1051
|
Kritsiligkou P, Rand JD, Weids AJ, Wang X, Kershaw CJ, Grant CM. Endoplasmic reticulum (ER) stress-induced reactive oxygen species (ROS) are detrimental for the fitness of a thioredoxin reductase mutant. J Biol Chem 2018; 293:11984-11995. [PMID: 29871930 DOI: 10.1074/jbc.ra118.001824] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/16/2018] [Indexed: 12/16/2022] Open
Abstract
The unfolded protein response (UPR) is constitutively active in yeast thioredoxin reductase mutants, suggesting a link between cytoplasmic thiol redox control and endoplasmic reticulum (ER) oxidative protein folding. The unique oxidative environment of the ER lumen requires tight regulatory control, and we show that the active UPR depends on the presence of oxidized thioredoxins rather than arising because of a loss of thioredoxin function. Preventing activation of the UPR by deletion of HAC1, encoding the UPR transcription factor, rescues a number of thioredoxin reductase mutant phenotypes, including slow growth, shortened longevity, and oxidation of the cytoplasmic GSH pool. This is because the constitutive UPR in a thioredoxin reductase mutant results in the generation of hydrogen peroxide. The oxidation of thioredoxins in a thioredoxin reductase mutant requires aerobic metabolism and the presence of the Tsa1 and Tsa2 peroxiredoxins, indicating that a complete cytoplasmic thioredoxin system is crucial for maintaining ER redox homeostasis.
Collapse
Affiliation(s)
- Paraskevi Kritsiligkou
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Jonathan D Rand
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Alan J Weids
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Ximeng Wang
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Chris J Kershaw
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Chris M Grant
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom.
| |
Collapse
|
1052
|
Shi X, Bai H, Zhao M, Li X, Sun X, Jiang H, Fu A. Treatment of acetaminophen-induced liver injury with exogenous mitochondria in mice. Transl Res 2018; 196:31-41. [PMID: 29548626 DOI: 10.1016/j.trsl.2018.02.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 01/07/2023]
Abstract
Drug-induced liver injury shares a common feature of mitochondrial dysfunction. Mitochondrial therapy (mitotherapy), which replaces malfunctional mitochondria with functional exogenous mitochondria, may be a fundamental approach for treating drug-mediated hepatotoxicity. Here, we suggested that mitochondria isolated from human hepatoma cell could be used to treat acetaminophen (APAP)-induced liver injury in mice. When the mitochondria were added into the cell media, they could enter primarily cultured mouse hepatocyte. When the mitochondria were intravenously injected into mice, they distribute in several tissues, including liver. In the model mice of APAP-induced liver injury, mitochondria treatment increased hepatocyte energy supply, reduced oxidation stress, and consequently ameliorated tissue injury. The study suggests that exogenous mitochondria could be an effective therapeutic strategy in treating APAP-induced liver injury.
Collapse
Affiliation(s)
- Xianxun Shi
- School of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Huiyuan Bai
- School of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Ming Zhao
- School of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xiaorong Li
- School of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xianchao Sun
- School of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Hongbo Jiang
- School of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Ailing Fu
- School of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
1053
|
Wang Y, Li H, Li T, He H, Du X, Zhang X, Kong J. Cytoprotective effect of Streptococcus thermophilus against oxidative stress mediated by a novel peroxidase (EfeB). J Dairy Sci 2018; 101:6955-6963. [PMID: 29803415 DOI: 10.3168/jds.2018-14601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/18/2018] [Indexed: 12/25/2022]
Abstract
Streptococcus thermophilus is one of the most important starter species used in the dairy industry and exhibits several beneficial properties for the hosts. However, knowledge of the mechanism of its beneficial effect is still limited. The objective of this study was to investigate the cytoprotective effect of S. thermophilus CGMCC 7.179 with a novel peroxidase (EfeB) against oxidative stress in human intestinal epithelial cells, HT-29. Previously, we identified EfeB in S. thermophilus CGMCC 7.179, which could provide protection when growing at aerobic conditions. Here, we found that, when exposed to 15 mM H2O2, the cell viability of the efeB mutant (ST1314) was much lower than that of strain CGMCC 7.179, and the 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity of strain ST1314 decreased by 15%. When co-incubated with HT-29 cells, strain CGMCC 7.179 stimulated the enhancement of the major antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, and catalase) in HT-29 cells under 2 mM H2O2-induced oxidative stress, whereas the active decrease of those antioxidant enzymes was observed in strain ST1314. In addition, the intracellular reactive oxygen species content in HT-29 cells co-incubated with strain CGMCC 7.179 was lower than that with strain ST1314 under the same oxidative stress. Furthermore, the protein content of nuclear factor erythroid 2-related factor 2 (Nrf2) in HT-29 cells following strain CGMCC 7.179 treatment was 1.4-fold higher than that with strain ST1314 treatment, and the increased transcription levels of Nrf2-related antioxidant enzyme genes were also observed in strain CGMCC 7.179 cells. All of these results demonstrated that S. thermophilus CGMCC 7.179 enhanced cellular antioxidant responses and endowed host cells with protective effects against oxidative stress mediated by the peroxidase EfeB.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, P. R. China 250100
| | - Honghong Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, P. R. China 250100
| | - Tiejun Li
- Health Science Exchange and Service Center of Jinan, Jinan, P. R. China 250100
| | - Huiying He
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, P. R. China 250100
| | - Xue Du
- Health Science Exchange and Service Center of Jinan, Jinan, P. R. China 250100
| | - Xiaowei Zhang
- Health Science Exchange and Service Center of Jinan, Jinan, P. R. China 250100
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, P. R. China 250100.
| |
Collapse
|
1054
|
Leitsch D, Williams CF, Hrdý I. Redox Pathways as Drug Targets in Microaerophilic Parasites. Trends Parasitol 2018; 34:576-589. [PMID: 29807758 DOI: 10.1016/j.pt.2018.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 01/06/2023]
Abstract
The microaerophilic parasites Entamoeba histolytica, Trichomonas vaginalis, and Giardia lamblia jointly cause hundreds of millions of infections in humans every year. Other microaerophilic parasites such as Tritrichomonas foetus and Spironucleus spp. pose a relevant health problem in veterinary medicine. Unfortunately, vaccines against these pathogens are unavailable, but their microaerophilic lifestyle opens opportunities for specifically developed chemotherapeutics. In particular, their high sensitivity towards oxygen can be exploited by targeting redox enzymes. This review focusses on the redox pathways of microaerophilic parasites and on drugs, either already in use or currently in the state of development, which target these pathways.
Collapse
Affiliation(s)
- David Leitsch
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Austria.
| | - Catrin F Williams
- School of Engineering, Cardiff University, Cardiff, Wales, United Kingdom
| | - Ivan Hrdý
- Department of Parasitology, Charles University, Faculty of Science, Prague, Czech Republic
| |
Collapse
|
1055
|
Patel KA, Kolluri T, Jain S, Roy I. Designing aptamers which respond to intracellular oxidative stress and inhibit aggregation of mutant huntingtin. Free Radic Biol Med 2018; 120:311-316. [PMID: 29609019 DOI: 10.1016/j.freeradbiomed.2018.03.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022]
Abstract
Targeted expression of a therapeutic agent is a major bottleneck in designing a drug delivery system. Protein aggregation and elevated oxidative stress are associated with the onset of many neurodegenerative disorders, including Huntington's disease (HD). An oxidative stress-inducible promoter, i.e. Thioredoxin 2, was employed to design a sensor for protein aggregation. RNA aptamers specific for mutant huntingtin were expressed only in cells where aggregation of mutant huntingtin occurred. A nine-fold increase in RNA expression was seen when aptamer sequences were cloned under the Trx2 promoter. Expression of aptamer resulted in reduced protein aggregation and decreased oxidative stress, which, in turn, reduced the expression of aptamers by two-fold. Reduction in aggregation led to increased cell survival. The aptamers were not expressed in cells expressing wild-type huntingtin in the soluble form. This rational and simple design will allow the use of this construct for the targeted expression of other therapeutic nucleic acid molecules as well.
Collapse
Affiliation(s)
- Kinjal A Patel
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, SAS Nagar, Punjab 160062, India
| | - Thulasi Kolluri
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, SAS Nagar, Punjab 160062, India
| | - Swati Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, SAS Nagar, Punjab 160062, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, SAS Nagar, Punjab 160062, India.
| |
Collapse
|
1056
|
Rashida Gnanaprakasam JN, Wu R, Wang R. Metabolic Reprogramming in Modulating T Cell Reactive Oxygen Species Generation and Antioxidant Capacity. Front Immunol 2018; 9:1075. [PMID: 29868027 PMCID: PMC5964129 DOI: 10.3389/fimmu.2018.01075] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 04/30/2018] [Indexed: 12/28/2022] Open
Abstract
A robust adaptive immune response requires a phase of proliferative burst which is followed by the polarization of T cells into relevant functional subsets. Both processes are associated with dramatically increased bioenergetics demands, biosynthetic demands, and redox demands. T cells meet these demands by rewiring their central metabolic pathways that generate energy and biosynthetic precursors by catabolizing and oxidizing nutrients into carbon dioxide. Simultaneously, oxidative metabolism also produces reactive oxygen species (ROS), which are tightly controlled by antioxidants and plays important role in regulating T cell functions. In this review, we discuss how metabolic rewiring during T cell activation influence ROS production and antioxidant capacity.
Collapse
Affiliation(s)
- Josephin N Rashida Gnanaprakasam
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, The Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, United States
| | - Ruohan Wu
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, The Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, United States
| | - Ruoning Wang
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, The Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, United States
| |
Collapse
|
1057
|
Poirier I, Pallud M, Kuhn L, Hammann P, Demortière A, Jamali A, Chicher J, Caplat C, Gallon RK, Bertrand M. Toxicological effects of CdSe nanocrystals on the marine diatom Phaeodactylum tricornutum: The first mass spectrometry-based proteomic approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 152:78-90. [PMID: 29407785 DOI: 10.1016/j.ecoenv.2018.01.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 06/07/2023]
Abstract
UNLABELLED In the marine environment, benthic diatoms from estuarine and coastal sediments are among the first targets of nanoparticle pollution whose potential toxicity on marine organisms is still largely unknown. It is therefore relevant to improve our knowledge of interactions between these new pollutants and microalgae, the key players in the control of marine resources. In this study, the response of P. tricornutum to CdSe nanocrystals (CdSe NPs) of 5 nm (NP5) and 12 nm (NP12) in diameter was evaluated through microscopic, physiological, biochemical and proteomic approaches. NP5 and NP12 affected cell growth but oxygen production was only slightly decreased by NP5 after 1-d incubation time. In our experimental conditions, a high CdSe NP dissolution was observed during the first day of culture, leading to Cd bioaccumulation and oxidative stress, particularly with NP12. However, after a 7-day incubation time, proteomic analysis highlighted that P. tricornutum responded to CdSe NP toxicity by regulating numerous proteins involved in protection against oxidative stress, cellular redox homeostasis, Ca2+ regulation and signalling, S-nitrosylation and S-glutathionylation processes and cell damage repair. These proteome changes allowed algae cells to regulate their intracellular ROS level in contaminated cultures. P. tricornutum was also capable to control its intracellular Cd concentration at a sufficiently low level to preserve its growth. To our knowledge, this is the first work allowing the identification of proteins differentially expressed by P. tricornutum subjected to NPs and thus the understanding of some molecular pathways involved in its cellular response to nanoparticles. SIGNIFICANCE The microalgae play a key role in the control of marine resources. Moreover, they produce 50% of the atmospheric oxygen. CdSe NPs are extensively used in the industry of renewable energies and it is regrettably expected that these pollutants will sometime soon appear in the marine environment through surface runoff, urban effluents and rivers. Since estuarine and coastal sediments concentrate pollutants, benthic microalgae which live in superficial sediments will be among the first targets of nanoparticle pollution. Thus, it is relevant to improve our knowledge of interactions between diatoms and nanoparticles. Proteomics is a powerful tool for understanding the molecular mechanisms triggered by nanoparticle exposure, and our study is the first one to use this tool to identify proteins differentially expressed by P. tricornutum subjected to CdSe nanocrystals. This work is fundamental to improve our knowledge about the defence mechanisms developed by algae cells to counteract damage caused by CdSe NPs.
Collapse
Affiliation(s)
- Isabelle Poirier
- Institut National des Sciences et Techniques de la Mer, Conservatoire National des Arts et Métiers, 50103 Cherbourg en Cotentin Cedex, France; Laboratoire Universitaire des Sciences Appliquées de Cherbourg, EA4253, Normandie Université, UNICAEN, 50130 Cherbourg en Cotentin, France.
| | - Marie Pallud
- Institut National des Sciences et Techniques de la Mer, Conservatoire National des Arts et Métiers, 50103 Cherbourg en Cotentin Cedex, France; IFREMER, LEAD NC, Equipe Ecophysiologie Station aquacole de Saint Vincent, Boulouparis, 98897 Nouvelle Calédonie Cedex, France.
| | - Lauriane Kuhn
- Plateforme Protéomique Strasbourg Esplanade, CNRS FRC 1589, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg Cedex, France.
| | - Philippe Hammann
- Plateforme Protéomique Strasbourg Esplanade, CNRS FRC 1589, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg Cedex, France.
| | - Arnaud Demortière
- Laboratoire de Réactivité et Chimie des Solides, CNRS UMR 7314, Université de Picardie Jules Verne, 80039 Amiens Cedex 1, France; Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR 3459, 80039 Amiens Cedex 1, France; Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, United States.
| | - Arash Jamali
- Laboratoire de Réactivité et Chimie des Solides, CNRS UMR 7314, Université de Picardie Jules Verne, 80039 Amiens Cedex 1, France.
| | - Johana Chicher
- Plateforme Protéomique Strasbourg Esplanade, CNRS FRC 1589, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg Cedex, France.
| | - Christelle Caplat
- UMR BOREA, UCBN, MNHN, UPMC, CNRS-7208, IRD-207, Institut de Biologie Fondamentale et Appliquée, Normandie Université, UNICAEN, 14032 Caen Cedex 5, France.
| | - Régis Kevin Gallon
- Institut National des Sciences et Techniques de la Mer, Conservatoire National des Arts et Métiers, 50103 Cherbourg en Cotentin Cedex, France; Laboratoire Universitaire des Sciences Appliquées de Cherbourg, EA4253, Normandie Université, UNICAEN, 50130 Cherbourg en Cotentin, France.
| | - Martine Bertrand
- Institut National des Sciences et Techniques de la Mer, Conservatoire National des Arts et Métiers, 50103 Cherbourg en Cotentin Cedex, France; Laboratoire Universitaire des Sciences Appliquées de Cherbourg, EA4253, Normandie Université, UNICAEN, 50130 Cherbourg en Cotentin, France.
| |
Collapse
|
1058
|
Park HJ, Shim HS, Lee S, Hahm DH, Lee H, Oh CT, Han HJ, Ji HJ, Shim I. Anti-stress effects of human placenta extract: possible involvement of the oxidative stress system in rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:149. [PMID: 29739458 PMCID: PMC5941529 DOI: 10.1186/s12906-018-2193-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 03/29/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Human placenta hydrolysate (hPH) has been utilized to improve menopausal, fatigue, liver function. Its high concentration of bioactive substances is known to produce including antioxidant, anti-inflammatory and anti-nociceptive activities. However, its mechanisms of stress-induced depression remain unknown. METHODS The present study examined the effect of hPH on stress-induced depressive behaviors and biochemical parameters in rats. hPH (0.02 ml, 0.2 ml or 1 ml/rat) was injected intravenously 30 min before the daily stress session in male Sprague-Dawley rats exposed to repeated immobilization stress (4 h/day for 7 days). The depressive-like behaviors of all groups were measured by elevated plus maze (EPM) and forced swimming test (FST). After the behavior tests, brain samples of all groups were collected for the analysis of glutathione peroxidase (GPx) and nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) staining. RESULTS Treatment with hPH produced a significant decrease of immobility time in the FST compared to the controls. Additionally, hPH treatment elicited a slightly decreasing trend in anxiety behavior on the EPM. Furthermore, hPH increased the level of GPx protein in the hippocampus, and decreased the expression of NADPH-d in the paraventricular nucleus (PVN). CONCLUSION This study demonstrated that hPH has anti-stress effects via the regulation of nitric oxide (NO) synthase and antioxidant activity in the brain. These results suggest that hPH may be useful in the treatment of stress-related diseases such as chronic fatigue syndrome.
Collapse
|
1059
|
Till Death Do Us Part: The Marriage of Autophagy and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4701275. [PMID: 29854084 PMCID: PMC5964578 DOI: 10.1155/2018/4701275] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 12/22/2022]
Abstract
Autophagy is a widely conserved catabolic process that is necessary for maintaining cellular homeostasis under normal physiological conditions and driving the cell to switch back to this status quo under times of starvation, hypoxia, and oxidative stress. The potential similarities and differences between basal autophagy and stimulus-induced autophagy are still largely unknown. Both act by clearing aberrant or unnecessary cytoplasmic material, such as misfolded proteins, supernumerary and defective organelles. The relationship between reactive oxygen species (ROS) and autophagy is complex. Cellular ROS is predominantly derived from mitochondria. Autophagy is triggered by this event, and by clearing the defective organelles effectively, it lowers cellular ROS thereby restoring cellular homeostasis. However, if cellular homeostasis cannot be reached, the cells can switch back and choose a regulated cell death response. Intriguingly, the autophagic and cell death machines both respond to the same stresses and share key regulatory proteins, suggesting that the pathways are intricately connected. Here, the intersection between autophagy and apoptosis is discussed with a particular focus on the role ROS plays.
Collapse
|
1060
|
Hayden HL, Savin KW, Wadeson J, Gupta VVSR, Mele PM. Comparative Metatranscriptomics of Wheat Rhizosphere Microbiomes in Disease Suppressive and Non-suppressive Soils for Rhizoctonia solani AG8. Front Microbiol 2018; 9:859. [PMID: 29780371 PMCID: PMC5945926 DOI: 10.3389/fmicb.2018.00859] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/13/2018] [Indexed: 11/29/2022] Open
Abstract
The soilborne fungus Rhizoctonia solani anastomosis group (AG) 8 is a major pathogen of grain crops resulting in substantial production losses. In the absence of resistant cultivars of wheat or barley, a sustainable and enduring method for disease control may lie in the enhancement of biological disease suppression. Evidence of effective biological control of R. solani AG8 through disease suppression has been well documented at our study site in Avon, South Australia. A comparative metatranscriptomic approach was applied to assess the taxonomic and functional characteristics of the rhizosphere microbiome of wheat plants grown in adjacent fields which are suppressive and non-suppressive to the plant pathogen R. solani AG8. Analysis of 12 rhizosphere metatranscriptomes (six per field) was undertaken using two bioinformatic approaches involving unassembled and assembled reads. Differential expression analysis showed the dominant taxa in the rhizosphere based on mRNA annotation were Arthrobacter spp. and Pseudomonas spp. for non-suppressive samples and Stenotrophomonas spp. and Buttiauxella spp. for the suppressive samples. The assembled metatranscriptome analysis identified more differentially expressed genes than the unassembled analysis in the comparison of suppressive and non-suppressive samples. Suppressive samples showed greater expression of a polyketide cyclase, a terpenoid biosynthesis backbone gene (dxs) and many cold shock proteins (csp). Non-suppressive samples were characterised by greater expression of antibiotic genes such as non-heme chloroperoxidase (cpo) which is involved in pyrrolnitrin synthesis, and phenazine biosynthesis family protein F (phzF) and its transcriptional activator protein (phzR). A large number of genes involved in detoxifying reactive oxygen species (ROS) and superoxide radicals (sod, cat, ahp, bcp, gpx1, trx) were also expressed in the non-suppressive rhizosphere samples most likely in response to the infection of wheat roots by R. solani AG8. Together these results provide new insight into microbial gene expression in the rhizosphere of wheat in soils suppressive and non-suppressive to R. solani AG8. The approach taken and the genes involved in these functions provide direction for future studies to determine more precisely the molecular interplay of plant-microbe-pathogen interactions with the ultimate goal of the development of management options that promote beneficial rhizosphere microflora to reduce R. solani AG8 infection of crops.
Collapse
Affiliation(s)
- Helen L Hayden
- Department of Economic Development, Jobs, Transport and Resources, Agriculture Victoria Research, AgriBio, Bundoora, VIC, Australia
| | - Keith W Savin
- Department of Economic Development, Jobs, Transport and Resources, Agriculture Victoria Research, AgriBio, Bundoora, VIC, Australia
| | - Jenny Wadeson
- Department of Economic Development, Jobs, Transport and Resources, Agriculture Victoria Research, AgriBio, Bundoora, VIC, Australia
| | - Vadakattu V S R Gupta
- CSIRO Agriculture and Food, Glen Osmond, SA, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Pauline M Mele
- Department of Economic Development, Jobs, Transport and Resources, Agriculture Victoria Research, AgriBio, Bundoora, VIC, Australia.,School of Applied Systems Biology, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
1061
|
Zhang J, Zhang B, Li X, Han X, Liu R, Fang J. Small molecule inhibitors of mammalian thioredoxin reductase as potential anticancer agents: An update. Med Res Rev 2018; 39:5-39. [DOI: 10.1002/med.21507] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
- School of Pharmacy; Lanzhou University; Lanzhou China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Xiao Han
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Ruijuan Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
- School of Pharmacy; Lanzhou University; Lanzhou China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| |
Collapse
|
1062
|
The Function of Thioredoxin-Binding Protein-2 (TBP-2) in Different Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4582130. [PMID: 29854083 PMCID: PMC5954861 DOI: 10.1155/2018/4582130] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Abstract
Thioredoxin-binding protein-2 (TBP-2) has an important role in the redox system, but it plays a different role in many different diseases (e.g., various cancers, diabetes mellitus (DM), cardiovascular disease, and cataracts) by influencing cell proliferation, differentiation, apoptosis, autophagy, and metabolism. Distinct transcription factors (TFs) stimulated by different factors combine with binding sites or proteins to upregulate or downregulate TBP-2 expression, in order to respond to the change in the internal environment. Most research disclosed that the main function of TBP-2 is associating with thioredoxin (Trx) to inhibit the antioxidant capacity of Trx. Furthermore, the TBP-2 located in tissues, whether normal or abnormal, has the ability to cause the dysfunctioning of cells and even death through different pathways, such as shortening the cell cycle and inducing apoptosis or autophagy. Through these studies, we found that TBP-2 promoted the development of diseases which are involved in inflammatory and oxidative damage. To a certain extent, we believe that there is some hidden connection between the biological functions which TBP-2 participates in and some distinct diseases. This review presents only a summary of the roles that TBP-2 plays in cancer, DM, cataracts, and so on, as well as its universal mechanisms. Further investigations are needed for the cell signaling pathways of the effects caused by TBP-2. A greater understanding of the mechanisms of TBP-2 could produce potential new targets for the treatment of diseases, including cancer and diabetes, cardiovascular disease, and cataracts.
Collapse
|
1063
|
Kocot J, Kiełczykowska M, Luchowska-Kocot D, Kurzepa J, Musik I. Antioxidant Potential of Propolis, Bee Pollen, and Royal Jelly: Possible Medical Application. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7074209. [PMID: 29854089 PMCID: PMC5954854 DOI: 10.1155/2018/7074209] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/25/2018] [Accepted: 04/02/2018] [Indexed: 02/08/2023]
Abstract
Honeybees products comprise of numerous substances, including propolis, bee pollen, and royal jelly, which have long been known for their medicinal and health-promoting properties. Their wide biological effects have been known and used since antiquity. Bee products are considered to be a potential source of natural antioxidants such as flavonoids, phenolic acids, or terpenoids. Nowadays, the still growing concern in natural substances capable of counteracting the effects of oxidative stress underlying the pathogenesis of numerous diseases, such as neurodegenerative disorders, cancer, diabetes, and atherosclerosis, as well as negative effects of different harmful factors and drugs, is being observed. Having regarded the importance of acquiring drugs from natural sources, this review is aimed at updating the current state of knowledge of antioxidant capacity of selected bee products, namely, propolis, bee pollen, and royal jelly, and of their potential antioxidant-related therapeutic applications. Moreover, the particular attention has been attributed to the understanding of the mechanisms underlying antioxidant properties of bee products. The influence of bee species, plant origin, geographic location, and seasonality as well as type of extraction solutions on the composition of bee products extracts were also discussed.
Collapse
Affiliation(s)
- Joanna Kocot
- Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| | - Małgorzata Kiełczykowska
- Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| | - Dorota Luchowska-Kocot
- Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| | - Jacek Kurzepa
- Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| | - Irena Musik
- Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| |
Collapse
|
1064
|
Kalinina EV, Chernov NN. Why does chemotherapy stop affecting the cells of ovarian and breast tumors? Future Oncol 2018; 14:1137-1140. [DOI: 10.2217/fon-2018-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Elena V Kalinina
- TT Berezov Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russian Federation, 117198
| | - Nikolai N Chernov
- TT Berezov Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russian Federation, 117198
| |
Collapse
|
1065
|
Cobley JN, Fiorello ML, Bailey DM. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol 2018; 15:490-503. [PMID: 29413961 PMCID: PMC5881419 DOI: 10.1016/j.redox.2018.01.008] [Citation(s) in RCA: 753] [Impact Index Per Article: 107.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/12/2022] Open
Abstract
The human brain consumes 20% of the total basal oxygen (O2) budget to support ATP intensive neuronal activity. Without sufficient O2 to support ATP demands, neuronal activity fails, such that, even transient ischemia is neurodegenerative. While the essentiality of O2 to brain function is clear, how oxidative stress causes neurodegeneration is ambiguous. Ambiguity exists because many of the reasons why the brain is susceptible to oxidative stress remain obscure. Many are erroneously understood as the deleterious result of adventitious O2 derived free radical and non-radical species generation. To understand how many reasons underpin oxidative stress, one must first re-cast free radical and non-radical species in a positive light because their deliberate generation enables the brain to achieve critical functions (e.g. synaptic plasticity) through redox signalling (i.e. positive functionality). Using free radicals and non-radical derivatives to signal sensitises the brain to oxidative stress when redox signalling goes awry (i.e. negative functionality). To advance mechanistic understanding, we rationalise 13 reasons why the brain is susceptible to oxidative stress. Key reasons include inter alia unsaturated lipid enrichment, mitochondria, calcium, glutamate, modest antioxidant defence, redox active transition metals and neurotransmitter auto-oxidation. We review RNA oxidation as an underappreciated cause of oxidative stress. The complex interplay between each reason dictates neuronal susceptibility to oxidative stress in a dynamic context and neural identity dependent manner. Our discourse sets the stage for investigators to interrogate the biochemical basis of oxidative stress in the brain in health and disease.
Collapse
Affiliation(s)
- James Nathan Cobley
- Free Radical Laboratory, Departments of Diabetes and Cardiovascular Sciences, Centre for Health Sciences, University of the Highlands and Islands, Inverness IV2 3HJ, UK.
| | - Maria Luisa Fiorello
- Free Radical Laboratory, Departments of Diabetes and Cardiovascular Sciences, Centre for Health Sciences, University of the Highlands and Islands, Inverness IV2 3HJ, UK
| | - Damian Miles Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, CF37 4AT, UK
| |
Collapse
|
1066
|
Tinkov AA, Bjørklund G, Skalny AV, Holmgren A, Skalnaya MG, Chirumbolo S, Aaseth J. The role of the thioredoxin/thioredoxin reductase system in the metabolic syndrome: towards a possible prognostic marker? Cell Mol Life Sci 2018; 75:1567-1586. [PMID: 29327078 PMCID: PMC11105605 DOI: 10.1007/s00018-018-2745-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/13/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022]
Abstract
Mammalian thioredoxin reductase (TrxR) is a selenoprotein with three existing isoenzymes (TrxR1, TrxR2, and TrxR3), which is found primarily intracellularly but also in extracellular fluids. The main substrate thioredoxin (Trx) is similarly found (as Trx1 and Trx2) in various intracellular compartments, in blood plasma, and is the cell's major disulfide reductase. Thioredoxin reductase is necessary as a NADPH-dependent reducing agent in biochemical reactions involving Trx. Genetic and environmental factors like selenium status influence the activity of TrxR. Research shows that the Trx/TrxR system plays a significant role in the physiology of the adipose tissue, in carbohydrate metabolism, insulin production and sensitivity, blood pressure regulation, inflammation, chemotactic activity of macrophages, and atherogenesis. Based on recent research, it has been reported that the modulation of the Trx/TrxR system may be considered as a new target in the management of the metabolic syndrome, insulin resistance, and type 2 diabetes, as well as in the treatment of hypertension and atherosclerosis. In this review evidence about a possible role of this system as a marker of the metabolic syndrome is reported.
Collapse
Affiliation(s)
- Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610, Mo i Rana, Norway.
| | - Anatoly V Skalny
- Yaroslavl State University, Yaroslavl, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
- Trace Element Institute for UNESCO, Lyon, France
- Orenburg State University, Orenburg, Russia
| | - Arne Holmgren
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institute, Stockholm, Sweden
| | | | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
- Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|
1067
|
Beyrath J, Pellegrini M, Renkema H, Houben L, Pecheritsyna S, van Zandvoort P, van den Broek P, Bekel A, Eftekhari P, Smeitink JAM. KH176 Safeguards Mitochondrial Diseased Cells from Redox Stress-Induced Cell Death by Interacting with the Thioredoxin System/Peroxiredoxin Enzyme Machinery. Sci Rep 2018; 8:6577. [PMID: 29700325 PMCID: PMC5920042 DOI: 10.1038/s41598-018-24900-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/10/2018] [Indexed: 01/01/2023] Open
Abstract
A deficient activity of one or more of the mitochondrial oxidative phosphorylation (OXPHOS) enzyme complexes leads to devastating diseases, with high unmet medical needs. Mitochondria, and more specifically the OXPHOS system, are the main cellular production sites of Reactive Oxygen Species (ROS). Increased ROS production, ultimately leading to irreversible oxidative damage of macromolecules or to more selective and reversible redox modulation of cell signalling, is a causative hallmark of mitochondrial diseases. Here we report on the development of a new clinical-stage drug KH176 acting as a ROS-Redox modulator. Patient-derived primary skin fibroblasts were used to assess the potency of a new library of chromanyl-based compounds to reduce ROS levels and protect cells against redox-stress. The lead compound KH176 was studied in cell-based and enzymatic assays and in silico. Additionally, the metabolism, pharmacokinetics and toxicokinetics of KH176 were assessed in vivo in different animal species. We demonstrate that KH176 can effectively reduce increased cellular ROS levels and protect OXPHOS deficient primary cells against redox perturbation by targeting the Thioredoxin/Peroxiredoxin system. Due to its dual activity as antioxidant and redox modulator, KH176 offers a novel approach to the treatment of mitochondrial (-related) diseases. KH176 efficacy and safety are currently being evaluated in a Phase 2 clinical trial.
Collapse
Affiliation(s)
- Julien Beyrath
- Khondrion BV, Philips van Leydenlaan 15, 6525EX, Nijmegen, The Netherlands.
| | - Mina Pellegrini
- Khondrion BV, Philips van Leydenlaan 15, 6525EX, Nijmegen, The Netherlands
| | - Herma Renkema
- Khondrion BV, Philips van Leydenlaan 15, 6525EX, Nijmegen, The Netherlands
| | - Lisanne Houben
- Khondrion BV, Philips van Leydenlaan 15, 6525EX, Nijmegen, The Netherlands
| | | | | | - Petra van den Broek
- Department of Pharmacology and Toxicology, Radboudumc, Radboud Institute for Molecular Life Sciences, Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Akkiz Bekel
- Inoviem Scientific SAS, Bioparc 3, 850 Boulevard Sébastien Brant, 67400, Illkirch-Graffenstaden, France
| | - Pierre Eftekhari
- Inoviem Scientific SAS, Bioparc 3, 850 Boulevard Sébastien Brant, 67400, Illkirch-Graffenstaden, France
| | - Jan A M Smeitink
- Khondrion BV, Philips van Leydenlaan 15, 6525EX, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
1068
|
Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P. Oxidative stress, aging, and diseases. Clin Interv Aging 2018; 13:757-772. [PMID: 29731617 PMCID: PMC5927356 DOI: 10.2147/cia.s158513] [Citation(s) in RCA: 2255] [Impact Index Per Article: 322.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen and nitrogen species (RONS) are produced by several endogenous and exogenous processes, and their negative effects are neutralized by antioxidant defenses. Oxidative stress occurs from the imbalance between RONS production and these antioxidant defenses. Aging is a process characterized by the progressive loss of tissue and organ function. The oxidative stress theory of aging is based on the hypothesis that age-associated functional losses are due to the accumulation of RONS-induced damages. At the same time, oxidative stress is involved in several age-related conditions (ie, cardiovascular diseases [CVDs], chronic obstructive pulmonary disease, chronic kidney disease, neurodegenerative diseases, and cancer), including sarcopenia and frailty. Different types of oxidative stress biomarkers have been identified and may provide important information about the efficacy of the treatment, guiding the selection of the most effective drugs/dose regimens for patients and, if particularly relevant from a pathophysiological point of view, acting on a specific therapeutic target. Given the important role of oxidative stress in the pathogenesis of many clinical conditions and aging, antioxidant therapy could positively affect the natural history of several diseases, but further investigation is needed to evaluate the real efficacy of these therapeutic interventions. The purpose of this paper is to provide a review of literature on this complex topic of ever increasing interest.
Collapse
Affiliation(s)
- Ilaria Liguori
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Gennaro Russo
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Francesco Curcio
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Giulia Bulli
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Luisa Aran
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - David Della-Morte
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,San Raffaele Roma Open University, Rome, Italy
| | - Gaetano Gargiulo
- Division of Internal Medicine, AOU San Giovanni di Dio e Ruggi di Aragona, Salerno, Italy
| | - Gianluca Testa
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy.,Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Francesco Cacciatore
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy.,Azienda Ospedaliera dei Colli, Monaldi Hospital, Heart Transplantation Unit, Naples, Italy
| | - Domenico Bonaduce
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Pasquale Abete
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
1069
|
Helmig S, Walter D, Putzier J, Maxeiner H, Wenzel S, Schneider J. Oxidative and cytotoxic stress induced by inorganic granular and fibrous particles. Mol Med Rep 2018; 17:8518-8529. [PMID: 29693699 DOI: 10.3892/mmr.2018.8923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 02/27/2018] [Indexed: 11/06/2022] Open
Abstract
The hazards of granular and fibrous particles have been associated with the generation of reactive oxygen species (ROS), which in turn is often associated with physicochemical properties exhibited by these particles. In the present study, the ability of various types of fibrous and granular dusts to generate oxidative stress, and their cytotoxicity, was investigated. Biopersistent granular dusts employed in the present study included micro‑ and nanosized titanium dioxide with rutile or anatase crystal structure modifications. Additionally, glass fibres, chrysotile and crocidolite asbestos representative of fibrous dust were selected. Detailed characterisation of particles was performed using scanning electron microscopy, and the effect of exposure to these particles on cell viability and intracellular ROS generation was assessed by PrestoBlue and 2',7'‑dichlorofluorescein assays, respectively. A549 human lung epithelial adenocarcinoma cells were exposed to increasing concentrations (0.1‑10 µg/cm2) of particles and fibres for 24 h. Subsequently, the gene expression of X‑linked inhibitor of apoptosis (XIAP), superoxide dismutase (SOD)1 and SOD2 were analysed by reverse transcription‑quantitative polymerase chain reaction. All investigated granular particles induce ROS production in A549 lung carcinoma cells within 24 h. Hematite increased ROS production in a dose‑dependent manner. A concentration of >1 µg/cm2 TiO2 na with its disordered surface, demonstrated the greatest ability to generate ROS. Therefore, the crystalline surface structure of the particle may be considered as a determinant of the extent of ROS induction by the particle. Fibrous particle compared with granular particles were associated with a lower ability to generate ROS. Glass fibres did not significantly increase ROS production in A549 cells, but elevated gene expression of SOD2 was observed. The results demonstrated that in general, the ability of particles to generate ROS depends on their number and crystal phase. Therefore, the present study helps to understand the cause of particle toxicity.
Collapse
Affiliation(s)
- Simone Helmig
- Institute and Outpatient Clinic for Occupational and Social Medicine, Justus‑Liebig University, D‑35392 Giessen, Germany
| | - Dirk Walter
- Institute and Outpatient Clinic for Occupational and Social Medicine, Justus‑Liebig University, D‑35392 Giessen, Germany
| | - Julia Putzier
- Institute and Outpatient Clinic for Occupational and Social Medicine, Justus‑Liebig University, D‑35392 Giessen, Germany
| | - Hagen Maxeiner
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Giessen and Marburg, Campus Giessen, D‑35392 Giessen, Germany
| | - Sibylle Wenzel
- Institute and Outpatient Clinic for Occupational and Social Medicine, Justus‑Liebig University, D‑35392 Giessen, Germany
| | - Joachim Schneider
- Institute and Outpatient Clinic for Occupational and Social Medicine, Justus‑Liebig University, D‑35392 Giessen, Germany
| |
Collapse
|
1070
|
Evidence for Inhibition of Topoisomerase 1A by Gold(III) Macrocycles and Chelates Targeting Mycobacterium tuberculosis and Mycobacterium abscessus. Antimicrob Agents Chemother 2018; 62:AAC.01696-17. [PMID: 29483110 DOI: 10.1128/aac.01696-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/08/2018] [Indexed: 01/15/2023] Open
Abstract
Mycobacterium tuberculosis and the fast-growing species Mycobacterium abscessus are two important human pathogens causing persistent pulmonary infections that are difficult to cure and require long treatment times. The emergence of drug-resistant M. tuberculosis strains and the high level of intrinsic resistance of M. abscessus call for novel drug scaffolds that effectively target both pathogens. In this study, we evaluated the activity of bis(pyrrolide-imine) gold(III) macrocycles and chelates, originally designed as DNA intercalators capable of targeting human topoisomerase types I and II (Topo1 and Topo2), against M. abscessus and M. tuberculosis We identified a total of 5 noncytotoxic compounds active against both mycobacterial pathogens under replicating in vitro conditions. We chose one of these hits, compound 14, for detailed analysis due to its potent bactericidal mode of inhibition and scalable synthesis. The clinical relevance of this compound was demonstrated by its ability to inhibit a panel of diverse M. tuberculosis and M. abscessus clinical isolates. Prompted by previous data suggesting that compound 14 may target topoisomerase/gyrase enzymes, we demonstrated that it lacked cross-resistance with fluoroquinolones, which target the M. tuberculosis gyrase. In vitro enzyme assays confirmed the potent activity of compound 14 against bacterial topoisomerase 1A (Topo1) enzymes but not gyrase. Novel scaffolds like compound 14 with potent, selective bactericidal activity against M. tuberculosis and M. abscessus that act on validated but underexploited targets like Topo1 represent a promising starting point for the development of novel therapeutics for infections by pathogenic mycobacteria.
Collapse
|
1071
|
Lisek K, Campaner E, Ciani Y, Walerych D, Del Sal G. Mutant p53 tunes the NRF2-dependent antioxidant response to support survival of cancer cells. Oncotarget 2018; 9:20508-20523. [PMID: 29755668 PMCID: PMC5945496 DOI: 10.18632/oncotarget.24974] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 03/09/2018] [Indexed: 12/15/2022] Open
Abstract
NRF2 (NFE2L2) is one of the main regulators of the antioxidant response of the cell. Here we show that in cancer cells NRF2 targets are selectively upregulated or repressed through a mutant p53-dependent mechanism. Mechanistically, mutant p53 interacts with NRF2, increases its nuclear presence and resides with NRF2 on selected ARE containing gene promoters activating the transcription of a specific set of genes while leading to the transcriptional repression of others. We show that thioredoxin (TXN) is a mutant p53-activated NRF2 target with pro-survival and pro-migratory functions in breast cancer cells under oxidative stress, while heme oxygenase 1 (HMOX1) is a mutant p53-repressed target displaying opposite effects. A gene signature of NRF2 targets activated by mutant p53 shows a significant association with bad overall prognosis and with mutant p53 status in breast cancer patients. Concomitant inhibition of thioredoxin system with Auranofin and of mutant p53 with APR-246 synergizes in killing cancer cells expressing p53 gain-of-function mutants.
Collapse
Affiliation(s)
- Kamil Lisek
- National Laboratory CIB, Area Science Park Padriciano, Trieste 34149, Italy.,Present address: Max-Delbrück-Centrum for Molecular Medicine, Berlin 13092, Germany
| | - Elena Campaner
- National Laboratory CIB, Area Science Park Padriciano, Trieste 34149, Italy.,Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Yari Ciani
- National Laboratory CIB, Area Science Park Padriciano, Trieste 34149, Italy
| | - Dawid Walerych
- National Laboratory CIB, Area Science Park Padriciano, Trieste 34149, Italy.,Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Giannino Del Sal
- National Laboratory CIB, Area Science Park Padriciano, Trieste 34149, Italy.,Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| |
Collapse
|
1072
|
Raninga PV, Di Trapani G, Tonissen KF. The Multifaceted Roles of DJ-1 as an Antioxidant. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1037:67-87. [PMID: 29147904 DOI: 10.1007/978-981-10-6583-5_6] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The DJ-1 protein was originally linked with Parkinson's disease and is now known to have antioxidant functions. The protein has three redox-sensitive cysteine residues, which are involved in its dimerisation and functional properties. A mildly oxidised form of DJ-1 is the most active form and protects cells from oxidative stress conditions. DJ-1 functions as an antioxidant through a variety of mechanisms, including a weak direct antioxidant activity by scavenging reactive oxygen species. DJ-1 also regulates a number of signalling pathways, including the inhibition of apoptosis signal-regulating kinase 1 (ASK1)-induced apoptosis under oxidative stress conditions. Other proteins regulated by DJ-1 include enzymes, chaperones, the 20S proteasome and transcription factors, including Nrf2. Once activated by oxidative stress, Nrf2 upregulates antioxidant gene expression including members of the thioredoxin and glutathione pathways, which in turn mediate an antioxidant protective function. Crosstalk between DJ-1 and both the thioredoxin and glutathione systems has also been identified. Thioredoxin reduces a cysteine residue on DJ-1 to modulate its activity, while glutaredoxin1 de-glutathionylates DJ-1, preventing degradation of DJ-1 and resulting in its accumulation. DJ-1 also regulates the activity of glutamate cysteine ligase, which is the rate-limiting step for glutathione synthesis. These antioxidant functions of DJ-1 are key to its role in protecting neurons from oxidative stress and are hypothesised to protect the brain from the development of neurodegenerative diseases such as Parkinson's disease (PD) and to protect cardiac tissues from ischaemic-reperfusion injury. However, DJ-1, as an antioxidant, also protects cancer cells from undergoing oxidative stress-induced apoptosis.
Collapse
Affiliation(s)
- Prahlad V Raninga
- School of Natural Sciences, Griffith University, Nathan, QLD, 4111, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia
| | - Giovanna Di Trapani
- School of Natural Sciences, Griffith University, Nathan, QLD, 4111, Australia
| | - Kathryn F Tonissen
- School of Natural Sciences, Griffith University, Nathan, QLD, 4111, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia.
| |
Collapse
|
1073
|
Alhawiti NM, Al Mahri S, Aziz MA, Malik SS, Mohammad S. TXNIP in Metabolic Regulation: Physiological Role and Therapeutic Outlook. Curr Drug Targets 2018; 18:1095-1103. [PMID: 28137209 PMCID: PMC5543564 DOI: 10.2174/1389450118666170130145514] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/04/2017] [Accepted: 01/25/2017] [Indexed: 12/20/2022]
Abstract
Background & Objective: Thioredoxin-interacting protein (TXNIP) also known as thioredoxin binding protein-2 is a ubiquitously expressed protein that interacts and negatively regulates expression and function of Thioredoxin (TXN). Over the last few years, TXNIP has attracted considerable attention due to its wide-ranging functions impacting several aspects of energy metabolism. TXNIP acts as an important regulator of glucose and lipid metabolism through pleiotropic actions including regulation of β-cell function, hepatic glucose production, peripheral glucose uptake, adipogenesis, and substrate utilization. Overexpression of TXNIP in animal models has been shown to induce apoptosis of pancreatic β-cells, reduce insulin sensitivity in peripheral tissues like skeletal muscle and adipose, and decrease energy expenditure. On the contrary, TXNIP deficient animals are protected from diet induced insulin resistance and type 2 diabetes. Summary: Consequently, targeting TXNIP is thought to offer novel therapeutic opportunity and TXNIP inhibitors have the potential to become a powerful therapeutic tool for the treatment of diabetes mellitus. Here we summarize the current state of our understanding of TXNIP biology, highlight its role in metabolic regulation and raise critical questions that could help future research to exploit TXNIP as a therapeutic target.
Collapse
Affiliation(s)
- Naif Mohammad Alhawiti
- Experimental Medicine, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Saeed Al Mahri
- Experimental Medicine, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Mohammad Azhar Aziz
- Colorectal Cancer Research Program, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Shuja Shafi Malik
- Experimental Medicine, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Sameer Mohammad
- Experimental Medicine, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| |
Collapse
|
1074
|
Broadgate S, Kiire C, Halford S, Chong V. Diabetic macular oedema: under-represented in the genetic analysis of diabetic retinopathy. Acta Ophthalmol 2018; 96 Suppl A111:1-51. [PMID: 29682912 DOI: 10.1111/aos.13678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy, a complication of both type 1 and type 2 diabetes, is a complex disease and is one of the leading causes of blindness in adults worldwide. It can be divided into distinct subclasses, one of which is diabetic macular oedema. Diabetic macular oedema can occur at any time in diabetic retinopathy and is the most common cause of vision loss in patients with type 2 diabetes. The purpose of this review is to summarize the large number of genetic association studies that have been performed in cohorts of patients with type 2 diabetes and published in English-language journals up to February 2017. Many of these studies have produced positive associations with gene polymorphisms and diabetic retinopathy. However, this review highlights that within this large body of work, studies specifically addressing a genetic association with diabetic macular oedema, although present, are vastly under-represented. We also highlight that many of the studies have small patient numbers and that meta-analyses often inappropriately combine patient data sets. We conclude that there will continue to be conflicting results and no meaningful findings will be achieved if the historical approach of combining all diabetic retinopathy disease states within patient cohorts continues in future studies. This review also identifies several genes that would be interesting to analyse in large, well-defined cohorts of patients with diabetic macular oedema in future candidate gene association studies.
Collapse
Affiliation(s)
- Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| | - Christine Kiire
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
- Oxford Eye Hospital; John Radcliffe Hospital; Oxford University NHS Foundation Trust; Oxford UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| | - Victor Chong
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| |
Collapse
|
1075
|
White K, Kim MJ, Han C, Park HJ, Ding D, Boyd K, Walker L, Linser P, Meneses Z, Slade C, Hirst J, Santostefano K, Terada N, Miyakawa T, Tanokura M, Salvi R, Someya S. Loss of IDH2 Accelerates Age-related Hearing Loss in Male Mice. Sci Rep 2018; 8:5039. [PMID: 29567975 PMCID: PMC5864918 DOI: 10.1038/s41598-018-23436-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/13/2018] [Indexed: 11/29/2022] Open
Abstract
Isocitrate dehydrogenase (IDH) 2 participates in the TCA cycle and catalyzes the conversion of isocitrate to α-ketoglutarate and NADP+ to NADPH. In the mitochondria, IDH2 also plays a key role in protecting mitochondrial components from oxidative stress by supplying NADPH to both glutathione reductase (GSR) and thioredoxin reductase 2 (TXNRD2). Here, we report that loss of Idh2 accelerates age-related hearing loss, the most common form of hearing impairment, in male mice. This was accompanied by increased oxidative DNA damage, increased apoptotic cell death, and profound loss of spiral ganglion neurons and hair cells in the cochlea of 24-month-old Idh2−/− mice. In young male mice, loss of Idh2 resulted in decreased NADPH redox state and decreased activity of TXNRD2 in the mitochondria of the inner ear. In HEI-OC1 mouse inner ear cell lines, knockdown of Idh2 resulted in a decline in cell viability and mitochondrial oxygen consumption. This was accompanied by decreased NADPH redox state and decreased activity of TXNRD2 in the mitochondria of the HEI-OC1 cells. Therefore, IDH2 functions as the principal source of NADPH for the mitochondrial thioredoxin antioxidant defense and plays an essential role in protecting hair cells and neurons against oxidative stress in the cochlea of male mice.
Collapse
Affiliation(s)
- Karessa White
- Department of Aging and Geriatric Research, University of Florida, Gainesville, Florida, 32610, United States
| | - Mi-Jung Kim
- Department of Aging and Geriatric Research, University of Florida, Gainesville, Florida, 32610, United States
| | - Chul Han
- Department of Aging and Geriatric Research, University of Florida, Gainesville, Florida, 32610, United States
| | - Hyo-Jin Park
- Department of Aging and Geriatric Research, University of Florida, Gainesville, Florida, 32610, United States
| | - Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, New York, 14214, United States
| | - Kevin Boyd
- Department of Aging and Geriatric Research, University of Florida, Gainesville, Florida, 32610, United States
| | - Logan Walker
- Department of Aging and Geriatric Research, University of Florida, Gainesville, Florida, 32610, United States
| | - Paul Linser
- Whitney Laboratory, University of Florida, St Augustine, Florida, 32080, United States
| | - Zaimary Meneses
- Department of Aging and Geriatric Research, University of Florida, Gainesville, Florida, 32610, United States
| | - Cole Slade
- Department of Aging and Geriatric Research, University of Florida, Gainesville, Florida, 32610, United States
| | - Jonathan Hirst
- Department of Aging and Geriatric Research, University of Florida, Gainesville, Florida, 32610, United States
| | - Katherine Santostefano
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, United States
| | - Naohiro Terada
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, United States
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi, Tokyo, 113, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi, Tokyo, 113, Japan
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, New York, 14214, United States
| | - Shinichi Someya
- Department of Aging and Geriatric Research, University of Florida, Gainesville, Florida, 32610, United States.
| |
Collapse
|
1076
|
Joyce A, Ijaz UZ, Nzeteu C, Vaughan A, Shirran SL, Botting CH, Quince C, O’Flaherty V, Abram F. Linking Microbial Community Structure and Function During the Acidified Anaerobic Digestion of Grass. Front Microbiol 2018; 9:540. [PMID: 29619022 PMCID: PMC5871674 DOI: 10.3389/fmicb.2018.00540] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/09/2018] [Indexed: 11/13/2022] Open
Abstract
Harvesting valuable bioproducts from various renewable feedstocks is necessary for the critical development of a sustainable bioeconomy. Anaerobic digestion is a well-established technology for the conversion of wastewater and solid feedstocks to energy with the additional potential for production of process intermediates of high market values (e.g., carboxylates). In recent years, first-generation biofuels typically derived from food crops have been widely utilized as a renewable source of energy. The environmental and socioeconomic limitations of such strategy, however, have led to the development of second-generation biofuels utilizing, amongst other feedstocks, lignocellulosic biomass. In this context, the anaerobic digestion of perennial grass holds great promise for the conversion of sustainable renewable feedstock to energy and other process intermediates. The advancement of this technology however, and its implementation for industrial applications, relies on a greater understanding of the microbiome underpinning the process. To this end, microbial communities recovered from replicated anaerobic bioreactors digesting grass were analyzed. The bioreactors leachates were not buffered and acidic pH (between 5.5 and 6.3) prevailed at the time of sampling as a result of microbial activities. Community composition and transcriptionally active taxa were examined using 16S rRNA sequencing and microbial functions were investigated using metaproteomics. Bioreactor fraction, i.e., grass or leachate, was found to be the main discriminator of community analysis across the three molecular level of investigation (DNA, RNA, and proteins). Six taxa, namely Bacteroidia, Betaproteobacteria, Clostridia, Gammaproteobacteria, Methanomicrobia, and Negativicutes accounted for the large majority of the three datasets. The initial stages of grass hydrolysis were carried out by Bacteroidia, Gammaproteobacteria, and Negativicutes in the grass biofilms, in addition to Clostridia in the bioreactor leachates. Numerous glycolytic enzymes and carbohydrate transporters were detected throughout the bioreactors in addition to proteins involved in butanol and lactate production. Finally, evidence of the prevalence of stressful conditions within the bioreactors and particularly impacting Clostridia was observed in the metaproteomes. Taken together, this study highlights the functional importance of Clostridia during the anaerobic digestion of grass and thus research avenues allowing members of this taxon to thrive should be explored.
Collapse
Affiliation(s)
- Aoife Joyce
- Functional Environmental Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Umer Z. Ijaz
- Environmental Omics Laboratory, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Corine Nzeteu
- Functional Environmental Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
- Microbial Ecology Laboratory, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Aoife Vaughan
- Microbial Ecology Laboratory, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Sally L. Shirran
- Biomedical Sciences Research Complex, University of St Andrews, Fife, United Kingdom
| | - Catherine H. Botting
- Biomedical Sciences Research Complex, University of St Andrews, Fife, United Kingdom
| | - Christopher Quince
- Microbiology and Infection, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Vincent O’Flaherty
- Microbial Ecology Laboratory, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Florence Abram
- Functional Environmental Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
1077
|
Abstract
Nanomaterials represent one of the most promising frontiers in the research for improved antioxidants. Some nanomaterials, including organic (i.e. melanin, lignin) metal oxides (i.e. cerium oxide) or metal (i.e. gold, platinum) based nanoparticles, exhibit intrinsic redox activity that is often associated with radical trapping and/or with superoxide dismutase-like and catalase-like activities. Redox inactive nanomaterials can be transformed into antioxidants by grafting low molecular weight antioxidants on them. Herein, we propose a classification of nanoantioxidants based on their mechanism of action, and we review the chemical methods used to measure antioxidant activity by providing a rationale of the chemistry behind them.
Collapse
Affiliation(s)
- Luca Valgimigli
- Department of Chemistry "G. Ciamician", University of Bologna, Via S. Giacomo 11, Bologna 40126, Italy.
| | | | | |
Collapse
|
1078
|
Payne NC, Barber DR, Ruggles EL, Hondal RJ. Can dimedone be used to study selenoproteins? An investigation into the reactivity of dimedone toward oxidized forms of selenocysteine. Protein Sci 2018; 28:41-55. [PMID: 29451338 DOI: 10.1002/pro.3390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 01/24/2023]
Abstract
Dimedone is a widely used reagent to assess the redox state of cysteine-containing proteins as it will alkylate sulfenic acid residues, but not sulfinic acid residues. While it has been reported that dimedone can label selenenic acid residues in selenoproteins, we investigated the stability, and reversibility of this label in a model peptide system. We also wondered whether dimedone could be used to detect seleninic acid residues. We used benzenesulfinic acid, benzeneseleninic acid, and model selenocysteine-containing peptides to investigate possible reactions with dimedone. These peptides were incubated with H2 O2 in the presence of dimedone and then the reactions were followed by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS). The native peptide, H-PTVTGCUG-OH (corresponding to the native amino acid sequence of the C-terminus of mammalian thioredoxin reductase), could not be alkylated by dimedone, but could be carboxymethylated with iodoacetic acid. However the "mutant peptide," H-PTVTGAUG-OH, could be labeled with dimedone at low concentrations of H2 O2 , but the reaction was reversible by addition of thiol. Due to the reversible nature of this alkylation, we conclude that dimedone is not a good reagent for detecting selenenic acids in selenoproteins. At high concentrations of H2 O2 , selenium was eliminated from the peptide and a dimeric form of dimedone could be detected using LCMS and 1 H NMR. The dimeric dimedone product forms as a result of a seleno-Pummerer reaction with Sec-seleninic acid. Overall our results show that the reaction of dimedone with oxidized cysteine residues is quite different from the same reaction with oxidized selenocysteine residues.
Collapse
Affiliation(s)
- N Connor Payne
- Department of Biochemistry, University of Vermont, College of Medicine, Burlington, Vermont, 05405
| | - Drew R Barber
- Department of Biochemistry, University of Vermont, College of Medicine, Burlington, Vermont, 05405
| | - Erik L Ruggles
- Department of Biochemistry, University of Vermont, College of Medicine, Burlington, Vermont, 05405
| | - Robert J Hondal
- Department of Biochemistry, University of Vermont, College of Medicine, Burlington, Vermont, 05405
| |
Collapse
|
1079
|
Goemans CV, Beaufay F, Wahni K, Van Molle I, Messens J, Collet JF. An essential thioredoxin is involved in the control of the cell cycle in the bacterium Caulobacter crescentus. J Biol Chem 2018; 293:3839-3848. [PMID: 29367337 PMCID: PMC5846133 DOI: 10.1074/jbc.ra117.001042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/23/2018] [Indexed: 11/06/2022] Open
Abstract
Thioredoxins (Trxs) are antioxidant proteins that are conserved among all species. These proteins have been extensively studied and perform reducing reactions on a broad range of substrates. Here, we identified Caulobacter crescentus Trx1 (CCNA_03653; CcTrx1) as an oxidoreductase that is involved in the cell cycle progression of this model bacterium and is required to sustain life. Intriguingly, the abundance of CcTrx1 varies throughout the C. crescentus cell cycle: although the expression of CcTrx1 is induced in stalked cells, right before DNA replication initiation, CcTrx1 is actively degraded by the ClpXP protease in predivisional cells. Importantly, we demonstrated that regulation of the abundance of CcTrx1 is crucial for cell growth and survival as modulating CcTrx1 levels leads to cell death. Finally, we also report a comprehensive biochemical and structural characterization of this unique and essential Trx. The requirement to precisely control the abundance of CcTrx1 for cell survival underlines the importance of redox control for optimal cell cycle progression in C. crescentus.
Collapse
Affiliation(s)
- Camille V Goemans
- From WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium,
- the de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
- the Brussels Center for Redox Biology, 1200 Brussels, Belgium
| | - François Beaufay
- the de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Khadija Wahni
- the Brussels Center for Redox Biology, 1200 Brussels, Belgium
- the Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), 1050 Brussels, Belgium, and
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Inge Van Molle
- the Brussels Center for Redox Biology, 1200 Brussels, Belgium
- the Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), 1050 Brussels, Belgium, and
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Joris Messens
- the Brussels Center for Redox Biology, 1200 Brussels, Belgium
- the Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), 1050 Brussels, Belgium, and
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Jean-François Collet
- From WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium,
- the de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
- the Brussels Center for Redox Biology, 1200 Brussels, Belgium
| |
Collapse
|
1080
|
Mochizuki A, Saso A, Zhao Q, Kubo S, Nishida N, Shimada I. Balanced Regulation of Redox Status of Intracellular Thioredoxin Revealed by in-Cell NMR. J Am Chem Soc 2018; 140:3784-3790. [PMID: 29509009 DOI: 10.1021/jacs.8b00426] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To understand how intracellular proteins respond to oxidative stresses, the redox status of the target protein, as well as the intracellular redox potential ( EGSH), which is defined by the concentrations of reduced and oxidized glutathione, should be observed simultaneously within living cells. In this study, we developed a method that can monitor the redox status of thioredoxin (Trx) and EGSH by direct NMR observation of Trx and glutathione within living cells. Unlike the midpoint potential of Trx measured in vitro (∼ -300 mV), the intracellular Trx exhibited the redox transition at EGSH between -250 and -200 mV, the range known to trigger the oxidative stress-mediated signalings. Furthermore, we quantified the contribution of Trx reductase to the redox status of Trx, demonstrating that the redox profile of Trx is determined by the interplay between the elevation of EGSH and the reduction by Trx reductase and other endogenous molecules.
Collapse
Affiliation(s)
- Ayano Mochizuki
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Arata Saso
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Qingci Zhao
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Satoshi Kubo
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Noritaka Nishida
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| |
Collapse
|
1081
|
May HC, Yu JJ, Guentzel MN, Chambers JP, Cap AP, Arulanandam BP. Repurposing Auranofin, Ebselen, and PX-12 as Antimicrobial Agents Targeting the Thioredoxin System. Front Microbiol 2018; 9:336. [PMID: 29556223 PMCID: PMC5844926 DOI: 10.3389/fmicb.2018.00336] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/12/2018] [Indexed: 01/23/2023] Open
Abstract
As microbial resistance to drugs continues to rise at an alarming rate, finding new ways to combat pathogens is an issue of utmost importance. Development of novel and specific antimicrobial drugs is a time-consuming and expensive process. However, the re-purposing of previously tested and/or approved drugs could be a feasible way to circumvent this long and costly process. In this review, we evaluate the U.S. Food and Drug Administration tested drugs auranofin, ebselen, and PX-12 as antimicrobial agents targeting the thioredoxin system. These drugs have been shown to act on bacterial, fungal, protozoan, and helminth pathogens without significant toxicity to the host. We propose that the thioredoxin system could serve as a useful therapeutic target with broad spectrum antimicrobial activity.
Collapse
Affiliation(s)
- Holly C. May
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| | - M. N. Guentzel
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| | - James P. Chambers
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| | - Andrew P. Cap
- United States Army Institute for Surgical Research, San Antonio Military Medical Center, San Antonio, TX, United States
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
1082
|
Morita K, Tokoro M, Hatanaka Y, Higuchi C, Ikegami H, Nagai K, Anzai M, Kato H, Mitani T, Taguchi Y, Yamagata K, Hosoi Y, Miyamoto K, Matsumoto K. Peroxiredoxin as a functional endogenous antioxidant enzyme in pronuclei of mouse zygotes. J Reprod Dev 2018; 64:161-171. [PMID: 29503398 PMCID: PMC5902904 DOI: 10.1262/jrd.2018-005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Antioxidant mechanisms to adequately moderate levels of endogenous reactive oxygen species (ROS) are important for oocytes and embryos to obtain and maintain developmental competence,
respectively. Immediately after fertilization, ROS levels in zygotes are elevated but the antioxidant mechanisms during the maternal-to-zygotic transition (MZT) are not well understood.
First, we identified peroxiredoxin 1 (PRDX1) and PRDX2 by proteomics analysis as two of the most abundant endogenous antioxidant enzymes eliminating hydrogen peroxide
(H2O2). We here report the cellular localization of hyperoxidized PRDX and its involvement in the antioxidant mechanisms of freshly fertilized oocytes. Treatment of
zygotes at the pronuclear stage with H2O2 enhanced pronuclear localization of hyperoxidized PRDX in zygotes and concurrently impaired the generation of
5-hydroxymethylcytosine (5hmC) on the male genome, which is an epigenetic reprogramming event that occurs at the pronuclear stage. Thus, our results suggest that endogenous PRDX is involved
in antioxidant mechanisms and epigenetic reprogramming during MZT.
Collapse
Affiliation(s)
- Kohtaro Morita
- Laboratory of Molecular Developmental Biology, Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Mikiko Tokoro
- The Asada Institute for Reproductive Medicine, Asada Ladies Clinic, Kasugai, Aichi 486-0931, Japan
| | - Yuki Hatanaka
- RIKEN BioResource Center, Ibaraki 305-0074, Japan.,Medical Research Council Clinical Sciences Centre, Imperial College London, London W12 0NN, UK
| | - Chika Higuchi
- Laboratory of Molecular Developmental Biology, Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Haruka Ikegami
- Laboratory of Molecular Developmental Biology, Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Kouhei Nagai
- Laboratory of Molecular Developmental Biology, Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Masayuki Anzai
- Laboratory of Molecular Developmental Biology, Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan.,Institute of Advanced Technology, Kindai University, Wakayama 642-0017, Japan
| | - Hiromi Kato
- Laboratory of Molecular Developmental Biology, Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan.,Institute of Advanced Technology, Kindai University, Wakayama 642-0017, Japan
| | - Tasuku Mitani
- Laboratory of Molecular Developmental Biology, Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan.,Institute of Advanced Technology, Kindai University, Wakayama 642-0017, Japan
| | - Yoshitomo Taguchi
- Laboratory of Molecular Developmental Biology, Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Kazuo Yamagata
- Laboratory of Molecular Developmental Biology, Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Yoshihiko Hosoi
- Laboratory of Molecular Developmental Biology, Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Kei Miyamoto
- Laboratory of Molecular Developmental Biology, Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Kazuya Matsumoto
- Laboratory of Molecular Developmental Biology, Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| |
Collapse
|
1083
|
Veal EA, Underwood ZE, Tomalin LE, Morgan BA, Pillay CS. Hyperoxidation of Peroxiredoxins: Gain or Loss of Function? Antioxid Redox Signal 2018; 28:574-590. [PMID: 28762774 DOI: 10.1089/ars.2017.7214] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE In 2003, structural studies revealed that eukaryotic 2-Cys peroxiredoxins (Prx) have evolved to be sensitive to inactivation of their thioredoxin peroxidase activity by hyperoxidation (sulfinylation) of their peroxide-reacting catalytic cysteine. This was accompanied by the unexpected discovery, that the sulfinylation of this cysteine was reversible in vivo and the identification of a new enzyme, sulfiredoxin, that had apparently co-evolved specifically to reduce hyperoxidized 2-Cys Prx, restoring their peroxidase activity. Together, these findings have provided the impetus for multiple studies investigating the purpose of this reversible, Prx hyperoxidation. Recent Advances: It has been suggested that inhibition of the thioredoxin peroxidase activity by hyperoxidation can both promote and inhibit peroxide signal transduction, depending on the context. Prx hyperoxidation has also been proposed to protect cells against reactive oxygen species (ROS)-induced damage, by preserving reduced thioredoxin and/or by increasing non-peroxidase chaperone or signaling activities of Prx. CRITICAL ISSUES Here, we will review the evidence in support of each of these proposed functions, in view of the in vivo contexts in which Prx hyperoxidation occurs, and the role of sulfiredoxin. Thus, we will attempt to explain the basis for seemingly contradictory roles for Prx hyperoxidation in redox signaling. FUTURE DIRECTIONS We provide a rationale, based on modeling and experimental studies, for why Prx hyperoxidation should be considered a suitable, early biomarker for damaging levels of ROS. We discuss the implications that this has for the role of Prx in aging and the detection of hyperoxidized Prx as a conserved feature of circadian rhythms. Antioxid. Redox Signal. 28, 574-590.
Collapse
Affiliation(s)
- Elizabeth A Veal
- 1 Institute for Cell and Molecular Biosciences, Newcastle University , Newcastle upon Tyne, United Kingdom .,2 Newcastle University Institute for Ageing, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Zoe E Underwood
- 1 Institute for Cell and Molecular Biosciences, Newcastle University , Newcastle upon Tyne, United Kingdom .,2 Newcastle University Institute for Ageing, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Lewis E Tomalin
- 1 Institute for Cell and Molecular Biosciences, Newcastle University , Newcastle upon Tyne, United Kingdom .,2 Newcastle University Institute for Ageing, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Brian A Morgan
- 1 Institute for Cell and Molecular Biosciences, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Ché S Pillay
- 3 School of Life Sciences, University of KwaZulu-Natal , Pietermartizburg, South Africa
| |
Collapse
|
1084
|
Kinetics of ROS generation induced by polycyclic aromatic hydrocarbons and organic extracts from ambient air particulate matter in model human lung cell lines. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 827:50-58. [DOI: 10.1016/j.mrgentox.2018.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/30/2017] [Accepted: 01/12/2018] [Indexed: 01/08/2023]
|
1085
|
Rodríguez-Fanjul V, López-Torres E, Mendiola MA, Pizarro AM. Gold(III) bis(thiosemicarbazonate) compounds in breast cancer cells: Cytotoxicity and thioredoxin reductase targeting. Eur J Med Chem 2018; 148:372-383. [DOI: 10.1016/j.ejmech.2018.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/01/2018] [Accepted: 02/04/2018] [Indexed: 10/18/2022]
|
1086
|
Kim RO, Jo MA, Song J, Kim IC, Yoon S, Kim WK. Novel approach for evaluating pharmaceuticals toxicity using Daphnia model: analysis of the mode of cytochrome P450-generated metabolite action after acetaminophen exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 196:35-42. [PMID: 29328974 DOI: 10.1016/j.aquatox.2017.12.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 12/22/2017] [Accepted: 12/30/2017] [Indexed: 06/07/2023]
Abstract
Because of its widespread use, the pharmaceutical acetaminophen (APAP) is frequently detected in aquatic environments. APAP can have serious physiological effects, such as reduced reproduction, low growth rates, and abnormal behavior, in aquatic organisms. However, the methods available for evaluation of the aquatic toxicity of APAP are of limited usefulness. The present study aimed to develop reliable and sensitive markers for evaluation of APAP toxicity using Daphnia as a model organism. We focused on N-acetyl-p-benzoquinoneimine (NAPQI) production from APAP via cytochrome P450 metabolism because NAPQI causes APAP toxicity. Daphnia magna were exposed to APAP (0, 50, or 100 mg/L for 12 h or 24 h), and the total metabolites were extracted and analyzed for NAPQI. Direct detection of NAPQI was difficult because of its high reactivity, and its peak was close to that for APAP. Therefore, we tried to identify molecular and biochemical indicators associated with NAPQI generation, elimination, and its interactions with macromolecules. We identified changes in CYP370A13 gene expression, glutathione depletion, inhibition of thioredoxin reductase activity, and production of reactive oxygen species as indicators of D. magna exposure to APAP. These indicators could be used to develop sensitive and accurate techniques to evaluate the environmental toxicity of APAP.
Collapse
Affiliation(s)
- Ryeo-Ok Kim
- System Toxicology Research Center, Korea Institute of Toxicology, Daejeon 34114, South Korea
| | - Min-A Jo
- System Toxicology Research Center, Korea Institute of Toxicology, Daejeon 34114, South Korea
| | - Jinhaeng Song
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Il-Chan Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Seokjoo Yoon
- System Toxicology Research Center, Korea Institute of Toxicology, Daejeon 34114, South Korea
| | - Woo-Keun Kim
- System Toxicology Research Center, Korea Institute of Toxicology, Daejeon 34114, South Korea.
| |
Collapse
|
1087
|
Zheng Z, Fan S, Zheng J, Huang W, Gasparetto C, Chao NJ, Hu J, Kang Y. Inhibition of thioredoxin activates mitophagy and overcomes adaptive bortezomib resistance in multiple myeloma. J Hematol Oncol 2018; 11:29. [PMID: 29482577 PMCID: PMC5828316 DOI: 10.1186/s13045-018-0575-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/12/2018] [Indexed: 11/25/2022] Open
Abstract
Background Although current chemotherapy using bortezomib (Velcade) against multiple myeloma in adults has achieved significant responses and even remission, a majority of patients will develop acquired resistance to bortezomib. Increased thioredoxin level has been reported to be associated with carcinogenesis; however, the role of thioredoxin in bortezomib drug resistance of myeloma remains unclear. Methods We generated several bortezomib-resistant myeloma cell lines by serially passaging with increased concentrations of bortezomib over a period of 1.5 years. Thioredoxin expression was measured by real-time PCR and western blot. Results The role of thioredoxin in the survival of bortezomib-resistant myeloma cells was determined by specific shRNA knockdown in vitro and in vivo. Thioredoxin inhibitor (PX12) was used to determine the effectiveness of thioredoxin inhibition in the treatment of bortezomib-resistant myeloma cells. The effect of thioredoxin inhibition on mitophagy induction was examined. The correlation of thioredoxin expression with patient overall survival was interrogated. Thioredoxin expression was significantly upregulated in bortezomib-resistant myeloma cells and the change correlated with the increase of bortezomib concentration. Thioredoxin gene knockdown using specific shRNA sensitized bortezomib-resistant myeloma cells to bortezomib efficiency in vitro and in vivo. Similarly, pharmacological inhibition with PX12 inhibited the growth of bortezomib-resistant myeloma cells and overcame bortezomib resistance in vitro and in vivo. Furthermore, inhibition of thioredoxin resulted in the activation of mitophagy and blockage of mitophagy prevented the effects of PX12 on bortezomib-resistant myeloma cells, indicating that mitophagy is the important molecular mechanism for the induction of cell death in bortezomib-resistant myeloma cells by PX12. Moreover, inhibition of thioredoxin resulted in downregulation of phosphorylated mTOR and ERK1/2. Finally, thioredoxin was overexpressed in primary myeloma cells isolated from bortezomib-resistant myeloma patients and overexpression of thioredoxin correlated with poor overall survival in patients with multiple myeloma. Conclusions Our findings demonstrated that increased thioredoxin plays a critical role in bortezomib resistance in multiple myeloma through mitophagy inactivation and increased mTOR and ERK1/2 phosphorylation. Thioredoxin provides a potential target for clinical therapeutics against multiple myeloma, particularly for bortezomib-resistant/refractory myeloma patients. Electronic supplementary material The online version of this article (10.1186/s13045-018-0575-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhihong Zheng
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, China.,Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, 3961, Durham, NC, 27710, USA
| | - Shengjun Fan
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, 3961, Durham, NC, 27710, USA
| | - Jing Zheng
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Wei Huang
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, 3961, Durham, NC, 27710, USA
| | - Cristina Gasparetto
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, 3961, Durham, NC, 27710, USA
| | - Nelson J Chao
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, 3961, Durham, NC, 27710, USA
| | - Jianda Hu
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, China.
| | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, 3961, Durham, NC, 27710, USA.
| |
Collapse
|
1088
|
HuR silencing elicits oxidative stress and DNA damage and sensitizes human triple-negative breast cancer cells to radiotherapy. Oncotarget 2018; 7:64820-64835. [PMID: 27588488 PMCID: PMC5323119 DOI: 10.18632/oncotarget.11706] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022] Open
Abstract
HuR is an mRNA-binding protein whose overexpression in cancer cells has been associated with poor prognosis and resistance to therapy. While reports on HuR overexpression contributing to chemoresistance exist, limited information is available on HuR and radioresistance especially in triple-negative breast cancer (TNBC). In this study we investigated the role of HuR in radiation resistance in three TNBC (MDA-MB-231, MDA-MB-468 and Hs578t) cell lines. Endogenous HuR expression was higher in TNBC cells compared to normal cells. siRNA mediated knockdown of HuR (siHuR) markedly reduced HuR mRNA and protein levels compared to scrambled siRNA (siScr) treatment. Further, siHuR treatment sensitized TNBC cells to ionizing radiation at 2 Gy compared to siScr treatment as evidenced by the significant reduction in clonogenic cell survival from 59%, 49%, and 65% in siScr-treated cells to 40%, 33%, and 46% in siHuR-treated MDA-MB-231, MDA-MB-468 and Hs578t cells, respectively. Molecular studies showed increased ROS production and inhibition of thioredoxin reductase (TrxR) in HuR knockdown cells contributed to radiosensitization. Associated with increased ROS production was evidence of increased DNA damage, demonstrated by a significant increase (p < 0.05) in γ-H2AX foci that persisted for up to 24 h in siHuR plus radiation treated cells compared to control cells. Further, comet assay revealed that HuR-silenced cells had larger and longer-lasting tails than control cells, indicating higher levels of DNA damage. In conclusion, our studies demonstrate that HuR knockdown in TNBC cells elicits oxidative stress and DNA damage resulting in radiosensitization.
Collapse
|
1089
|
Liu M, Li S, Zhang Q, Xu Z, Wang J, Sun H. Oral engineered Bifidobacterium longum expressing rhMnSOD to suppress experimental colitis. Int Immunopharmacol 2018; 57:25-32. [PMID: 29455070 DOI: 10.1016/j.intimp.2018.02.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/22/2018] [Accepted: 02/09/2018] [Indexed: 12/13/2022]
Abstract
In recent years, using genetic engineering and bioengineering techniques, Bifidobacterium as a carrier to express specific functions of the protein or polypeptide, has become a new treatment for disease. Ulcerative colitis (UC) is a type of inflammatory bowel diseases (IBD). Although the cause of this inflammatory disorder is still unknown, a large amount of evidence suggests that ulcerative colitis is associated with increased activity of reactive oxygen species (ROS), manganese superoxide dismutase (MnSOD) is a kind of superoxide dismutase (SOD) has been demonstrated to play a key role in the pathophysiology of colitis. Here, we explored the Bifidobacterium as a drug delivery system to orally deliver a potent anti-inflammatory but poor penetration and stability antioxidant enzymes human MnSOD, transported into cells by a penetratin PEP-1. We constructed an expression vector expressing PEP-1-hMnSOD fusion protein, and successfully expressed hMnSOD fusion protein in engineered Bifidobacterium. Then we identified the bioactivity of engineered Bifidobacterium in LPS-induced inflammatory cell model. Finally, we used Bifidobacterium expressing PEP-1-hMnSOD fusion protein against DSS-induced ulcerative colitis mice. B. longum-PEP-1-rhMnSOD can successfully express rhMnSOD in the colon. We found that levels of inflammatory cytokines TNF-α, IL-1β, IL-6 and IL-8 as well as histological damage in colonic tissues showed that engineered Bifidobacterium effectively reduced dextran sulfate sodium(DSS)-induced ulcerative colitis, we also tested the MPO, verified the above conclusions. These results suggest that oral Bifidobacterium expressing PEP-1-hMnSOD fusion protein can be treated as a new method of UC treatment.
Collapse
Affiliation(s)
- Mengge Liu
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Shiyu Li
- Genetic Engineering Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Qian Zhang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhenrui Xu
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jiajia Wang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Hanxiao Sun
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
1090
|
Filipovic MR, Zivanovic J, Alvarez B, Banerjee R. Chemical Biology of H 2S Signaling through Persulfidation. Chem Rev 2018; 118:1253-1337. [PMID: 29112440 PMCID: PMC6029264 DOI: 10.1021/acs.chemrev.7b00205] [Citation(s) in RCA: 680] [Impact Index Per Article: 97.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Signaling by H2S is proposed to occur via persulfidation, a posttranslational modification of cysteine residues (RSH) to persulfides (RSSH). Persulfidation provides a framework for understanding the physiological and pharmacological effects of H2S. Due to the inherent instability of persulfides, their chemistry is understudied. In this review, we discuss the biologically relevant chemistry of H2S and the enzymatic routes for its production and oxidation. We cover the chemical biology of persulfides and the chemical probes for detecting them. We conclude by discussing the roles ascribed to protein persulfidation in cell signaling pathways.
Collapse
Affiliation(s)
- Milos R. Filipovic
- Univeristy of Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
- CNRS, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Jasmina Zivanovic
- Univeristy of Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
- CNRS, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Facultad de Ciencias and Center for Free Radical and Biomedical Research, Universidad de la Republica, 11400 Montevideo, Uruguay
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600, United States
| |
Collapse
|
1091
|
Abstract
PURPOSE OF REVIEW Although the roles of oxidant stress and redox perturbations in hypertension have been the subject of several reviews, role of thioredoxin (Trx), a major cellular redox protein in age-related hypertension remains inadequately reviewed. The purpose of this review is to bring readers up-to-date with current understanding of the role of thioredoxin in age-related hypertension. RECENT FINDINGS Age-related hypertension is a major underlying cause of several cardiovascular disorders, and therefore, intensive management of blood pressure is indicated in most patients with cardiovascular complications. Recent studies have shown that age-related hypertension was reversed and remained lowered for a prolonged period in mice with higher levels of human Trx (Trx-Tg). Additionally, injection of human recombinant Trx (rhTrx) decreased hypertension in aged wild-type mice that lasted for several days. Both Trx-Tg and aged wild-type mice injected with rhTrx were normotensive, showed increased NO production, decreased arterial stiffness, and increased vascular relaxation. These studies suggest that rhTrx could potentially be a therapeutic molecule to reverse age-related hypertension in humans. The reversal of age-related hypertension by restoring proteins that have undergone age-related modification is conceptually novel in the treatment of hypertension. Trx reverses age-related hypertension via maintaining vascular redox homeostasis, regenerating critical vasoregulatory proteins oxidized due to advancing age, and restoring native function of proteins that have undergone age-related modifications with loss-of function. Recent studies demonstrate that Trx is a promising molecule that may ameliorate or reverse age-related hypertension in older adults.
Collapse
Affiliation(s)
- Kumuda C Das
- Department of Translational and Vascular Biology, University of Texas Health Sciences Center at Tyler, 11937 US Hwy 271, Tyler, TX, 75708, USA.
| | - Venkatesh Kundumani-Sridharan
- Department of Translational and Vascular Biology, University of Texas Health Sciences Center at Tyler, 11937 US Hwy 271, Tyler, TX, 75708, USA
| | - Jaganathan Subramani
- Department of Translational and Vascular Biology, University of Texas Health Sciences Center at Tyler, 11937 US Hwy 271, Tyler, TX, 75708, USA
| |
Collapse
|
1092
|
Kumar A, Subramanian Manimekalai MS, Grüber G. Substrate-induced structural alterations of Mycobacterial mycothione reductase and critical residues involved. FEBS Lett 2018; 592:568-585. [PMID: 29377100 DOI: 10.1002/1873-3468.12984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 01/23/2023]
Abstract
Redox homeostasis is a prerequisite for survival of the pathogen Mycobacterium tuberculosis (Mtb) which employs the low molecular weight thiol mycothiol (MSH). The Mycobacterial NADPH-dependent mycothione reductase (MtMtr), composed of an NADPH-, FAD-, and a dimerization-domain connected by linkers, regulates the balance of oxidized-reduced MSH. Here, we demonstrate by small-angle X-ray scattering, that NADPH-binding alters the oligomeric state equilibrium of the protein with no significant overall structural change after MSH-binding. Mutation of critical residues in the linker regions of MtMtr eliminate partially or totally the NADPH-induced oligomerization effect with simultaneous effect on enzyme activity. The data provide insight into the MtMtr linker regions involved in the novel oligomerization equilibrium of the Mycobacterial enzyme.
Collapse
Affiliation(s)
- Arvind Kumar
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
1093
|
|
1094
|
Bihani SC, Panicker L, Rajpurohit YS, Misra HS, Kumar V. drFrnE Represents a Hitherto Unknown Class of Eubacterial Cytoplasmic Disulfide Oxido-Reductases. Antioxid Redox Signal 2018; 28:296-310. [PMID: 28899103 DOI: 10.1089/ars.2016.6960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS Living cells employ thioredoxin and glutaredoxin disulfide oxido-reductases to protect thiol groups in intracellular proteins. FrnE protein of Deinococcus radiodurans (drFrnE) is a disulfide oxido-reductase that is induced in response to Cd2+ exposure and is involved in cadmium and radiation tolerance. The aim of this study is to probe structure, function, and cellular localization of FrnE class of proteins. RESULTS Here, we show drFrnE as a novel cytoplasmic oxido-reductase that could be functional in eubacteria under conditions where thioredoxin/glutaredoxin systems are inhibited or absent. Crystal structure analysis of drFrnE reveals thioredoxin fold with an alpha helical insertion domain and a unique, flexible, and functionally important C-terminal tail. The C-tail harbors a novel 239-CX4C-244 motif that interacts with the active site 22-CXXC-25 motif. Crystal structures with different active site redox states, including mixed disulfide (Cys22-Cys244), are reported here. The biochemical data show that 239-CX4C-244 motif channels electrons to the active site cysteines. drFrnE is more stable in the oxidized form, compared with the reduced form, supporting its role as a disulfide reductase. Using bioinformatics analysis and fluorescence microscopy, we show cytoplasmic localization of drFrnE. We have found "true" orthologs of drFrnE in several eubacterial phyla and, interestingly, all these groups apparently lack a functional glutaredoxin system. Innovation and Conclusion: We show that drFrnE represents a new class of hitherto unknown intracellular oxido-reductases that are abundantly present in eubacteria. Unlike other well-known oxido-reductases, FrnE harbors an additional dithiol motif that acts as a conduit to channel electrons to the active site during catalytic turnover. Antioxid. Redox Signal. 28, 296-310.
Collapse
Affiliation(s)
- Subhash C Bihani
- 1 Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre , Mumbai, India
| | - Lata Panicker
- 1 Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre , Mumbai, India
| | | | - Hari S Misra
- 2 Molecular Biology Division, Bhabha Atomic Research Centre , Mumbai, India .,3 Life Sciences, Homi Bhabha National Institute , Mumbai, India
| | - Vinay Kumar
- 1 Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre , Mumbai, India .,3 Life Sciences, Homi Bhabha National Institute , Mumbai, India
| |
Collapse
|
1095
|
Erard M, Dupré-Crochet S, Nüße O. Biosensors for spatiotemporal detection of reactive oxygen species in cells and tissues. Am J Physiol Regul Integr Comp Physiol 2018; 314:R667-R683. [PMID: 29341828 DOI: 10.1152/ajpregu.00140.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Redox biology has become a major issue in numerous areas of physiology. Reactive oxygen species (ROS) have a broad range of roles from signal transduction to growth control and cell death. To understand the nature of these roles, accurate measurement of the reactive compounds is required. An increasing number of tools for ROS detection is available; however, the specificity and sensitivity of these tools are often insufficient. Furthermore, their specificity has been rarely evaluated in complex physiological conditions. Many ROS probes are sensitive to environmental conditions in particular pH, which may interfere with ROS detection and cause misleading results. Accurate detection of ROS in physiology and pathophysiology faces additional challenges concerning the precise localization of the ROS and the timing of their production and disappearance. Certain ROS are membrane permeable, and certain ROS probes move across cells and organelles. Targetable ROS probes such as fluorescent protein-based biosensors are required for accurate localization. Here we analyze these challenges in more detail, provide indications on the strength and weakness of current tools for ROS detection, and point out developments that will provide improved ROS detection methods in the future. There is no universal method that fits all situations in physiology and cell biology. A detailed knowledge of the ROS probes is required to choose the appropriate method for a given biological problem. The knowledge of the shortcomings of these probes should also guide the development of new sensors.
Collapse
Affiliation(s)
- Marie Erard
- Université Paris-Sud, Université Paris-Saclay , Orsay , France.,Centre National de la Recherche Scientifique, Laboratoire de Chimie Physique , Orsay , France
| | - Sophie Dupré-Crochet
- Université Paris-Sud, Université Paris-Saclay , Orsay , France.,Centre National de la Recherche Scientifique, Laboratoire de Chimie Physique , Orsay , France
| | - Oliver Nüße
- Centre National de la Recherche Scientifique, Laboratoire de Chimie Physique , Orsay , France
| |
Collapse
|
1096
|
Zhang P, Wu J, Xiao F, Zhao D, Luan Y. Disulfide bond based polymeric drug carriers for cancer chemotherapy and relevant redox environments in mammals. Med Res Rev 2018; 38:1485-1510. [PMID: 29341223 DOI: 10.1002/med.21485] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/14/2017] [Accepted: 12/26/2017] [Indexed: 12/14/2022]
Abstract
Increasing numbers of disulfide linkage-employing polymeric drug carriers that utilize the reversible peculiarity of this unique covalent bond have been reported. The reduction-sensitive disulfide bond is usually employed as a linkage between hydrophilic and hydrophobic polymers, polymers and drugs, or as cross-linkers in polymeric drug carriers. These polymeric drug carriers are designed to exploit the significant redox potential difference between the reducing intracellular environments and relatively oxidizing extracellular spaces. In addition, these drug carriers can release a considerable amount of anticancer drug in response to the reducing environment when they reach tumor tissues, effectively improving antitumor efficacy. This review focuses on various disulfide linkage-employing polymeric drug carriers. Important redox thiol pools, including GSH/GSSG, Cys/CySS, and Trx1, as well as redox environments in mammals, will be introduced.
Collapse
Affiliation(s)
- Pei Zhang
- School of Pharmaceutical Science, Shandong University, Jinan, P. R. China
| | - Jilian Wu
- School of Pharmaceutical Science, Shandong University, Jinan, P. R. China
| | - Fengmei Xiao
- Binzhou Tuberculosis Prevention and Treatment Hospital, Binzhou, P. R. China
| | - Dujuan Zhao
- School of Pharmaceutical Science, Shandong University, Jinan, P. R. China
| | - Yuxia Luan
- School of Pharmaceutical Science, Shandong University, Jinan, P. R. China
| |
Collapse
|
1097
|
Expression of the methionine sulfoxide reductase lost during evolution extends Drosophila lifespan in a methionine-dependent manner. Sci Rep 2018; 8:1010. [PMID: 29343716 PMCID: PMC5798039 DOI: 10.1038/s41598-017-15090-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/18/2017] [Indexed: 01/14/2023] Open
Abstract
Accumulation of oxidized amino acids, including methionine, has been implicated in aging. The ability to reduce one of the products of methionine oxidation, free methionine-R-sulfoxide (Met-R-SO), is widespread in microorganisms, but during evolution this function, conferred by the enzyme fRMsr, was lost in metazoa. We examined whether restoration of the fRMsr function in an animal can alleviate the consequences of methionine oxidation. Ectopic expression of yeast fRMsr supported the ability of Drosophila to catalyze free Met-R-SO reduction without affecting fecundity, food consumption, and response to starvation. fRMsr expression also increased resistance to oxidative stress. Moreover, it extended lifespan of flies in a methionine-dependent manner. Thus, expression of an oxidoreductase lost during evolution can enhance metabolic and redox functions and lead to an increase in lifespan in an animal model. More broadly, our study exposes the potential of a combination of genetic and nutritional strategies in lifespan control.
Collapse
|
1098
|
Lan J, Huang Z, Han J, Shao J, Huang C. Redox regulation of microRNAs in cancer. Cancer Lett 2018; 418:250-259. [PMID: 29330105 DOI: 10.1016/j.canlet.2018.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/22/2017] [Accepted: 01/05/2018] [Indexed: 02/05/2023]
Abstract
Dysregulation of microRNAs (miRNAs) has long been implicated in tumorigenesis, whereas the underlying mechanisms remain largely unknown. Oxidative stress is a hallmark of cancer that involved in multiple pathophysiological processes, including the aberrant regulation of miRNAs. Compelling evidences have implied complicated interplay between reactive oxygen species (ROS) and miRNAs. Indeed, ROS induces carcinogenesis through either reducing or increasing the miRNA level, leading to the activation of oncogenes or silence of tumor suppressors, respectively. In turn, miRNAs target ROS productive genes or antioxidant responsive elements to affect cellular redox balance, which contributes to establishing a microenvironment favoring cancer cell growth and metastasis. Both miRNAs and ROS have been identified as potential biomarkers and therapeutic targets in human malignancies, and comprehensive understanding of the molecular events herein will facilitate the development of novel cancer therapeutic strategies.
Collapse
Affiliation(s)
- Jiang Lan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Jichun Shao
- Department of Urology, Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, Sichuan, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China.
| |
Collapse
|
1099
|
Low-Molecular-Weight Thiols and Thioredoxins Are Important Players in Hg(II) Resistance in Thermus thermophilus HB27. Appl Environ Microbiol 2018; 84:AEM.01931-17. [PMID: 29150497 DOI: 10.1128/aem.01931-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/24/2017] [Indexed: 12/31/2022] Open
Abstract
Mercury (Hg), one of the most toxic and widely distributed heavy metals, has a high affinity for thiol groups. Thiol groups reduce and sequester Hg. Therefore, low-molecular-weight (LMW) and protein thiols may be important cell components used in Hg resistance. To date, the role of low-molecular-weight thiols in Hg detoxification remains understudied. The mercury resistance (mer) operon of Thermus thermophilus suggests an evolutionary link between Hg(II) resistance and low-molecular-weight thiol metabolism. The mer operon encodes an enzyme involved in methionine biosynthesis, Oah. Challenge with Hg(II) resulted in increased expression of genes involved in the biosynthesis of multiple low-molecular-weight thiols (cysteine, homocysteine, and bacillithiol), as well as the thioredoxin system. Phenotypic analysis of gene replacement mutants indicated that Oah contributes to Hg resistance under sulfur-limiting conditions, and strains lacking bacillithiol and/or thioredoxins are more sensitive to Hg(II) than the wild type. Growth in the presence of either a thiol-oxidizing agent or a thiol-alkylating agent increased sensitivity to Hg(II). Furthermore, exposure to 3 μM Hg(II) consumed all intracellular reduced bacillithiol and cysteine. Database searches indicate that oah2 is present in all Thermus sp. mer operons. The presence of a thiol-related gene was also detected in some alphaproteobacterial mer operons, in which a glutathione reductase gene was present, supporting the role of thiols in Hg(II) detoxification. These results have led to a working model in which LMW thiols act as Hg(II)-buffering agents while Hg is reduced by MerA.IMPORTANCE The survival of microorganisms in the presence of toxic metals is central to life's sustainability. The affinity of thiol groups for toxic heavy metals drives microbe-metal interactions and modulates metal toxicity. Mercury detoxification (mer) genes likely originated early in microbial evolution in geothermal environments. Little is known about how mer systems interact with cellular thiol systems. Thermus spp. possess a simple mer operon in which a low-molecular-weight thiol biosynthesis gene is present, along with merR and merA In this study, we present experimental evidence for the role of thiol systems in mercury resistance. Our data suggest that, in T. thermophilus, thiolated compounds may function side by side with mer genes to detoxify mercury. Thus, thiol systems function in consort with mer-mediated resistance to mercury, suggesting exciting new questions for future research.
Collapse
|
1100
|
Hecker M, Wagner AH. Role of protein carbonylation in diabetes. J Inherit Metab Dis 2018; 41:29-38. [PMID: 29110177 DOI: 10.1007/s10545-017-0104-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/13/2017] [Accepted: 10/18/2017] [Indexed: 01/17/2023]
Abstract
Diabetes mellitus is a metabolic disease characterized by, among others, elevated blood glucose levels. Hyperglycaemia as well as enhanced levels of glucose-derived reactive metabolites contribute to the development of diabetic complications partly via increased generation of reactive oxygen species (ROS). ROS are not only part of signaling pathways themselves but also lead to carbonylation of particular amino acid side chains by direct metal-catalyzed oxidation. In addition, carbonyl groups can be introduced into proteins indirectly by non-oxidative covalent adduction of reactive carbonyl species generated by the oxidation of lipids or carbohydrates. Both direct and indirect carbonylation mechanisms may affect protein conformation, activity, and function. Herein we introduce the different mechanisms of the carbonylation reaction, discuss degradation mechanisms, and the fate of proteins modified this way and how the overall degree of carbonylation affects protein homeostasis and function differently. The role of protein carbonylation in metabolic control systems and cell signaling are also summarized. Finally, current diagnostic and antioxidant therapeutic options in diabetes are discussed.
Collapse
Affiliation(s)
- Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Andreas H Wagner
- Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany.
| |
Collapse
|