1001
|
Kumar Y, Westram R, Behrens S, Fuchs B, Glöckner FO, Amann R, Meier H, Ludwig W. Graphical representation of ribosomal RNA probe accessibility data using ARB software package. BMC Bioinformatics 2005; 6:61. [PMID: 15777482 PMCID: PMC1274257 DOI: 10.1186/1471-2105-6-61] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Accepted: 03/21/2005] [Indexed: 11/30/2022] Open
Abstract
Background Taxon specific hybridization probes in combination with a variety of commonly used hybridization formats nowadays are standard tools in microbial identification. A frequently applied technology, fluorescence in situ hybridization (FISH), besides single cell identification, allows the localization and functional studies of the microbial community composition. Careful in silico design and evaluation of potential oligonucleotide probe targets is therefore crucial for performing successful hybridization experiments. Results The PROBE Design tools of the ARB software package take into consideration several criteria such as number, position and quality of diagnostic sequence differences while designing oligonucleotide probes. Additionally, new visualization tools were developed to enable the user to easily examine further sequence associated criteria such as higher order structure, conservation, G+C content, transition-transversion profiles and in situ target accessibility patterns. The different types of sequence associated information (SAI) can be visualized by user defined background colors within the ARB primary and secondary structure editors as well as in the PROBE Match tool. Conclusion Using this tool, in silico probe design and evaluation can be performed with respect to in situ probe accessibility data. The evaluation of proposed probe targets with respect to higher-order rRNA structure is of importance for successful design and performance of in situ hybridization experiments. The entire ARB software package along with the probe accessibility data is available from the ARB home page .
Collapse
Affiliation(s)
- Yadhu Kumar
- Lehrstuhl für Mikrobiologie, Technische Universität München, D-85350 Freising Germany
| | - Ralf Westram
- Lehrstuhl für Mikrobiologie, Technische Universität München, D-85350 Freising Germany
| | - Sebastian Behrens
- Max Plank Institute for Marine Microbiology, D-28359 Bremen, Germany
| | - Bernhard Fuchs
- Max Plank Institute for Marine Microbiology, D-28359 Bremen, Germany
| | - Frank Oliver Glöckner
- Max Plank Institute for Marine Microbiology, D-28359 Bremen, Germany
- International University Bremen, D-28759 Bremen, Germany
| | - Rudolf Amann
- Max Plank Institute for Marine Microbiology, D-28359 Bremen, Germany
| | - Harald Meier
- Lehrstuhl für Rechnertechnik und Rechnerorganisation, Technische Universität München, D-85748 Garching, Germany
| | - Wolfgang Ludwig
- Lehrstuhl für Mikrobiologie, Technische Universität München, D-85350 Freising Germany
| |
Collapse
|
1002
|
Pasquali S, Gan HH, Schlick T. Modular RNA architecture revealed by computational analysis of existing pseudoknots and ribosomal RNAs. Nucleic Acids Res 2005; 33:1384-98. [PMID: 15745998 PMCID: PMC552955 DOI: 10.1093/nar/gki267] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Modular architecture is a hallmark of RNA structures, implying structural, and possibly functional, similarity among existing RNAs. To systematically delineate the existence of smaller topologies within larger structures, we develop and apply an efficient RNA secondary structure comparison algorithm using a newly developed two-dimensional RNA graphical representation. Our survey of similarity among 14 pseudoknots and subtopologies within ribosomal RNAs (rRNAs) uncovers eight pairs of structurally related pseudoknots with non-random sequence matches and reveals modular units in rRNAs. Significantly, three structurally related pseudoknot pairs have functional similarities not previously known: one pair involves the 3′ end of brome mosaic virus genomic RNA (PKB134) and the alternative hammerhead ribozyme pseudoknot (PKB173), both of which are replicase templates for viral RNA replication; the second pair involves structural elements for translation initiation and ribosome recruitment found in the viral internal ribosome entry site (PKB223) and the V4 domain of 18S rRNA (PKB205); the third pair involves 18S rRNA (PKB205) and viral tRNA-like pseudoknot (PKB134), which probably recruits ribosomes via structural mimicry and base complementarity. Additionally, we quantify the modularity of 16S and 23S rRNAs by showing that RNA motifs can be constructed from at least 210 building blocks. Interestingly, we find that the 5S rRNA and two tree modules within 16S and 23S rRNAs have similar topologies and tertiary shapes. These modules can be applied to design novel RNA motifs via build-up-like procedures for constructing sequences and folds.
Collapse
Affiliation(s)
| | - Hin Hark Gan
- Department of Chemistry, New York University251 Mercer Street, New York, NY 10021, USA
| | - Tamar Schlick
- Department of Chemistry, New York University251 Mercer Street, New York, NY 10021, USA
- Courant Institute of Mathematical Sciences, New York University251 Mercer Street, New York, NY 10021, USA
- To whom correspondence should be addressed: Tel: +1 212 998 3116; Fax: +1 212 995 4152;
| |
Collapse
|
1003
|
Zettler LAA, Laatsch AD, Zettler E, Nerad TA, Cole J, Diaz FC, Diaz J, Janzen DH, Sittenfeld A, Mason O, Reysenbach AL. A Microbial Observatory of Caterpillars: Isolation and Molecular Characterization of Protists Associated with the Saturniid Moth Caterpillar Rothschildia lebeau1,2. J Eukaryot Microbiol 2005; 52:107-15. [PMID: 15817115 DOI: 10.1111/j.1550-7408.2005.05202008.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Linda A Amaral Zettler
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1004
|
Yilmaz LS, Noguera DR. Mechanistic approach to the problem of hybridization efficiency in fluorescent in situ hybridization. Appl Environ Microbiol 2005; 70:7126-39. [PMID: 15574909 PMCID: PMC535158 DOI: 10.1128/aem.70.12.7126-7139.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In fluorescent in situ hybridization (FISH), the efficiency of hybridization between the DNA probe and the rRNA has been related to the accessibility of the rRNA when ribosome content and cell permeability are not limiting. Published rRNA accessibility maps show that probe brightness is sensitive to the organism being hybridized and the exact location of the target site and, hence, it is highly unpredictable based on accessibility only. In this study, a model of FISH based on the thermodynamics of nucleic acid hybridization was developed. The model provides a mechanistic approach to calculate the affinity of the probe to the target site, which is defined as the overall Gibbs free energy change (DeltaG degrees overall) for a reaction scheme involving the DNA-rRNA and intramolecular DNA and rRNA interactions that take place during FISH. Probe data sets for the published accessibility maps and experiments targeting localized regions in the 16S rRNA of Escherichia coli were used to demonstrate that DeltaG degrees overall is a strong predictor of hybridization efficiency and superior to conventional estimates based on the dissociation temperature of the DNA/rRNA duplex. The use of the proposed model also allowed the development of mechanistic approaches to increase probe brightness, even in seemingly inaccessible regions of the 16S rRNA. Finally, a threshold DeltaG degrees overall of -13.0 kcal/mol was proposed as a goal in the design of FISH probes to maximize hybridization efficiency without compromising specificity.
Collapse
Affiliation(s)
- L Safak Yilmaz
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| | | |
Collapse
|
1005
|
Diezmann S, Cox CJ, Schönian G, Vilgalys RJ, Mitchell TG. Phylogeny and evolution of medical species of Candida and related taxa: a multigenic analysis. J Clin Microbiol 2005; 42:5624-35. [PMID: 15583292 PMCID: PMC535224 DOI: 10.1128/jcm.42.12.5624-5635.2004] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hemiascomycetes are species of yeasts within the order Saccharomycetales. The order encompasses disparate genera with a variety of life styles, including opportunistic human pathogens (e.g., Candida albicans), plant pathogens (e.g., Eremothecium gossypii), and cosmopolitan yeasts associated with water and decaying vegetation. To analyze the phylogeny of medically important species of yeasts, we selected 38 human pathogenic and related strains in the order Saccharomycetales. The DNA sequences of six nuclear genes were analyzed by maximum likelihood and Bayesian phylogenetic methods. The maximum likelihood analysis of the combined data for all six genes resolved three major lineages with significant support according to Bayesian posterior probability. One clade was mostly comprised of pathogenic species of Candida. Another major group contained members of the family Metschnikowiaceae as a monophyletic group, three species of Debaryomyces, and strains of Candida guilliermondii. The third clade consisted exclusively of species of the family Saccharomycetaceae. Analysis of the evolution of key characters indicated that both codon reassignment and coenzyme Q(9) likely had single origins with multiple losses. Tests of correlated character evolution revealed that these two traits evolved independently.
Collapse
Affiliation(s)
- Stephanie Diezmann
- Department of Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
1006
|
Hillis DM, Wilcox TP. Phylogeny of the New World true frogs (Rana). Mol Phylogenet Evol 2005; 34:299-314. [PMID: 15619443 DOI: 10.1016/j.ympev.2004.10.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 10/14/2004] [Accepted: 10/16/2004] [Indexed: 10/26/2022]
Abstract
Phylogenetic relationships among the species of true frogs (Rana) from North, South, and Central America were investigated based on the sequences of approximately 2 kb from the mitochondrial genome, sampled from most of the described species, as well as eight undescribed species. This analysis, combined with previous studies of the phylogeny of New World Rana, served as the basis for a revised classification of the group. The American species of Rana are not monophyletic; the western North American Amerana is more closely related to the R. temporaria group of Eurasia (together, these frogs form the group Laurasiarana). The remaining species from the Americas form the monophyletic group Novirana, which includes: R. sylvatica; Aquarana (the R. catesbeiana group); Ranula (the R. palmipes group, including the mostly upland Levirana species and the mostly lowland Lithobates species); Torrentirana (the R. tarahumarae group, or Zweifelia, plus R. sierramadrensis), Stertirana (the R. montezumae group, or Lacusirana, plus R. pipiens), Nenirana (the R. areolata group), and Scurrilirana (most of the southern and tropical leopard frogs). The mitochondrial sequences supported many of the previous hypotheses of relationships of New World Rana, although there were some differences involving the placement of the species R. pipiens, R. sierramadrensis, and R. sylvatica. Parametric bootstrap analyses indicated significant support for the relationships inferred from the mtDNA sequences, and rejected the previous hypotheses of relationships for these three species.
Collapse
Affiliation(s)
- David M Hillis
- Section of Integrative Biology and Center for Computational Biology and Bioinformatics, University of Texas, Austin, TX 78712, USA.
| | | |
Collapse
|
1007
|
Tokita M, Okamoto T, Hikida T. Evolutionary history of African lungfish: a hypothesis from molecular phylogeny. Mol Phylogenet Evol 2005; 35:281-6. [PMID: 15737597 DOI: 10.1016/j.ympev.2004.11.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 11/06/2004] [Accepted: 11/22/2004] [Indexed: 11/29/2022]
Affiliation(s)
- Masayoshi Tokita
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.
| | | | | |
Collapse
|
1008
|
Hoerter JAH, Lambert MN, Pereira MJB, Walter NG. Dynamics inherent in helix 27 from Escherichia coli 16S ribosomal RNA. Biochemistry 2005; 43:14624-36. [PMID: 15544333 DOI: 10.1021/bi048533y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The original interpretation of a series of genetic studies suggested that the highly conserved Escherichia coli 16S ribosomal RNA helix 27 (H27) adopts two alternative secondary structure motifs, the 885 and 888 conformations, during each cycle of amino acid incorporation. Recent crystallographic and genetic evidence has called this hypothesis into question. To ask whether a slippery sequence such as that of H27 may harbor inherent conformational dynamics, we have designed a series of model RNAs based on E. coli H27 for in vitro physicochemical studies. One-dimensional (1)H NMR spectroscopy demonstrates that both the 885 and 888 conformations are occupied to approximately the same extent (f(888) = 0.427 +/- 0.04) in the native H27 sequence at low pH (6.4) and low ionic strength (50 mM NaCl). UV irradiation assays conducted under conditions analogous to those used for assays of ribosomal function (pH 7.5 and 20 mM MgCl(2)) suggest that nucleotides 892 and 905, which are too far apart in the known 885 crystal structures, can approach each other closely enough to form an efficient cross-link. The use of a fluorescence resonance energy transfer (FRET)-labeled RNA together with a partially complementary DNA oligonucleotide that induces a shift to the 888 conformation shows that H27 interchanges between the 885 and 888 conformations on the millisecond time scale, with an equilibrium constant of 0.33 +/-0.12. FRET assays also show that tetracycline interferes with the induced shift to the 888 conformation, a finding that is consistent with crystallographic localization of tetracycline bound to the 885 conformation of H27 in the 30S ribosomal subunit. Taken together, our data demonstrate the innate tendency of an isolated H27 to exist in a dynamic equilibrium between the 885 and 888 conformations. This begs the question of how these inherent structural dynamics are suppressed within the context of the ribosome.
Collapse
Affiliation(s)
- John A H Hoerter
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | |
Collapse
|
1009
|
Proctor DJ, Ma H, Kierzek E, Kierzek R, Gruebele M, Bevilacqua PC. Folding thermodynamics and kinetics of YNMG RNA hairpins: specific incorporation of 8-bromoguanosine leads to stabilization by enhancement of the folding rate. Biochemistry 2005; 43:14004-14. [PMID: 15518549 DOI: 10.1021/bi048213e] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modified nucleotides allow fundamental energetic and kinetic properties of nucleic acids to be probed. Here, we demonstrate that an RNA hairpin containing the nucleotide analogue 8-bromoguanosine (8BrG or G), gcUUCGgc, has enhanced stability relative to the unmodified hairpin, with DeltaDeltaG(37)(degrees)= -0.69 +/- 0.15 kcal mol(-1) and DeltaT(M) = +6.8 +/- 1.4 degrees C. NMR spectroscopic data suggest that the enhanced stability of gcUUCGgc does not arise from the native state; laser temperature-jump experiments support this notion, as gcUUCGgc and gcUUCGgc have similar unfolding rate constants, but the folding rate constant of gcUUCGgc is 4.1-fold faster at 37.5 degrees C and 2.8-fold faster under isoenergetic conditions. On the basis of these findings, we propose that 8BrG reduces the conformational entropy of the denatured state, resulting in an accelerated conformational search for the native state and enhanced stability.
Collapse
Affiliation(s)
- David J Proctor
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | |
Collapse
|
1010
|
Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity GM, Tiedje JM. The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 2005; 33:D294-6. [PMID: 15608200 PMCID: PMC539992 DOI: 10.1093/nar/gki038] [Citation(s) in RCA: 918] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 09/24/2004] [Accepted: 09/24/2004] [Indexed: 11/17/2022] Open
Abstract
The Ribosomal Database Project (RDP-II) provides the research community with aligned and annotated rRNA gene sequences, along with analysis services and a phylogenetically consistent taxonomic framework for these data. Updated monthly, these services are made available through the RDP-II website (http://rdp.cme.msu.edu/). RDP-II release 9.21 (August 2004) contains 101,632 bacterial small subunit rRNA gene sequences in aligned and annotated format. High-throughput tools for initial taxonomic placement, identification of related sequences, probe and primer testing, data navigation and subalignment download are provided. The RDP-II email address for questions or comments is rdpstaff@msu.edu.
Collapse
Affiliation(s)
- J R Cole
- Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824-4320, USA.
| | | | | | | | | | | | | | | |
Collapse
|
1011
|
Allali J, Sagot MF. A Multiple Graph Layers Model with Application to RNA Secondary Structures Comparison. ACTA ACUST UNITED AC 2005. [DOI: 10.1007/11575832_39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
1012
|
Abstract
BACKGROUND With the ever-increasing number of sequenced RNAs and the establishment of new RNA databases, such as the Comparative RNA Web Site and Rfam, there is a growing need for accurately and automatically predicting RNA structures from multiple alignments. Since RNA secondary structure is often conserved in evolution, the well known, but underused, mutual information measure for identifying covarying sites in an alignment can be useful for identifying structural elements. This article presents MIfold, a MATLAB toolbox that employs mutual information, or a related covariation measure, to display and predict conserved RNA secondary structure (including pseudoknots) from an alignment. RESULTS We show that MIfold can be used to predict simple pseudoknots, and that the performance can be adjusted to make it either more sensitive or more selective. We also demonstrate that the overall performance of MIfold improves with the number of aligned sequences for certain types of RNA sequences. In addition, we show that, for these sequences, MIfold is more sensitive but less selective than the related RNAalifold structure prediction program and is comparable with the COVE structure prediction package. CONCLUSION MIfold provides a useful supplementary tool to programs such as RNA Structure Logo, RNAalifold and COVE, and should be useful for automatically generating structural predictions for databases such as Rfam.
Collapse
Affiliation(s)
- Eva Freyhult
- The Linnaeus Centre for Bioinformatics, Uppsala University, Uppsala, Sweden.
| | | | | |
Collapse
|
1013
|
Wilson DN, Schluenzen F, Harms JM, Yoshida T, Ohkubo T, Albrecht R, Buerger J, Kobayashi Y, Fucini P. X-ray crystallography study on ribosome recycling: the mechanism of binding and action of RRF on the 50S ribosomal subunit. EMBO J 2004; 24:251-60. [PMID: 15616575 PMCID: PMC545814 DOI: 10.1038/sj.emboj.7600525] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Accepted: 11/26/2004] [Indexed: 11/09/2022] Open
Abstract
This study presents the crystal structure of domain I of the Escherichia coli ribosome recycling factor (RRF) bound to the Deinococcus radiodurans 50S subunit. The orientation of RRF is consistent with the position determined on a 70S-RRF complex by cryoelectron microscopy (cryo-EM). Alignment, however, requires a rotation of 7 degrees and a shift of the cryo-EM RRF by a complete turn of an alpha-helix, redefining the contacts established with ribosomal components. At 3.3 A resolution, RRF is seen to interact exclusively with ribosomal elements associated with tRNA binding and/or translocation. Furthermore, these results now provide a high-resolution structural description of the conformational changes that were suspected to occur on the 70S-RRF complex, which has implications for the synergistic action of RRF with elongation factor G (EF-G). Specifically, the tip of the universal bridge element H69 is shifted by 20 A toward h44 of the 30S subunit, suggesting that RRF primes the intersubunit bridge B2a for the action of EF-G. Collectively, our data enable a model to be proposed for the dual action of EF-G and RRF during ribosome recycling.
Collapse
Affiliation(s)
- Daniel N Wilson
- Max-Planck-Institute for Molecular Genetics, Berlin, Germany
- These authors contributed equally to this work
| | - Frank Schluenzen
- Max-Planck-Institute for Molecular Genetics, Berlin, Germany
- These authors contributed equally to this work
- Max-Planck-Institute for Molecular Genetics, Ihnestr. 73, Berlin 14195, Germany. Tel.: +49 (0) 40 8998 2809; Fax: +49 (0) 40 8971 6848; E-mail:
| | - Joerg M Harms
- Riboworld.com, Hamburg, Germany
- These authors contributed equally to this work
| | - Takuya Yoshida
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Tadayasu Ohkubo
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Renate Albrecht
- Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Joerg Buerger
- Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Yuji Kobayashi
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Paola Fucini
- Max-Planck-Institute for Molecular Genetics, Berlin, Germany
- Max-Planck-Institute for Molecular Genetics, Ihnestr. 73, Berlin 14195, Germany. Tel.: +49 (0) 30 8413 1691; Fax: +49 (0) 30 8413 1690; E-mail:
| |
Collapse
|
1014
|
Wadley LM, Pyle AM. The identification of novel RNA structural motifs using COMPADRES: an automated approach to structural discovery. Nucleic Acids Res 2004; 32:6650-9. [PMID: 15608296 PMCID: PMC545444 DOI: 10.1093/nar/gkh1002] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recurring RNA structural motifs are important sites of tertiary interaction and as such, are integral to RNA macromolecular structure. Although numerous RNA motifs have been classified and characterized, the identification of new motifs is of great interest. In this study, we discovered four new conformationally recurring motifs: the pi-turn, the Omega-turn, the alpha-loop and the C2'-endo mediated flipped adenosine motif. Not only do they have complex and interesting structures, but they participate in contacts of high biological significance. In a first for the RNA field, new motifs were discovered by a fully automated algorithm. This algorithm, COMPADRES, utilized a reduced representation of the RNA backbone and was highly successful at discerning unique structural relationships. This study also shows that recurring RNA substructures are not necessarily accompanied by consistent primary or secondary structure.
Collapse
Affiliation(s)
- Leven M Wadley
- Department of Physics, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
1015
|
Huggins W, Wollenzien P. A 16S rRNA-tRNA product containing a nucleotide phototrimer and specific for tRNA in the P/E hybrid state in the Escherichia coli ribosome. Nucleic Acids Res 2004; 32:6548-56. [PMID: 15598826 PMCID: PMC545443 DOI: 10.1093/nar/gkh1001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 11/26/2004] [Accepted: 11/26/2004] [Indexed: 11/13/2022] Open
Abstract
Ribosome complexes containing deacyl-tRNA1(Val) or biotinylvalyl-tRNA1(Val) and an mRNA analog have been irradiated with wavelengths specific for activation of the cmo5U nucleoside at position 34 in the tRNA1(Val) anticodon loop. The major product for both types of tRNA is the cross-link between 16S rRNA (C1400) and the tRNA (cmo5U34) characterized already by Ofengand and his collaborators [Prince et al. (1982) Proc. Natl Acad. Sci. USA, 79, 5450-5454]. However, in complexes containing deacyl-tRNA1(Val), an additional product is separated by denaturing PAGE and this is shown to involve C1400 and m5C967 of 16S rRNA and cmo5U34 of the tRNA. Puromycin treatment of the biotinylvalyl-tRNA1(Val) -70S complex followed by irradiation, results in the appearance of the unusual photoproduct, which indicates an immediate change in the tRNA interaction with the ribosome after peptide transfer. These results indicate an altered interaction between the tRNA anticodon and the 30S subunit for the tRNA in the P/E hybrid state compared with its interaction in the classic P/P state.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Escherichia coli/genetics
- Kinetics
- Light
- Molecular Sequence Data
- Nucleotides/analysis
- Puromycin/pharmacology
- RNA, Bacterial/chemistry
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Val/chemistry
- RNA, Transfer, Val/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ribosomes/radiation effects
- Transcription, Genetic
Collapse
Affiliation(s)
- Wayne Huggins
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA
| | | |
Collapse
|
1016
|
Guo F, Gooding AR, Cech TR. Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site. Mol Cell 2004; 16:351-62. [PMID: 15525509 DOI: 10.1016/j.molcel.2004.10.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 08/13/2004] [Accepted: 08/19/2004] [Indexed: 11/17/2022]
Abstract
The Tetrahymena intron is an RNA catalyst, or ribozyme. As part of its self-splicing reaction, this ribozyme catalyzes phosphoryl transfer between guanosine and a substrate RNA strand. Here we report the refined crystal structure of an active Tetrahymena ribozyme in the absence of its RNA substrate at 3.8 A resolution. The 3'-terminal guanosine (omegaG), which serves as the attacking group for RNA cleavage, forms a coplanar base triple with the G264-C311 base pair, and this base triple is sandwiched by three other base triples. In addition, a metal ion is present in the active site, contacting or positioned close to the ribose of the omegaG and five phosphates. All of these phosphates have been shown to be important for catalysis. Therefore, we provide a picture of how the ribozyme active site positions both a catalytic metal ion and the nucleophilic guanosine for catalysis prior to binding its RNA substrate.
Collapse
Affiliation(s)
- Feng Guo
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | | | | |
Collapse
|
1017
|
Recht MI, Williamson JR. RNA tertiary structure and cooperative assembly of a large ribonucleoprotein complex. J Mol Biol 2004; 344:395-407. [PMID: 15522293 DOI: 10.1016/j.jmb.2004.09.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Revised: 08/23/2004] [Accepted: 09/06/2004] [Indexed: 10/26/2022]
Abstract
The mechanisms that govern the ordered assembly of multiprotein ribonucleoprotein complexes are not well understood. The in vitro reconstitution of the small subunit of the bacterial ribosome provides a tractable system for the detailed study of ordered assembly. We present a quantitative thermodynamic description of the hierarchical binding of ribosomal proteins to 16S rRNA during assembly of the platform of the 30S ribosomal subunit. The binding of S8, S11, S15, and the S6:S18 heterodimer to the central domain of 16S rRNA has been measured both individually and in combination using isothermal titration calorimetry and gel mobility shift assays. Both enthalpy and free energy measurements demonstrate the cooperative binding of S15 and the S6:S18 heterodimer, but no cooperativity is observed for either S8 or S11. The results define a thermodynamic framework that describes cooperative platform assembly.
Collapse
MESH Headings
- Bacteria/chemistry
- Bacteria/genetics
- Bacteria/metabolism
- Bacterial Proteins/chemistry
- Bacterial Proteins/metabolism
- Calorimetry
- Dimerization
- Electrophoretic Mobility Shift Assay
- Genome, Bacterial
- Models, Molecular
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- Ribonucleoproteins/chemistry
- Ribonucleoproteins/metabolism
- Ribosomal Protein S6/analysis
- Ribosomal Protein S6/isolation & purification
- Ribosomal Protein S6/metabolism
- Ribosomal Proteins/analysis
- Ribosomal Proteins/isolation & purification
- Ribosomal Proteins/metabolism
- Thermodynamics
- Thermus thermophilus/chemistry
- Thermus thermophilus/genetics
Collapse
Affiliation(s)
- Michael I Recht
- Department of Molecular Biology, MB33, and The Skaggs Institute For Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
1018
|
Lapeyre B. Conserved ribosomal RNA modification and their putative roles in ribosome biogenesis and translation. ACTA ACUST UNITED AC 2004. [DOI: 10.1007/b105433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
1019
|
Dutilh BE, Huynen MA, Bruno WJ, Snel B. The consistent phylogenetic signal in genome trees revealed by reducing the impact of noise. J Mol Evol 2004; 58:527-39. [PMID: 15170256 DOI: 10.1007/s00239-003-2575-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Accepted: 11/12/2003] [Indexed: 11/25/2022]
Abstract
Phylogenetic trees based on gene repertoires are remarkably similar to the current consensus of life history. Yet it has been argued that shared gene content is unreliable for phylogenetic reconstruction because of convergence in gene content due to horizontal gene transfer and parallel gene loss. Here we test this argument, by filtering out as noise those orthologous groups that have an inconsistent phylogenetic distribution, using two independent methods. The resulting phylogenies do indeed contain small but significant improvements. More importantly, we find that the majority of orthologous groups contain some phylogenetic signal and that the resulting phylogeny is the only detectable signal present in the gene distribution across genomes. Horizontal gene transfer or parallel gene loss does not cause systematic biases in the gene content tree.
Collapse
Affiliation(s)
- Bas E Dutilh
- Center for Molecular and Biomolecular Informatics/Nijmegen Center for Molecular Life Sciences, University of Nijmegen, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
1020
|
Golden BL, Kim H, Chase E. Crystal structure of a phage Twort group I ribozyme–product complex. Nat Struct Mol Biol 2004; 12:82-9. [PMID: 15580277 DOI: 10.1038/nsmb868] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Accepted: 10/26/2004] [Indexed: 11/09/2022]
Abstract
Group I introns are catalytic RNAs capable of orchestrating two sequential phosphotransesterification reactions that result in self-splicing. To understand how the group I intron active site facilitates catalysis, we have solved the structure of an active ribozyme derived from the orf142-I2 intron from phage Twort bound to a four-nucleotide product RNA at a resolution of 3.6 A. In addition to the three conserved domains characteristic of all group I introns, the Twort ribozyme has peripheral insertions characteristic of phage introns. These elements form a ring that completely envelops the active site, where a snug pocket for guanosine is formed by a series of stacked base triples. The structure of the active site reveals three potential binding sites for catalytic metals, and invokes a role for the 2' hydroxyl of the guanosine substrate in organization of the active site for catalysis.
Collapse
Affiliation(s)
- Barbara L Golden
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47907, USA.
| | | | | |
Collapse
|
1021
|
Adams PL, Stahley MR, Gill ML, Kosek AB, Wang J, Strobel SA. Crystal structure of a group I intron splicing intermediate. RNA (NEW YORK, N.Y.) 2004; 10:1867-87. [PMID: 15547134 PMCID: PMC1370676 DOI: 10.1261/rna.7140504] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Accepted: 10/04/2004] [Indexed: 05/21/2023]
Abstract
A recently reported crystal structure of an intact bacterial group I self-splicing intron in complex with both its exons provided the first molecular view into the mechanism of RNA splicing. This intron structure, which was trapped in the state prior to the exon ligation reaction, also reveals the architecture of a complex RNA fold. The majority of the intron is contained within three internally stacked, but sequence discontinuous, helical domains. Here the tertiary hydrogen bonding and stacking interactions between the domains, and the single-stranded joiner segments that bridge between them, are fully described. Features of the structure include: (1) A pseudoknot belt that circumscribes the molecule at its longitudinal midpoint; (2) two tetraloop-tetraloop receptor motifs at the peripheral edges of the structure; (3) an extensive minor groove triplex between the paired and joiner segments, P6-J6/6a and P3-J3/4, which provides the major interaction interface between the intron's two primary domains (P4-P6 and P3-P9.0); (4) a six-nucleotide J8/7 single stranded element that adopts a mu-shaped structure and twists through the active site, making critical contacts to all three helical domains; and (5) an extensive base stacking architecture that realizes 90% of all possible stacking interactions. The intron structure was validated by hydroxyl radical footprinting, where strong correlation was observed between experimental and predicted solvent accessibility. Models of the pre-first and pre-second steps of intron splicing are proposed with full-sized tRNA exons. They suggest that the tRNA undergoes substantial angular motion relative to the intron between the two steps of splicing.
Collapse
Affiliation(s)
- Peter L Adams
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Ave., New Haven, CT 06520-8114, USA
| | | | | | | | | | | |
Collapse
|
1022
|
Grondek JF, Culver GM. Assembly of the 30S ribosomal subunit: positioning ribosomal protein S13 in the S7 assembly branch. RNA (NEW YORK, N.Y.) 2004; 10:1861-6. [PMID: 15525707 PMCID: PMC1370675 DOI: 10.1261/rna.7130504] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 09/09/2004] [Indexed: 05/20/2023]
Abstract
Studies of Escherichia coli 30S ribosomal subunit assembly have revealed a hierarchical and cooperative association of ribosomal proteins with 16S ribosomal RNA; these results have been used to compile an in vitro 30S subunit assembly map. In single protein addition and omission studies, ribosomal protein S13 was shown to be dependent on the prior association of ribosomal protein S20 for binding to the ribonucleoprotein particle. While the overwhelming majority of interactions revealed in the assembly map are consistent with additional data, the dependency of S13 on S20 is not. Structural studies position S13 in the head of the 30S subunit > 100 A away from S20, which resides near the bottom of the body of the 30S subunit. All of the proteins that reside in the head of the 30S subunit, except S13, have been shown to be part of the S7 assembly branch, that is, they all depend on S7 for association with the assembling 30S subunit. Given these observations, the assembly requirements for S13 were investigated using base-specific chemical footprinting and primer extension analysis. These studies reveal that S13 can bind to 16S rRNA in the presence of S7, but not S20. Additionally, interaction between S13 and other members of the S7 assembly branch have been observed. These results link S13 to the 3' major domain family of proteins, and the S7 assembly branch, placing S13 in a new location in the 30S subunit assembly map where its position is in accordance with much biochemical and structural data.
Collapse
MESH Headings
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Models, Molecular
- Multiprotein Complexes
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Joel F Grondek
- Department of Biochemistry, Biophysics and Molecular Biology, 4216 Molecular Biology Bldg., Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
1023
|
Gillespie JJ. Characterizing regions of ambiguous alignment caused by the expansion and contraction of hairpin-stem loops in ribosomal RNA molecules. Mol Phylogenet Evol 2004; 33:936-43. [PMID: 15522814 DOI: 10.1016/j.ympev.2004.08.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 06/24/2004] [Indexed: 10/26/2022]
Affiliation(s)
- Joseph J Gillespie
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA.
| |
Collapse
|
1024
|
Novotny GW, Jakobsen L, Andersen NM, Poehlsgaard J, Douthwaite S. Ketolide antimicrobial activity persists after disruption of interactions with domain II of 23S rRNA. Antimicrob Agents Chemother 2004; 48:3677-83. [PMID: 15388419 PMCID: PMC521900 DOI: 10.1128/aac.48.10.3677-3683.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ketolides are the latest derivatives developed from the macrolide erythromycin to improve antimicrobial activity. All macrolides and ketolides bind to the 50S ribosomal subunit, where they come into contact with adenosine 2058 (A2058) within domain V of the 23S rRNA and block protein synthesis. An additional interaction at nucleotide A752 in the rRNA domain II is made via the synthetic carbamate-alkyl-aryl substituent in the ketolides HMR3647 (telithromycin) and HMR3004, and this interaction contributes to their improved activities. Only a few macrolides, including tylosin, come into contact with domain II of the rRNA and do so via interactions with nucleotides G748 and A752. We have disrupted these macrolide-ketolide interaction sites in the rRNA to assess their relative importance for binding. Base substitutions at A752 were shown to confer low levels of resistance to telithromycin but not to HMR3004, while deletion of A752 confers low levels of resistance to both ketolides. Mutations at position 748 confer no resistance. Substitution of guanine at A2058 gives rise to the MLS(B) (macrolide, lincosamide, and streptogramin B) phenotype, which confers resistance to all the drugs. However, resistance to ketolides was abolished when the mutation at position 2058 was combined with a mutation in domain II of the same rRNA. In contrast, the same dual mutations in rRNAs conferred enhanced resistance to tylosin. Our results show that the domain II interactions of telithromycin and HMR3004 differ from each other and from those of tylosin. The data provide no indication that mutations within domain II, either alone or in combination with an A2058 mutation, can confer significant levels of telithromycin resistance.
Collapse
Affiliation(s)
- Guy W Novotny
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | | | | | | |
Collapse
|
1025
|
Yoshida H, Yamamoto H, Uchiumi T, Wada A. RMF inactivates ribosomes by covering the peptidyl transferase centre and entrance of peptide exit tunnel. Genes Cells 2004; 9:271-8. [PMID: 15066119 DOI: 10.1111/j.1356-9597.2004.00723.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In gram-negative bacteria such as Escherichia coli, protein synthesis is suppressed by the formation of 100S ribosomes under stress conditions. The 100S ribosome, a dimer of 70S ribosomes, is formed by ribosome modulation factor (RMF) binding to the 70S ribosomes. During the stationary phase, most of the 70S ribosomes turn to 100S ribosomes, which have lost translational activity. This 100S formation is called the hibernation process in the ribosome cycle of the stationary phase. If stationary phase cells are transferred to fresh medium, the 100S ribosomes immediately go back to active 70S ribosomes, showing that inactive 100S <--> active 70S interconversion is a major system regulating translation activity in stationary phase cells. To elucidate the mechanisms of translational inactivation, the binding sites of RMF on 23S rRNA in 100S ribosome of E. coli were examined by a chemical probing method using dimethyl sulphate (DMS). As the results, the nine bases in 23S rRNA were protected from DMS modifications and the modification of one base was enhanced. Interestingly A2451 is included among the protected bases, which is thought to be directly involved in peptidyl transferase activity. We conclude that RMF inactivates ribosomes by covering the peptidyl transferase (PTase) centre and the entrance of peptide exit tunnel. It is surprising that the cell itself produces a protein that seems to inhibit protein synthesis in a similar manner to antibiotics and that it can reversibly bind to and release from the ribosome in response to environmental conditions.
Collapse
Affiliation(s)
- Hideji Yoshida
- Department of Physics, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan.
| | | | | | | |
Collapse
|
1026
|
Kouvelis VN, Ghikas DV, Typas MA. The analysis of the complete mitochondrial genome of Lecanicillium muscarium (synonym Verticillium lecanii) suggests a minimum common gene organization in mtDNAs of Sordariomycetes: phylogenetic implications. Fungal Genet Biol 2004; 41:930-40. [PMID: 15341915 DOI: 10.1016/j.fgb.2004.07.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2003] [Accepted: 07/10/2004] [Indexed: 11/24/2022]
Abstract
The mitochondrial genome (mtDNA) of the entomopathogenic fungus Lecanicillium muscarium (synonym Verticillium lecanii) with a total size of 24,499-bp has been analyzed. So far, it is the smallest known mitochondrial genome among Pezizomycotina, with an extremely compact gene organization and only one group-I intron in its large ribosomal RNA (rnl) gene. It contains the 14 typical genes coding for proteins related to oxidative phosphorylation, the two rRNA genes, one intronic ORF coding for a possible ribosomal protein (rps), and a set of 25 tRNA genes which recognize codons for all amino acids, except alanine and cysteine. All genes are transcribed from the same DNA strand. Gene order comparison with all available complete fungal mtDNAs-representatives of all four Phyla are included-revealed some characteristic common features like uninterrupted gene pairs, overlapping genes, and extremely variable intergenic regions, that can all be exploited for the study of fungal mitochondrial genomes. Moreover, a minimum common mtDNA gene order could be detected, in two units, for all known Sordariomycetes namely nad1-nad4-atp8-atp6 and rns-cox3-rnl, which can be extended in Hypocreales, to nad4L-nad5-cob-cox1-nad1-nad4-atp8-atp6 and rns-cox3-rnl nad2-nad3, respectively. Phylogenetic analysis of all fungal mtDNA essential protein-coding genes as one unit, clearly demonstrated the superiority of small genome (mtDNA) over single gene comparisons.
Collapse
Affiliation(s)
- Vassili N Kouvelis
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, Panepistemiopolis, Athens 157 01, Greece
| | | | | |
Collapse
|
1027
|
García MA, Nicholson EH, Nickrent DL. Extensive intraindividual variation in plastid rDNA sequences from the holoparasite Cynomorium coccineum (Cynomoriaceae). J Mol Evol 2004; 58:322-32. [PMID: 15045487 DOI: 10.1007/s00239-003-2554-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Accepted: 10/06/2003] [Indexed: 10/26/2022]
Abstract
Ribosomal genes are considered to have a high degree of sequence conservation between species and also at higher taxonomic levels. In this paper we document a case where a single individual of Cynomorium coccineum (Cynomoriaceae), a nonphotosynthetic holoparasitic plant, contains highly divergent plastid ribosomal genes. PCR amplification a nearly complete ribosomal DNA cistron was performed using genomic DNA, the products cloned, and the 23S rDNA genes were sequenced from 19 colonies. Of these, five distinct types were identified. Fifteen of the sequences were nearly identical (11 or fewer differences) and these were designated Type I. The remaining types (II-V) were each represented by a single clone and differed from Type I by 93 to 255 changes. Compared with green vascular plants, we found that there are more substitutional differences in the 23S rDNA sequences within a single individual of Cynomorium than among all sequenced photosynthetic vascular plants. Several trends of molecular evolution observed in 16S rDNA from other holoparasitic angiosperms and heterotrophic green algae have been also observed in Cynomorium 23S rDNA. Higher-order structures were constructed for representatives of the five clone types, and in all cases these possessed complete complements of the major structural elements present in functional plastid 23S rRNAs. These data indicate that such molecules may be subject to purifying selection, thus providing indirect evidence that they have retained some degree of functionality. This intraindividual polymorphism is probably a case of plastid heteroplasmy but translocation of ribosomal cistrons to the nucleus or mitochondria has not been tested and therefore cannot be ruled out.
Collapse
Affiliation(s)
- Miguel A García
- Real Jardín Botánico, CSIC, Plaza de Murillo 2, 28014-Madrid, Spain
| | | | | |
Collapse
|
1028
|
Thompson J, Dahlberg AE. Testing the conservation of the translational machinery over evolution in diverse environments: assaying Thermus thermophilus ribosomes and initiation factors in a coupled transcription-translation system from Escherichia coli. Nucleic Acids Res 2004; 32:5954-61. [PMID: 15534366 PMCID: PMC528807 DOI: 10.1093/nar/gkh925] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ribosomes from the extreme thermophile Thermus thermophilus are capable of translation in a coupled transcription-translation system derived from Escherichia coli. At 45 degrees C, T.thermophilus ribosomes translate at approximately 25-30% of the maximal rate of E.coli ribosomes, and synthesize full-length protein. T.thermophilus and E.coli subunits can be combined to effect translation, with the spectrum of proteins produced depending upon the source of the 30S subunit. In this system, T.thermophilus ribosomes function in concert with E.coli translational factors and tRNAs, with elongation and release factors being supplied from the E.coli extract, and purified initiation factors (IFs) being added exogenously. Cloned and purified T.thermophilus IF1, IF2 and IF3 supported the synthesis of the same products in vitro as the E.coli factors, although the relative levels of some polypeptides were factor dependent. We conclude that, at least between these two phylogenetically distant species, translational factor function and subunit-subunit interactions are conserved. This functional compatibility is remarkable given the extreme and highly divergent environments to which these species have adapted.
Collapse
Affiliation(s)
- Jill Thompson
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA.
| | | |
Collapse
|
1029
|
Pfister P, Hobbie S, Vicens Q, Böttger EC, Westhof E. The molecular basis for A-site mutations conferring aminoglycoside resistance: relationship between ribosomal susceptibility and X-ray crystal structures. Chembiochem 2004; 4:1078-88. [PMID: 14523926 DOI: 10.1002/cbic.200300657] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aminoglycoside antibiotics target the 16S ribosomal RNA (rRNA) bacterial A site and induce misreading of the genetic code. Point mutations of the ribosomal A site may confer resistance to aminoglycoside antibiotics. The influence of bacterial mutations (introduced by site-directed mutagenesis) on ribosomal drug susceptibility was investigated in vivo by determination of minimal inhibitory concentrations. To determine the origin of the various resistance phenotypes at a molecular level, the in vivo results were compared with the previously published crystal structures of paromomycin, tobramycin, and geneticin bound to oligonucleotides containing the minimal A site. Two regions appear crucial for binding in the A site: the single adenine residue at position 1408 and the non-Watson-Crick U1406.U1495 pair. The effects of mutations at those positions are modulated by the nature of the substituent at position 6' (either hydroxy or ammonium group) on ring I, by the number of positive charges on the antibiotic, and by the linkage between rings I and III (either 4,5 or 4,6). In particular, the analysis demonstrates: 1) that the C1409-G1491 to A1409-U1491 polymorphism (observed in 15 % of bacteria) is not associated with resistance, which indicates that it does not affect the stacking of ring I on residue 1491, 2) that the high-level resistance to 6'-NH3+ aminoglycosides exhibited by the A1408G mutation most probably results from the inability of ring I forming a pseudo base pair with G1408, which prevents its insertion inside the A site helix, and 3) that mutations of the uracil residues forming the U1406.U1495 pair either to cytosine or to adenine residues mostly confer low to moderate levels of drug resistance, whereas the U1406C/U1495A double mutation confers high-level resistance (except for neomycin), which suggests that aminoglycoside binding to the wild-type A site and its functional consequences strongly depend on a particular geometry of the U1406.U1495 pair. The relationships between the resistance phenotypes observed in vivo and the interactions described at the molecular level define the biological importance of the different structural interactions observed by X-ray crystallography studies.
Collapse
Affiliation(s)
- Peter Pfister
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30/32, 8028 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
1030
|
Lapeyre B, Purushothaman SK. Spb1p-Directed Formation of Gm2922 in the Ribosome Catalytic Center Occurs at a Late Processing Stage. Mol Cell 2004; 16:663-9. [PMID: 15546625 DOI: 10.1016/j.molcel.2004.10.022] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 08/20/2004] [Accepted: 08/26/2004] [Indexed: 10/25/2022]
Abstract
rRNA molecules undergo extensive posttranscriptional modification, predominantly 2'-O-ribose methylation and pseudouridine formation, both of which are guided by the numerous small nucleolar RNAs in eukaryotes. Here, we describe an exception to this rule. The essential yeast nucleolar protein Spb1p is a site-specific rRNA methyltransferase modifying the universally conserved G2922 that is located within the A loop of the catalytic center of the ribosome. The equivalent position in bacteria is the docking site for aminoacyl-tRNA, and it is critical for translation. In sharp contrast to other 2'-O-methylriboses that are formed on the primary transcript, Gm2922 appears at a late processing stage, during the maturation of the 27S pre-rRNA. Thus, eukaryotes have maintained a site-specific enzyme to catalyze the methylation of a nucleotide that plays a crucial role in ribosome biogenesis and translation.
Collapse
Affiliation(s)
- Bruno Lapeyre
- Centre de Recherche de Biochimie Macromoléculaire, 1919 Route de Mende, 34293 Montpellier, France.
| | | |
Collapse
|
1031
|
Pfister P, Jenni S, Poehlsgaard J, Thomas A, Douthwaite S, Ban N, Böttger EC. The structural basis of macrolide-ribosome binding assessed using mutagenesis of 23S rRNA positions 2058 and 2059. J Mol Biol 2004; 342:1569-81. [PMID: 15364582 DOI: 10.1016/j.jmb.2004.07.095] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 07/08/2004] [Accepted: 07/22/2004] [Indexed: 11/26/2022]
Abstract
Macrolides are a diverse group of antibiotics that inhibit bacterial growth by binding within the peptide tunnel of the 50S ribosomal subunit. There is good agreement about the architecture of the macrolide site from different crystallography studies of bacterial and archaeal 50S subunits. These structures show plainly that 23S rRNA nucleotides A2058 and A2059 are located accessibly on the surface of the tunnel wall where they act as key contact sites for macrolide binding. However, the molecular details of how macrolides fit into this site remain a matter of contention. Here, we have generated an isogenic set of single and dual substitutions at A2058 and A2059 in Mycobacterium smegmatis to investigate the effects of the rRNA mutations on macrolide binding. Resistances conferred to a comprehensive array of 11 macrolide compounds are used to assess models of macrolide binding predicted from the crystal structures. The data indicate that all macrolides and their derivatives bind at the same site in the tunnel with their C5 amino sugar in a similar orientation. Our data are compatible with the lactone rings of 14-membered and 16-membered macrolides adopting different conformations, enabling the latter compounds to avoid a steric clash with 2058G. This difference, together with interactions conveyed via substituents that are specific to certain ketolide and macrolide sub-classes, influences the binding to the large ribosomal subunit. Our genetic data show no support for a derivatized-macrolide binding site that has been proposed to be located further down the tunnel.
Collapse
Affiliation(s)
- Peter Pfister
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30-32, CH-8028 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
1032
|
McCutchan TF, Rathore D, Li J. Compensatory evolution in the human malaria parasite Plasmodium ovale. Genetics 2004; 166:637-40. [PMID: 15020451 PMCID: PMC1470707 DOI: 10.1534/genetics.166.1.637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fixation of neutral compensatory mutations in a population depends on the effective population size of the species, which can fluctuate dramatically within a few generations, the mutation rate, and the selection intensity associated with the individual mutations. We observe compensatory mutations and intermediate states in populations of the malaria parasite Plasmodium ovale. The appearance of compensatory mutations and intermediate states in P. ovale raises interesting questions about population structure that could have considerable impact on the control of the associated disease.
Collapse
Affiliation(s)
- Thomas F McCutchan
- Growth and Development Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0425, USA.
| | | | | |
Collapse
|
1033
|
Bayfield MA, Thompson J, Dahlberg AE. The A2453-C2499 wobble base pair in Escherichia coli 23S ribosomal RNA is responsible for pH sensitivity of the peptidyltransferase active site conformation. Nucleic Acids Res 2004; 32:5512-8. [PMID: 15479786 PMCID: PMC524298 DOI: 10.1093/nar/gkh888] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Peptide bond formation, catalyzed by the ribosomal peptidyltransferase, has long been known to be sensitive to monovalent cation concentrations and pH. More recently, we and others have shown that residue A2451 in the peptidyltransferase center of the Escherichia coli 50S ribosomal subunit changes conformation in response to alterations in pH, depending on ionic conditions and temperature. Two wobble pairs, A2453-C2499 and A2450-C2063, have been proposed as potential candidates to convey pH-dependent flexibility to the peptidyltransferase center. Each is presumed to possess a near-neutral pK(a), and both lie in proximity to A2451. We show through mutagenesis and chemical probing that the identity of the A2453-C2499 base pair, but not the A2450-C2063 base pair, is critical for the pH-dependent structural rearrangement of A2451. We conclude that, while the A2453-C2499 base pair may be important for maintaining the structure of the active site in the E.coli peptidyltransferase center, its lack of conservation makes it, and consequently its near-neutral pK(a), unlikely to contribute to function during peptide bond formation.
Collapse
Affiliation(s)
- Mark A Bayfield
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
1034
|
Gillespie J, Cannone J, Gutell R, Cognato A. A secondary structural model of the 28S rRNA expansion segments D2 and D3 from rootworms and related leaf beetles (Coleoptera: Chrysomelidae; Galerucinae). INSECT MOLECULAR BIOLOGY 2004; 13:495-518. [PMID: 15373807 DOI: 10.1111/j.0962-1075.2004.00509.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We analysed the secondary structure of two expansion segments (D2, D3) of the 28S rRNA gene from 229 leaf beetles (Coleoptera: Chrysomelidae), the majority of which are in the subfamily Galerucinae. The sequences were compared in a multiple sequence alignment, with secondary structure inferred primarily from the compensatory base changes in the conserved helices of the rRNA molecules. This comparative approach yielded thirty helices comprised of base pairs with positional covariation. Based on these leaf beetle sequences, we report an annotated secondary structural model for the D2 and D3 expansion segments that will prove useful in assigning positional nucleotide homology for phylogeny reconstruction in these and closely related beetle taxa. This predicted structure, consisting of seven major compound helices, is mostly consistent with previously proposed models for the D2 and D3 expansion segments in insects. Despite a lack of conservation in the primary structure of these regions of insect 28S rRNA, the evolution of the secondary structure of these seven major motifs may be informative above the nucleotide level for higher-order phylogeny reconstruction of major insect lineages.
Collapse
Affiliation(s)
- J Gillespie
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | |
Collapse
|
1035
|
Koduvayur SP, Woodson SA. Intracellular folding of the Tetrahymena group I intron depends on exon sequence and promoter choice. RNA (NEW YORK, N.Y.) 2004; 10:1526-32. [PMID: 15337845 PMCID: PMC1370639 DOI: 10.1261/rna.7880404] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Tetrahymena group I intron splices 20 to 50 times faster in Tetrahymena than in vitro, implying that the intron rapidly adopts its active conformation in the cell. The importance of cotranscriptional folding and the contribution of the rRNA exons to the stability of the active pre-RNA structure were investigated by comparing the activity of minimal pre-RNAs expressed in Escherichia coli. Pre-RNAs containing exons derived from E. coli 23 S rRNA were three to four times more active than the wild-type Tetrahymena pre-RNA. E. coli transcripts of the chimeric E. coli pre-RNA were two to eight times more active than were T7 transcripts. However, the effect of cotranscriptional folding depends on exon sequences. Unexpectedly, the unspliced pre-RNA decays more slowly than predicted from the rate of splicing. This observation is best explained by partitioning of transcripts into active and inactive pools. We propose that the active pool splices within a few seconds, whereas the inactive pool is degraded without appreciable splicing.
Collapse
Affiliation(s)
- Sujatha P Koduvayur
- Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, USA
| | | |
Collapse
|
1036
|
Gardner PP, Giegerich R. A comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinformatics 2004; 5:140. [PMID: 15458580 PMCID: PMC526219 DOI: 10.1186/1471-2105-5-140] [Citation(s) in RCA: 260] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Accepted: 09/30/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An increasing number of researchers have released novel RNA structure analysis and prediction algorithms for comparative approaches to structure prediction. Yet, independent benchmarking of these algorithms is rarely performed as is now common practice for protein-folding, gene-finding and multiple-sequence-alignment algorithms. RESULTS Here we evaluate a number of RNA folding algorithms using reliable RNA data-sets and compare their relative performance. CONCLUSIONS We conclude that comparative data can enhance structure prediction but structure-prediction-algorithms vary widely in terms of both sensitivity and selectivity across different lengths and homologies. Furthermore, we outline some directions for future research.
Collapse
Affiliation(s)
- Paul P Gardner
- Department of Evolutionary Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| | - Robert Giegerich
- Faculty of Technology, University of Bielefeld, PO Box 10 01 31, 33501 Bielefeld, Germany
| |
Collapse
|
1037
|
Lim GE, Haygood MG. "Candidatus Endobugula glebosa," a specific bacterial symbiont of the marine bryozoan Bugula simplex. Appl Environ Microbiol 2004; 70:4921-9. [PMID: 15294832 PMCID: PMC492373 DOI: 10.1128/aem.70.8.4921-4929.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bryozoans Bugula neritina and Bugula simplex harbor bacteria in the pallial sinuses of their larvae as seen by electron microscopy. In B. neritina, the bacterial symbiont has been characterized as a gamma-proteobacterium, "Candidatus Endobugula sertula." "Candidatus E. sertula" has been implicated as the source of the bryostatins, polyketides that provide chemical defense to the host and are also being tested for use in human cancer treatments. In this study, the bacterial symbiont in B. simplex larvae was identified by 16S rRNA-targeted PCR and sequencing as a gamma-proteobacterium closely related to and forming a monophyletic group with "Candidatus E. sertula." In a fluorescence in situ hybridization, a 16S ribosomal DNA probe specific to the B. simplex symbiont hybridized to long rod-shaped bacteria in the pallial sinus of a B. simplex larva. The taxonomic status "Candidatus Endobugula glebosa" is proposed for the B. simplex larval symbiont. Degenerate polyketide synthase (PKS) primers amplified a gene fragment from B. simplex that closely matched a PKS gene fragment from the bryostatin PKS cluster. PCR surveys show that the symbiont and this PKS gene fragment are consistently and uniquely associated with B. simplex. Bryostatin activity assays and chemical analyses of B. simplex extracts reveal the presence of compounds similar to bryostatins. Taken together, these findings demonstrate a symbiosis in B. simplex that is similar and evolutionarily related to that in B. neritina.
Collapse
Affiliation(s)
- Grace E Lim
- Scripps Institution of Oceanography, Marine Biology Research Division, 0202, University of California, San Diego, La Jolla, CA 92093-0202, USA
| | | |
Collapse
|
1038
|
Chen G, Znosko BM, Jiao X, Turner DH. Factors Affecting Thermodynamic Stabilities of RNA 3 × 3 Internal Loops. Biochemistry 2004; 43:12865-76. [PMID: 15461459 DOI: 10.1021/bi049168d] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Internal loops in RNA are important for folding and function. The 3 x 3 nucleotide internal loops are the smallest size symmetric loops with a potential noncanonical base pair (middle pair) flanked on both sides by a noncanonical base pair (loop-terminal pair). Thermodynamic and structural insights acquired for 3 x 3 loops should improve approximations for stabilities of 3 x 3 and larger internal loops. Most natural 3 x 3 internal loops are purine rich, which is also true of other internal loops. A series of oligoribonucleotides containing different 3 x 3 internal loops were studied by UV melting and imino proton NMR. Both loop-terminal and middle pairs contribute to the thermodynamic stabilities of 3 x 3 loops. Extra stabilization of -1.2 kcal/mol was found for a GA middle pair when flanked by at least one non-pyrimidine-pyrimidine loop-terminal pair. A penalty of approximately 1 kcal/mol was found for loops with a single loop-terminal GA pair that has a U 3' to the G of the GA pair. A revised model for predicting stabilities of 3 x 3 loops is derived by multiple linear regression.
Collapse
Affiliation(s)
- Gang Chen
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | | | | | | |
Collapse
|
1039
|
Machouart M, Lacroix C, Bui H, Feuilhade de Chauvin M, Derouin F, Lorenzo F. Polymorphisms and intronic structures in the 18S subunit ribosomal RNA gene of the fungiScytalidium dimidiatumandScytalidium hyalinum. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09789.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
1040
|
Reeb V, Lutzoni F, Roux C. Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. Mol Phylogenet Evol 2004; 32:1036-60. [PMID: 15288074 DOI: 10.1016/j.ympev.2004.04.012] [Citation(s) in RCA: 276] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 04/09/2004] [Indexed: 10/26/2022]
Abstract
Despite the recent progress in molecular phylogenetics, many of the deepest relationships among the main lineages of the largest fungal phylum, Ascomycota, remain unresolved. To increase both resolution and support on a large-scale phylogeny of lichenized and non-lichenized ascomycetes, we combined the protein coding-gene RPB2 with the traditionally used nuclear ribosomal genes SSU and LSU. Our analyses resulted in the naming of the new subclasses Acarosporomycetidae and Ostropomycetidae, and the new class Lichinomycetes, as well as the establishment of the phylogenetic placement and novel circumscription of the lichen-forming fungi family Acarosporaceae. The delimitation of this family has been problematic over the past century, because its main diagnostic feature, true polyspory (numerous spores issued from multiple post-meiosis mitoses) with over 100 spores per ascus, is probably not restricted to the Acarosporaceae. This observation was confirmed by our reconstruction of the origin and evolution of this form of true polyspory using maximum likelihood as the optimality criterion. The various phylogenetic analyses carried out on our data sets allowed us to conclude that: (1) the inclusion of phylogenetic signal from ambiguously aligned regions into the maximum parsimony analyses proved advantageous in reconstructing phylogeny; however, when more data become available, Bayesian analysis using different models of evolution is likely to be more efficient; (2) neighbor-joining bootstrap proportions seem to be more appropriate in detecting topological conflict between data partitions of large-scale phylogenies than posterior probabilities; and (3) Bayesian bootstrap proportion provides a compromise between posterior probability outcomes (i.e., higher accuracy, but with a higher number of significantly supported wrong internodes) vs. maximum likelihood bootstrap proportion outcomes (i.e., lower accuracy, with a lower number of significantly supported wrong internodes).
Collapse
Affiliation(s)
- Valérie Reeb
- Department of Biology, Duke University, Durham, NC 27708-0338, USA.
| | | | | |
Collapse
|
1041
|
Davidov Y, Jurkevitch E. Diversity and evolution of Bdellovibrio-and-like organisms (BALOs), reclassification of Bacteriovorax starrii as Peredibacter starrii gen. nov., comb. nov., and description of the Bacteriovorax–Peredibacter clade as Bacteriovoracaceae fam. nov. Int J Syst Evol Microbiol 2004; 54:1439-1452. [PMID: 15388693 DOI: 10.1099/ijs.0.02978-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A phylogenetic analysis of Bdellovibrio-and-like organisms (BALOs) was performed. It was based on the characterization of 71 strains and on all consequent 16S rRNA gene sequences available in databases, including clones identified by data-mining, totalling 120 strains from very varied biotopes. Amplified rDNA restriction analysis (ARDRA) accurately reflected the diversity and phylogenetic affiliation of BALOs, thereby providing an efficient screening tool. Extensive phylogenetic analysis of the 16S rRNA gene sequences revealed great diversity within the Bdellovibrio (>14 % divergence) and Bacteriovorax (>16 %) clades, which comprised nine and eight clusters, respectively, exhibiting more than 3 % intra-cluster divergence. The clades diverged by more than 20 %. The analysis of conserved 16S rRNA secondary structures showed that Bdellovibrio contained motifs atypical of the δ-Proteobacteria, suggesting that it is ancestral to Bacteriovorax. While none of the Bdellovibrio strains were of marine origin, Bacteriovorax included separate soil/freshwater and marine-specific groups. On the basis of their extensive diversity and the large distance separating the groups, it is proposed that Bacteriovorax starrii be placed into a new genus, Peredibacter gen. nov., with Peredibacter starrii A3.12T (=ATCC 15145T=NCCB 72004T) as its type strain. Also proposed is a redefinition of the Bdellovibrio and the Bacteriovorax–Peredibacter lineages as two different families, i.e. ‘Bdellovibrionaceae’ and a new family, Bacteriovoracaceae. Also, a re-evaluation of oligonucleotides targeting BALOs is presented, and the implications of the large diversity of these organisms and of their distribution in very different environments are discussed.
Collapse
MESH Headings
- Bdellovibrio/classification
- Bdellovibrio/genetics
- Biological Evolution
- Cluster Analysis
- DNA Fingerprinting
- DNA, Bacterial/chemistry
- DNA, Bacterial/isolation & purification
- DNA, Ribosomal/analysis
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/isolation & purification
- Deltaproteobacteria/classification
- Deltaproteobacteria/genetics
- Genes, Bacterial
- Genes, rRNA
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phylogeny
- Polymorphism, Restriction Fragment Length
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Soil Microbiology
- Water Microbiology
Collapse
Affiliation(s)
- Yaacov Davidov
- Department of Plant Pathology and Microbiology, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| |
Collapse
|
1042
|
Meyer IM, Miklós I. Co-transcriptional folding is encoded within RNA genes. BMC Mol Biol 2004; 5:10. [PMID: 15298702 PMCID: PMC514895 DOI: 10.1186/1471-2199-5-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Accepted: 08/06/2004] [Indexed: 11/10/2022] Open
Abstract
Background Most of the existing RNA structure prediction programs fold a completely synthesized RNA molecule. However, within the cell, RNA molecules emerge sequentially during the directed process of transcription. Dedicated experiments with individual RNA molecules have shown that RNA folds while it is being transcribed and that its correct folding can also depend on the proper speed of transcription. Methods The main aim of this work is to study if and how co-transcriptional folding is encoded within the primary and secondary structure of RNA genes. In order to achieve this, we study the known primary and secondary structures of a comprehensive data set of 361 RNA genes as well as a set of 48 RNA sequences that are known to differ from the originally transcribed sequence units. We detect co-transcriptional folding by defining two measures of directedness which quantify the extend of asymmetry between alternative helices that lie 5' and those that lie 3' of the known helices with which they compete. Results We show with statistical significance that co-transcriptional folding strongly influences RNA sequences in two ways: (1) alternative helices that would compete with the formation of the functional structure during co-transcriptional folding are suppressed and (2) the formation of transient structures which may serve as guidelines for the co-transcriptional folding pathway is encouraged. Conclusions These findings have a number of implications for RNA secondary structure prediction methods and the detection of RNA genes.
Collapse
MESH Headings
- Algorithms
- Base Pairing
- DNA, Bacterial/genetics
- DNA, Ribosomal/genetics
- Genes
- Hydrogen Bonding
- Introns/genetics
- Models, Genetic
- Nucleic Acid Conformation
- RNA/genetics
- RNA/ultrastructure
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/ultrastructure
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/ultrastructure
- Transcription, Genetic
Collapse
Affiliation(s)
- Irmtraud M Meyer
- Oxford Centre for Gene Function, University of Oxford, South Parks Road, Oxford OX1 3QB, UK
| | - István Miklós
- Eötvös University and Hungarian Academic of Science, Theoretical Biology and Ecology Group, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary
| |
Collapse
|
1043
|
Doshi KJ, Cannone JJ, Cobaugh CW, Gutell RR. Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction. BMC Bioinformatics 2004; 5:105. [PMID: 15296519 PMCID: PMC514602 DOI: 10.1186/1471-2105-5-105] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2004] [Accepted: 08/05/2004] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND A detailed understanding of an RNA's correct secondary and tertiary structure is crucial to understanding its function and mechanism in the cell. Free energy minimization with energy parameters based on the nearest-neighbor model and comparative analysis are the primary methods for predicting an RNA's secondary structure from its sequence. Version 3.1 of Mfold has been available since 1999. This version contains an expanded sequence dependence of energy parameters and the ability to incorporate coaxial stacking into free energy calculations. We test Mfold 3.1 by performing the largest and most phylogenetically diverse comparison of rRNA and tRNA structures predicted by comparative analysis and Mfold, and we use the results of our tests on 16S and 23S rRNA sequences to assess the improvement between Mfold 2.3 and Mfold 3.1. RESULTS The average prediction accuracy for a 16S or 23S rRNA sequence with Mfold 3.1 is 41%, while the prediction accuracies for the majority of 16S and 23S rRNA structures tested are between 20% and 60%, with some having less than 20% prediction accuracy. The average prediction accuracy was 71% for 5S rRNA and 69% for tRNA. The majority of the 5S rRNA and tRNA sequences have prediction accuracies greater than 60%. The prediction accuracy of 16S rRNA base-pairs decreases exponentially as the number of nucleotides intervening between the 5' and 3' halves of the base-pair increases. CONCLUSION Our analysis indicates that the current set of nearest-neighbor energy parameters in conjunction with the Mfold folding algorithm are unable to consistently and reliably predict an RNA's correct secondary structure. For 16S or 23S rRNA structure prediction, Mfold 3.1 offers little improvement over Mfold 2.3. However, the nearest-neighbor energy parameters do work well for shorter RNA sequences such as tRNA or 5S rRNA, or for larger rRNAs when the contact distance between the base-pairs is less than 100 nucleotides.
Collapse
MESH Headings
- Base Sequence
- Computational Biology/methods
- Computational Biology/standards
- Entropy
- Models, Genetic
- Nucleic Acid Conformation
- Phylogeny
- Predictive Value of Tests
- RNA/chemistry
- RNA, Archaeal/chemistry
- RNA, Bacterial/chemistry
- RNA, Chloroplast/chemistry
- RNA, Mitochondrial
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 5S/chemistry
- Thermodynamics
Collapse
Affiliation(s)
- Kishore J Doshi
- The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A4800, Austin, TX 78712-0159, USA
| | - Jamie J Cannone
- The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A4800, Austin, TX 78712-0159, USA
| | - Christian W Cobaugh
- The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A4800, Austin, TX 78712-0159, USA
| | - Robin R Gutell
- The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A4800, Austin, TX 78712-0159, USA
| |
Collapse
|
1044
|
Mathews DH. Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. RNA (NEW YORK, N.Y.) 2004; 10:1178-90. [PMID: 15272118 PMCID: PMC1370608 DOI: 10.1261/rna.7650904] [Citation(s) in RCA: 261] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A partition function calculation for RNA secondary structure is presented that uses a current set of nearest neighbor parameters for conformational free energy at 37 degrees C, including coaxial stacking. For a diverse database of RNA sequences, base pairs in the predicted minimum free energy structure that are predicted by the partition function to have high base pairing probability have a significantly higher positive predictive value for known base pairs. For example, the average positive predictive value, 65.8%, is increased to 91.0% when only base pairs with probability of 0.99 or above are considered. The quality of base pair predictions can also be increased by the addition of experimentally determined constraints, including enzymatic cleavage, flavin mono-nucleotide cleavage, and chemical modification. Predicted secondary structures can be color annotated to demonstrate pairs with high probability that are therefore well determined as compared to base pairs with lower probability of pairing.
Collapse
Affiliation(s)
- David H Mathews
- Center for Human Genetics and Molecular Pediatric Disease, Aab Institute of Biomedical Sciences, University of Rochester Medical Center, 601 Elmwood Avenue, Box 703, NY 14642, USA.
| |
Collapse
|
1045
|
Hewitt EA, Müller KM, Cannone J, Hogan DJ, Gutell R, Prescott DM. Phylogenetic relationships among 28 spirotrichous ciliates documented by rDNA. Mol Phylogenet Evol 2004; 29:258-67. [PMID: 13678681 DOI: 10.1016/s1055-7903(03)00097-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The contiguous sequence of the SSU rDNA, ITS 1, 5.8S, ITS 2, and approximately 1370 bp at the 5(') end of the LSU rDNA was determined in 25 stichotrichs, one oligotrich, and two hypotrichs. Maximum parsimony, neighbor-joining, and quartet-puzzling analyses were used to construct individual phylogenetic trees for SSU rDNA, for LSU rDNA, and ITS 1+5.8S+ITS 2, as well as for all these components combined. All trees were similar, with the greatest resolution obtained with the combined components. Phylogenetic relationships were largely consistent with classical taxonomy, with notable disagreements. DNA sequences indicate that Oxytricha granulifera and Oxytricha longa are rather distantly related. The oligotrich, Halteria grandinella, is placed well within the order Stichotrichida. Uroleptus pisces and Uroleptus gallina probably belong to different genera. Holosticha polystylata (family Holostichidae) and Urostyla grandis (family Urostylidae) are rather closely related. These rDNA sequence analyses imply the need for some modifications of classical taxonomic schemes.
Collapse
Affiliation(s)
- Elizabeth A Hewitt
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | | | | | | | | | | |
Collapse
|
1046
|
Hesslein AE, Katunin VI, Beringer M, Kosek AB, Rodnina MV, Strobel SA. Exploration of the conserved A+C wobble pair within the ribosomal peptidyl transferase center using affinity purified mutant ribosomes. Nucleic Acids Res 2004; 32:3760-70. [PMID: 15256541 PMCID: PMC484164 DOI: 10.1093/nar/gkh672] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Protein synthesis in the ribosome's large subunit occurs within an active site comprised exclusively of RNA. Mutational studies of rRNA active site residues could provide valuable insight into the mechanism of peptide bond formation, but many of these mutations cause a dominant lethal phenotype, which prevents production of the homogeneous mutant ribosomes needed for analysis. We report a general method to affinity purify in vivo assembled 50S ribosomal subunits containing lethal active site mutations via a U1A protein-binding tag inserted onto the 23S rRNA. The expected pH-dependent formation of the A2450+C2063 wobble pair has made it a potential candidate for the pH-dependent conformational change that occurs within the ribosomal active site. Using this approach, the active site A2450+C2063 pair was mutated to the isosteric, but pH-independent, G2450*U2063 wobble pair, and 50S subunits containing the mutations were affinity purified. The G*U mutation caused the adjacent A2451 to become hyper-reactive to dimethylsulfate (DMS) modification in a pH-independent manner. Furthermore, the G*U mutation decreased both the rate of peptide bond formation and the affinity of the post-translocation complex for puromycin. The reaction rate (k(pep)) was reduced approximately 200-fold for both puromycin and the natural aminoacyl-tRNA A-site substrate. The mutations also substantially altered the pH dependence of the reaction. Mutation of this base pair has significant deleterious effects upon peptidyl transferase activity, but because G*U mutation disrupts several tertiary contacts with the wobble pair, the assignment of A2450 as the active site residue with the neutral pK(a) important for the peptidyl transferase reaction cannot be fully supported or excluded based upon these data.
Collapse
Affiliation(s)
- Ashley Eversole Hesslein
- Yale University, Department of Molecular Biophysics and Biochemistry, 260 Whitney Avenue, New Haven, CT 06520 8114, USA
| | | | | | | | | | | |
Collapse
|
1047
|
O'Farrell HC, Scarsdale JN, Rife JP. Crystal structure of KsgA, a universally conserved rRNA adenine dimethyltransferase in Escherichia coli. J Mol Biol 2004; 339:337-53. [PMID: 15136037 DOI: 10.1016/j.jmb.2004.02.068] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Revised: 02/20/2004] [Accepted: 02/23/2004] [Indexed: 11/25/2022]
Abstract
The bacterial enzyme KsgA catalyzes the transfer of a total of four methyl groups from S-adenosyl-l-methionine (S-AdoMet) to two adjacent adenosine bases in 16S rRNA. This enzyme and the resulting modified adenosine bases appear to be conserved in all species of eubacteria, eukaryotes, and archaebacteria, and in eukaryotic organelles. Bacterial resistance to the aminoglycoside antibiotic kasugamycin involves inactivation of KsgA and resulting loss of the dimethylations, with modest consequences to the overall fitness of the organism. In contrast, the yeast ortholog, Dim1, is essential. In yeast, and presumably in other eukaryotes, the enzyme performs a vital role in pre-rRNA processing in addition to its methylating activity. Another ortholog has been discovered recently, h-mtTFB in human mitochondria, which has a second function; this enzyme is a nuclear-encoded mitochondrial transcription factor. The KsgA enzymes are homologous to another family of RNA methyltransferases, the Erm enzymes, which methylate a single adenosine base in 23S rRNA and confer resistance to the MLS-B group of antibiotics. Despite their sequence similarity, the two enzyme families have strikingly different levels of regulation that remain to be elucidated. We have crystallized KsgA from Escherichia coli and solved its structure to a resolution of 2.1A. The structure bears a strong similarity to the crystal structure of ErmC' from Bacillus stearothermophilus and a lesser similarity to sc-mtTFB, the Saccharomyces cerevisiae version of h-mtTFB. Comparison of the three crystal structures and further study of the KsgA protein will provide insight into this interesting group of enzymes.
Collapse
Affiliation(s)
- Heather C O'Farrell
- Department of Biochemistry, Virginia Commonwealth University, Richmond VA 23298-0133, USA
| | | | | |
Collapse
|
1048
|
Fera D, Kim N, Shiffeldrim N, Zorn J, Laserson U, Gan HH, Schlick T. RAG: RNA-As-Graphs web resource. BMC Bioinformatics 2004; 5:88. [PMID: 15238163 PMCID: PMC471545 DOI: 10.1186/1471-2105-5-88] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Accepted: 07/06/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The proliferation of structural and functional studies of RNA has revealed an increasing range of RNA's structural repertoire. Toward the objective of systematic cataloguing of RNA's structural repertoire, we have recently described the basis of a graphical approach for organizing RNA secondary structures, including existing and hypothetical motifs. DESCRIPTION We now present an RNA motif database based on graph theory, termed RAG for RNA-As-Graphs, to catalogue and rank all theoretically possible, including existing, candidate and hypothetical, RNA secondary motifs. The candidate motifs are predicted using a clustering algorithm that classifies RNA graphs into RNA-like and non-RNA groups. All RNA motifs are filed according to their graph vertex number (RNA length) and ranked by topological complexity. CONCLUSIONS RAG's quantitative cataloguing allows facile retrieval of all classes of RNA secondary motifs, assists identification of structural and functional properties of user-supplied RNA sequences, and helps stimulate the search for novel RNAs based on predicted candidate motifs.
Collapse
Affiliation(s)
- Daniela Fera
- Department of Chemistry, New York University, 100 Washington Square East, Room 1001, New York, NY 10003, USA
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| | - Namhee Kim
- Department of Chemistry, New York University, 100 Washington Square East, Room 1001, New York, NY 10003, USA
| | - Nahum Shiffeldrim
- Department of Chemistry, New York University, 100 Washington Square East, Room 1001, New York, NY 10003, USA
| | - Julie Zorn
- Department of Chemistry, New York University, 100 Washington Square East, Room 1001, New York, NY 10003, USA
| | - Uri Laserson
- Department of Chemistry, New York University, 100 Washington Square East, Room 1001, New York, NY 10003, USA
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| | - Hin Hark Gan
- Department of Chemistry, New York University, 100 Washington Square East, Room 1001, New York, NY 10003, USA
| | - Tamar Schlick
- Department of Chemistry, New York University, 100 Washington Square East, Room 1001, New York, NY 10003, USA
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| |
Collapse
|
1049
|
Klepac-Ceraj V, Bahr M, Crump BC, Teske AP, Hobbie JE, Polz MF. High overall diversity and dominance of microdiverse relationships in salt marsh sulphate-reducing bacteria. Environ Microbiol 2004; 6:686-98. [PMID: 15186347 DOI: 10.1111/j.1462-2920.2004.00600.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biogeochemistry of North Atlantic salt marshes is characterized by the interplay between the marsh grass Spartina and sulphate-reducing bacteria (SRB), which mineralize the diverse carbon substrates provided by the plants. It was hypothesized that SRB populations display high diversity within the sediment as a result of the rich spatial and chemical structuring provided by Spartina roots. A 2000-member 16S rRNA gene library, prepared with delta-proteobacterial SRB-selective primers, was analysed for diversity patterns and phylogenetic relationships. Sequence clustering detected 348 16S rRNA sequence types (ribotypes) related to delta-proteobacterial SRB, and it was estimated that a total of 623 ribotypes were present in the library. Similarity clustering showed that approximately 46% of these sequences fell into groups with < 1% divergence; thus, microheterogeneity accounts for a large portion of the observable genetic diversity. Phylogenetic comparison revealed that sequences most frequently recovered were associated with the Desulfobacteriaceae and Desulfobulbaceae families. Sequences from the Desulfovibrionaceae family were also observed, but were infrequent. Over 80% of the delta-proteobacterial ribotypes clustered with cultured representatives of Desulfosarcina, Desulfococcus and Desulfobacterium genera, suggesting that complete oxidizers with high substrate versatility dominate. The large-scale approach demonstrates the co-existence of numerous SRB-like sequences and reveals an unexpected amount of microdiversity.
Collapse
Affiliation(s)
- Vanja Klepac-Ceraj
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Bldg 48-421, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
1050
|
Haugen P, Runge HJ, Bhattacharya D. Long-term evolution of the S788 fungal nuclear small subunit rRNA group I introns. RNA (NEW YORK, N.Y.) 2004; 10:1084-96. [PMID: 15208444 PMCID: PMC1370599 DOI: 10.1261/rna.5202704] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
More than 1000 group I introns have been identified in fungal rDNA. Little is known, however, of the splicing and secondary structure evolution of these ribozymes. Here, we use a combination of comparative and biochemical methods to address the evolution and splicing of a vertically inherited group I intron found at position 788 in the fungal small subunit (S) rRNA. The ancestral state of the S788 intron contains a highly conserved core and an extended P5 domain typical of IC1 introns. In contrast, the more derived introns have lost most of P5, and have an accelerated divergence rate within the core region with three functionally important substitutions that unambiguously separate them from the ancestral pool. Of 14 S788 group I introns that were tested for splicing, five, all of the ancestral type, were able to self-splice and produced intron RNA circles in vitro. The more derived S788 introns did not self-splice, and potentially rely on fungal-specific factors to facilitate splicing. In summary, we demonstrate one possible fate of vertically inherited group I introns, the loss of secondary structure elements, lessened selective constraints in the intron core, and ultimately, dependence on host-mediated splicing.
Collapse
Affiliation(s)
- Peik Haugen
- Department of Biological Sciences and Center for Comparative Genomics, University of Iowa, 210 Biology Building, Iowa City, IA 52242-1324, USA
| | | | | |
Collapse
|