L. Involvement of bacterial quorum-sensing signals in spoilage of bean sprouts. Appl Environ Microbiol 2005; 71:3321-30. [PMID: 15933035 PMCID: PMC1151799 DOI: 10.1128/aem.71.6.3321-3330.2005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial communication signals, acylated homoserine lactones (AHLs), were extracted from samples of commercial bean sprouts undergoing soft-rot spoilage. Bean sprouts produced in the laboratory did not undergo soft-rot spoilage and did not contain AHLs or AHL-producing bacteria, although the bacterial population reached levels similar to those in the commercial sprouts, 10(8) to 10(9) CFU/g. AHL-producing bacteria (Enterobacteriaceae and pseudomonads) were isolated from commercial sprouts, and strains that were both proteolytic and pectinolytic were capable of causing soft-rot spoilage in bean sprouts. Thin-layer chromatography and liquid chromatography-high-resolution mass spectrometry revealed the presence of N-3-oxo-hexanoyl-l-homoserine lactone in spoiled bean sprouts and in extracts from pure cultures of bacteria. During normal spoilage, the pH of the sprouts increased due to proteolytic activity, and the higher pH probably facilitated the activity of pectate lyase. The AHL synthetase gene (I gene) from a spoilage Pectobacterium was cloned, sequenced, and inactivated in the parent strain. The predicted amino acid sequence showed 97% homology to HslI and CarI in Erwinia carotovora. Spoilage of laboratory bean sprouts inoculated with the AHL-negative mutant was delayed compared to sprouts inoculated with the wild type, and the AHL-negative mutant did not cause the pH to rise. Compared to the wild-type strain, the AHL-negative mutant had significantly reduced protease and pectinase activities and was negative in an iron chelation (siderophore) assay. This is the first study demonstrating AHL regulation of iron chelation in Enterobacteriaceae. The present study clearly demonstrates that the bacterial spoilage of some food products is influenced by quorum-sensing-regulated phenotypes, and understanding these processes may be useful in the development of novel food preservation additives that specifically block the quorum-sensing systems.
Collapse
Affiliation(s)
- Maria Rasch
- Danish Institute for Fisheries Research, Department of Seafood Research, Søltofts Plads, c/o Technical University of Denmark Bldg. 221, DK-2800 Kgs. Lyngby, Denmark.
| | | | | | | | | | | | | |
Collapse
|
1044
|
Van Houdt R, Moons P, Jansen A, Vanoirbeek K, Michiels CW. Genotypic and phenotypic characterization of a biofilm-forming Serratia plymuthica isolate from a raw vegetable processing line. FEMS Microbiol Lett 2005; 246:265-72. [PMID: 15899415 DOI: 10.1016/j.femsle.2005.04.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 04/08/2005] [Accepted: 04/13/2005] [Indexed: 11/26/2022] Open
Abstract
Recently, we isolated from a raw vegetable processing line a Serratia strain with strong biofilm-forming capacity and which produced N-acyl-L-homoserine lactones (AHLs). Within the Enterobacteriaceae, strains of the genus Serratia are a frequent cause of human nosocomial infections; in addition, biofilm formation is often associated with persistent infections. In the current report, we describe the detailed characterization of the isolate using a variety of genotypic and phenotypic criteria. Although the strain was identified as Serratia plymuthica on the basis of its small subunit ribosomal RNA (16S rRNA) gene sequence, it differed from the S. plymuthica type strain in production of pigment and antibacterial compounds, and in AHL production profile. Nevertheless, the identification as S. plymuthica could be confirmed by gyrB phylogeny and DNA:DNA hybridization.
Collapse
Affiliation(s)
- Rob Van Houdt
- Laboratory of Food Microbiology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
1045
|
Burton EO, Read HW, Pellitteri MC, Hickey WJ. Identification of acyl-homoserine lactone signal molecules produced by Nitrosomonas europaea strain Schmidt. Appl Environ Microbiol 2005; 71:4906-9. [PMID: 16085894 PMCID: PMC1183371 DOI: 10.1128/aem.71.8.4906-4909.2005] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 03/16/2005] [Indexed: 11/20/2022] Open
Abstract
Nitrosomonas europaea strain Schmidt produces at least three acyl homoserine lactone (AHL) signal molecules: C(6)-homoserine lactone (HSL), C(8)-HSL, and C(10)-HSL. These compounds were identified in extracts of chemostat culture effluent by three independent methods. The concentrations of AHL in effluent were low (0.4 to 2.2 nM) but within the range known to induce AHL-responsive systems. The absence of LuxI and LuxM homologs from the genome of N. europaea strain Schmidt suggested that AHL synthesis occurs by an alternate pathway, possibly mediated by an HdtS homolog. To the best of our knowledge, the present report is the first to document the types and levels of AHLs produced by N. europaea.
Collapse
Affiliation(s)
- E O Burton
- Department of Soil Science, University of Wisconsin-Madison, Madison, WI 53706-1299, USA
| | | | | | | |
Collapse
|
1046
|
|
1047
|
Burmølle M, Hansen LH, Sørensen SJ. Use of a whole-cell biosensor and flow cytometry to detect AHL production by an indigenous soil community during decomposition of litter. MICROBIAL ECOLOGY 2005; 50:221-9. [PMID: 16195831 DOI: 10.1007/s00248-004-0113-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Accepted: 10/29/2004] [Indexed: 05/04/2023]
Abstract
Quorum sensing, mediated by acylated homoserine lactones (AHLs), is well described for pure culture bacteria, but few studies report detection of AHL compounds in natural bacterial habitats. In this study, we detect AHL production during a degradation process in soil by use of whole-cell biosensor technology and flow cytometry analysis. An indigenous soil bacterium, belonging to the family of Enterobacteriaceae, was isolated and transformed with a low-copy plasmid harboring a gene encoding an unstable variant of the green fluorescent protein (gfpASV) fused to the AHL-regulated P(luxI) promoter originating from Vibrio fischeri. This resulted in a whole-cell biosensor, responding to the presence of AHL compounds. The biosensor was introduced to compost soil microcosms amended with nettle leaves. After 3 days of incubation, cells were extracted and analyzed by flow cytometry. All microcosms contained induced biosensors. From these microcosms, AHL producers were isolated and further identified as species previously shown to produce AHLs. The results demonstrate that AHL compounds are produced during degradation of litter in soil, indicating the presence of AHL-mediated quorum sensing in this environment.
Collapse
Affiliation(s)
- Mette Burmølle
- Department of Microbiology, University of Copenhagen, Sølvgade 83H, 1307 Copenhagen K, Denmark
| | | | | |
Collapse
|
1048
|
van Rij ET, Girard G, Lugtenberg BJJ, Bloemberg GV. Influence of fusaric acid on phenazine-1-carboxamide synthesis and gene expression of Pseudomonas chlororaphis strain PCL1391. Microbiology (Reading) 2005; 151:2805-2814. [PMID: 16079356 DOI: 10.1099/mic.0.28063-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Production of the antifungal metabolite phenazine-1-carboxamide (PCN) byPseudomonas chlororaphisstrain PCL1391 is essential for the suppression of tomato foot and root rot caused by the soil-borne fungusF. oxysporumf. sp.radicis-lycopersici. The authors have shown previously that fusaric acid (FA), a phytotoxin produced byFusarium oxysporum, represses the production of PCN and of the quorum-sensing signalN-hexanoyl-l-homoserine lactone (C6-HSL). Here they report that PCN repression by FA is maintained even during PCN-stimulating environmental conditions such as additional phenylalanine, additional ferric iron and a low Mg2+concentration. Constitutive expression ofphzIorphzRincreases the production of C6-HSL and abolishes the repression of PCN production by FA. Transcriptome analysis usingP. chlororaphisPCL1391 microarrays showed that FA represses expression of the phenazine biosynthetic operon (phzABCDEFGH) and of the quorum-sensing regulatory genesphzIandphzR. FA does not alter expression of the PCN regulatorsgacS,rpoSandpsrA. In conclusion, reduction of PCN levels by FA is due to direct or indirect repression ofphzRandphzI. Microarray analyses identified genes of which the expression is strongly influenced by FA. Genes highly upregulated by FA are also upregulated by iron starvation inPseudomonas aeruginosa. This remarkable overlap in the expression profile suggests an overlapping stress response to FA and iron starvation.
Collapse
Affiliation(s)
- E Tjeerd van Rij
- Leiden University, Institute of Biology, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | - Geneviève Girard
- Leiden University, Institute of Biology, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | - Ben J J Lugtenberg
- Leiden University, Institute of Biology, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | - Guido V Bloemberg
- Leiden University, Institute of Biology, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| |
Collapse
|
1049
|
Tait K, Joint I, Daykin M, Milton DL, Williams P, Cámara M. Disruption of quorum sensing in seawater abolishes attraction of zoospores of the green alga Ulva to bacterial biofilms. Environ Microbiol 2005; 7:229-40. [PMID: 15658990 DOI: 10.1111/j.1462-2920.2004.00706.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Zoospores of the eukaryotic green seaweed Ulva respond to bacterial N-acylhomoserine lactone (AHL) quorum sensing signal molecules for the selection of surface sites for permanent attachment. In this study we have investigated the production and destruction of AHLs in biofilms of the AHL-producing marine bacterium, Vibrio anguillarum and their stability in seawater. While wild type V. anguillarum NB10 was a strong attractor of zoospores, inactivation of AHL production in this strain by either expressing the recombinant Bacillus lactonase coding gene aiiA, or by mutating the AHL biosynthetic genes, resulted in the abolition of zoospore attraction. In seawater, with a pH of 8.2, the degradation of AHL molecules was temperature-dependent, indicating that the AHLs produced by marine bacterial biofilms have short half-lives. The Ulva zoospores sensed a range of different AHL molecules and in particular more zoospores settled on surfaces releasing AHLs with longer (>six carbons) N-linked acyl chains. However, this finding is likely to be influenced by the differential diffusion rates of AHLs from the experimental surface matrix. Molecules with longer N-acyl chains, such as N-(3-oxodecanoyl)- L-homoserine lactone, diffused more slowly than those with shorter N-acyl chains such as N-(3-hydroxy-hexanoyl)- L-homoserine lactone. Image analysis using GFP-tagged V. anguillarum biofilms revealed that spores settle directly on bacterial cells and in particular on microcolonies which we show are sites of concentrated AHL production.
Collapse
Affiliation(s)
- Karen Tait
- Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK.
| | | | | | | | | | | |
Collapse
|
1050
|
Flodgaard LR, Dalgaard P, Andersen JB, Nielsen KF, Givskov M, Gram L. Nonbioluminescent strains of Photobacterium phosphoreum produce the cell-to-cell communication signal N-(3-Hydroxyoctanoyl)homoserine lactone. Appl Environ Microbiol 2005; 71:2113-20. [PMID: 15812045 PMCID: PMC1082519 DOI: 10.1128/aem.71.4.2113-2120.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bioluminescence is a common phenotype in marine bacteria, such as Vibrio and Photobacterium species, and can be quorum regulated by N-acylated homoserine lactones (AHLs). We extracted a molecule that induced a bacterial AHL monitor (Agrobacterium tumefaciens NT1 [pZLR4]) from packed cod fillets, which spoil due to growth of Photobacterium phosphoreum. Interestingly, AHLs were produced by 13 nonbioluminescent strains of P. phosphoreum isolated from the product. Of 177 strains of P. phosphoreum (including 18 isolates from this study), none of 74 bioluminescent strains elicited a reaction in the AHL monitor, whereas 48 of 103 nonbioluminescent strains did produce AHLs. AHLs were also detected in Aeromonas spp., but not in Shewanella strains. Thin-layer chromatographic profiles of cod extracts and P. phosphoreum culture supernatants identified a molecule similar in relative mobility (Rf value) and shape to N-(3-hydroxyoctanoyl)homoserine lactone, and the presence of this molecule in culture supernatants from a nonbioluminescent strain of P. phosphoreum was confirmed by high-performance liquid chromatography-positive electrospray high-resolution mass spectrometry. Bioluminescence (in a non-AHL-producing strain of P. phosphoreum) was strongly up-regulated during growth, whereas AHL production in a nonbioluminescent strain of P. phosphoreum appeared constitutive. AHLs apparently did not influence bioluminescence, as the addition of neither synthetic AHLs nor supernatants delayed or reduced this phenotype in luminescent strains of P. phosphoreum. The phenotypes of nonbioluminescent P. phosphoreum strains regulated by AHLs remains to be elucidated.
Collapse
Affiliation(s)
- L R Flodgaard
- Department of Seafood Research, Danish Institute for Fisheries Research, Kongens Lyngby, Denmark
| | | | | | | | | | | |
Collapse
|